4,886 research outputs found

    Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows

    Get PDF
    The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applicationsÂż and `generic issuesÂż as the main characteristics

    Resistive damping implementation as a method to improve controllability in stiff ohmic RF-MEMS switches

    Get PDF
    This paper presents in detail the entire procedure of calculating the bias resistance of an ohmic RF-MEMS switch, controlled under resistive damping (charge drive technique). In case of a very stiff device, like the North Eastern University switch, the actuation control under resistive damping is the only way to achieve controllability. Due to the short switching time as well as the high actuation voltage, it is not practical to apply a tailored control pulse (voltage drive control technique). Implementing a bias resistor of 33 MΩ in series with the voltage source, the impact velocity of the cantilever has been reduced 80 % (13.2 from 65.9 cm/s), eliminating bouncing and high initial impact force during the pull-down phase. However, this results in an affordable cost of switching time increase from 2.38 to 4.34 μs. During the release phase the amplitude of bouncing has also been reduced 34 % (174 from 255 nm), providing significant improvement in both switching operation phases of the switch. © 2013 Springer-Verlag Berlin Heidelberg

    Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion

    Get PDF
    This paper presents lumped-parameter simulation of dynamic characteristics of peristaltic micropumps. The pump consists of three pumping cells connected in series, each of which is equipped with a compliant diaphragm that is electrostatically actuated in a peristaltic sequence to mobilize the fluid. Diaphragm motion in each pumping cell is first represented by an effective spring subjected to hydrodynamic and electrostatic forces. These cell representations are then used to construct a system-level model for the entire pump, which accounts for both cell- and pump-level interactions of fluid flow and diaphragm vibration. As the model is based on first principles, it can be evaluated directly from the device's geometry, material properties and operating parameters without using any experimentally identified parameters. Applied to an existing pump, the model correctly predicts trends observed in experiments. The model is then used to perform a systematic analysis of the impact of geometry, materials and pump loading on device performance, demonstrating its utility as an efficient tool for peristaltic micropump design

    A piecewise-linear reduced-order model of squeeze-film damping for deformable structures including large displacement effects

    Full text link
    This paper presents a reduced-order model for the Reynolds equation for deformable structure and large displacements. It is based on the model established in [11] which is piece-wise linearized using two different methods. The advantages and drawbacks of each method are pointed out. The pull-in time of a microswitch is determined and compared to experimental and other simulation data.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Using Micro-Raman Spectroscopy to Assess MEMS Si/SiO2 Membranes Exhibiting Negative Spring Constant Behavior

    Get PDF
    We introduce a novel micro-mechanical structure that exhibits two regions of stable linear positive and negative stiffness. Springs, cantilevers, beams and any other geometry that display an increasing return force that is proportional to the displacement can be considered to have a “Hookean” positive spring constant, or stiffness. Less well known is the opposite characteristic of a reducing return force for a given deflection, or negative stiffness. Unfortunately many simple negative stiffness structures exhibit unstable buckling and require additional moving components during deflection to avoid deforming out of its useful shape. In Micro-Electro-Mechanical Systems (MEMS) devices, buckling caused by stress at the interface of silicon and thermally grown SiO2 causes tensile and compressive forces that will warp structures if the silicon layer is thin enough. The 1 mm2 membrane structures presented here utilizes this effect but overcome this limitation and empirically demonstrates linearity in both regions. The Si/SiO2 membranes presented deflect ~17 μm from their pre-released position. The load deflection curves produced exhibit positive linear stiffness with an inflection point holding nearly constant with a slight negative stiffness. Depositing a 0.05 μm titanium and 0.3 μm layer of gold on top of the Si/SiO2 membrane reduces the initial deflection to ~13.5 μm. However, the load deflection curve produced illustrates both a linear positive and negative spring constant with a fairly sharp inflection point. These results are potentially useful to selectively tune the spring constant of mechanical structures used in MEMS. The structures presented are manufactured using typical micromachining techniques and can be fabricated in-situ with other MEMS devices

    A Comparison of Micro-Switch Analytic, Finite element, and Experimental Results

    Get PDF
    Electrostatically actuated, metal contact, micro-switches depend on having adequate contact force to achieve desired, low contact resistance. In this study, higher contact forces resulted from overdriving cantilever beam style switches, after pull-in or initial contact, until the beam collapsed onto the drive or actuation electrode. The difference between initial contact and beam collapse was defined as the useful contact force range. Micro-switch pull-in voltage, collapse voltage, and contact force predictions, modeled analytically and with the CoventorWare finite element software package, were compared to experimental results. Contact resistance was modeled analytically using Maxwellian spreading resistance theory. Contact resistance and contact force were further investigated by varying the width of the drive electrode. A minimum contact resistance of 0.26 Ω role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; \u3eΩ was measured on micro-switches with 150 μm-wide drive electrodes. The useful contact force range for these devices was between 22.7 and 58.3 V. Contributions of this work include: a contact force equation useful for initial micro-switch designs, a detailed pull-in voltage, collapse voltage, and contact force investigation using CoventorWare, a direct comparison of measured results with analytic and finite element predictions, and a means of choosing a micro-switch operating point for optimized contact resistance performance

    New Formulation for Finite Element Modeling Electrostatically DrivenMicroelectromechanical Systems

    Get PDF
    The increased complexity and precision requirements of microelectromechanical systems(MEMS) have brought about the need to develop more reliable and accurate MEMS simulation tools. To better capture the physical behavior encountered, several finite elementanalysis techniques for modeling electrostatic and structural coupling in MEMS devices havebeen developed in this project. Using the principle of virtual work and an approximationfor capacitance, a new 2-D lumped transducer element for the static analysis of MEMS hasbeen developed. This new transducer element is compatible to 2-D structural and beamelements. A novel strongly coupled 3-D transducer formulation has also been developed tomodel MEMS devices with dominant fringing electrostatic fields. The transducer is compatible with both structural and electrostatic solid elements, which allows for modeling complexdevices. Through innovative internal morphing capabilities and exact element integrationthe 3-D transducer element is one of the most powerful coupled field FE analysis tools available. To verify the accuracy and effectiveness of both the 2-D and 3-D transducer elements a series of benchmark analyses were conducted. More specifically, the numerically predicted results for the misalignment of lateral combdrive fingers were compared to available analytical and modeling techniques. Electrostatic uncoupled 2-D and 3-D finite element models werealso used to perform energy computations during misalignment. Finally, a stability analysisof misaligned combdrive was performed using a coupled 2-D finite element approach. Theanalytical and numerical results were compared and found to vary due to fringing fields
    • …
    corecore