1,665 research outputs found

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Machine Learning Playground

    Get PDF
    Machine learning is a science that “learns” about the data by finding unique patterns and relations in the data. There are a lot of libraries or tools available for processing machine learning datasets. You can upload your dataset in seconds and quickly start using these tools to get prediction results in a few minutes. However, generating an optimal model is a time consuming and tedious task. The tunable parameters (hyper-parameters) of any machine learning model may greatly affect the accuracy metrics. While most of the tools have models with default parameter setting to provide good results, they can often fail to provide optimal results for reallife datasets. This project will be to develop a GUI application where a user could upload a dataset and dynamically visualize accuracy results based on the selected algorithm and its hyperparameters

    Explanatory visualization of multidimensional projections

    Get PDF

    Efficient Point-Cloud Processing with Primitive Shapes

    Get PDF
    This thesis presents methods for efficient processing of point-clouds based on primitive shapes. The set of considered simple parametric shapes consists of planes, spheres, cylinders, cones and tori. The algorithms developed in this work are targeted at scenarios in which the occurring surfaces can be well represented by this set of shape primitives which is the case in many man-made environments such as e.g. industrial compounds, cities or building interiors. A primitive subsumes a set of corresponding points in the point-cloud and serves as a proxy for them. Therefore primitives are well suited to directly address the unavoidable oversampling of large point-clouds and lay the foundation for efficient point-cloud processing algorithms. The first contribution of this thesis is a novel shape primitive detection method that is efficient even on very large and noisy point-clouds. Several applications for the detected primitives are subsequently explored, resulting in a set of novel algorithms for primitive-based point-cloud processing in the areas of compression, recognition and completion. Each of these application directly exploits and benefits from one or more of the detected primitives' properties such as approximation, abstraction, segmentation and continuability
    • …
    corecore