
Data Mining Applications of Singular
Value Decomposition

Miklós Kurucz

Supervisor: András A. Benczúr Ph.D.

Eötvös Loránd University
Faculty of Informatics

Department of Information Sciences

Informatics Ph.D. School
András Benczúr D.Sc.

Foundations and Methods of Informatics Ph.D. Program
János Demetrovics D.Sc.

Budapest, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/286542419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgment

I would like to express my deepest gratitude to my supervisor András Benczúr for all the support

he gave me to do great research. I would like to thank him for all the fruitful conversations we

had on spectral clustering and recommender algorithms. I will always remember with joy the

moments when our solutions started to work. I have been grateful to him ever since he accepted

me to write my M. Sc. thesis under his supervision and set me on the path I still follow.

I would also like to thank all my co-authors for their highly appreciated contribution to

my research. Károly Csalogány who showed me how to put into practice all the theoretical

knowledge I had. Balázs Rácz who made me understand what high quality software means.

László Lukács and István Nagy for their excellent insights on various problems.

I would like to thank my fellow co-workers from room 407, István Bíró, Bálint Daróczy and

Miklós Erdélyi for the great atmosphere they created, I value their continued friendship above

everything else.

I would also like to thank my family, friends, present and past co-workers who made the

creation of this thesis possible.

Contents

1 Introduction 1
1.1 Overview . 1

1.2 Our contribution . 3

1.3 Organization . 4

2 Applications of the Singular Value Decomposition 5
2.1 Spectral Graph Partitioning . 6

2.2 Latent Semantic Analysis . 8

2.3 Recommendation Systems . 10

3 Exploration of Real Life Social Networks 13
3.1 Data sets . 14

3.1.1 LiveJournal Friends network . 14

3.1.2 Telephone Call Graph . 16

3.1.3 UK2007-WEBSPAM host graph . 17

3.1.4 Cluster quality measures . 17

3.2 Link prediction . 18

3.2.1 Neighborhood based methods . 19

3.2.2 Multi-step propagation: Methods based on path ensembles 21

3.2.3 Link prediction experiments . 24

3.3 Network topology: navigation in the Small World 26

3.4 Conclusion and bibliographic notes . 29

4 Spectral Partitioning of Social Networks 31
4.1 Two recent clustering methods . 34

4.2 Algorithms . 38

4.2.1 Spectral clustering: an experiment . 38

v

4.2.2 Small cluster redistribution heuristics 39

4.2.3 K-way hierarchical clustering . 40

4.2.4 Divide-and-Merge Baseline . 40

4.2.5 Tentacles: loosely connected regions 43

4.2.6 Tightly knit communities and the SCAN algorithm 44

4.2.7 Components of the algorithm . 44

4.3 Experiments . 45

4.3.1 Telephone graph . 46

4.3.2 The LiveJournal Friends Network . 51

4.3.3 The UK2007-WEBSPAM host graph 56

4.4 Conclusion and bibliographic notes . 57

5 Generative Models of Hard-to-Partition Social Networks 59
5.1 The Barabási-Albert model . 60

5.2 The Evolving Copy Model . 61

5.3 Kleinberg’s Small World Model . 62

5.4 A model for hard-to-cluster networks . 63

5.5 Conclusion and bibliographic notes . 63

6 Large Scale SVD with Missing Values in Recommenders 65
6.1 Introduction . 66

6.1.1 Data set, evaluation and experimental setup 66

6.1.2 Related work . 67

6.1.3 SVD implementation . 69

6.2 KDD Cup 2007 . 69

6.2.1 Problem description . 69

6.2.2 SVD based recommendation . 70

6.2.3 Results . 71

6.3 Missing data imputation from external results 72

6.3.1 Output of an item-item similarity based recommender 72

6.4 Sparse Lanczos implementation within an EM framework 73

6.4.1 Speeding up convergence . 74

6.5 Power iteration within an EM framework . 76

6.5.1 Method of individual increments . 76

6.5.2 Repeated hub and authority steps . 78

6.6 A least squares approach with adaptive dimensionality 80

6.7 Conclusion and bibliographic notes . 80

7 Conclusions 83

8 References 85

Chapter 1
Introduction

„I think it is not entirely unuseful to treat briefly a few of these problems [...] without which

this most beautiful branch of mathematical science would remain confined ...”

Eugenio Beltrami

1.1 Overview

In 1873 Eugenio Beltrami described a new approach [21] to his students for the treatment of

bilinear functions. This new method was in fact a special case of Singular Value Decomposition

(SVD). Through the following years many more detailed results were published, most notably

Karl Pearson’s discovery of Principal Component Analysis (PCA) [135] in 1901, and the first

complete proof of existence [62] by Carl Eckart and Gale Young in 1936.

Since Pearson’s results there has been a growing interest to use these techniques on large

datasets. Practical problems such as transportation of goods or minimalization of production

costs lead to linear equations that can be solved efficiently by the usage of Generalised Inverse

[137] (Penrose 1955). By 1970 the algorithms [79] used to compute the decomposition of ma-

trices reached a level of sophistication that is taught to interested students of every quantitative

science. Today SVD and PCA are amongst the most frequently used tools to solve statistical,

signal processing and modeling tasks.

One of these tasks is Social Network Analysis, a very popular research area for a long

time. Identifying groups, finding similar people, and observing social dynamics have all been

widely researched. This information is very useful for marketing purposes, such as finding

target groups for a new service, or identifying people who will likely stop using a service. As

the amount of available data grew in recent years, new methods to extract information started

to become popular. One such method is the spectral clustering, which has been reinvented after

a few decades of disinterest. Spectral clustering uses SVD to find minimal cuts in networks.

Although spectral clustering is reported by many [54, 117, 166] as an efficient method to

1

extract user groups from graphs, it was known to fail for large power law graphs with several

partly successful attempts[109].

Another area of research where SVD is extensively used is the prediction of people’s inter-

ests. Finding products that are interesting for customers is becoming more and more important.

When text descriptions of products are available, this can be achieved via simply finding items

(by looking for the words) that usually interest the customer.

However, new content services consider the convergence of television, Internet and mobile

devices, and focus on media content rather than on text. Recommendation technologies may

add extra value to these services. Nowadays most of the TV and radio programs are accessible

on the Internet, videos can be downloaded. This blurs the border between online programs and

the Internet.

One might try to solve this issue by looking for people with similar taste, but naive ap-

proaches such as computing the whole similarity matrix will fail, due to the size of matrix. This

problem can also be addressed with approximation algorithms.

Sparsity of the observed data is a known problem in recommender systems: users evaluate

only a few of the objects with possible interest for them. While SVD may in some sense

solve this problem, we believe that sparsity still causes problems for the following reason.

SVD is an optimal low rank approximation in the Frobenius norm, i.e. the sum of the squared

difference between the original and low rank estimated matrix entries. This rewards replacement

of unknown values by fairly meaningless averages from large user groups instead of meaningful

values.

It is important to note that for both problems our experiments were performed on real data

sets. Our results on network clustering and characterization differ from prior work in two as-

pects. Firstly, in our evaluation we deployed external sociodemographic parameters such as

geographic location in addition to graph properties. Secondly, our problems are larger, some-

times by several orders of magnitude than previously reported ones: our graph has nearly 50

million edges, which poses challenges even for more recent algorithms. Improved hardware

capabilities require new algorithms and lead to new empirical findings in our work.

One major data set we used is the call graph of more than two million Hungarian landline

telephone users [22], a unique data of long time range with sufficiently rich sociodemographic

information on the users. Telephone call graphs are also used by the graph visualization com-

munity: [159] reports visualization on graphs close to the size of ours with efficient algorithms

to select the neighborhood subgraph to be visualized. In addition [49] gives an example of long

distance telephone call fraud application by manual investigation.

We included measurements on the LiveJournal blogger network where we showed the hard-

ness of the spectral clustering task and also identified the well-known Russian user group

[81, 165]. Prior to our work, this was the only known large scale formation of the LiveJournal

2

blogger network [81, 165]. By our methods we revealed clusters arranged by location, age and

certain types of interest such as religion. We also partitioned the UK2007-WEBSPAM host

graph where our algorithm was able to identify meaningful clusters while baseline algorithms

completely fail.

For our experiments with recommendation algorithms we used the data provided for the

famous $1,000,000 Netflix Prize Contest. Netflix made over 100 million ratings available from

over 480 thousand randomly-chosen, anonymous customers on nearly 18 thousand movie titles

[25] that we used to justify our SVD based recommender technique.

1.2 Our contribution

In our thesis we discuss our results and experiments with SVD. Firstly, we compare existing

spectral clustering algorithms on large datasets. Secondly, we give pre- and postprocessing

heuristics that increase clustering quality. Thirdly, we introduce a network model that explains

the difficulty of spectral clustering. Finally, we show the applicablity of SVD on matrices with

missing values.

Comparative analysis of various spectral clustering algorithms

We compared two different relaxation of the graph minimal cut problem. We measured algo-

rithms from both branches of spectral clustering, the first one using several singular vectors, the

other one using only the second (Friedler) vector. We also experimented with both the Laplacian

and the weighted Laplacian matrices.

Pre- and postprocessing heuristics

We gave two preprocessing and one post-processing heuristic that solve the spectral clustering

hardness problem. As for preprocessing we (1) contracted tentacles, long, loosely connected

regions that add noise to the methods; and (2) identified and removed dense regions that distract

too many eigenvectors. The dense regions were added back in the postprocessing phase: they

were distributed along with the disconnected components of the clusters. For postprocessing we

enforced a component size balance and redistributed disconnected parts of the resulting clusters.

Spectral Clustering hardness

Recently it was shown that spectral clustering fails to find balanced cuts in large social networks

as it tends to chop off tentacles from the graph. The existing network models [18, 97, 100]

fail to explain this behavior: Even when these models generate graphs with tentacles, spectral

clustering gives meaningful cuts. This is in contrast with our observation for real networks.

3

We gave a new network model which has the same properties as real-world graphs, from the

perspective of graph clustering.

Factorization of matrices with missing values

We calculated SVD both in an expectation maximization framework and in the context of the

Lanczos algorithm. We calculated initial singular vectors by inputting some preset values for

the missing element of the matrix. This input can be the global average or other meaningful

values. In the following iterations we used the low-rank approximation matrix from the previous

iteration as input. In order to speed up calculation we implemented two different convergence

boosting techinque. We tested our methods on the Netflix data set.

1.3 Organization

Our thesis is organized as follows. Each chapter begins with a section introducing the problems

to be discussed. Before giving the details of our work we list the relevant related results. Finally,

we conclude each chapter with a short summary and possible directions for future research.

In the second chapter, we introduce the problems that can be solved by SVD, or where

existing solutions can be improved with it.

The topic of the third chapter is the datasets we used for the various social network analysis

and other network based tasks.

The fourth chapter the existing spectral clustering algorithms are described, and we show

that how proper pre- and postprocessing algorithms improve clustering quality.

In the fifth chapter describes the network models currently used for most problem simula-

tion. We examine these model from the viewpoint of spectral clustering, and we give a new

model that explains that clustering hardness of real-world networks.

The sixth chapter contains our work on recommendation systems. First we briefly sum-

marize our result on the KDD Cup 2007 competition. The rest of the chapter presents the

applicability of SVD to matrices with missing values, and methods to speed-up computation.

In each section that describes our new contribution, the last section concludes with bibli-

ographic notes added, including the original publications where the results first appeared, my

contribution, as well as the list of papers citing those results.

4

Chapter 2
Applications of the Singular Value

Decomposition

The Singular Value Decomposition (SVD) is a method to obtain the best rank k approximation

of a matrix in the Frobenius as well as �2 norms, a method that can be applied both to reduce

storage space for the matrix as well as to remove noise from the data. Its prominent applications

include recommendation systems [57], information retrieval via Latent Semantic Indexing [27,

50, 133], Kleinberg’s celebrated HITS algorithm for web search [2, 98], clustering [58, 116],

and learning mixtures of distributions [1, 93] just to name a few. Classification can be solved

by regularized regression [60] and text database querying by matrix-vector products [47].

Let us imagine that we are given n data points and each point has m attributes described

by an m × n matrix of reals A where the ith column of A represents the ith data point. Our

intuition is that while the algebraic rank of A might be as high as min{m, n}, most of the

information in A can be described as a linear combination of k latent factors. Our assumption

is that the true “meaning” of A can be captured by a rank-k matrix Ak and that the error term

A − Ak is mostly due to irrelevant factors or noise in the data. In other words, we seek the

best k-dimensional approximation of A which provides a form of lossy data compression and

noise reduction [13, 133]. It is natural to measure the quality of a reduced rank approximation

matrix B by the norm of the error term C = A−B. In particular, given an m× n matrix C, let

‖C‖ = max
‖x‖=1

‖Ax‖ denote the spectral and ‖C‖F =

√√√√ m∑
i=1

n∑
j=1

c2
ij the Frobenius norms of C.

Theorem 1 (Singular Value Decomposition [80]) Let A be an m×n matrix with rank ρ. Then

there exist matrices U ∈ R
m×ρ, Σ ∈ R

ρ×ρ and V ∈ R
n×ρ such that

• A = UΣV T ,

• U and V are orthogonal, i.e. UT U = V T V = Iρ, and

5

• Σ is diagonal and Σ11 ≥ Σ22 ≥ . . . ≥ Σρρ > 0.

For 1 ≤ i ≤ ρ we call the ith column of U and V , ui and vi, the left and right singular vectors

corresponding to the singular value σi = Σii.

Corollary 2 Using the above notation we also have that

• ‖A‖ = ‖Av1‖ =
∥∥uT

1 A
∥∥ = σ1,

• ‖A‖F =

√√√√ ρ∑
i=1

σ2
i .

Corollary 3 (Eckart-Young theorem) For 1 ≤ k < ρ let Uk ∈ R
m×k and Vk ∈ R

n×k contain

the first k columns of U and V and let the diagonal Σk ∈ R
k×k contain first k entries of Σ. We

define Ak, the rank-k truncated SVD as Ak = UkΣkV
T
k . Then

• ‖A − Ak‖F = min{‖A − B‖F : rank(B) ≤ k} =

√√√√ ρ∑
i=k+1

σ2
i ,

• ‖A − Ak‖ = min{‖A − B‖ : rank(B) ≤ k} = σk+1.

Thus the best rank-k approximation of A with respect to both the Frobenius and spectral

norm is given by the rank-k truncated SVD Ak = UkΣkV
T
k . Recalling that the columns of A

contain the data points we may interpret the columns of Uk as the latent factors or topics each

with an importance of σi. The j th column of V T
k is the compressed representation of the j th

original data vector containing its coordinates or mixing weights for each latent factor.

For further details about the SVD and relevant linear algebra we refer the reader to [67, 80].

When experimenting with spectral clustering and other SVD based algorithms, we may put

properties of the core SVD algorithm into new light by its interaction with the caller algorithm.

We investigated the effect of the precision of the approximation, the number of dimensions used

together with the density based clustering algorithms and its parameters (as e.g. k in k-means).

2.1 Spectral Graph Partitioning

Spectral clustering refers to a set of heuristic algorithms, all based on the overall idea of com-

puting the first few singular vectors and then clustering in a low-dimensional (in certain cases

simply one-dimensional [64]) subspace. The applicability of spectral methods to graph parti-

tioning was observed in the early 70’s [55, 64]. The methods are then rediscovered for netlist

6

partitioning, an area related to circuit design, in the early 90’s [8, 9, 10, 40]. Since the “Spec-

tral Clustering Golden Age” [54, 117, 166, etc] 2001 we only list a random selection of re-

sults. Spectral clustering is applied for documents [42, 43, 166] as well as image processing

[113, 117, 147], see many earlier references in [92]. More recently, several approximate SVD

algorithms appeared [58, 73, 142, and many others]; with the expansion of available data vol-

umes their use in practice is likely in the near future.

The core idea is to relax the standard Quadratic Integer Program for graph bisection, 1
4
xT Lx,

where L is the graph Laplacian and x is the ±1 cut indicator vector. In order to avoid the trivial

cut with all nodes on one side, we have xT e = 1 where e is a vector of all ones. When relaxing x

to arbitrary real values between -1 and +1, the optimum is known to be the second eigenvector

(the Fiedler vector) of L [64]. When however we relax indicator values to be arbitrary n-

dimensional vectors of norm 1, the resulting optimization problem can be solved by semidefinite

programming [109].

Variants of spectral partitioning dating back to the 1970’s fall into two main branches as

described in [10]. The first branch is initiated by the seminal work of Fiedler [64] who separates

data points into the positive and negative parts along the principal axes of projection. His

original idea uses the second singular vector, the so-called Fiedler vector; later variants [8,

19] use more vectors. Hagen and Kahng [86] are perhaps the first to use the second smallest

eigenvalue for graph partitioning of difficult real world graphs.

The second branch of hierarchical spectral clustering algorithms divides the graph into more

than two parts in one step. While the idea of viewing nodes as d-dimensional vectors after

projecting the adjacency matrix into the space of the top k singular vectors is described already

by Chan et al. [40], much later Zha et al. [166] introduce the use of k-means over the projection.

In our recent work [104] we compare the two branches and find the superiority of using several

spectral directions; in the rest of this section we restrict our attention to this class of algorithms.

Experiments on spectral graph partitioning either use the unweighted or weighted Laplacian

as the input to the singular value decomposition procedure. The Laplacian is defined as D −
A, where D is the diagonal matrix whose i-th entry is the total edge weight at node i and

A is the adjacency matrix. The weighted Laplacian D−1/2AD−1/2 is first used for spectral

bisection in [54, 147]. The Laplacian arises as the relaxation of the minimum ratio cut [86];

the weighted Laplacian appears in the relaxation of the normalized cut [147] and the min-max

cut [54] problems. Weighting strategies are discussed in more detail in [10, and references

therein], and Alpert and Kahng [8] empirically compared some of them. Unfortunately these

results deal with the netlist partitioning problem only. Since netlists are hypergraphs, we may

not directly use the findings of [8] but have to remember the importance of comparing different

graph weighting strategies.

Clustering covers a wide class of methods to partition a set of data in order to locate relevant

7

information by grouping and organizing similar elements in an intelligible way. Since telephone

companies have high quality data, their networks are ideal for experimenting. The purpose of

clustering telephone users includes user segmentation, selection of communities with desired

or undesired properties as e.g. high ADSL penetration or high recent churn rate. In a survey

Newman [122] observes that in social network research “particular recent focus has been the

analysis of communities”.

The formation of the input matrix to SVD computation from the detailed call list strongly

affects the outcome of clustering. Kannan et al. [92] suggest modeling the input as a similarity

graph rather than as a distance graph, raising the question of how to turn the call information

including the number, total duration and price between a pair of callers into a similarity mea-

sure. In addition to various ways of using cost and duration the node similarity measures of

Section 3.2 may also be used to reweight the input graph.

2.2 Latent Semantic Analysis

LSA is a theory and method for extracting and representing the contextual usage meaning of

words by statistical computations applied to a large collection of documents (corpus). It was

introduced in 1988 by Deerwester et al. [50].

In this model a document is represented as a vector where each dimension corresponds

to a separate feature from the document. A feature could be a term or any other unit that

is a representative attribute of the documents in the given corpus. If a feature occurs in the

document, its value in the vector is non-zero.

An important step in LSA is to transform the term-document vector space into a concept-

document and document-concept vector space. By reducing the number of concepts, the docu-

ments and their terms are projected into a lower-dimension concept space. As a consequence,

new and previously latent relations will arise between documents and terms. In order to apply

LSA we first generate a term-document matrix D from the given corpus. Then, the singular-

value decomposition (SVD) is applied to D .

D = UΣV T , (2.2.1)

Geometric interpretation The rows of the reduced matrices, Uk and Vk as in Corollary 3

respectively are taken as coordinates of points representing the documents and terms in a k

dimensional space. With appropriate rescaling of the axes, by quantities related to the associated

diagonal values of Σ, dot products between points in the space can be used to compare the

corresponding objects.

Using the SVD decomposition, one can compare two terms, two documents or a document

8

with a term, the figures are similar, for example in document comparison:

DT
k Dk = VkΣ

2V T
k (2.2.2)

matrix contains the document-to-document dot products.

One important feature of LSA is the generalization to unseen objects, i.e. one can compute

the representation of objects, that did not appear in the original analysis. Let us say we are given

a query expression composed of terms from the vocabulary. Using linear algebra, it is easy to

show that the query can be represented as the centroid of its corresponding term points.

To sum up, the main advantages of LSA are:

• Synonymy: Synonymy refers to the fact that two or more different words have the same

or similar meaning, such as movie and film. A traditional vector space model based In-

formation Retrival (IR) system cannot retrieve documents discussing the topic of a given

query unless they have common terms (due to the limitation of exact matching) however

mapping the query and the document to the concept space, they are both likely to be rep-

resented by a similar weighted combination of the SVD variables, hence the cosine of the

two vectors can be small.

• Polysemy: Polysemy refers to the fact that one word have multiple meaning, such as the

word bank. The precision of the retrieval can be reduced significantly, if the query have a

large number of polysemous word. Applying LSA to the query the rare and less important

usages of certain terms can be filtered out, thereby increasing the precision of the search.

• Term dependence: The vector space model relies on the bag-of-words concept, i.e. the

terms constituting the documents are completely independent from each other (they are

orthogonal basis vectors of the vector space), however it is well known that there are

strong correlations between terms. Term associations, for example can be exploited by

adding phrases composed of two or more words to the vocabulary. LSA offers a more

intuitive solution through the embedding of word-word, document-document and word-

document correlations into the reduced LSA factor based representation. Note that, it

comes at the price of an increased computational cost, this is only a one-time cost be-

cause one can build the LSA representation for the entire document collection once (i.e.

performance at retrieval time is not affected).

and the main disadvantages of LSA are:

• LSA and normally-distributed data: As noted earlier, SVD finds a k-dimensional approx-

imation of the term-document matrix (say Ak), given that the Frobenius-norm of the error

term (A − Ak) is minimized, or in other terms beside least-squares error. But, least-

squares error are in fact suitable for normally-distributed data, not for count data as in the

9

term-document matrix. A possible solution is to use tf × idf weighting before appling

SVD [114].

• Storage: it seems to be antinomic, but the space requirement of an SVD representation in

several real datasets is larger than the sparse representation [89].

• Efficiency: Using vector space representation, one can build an inverted index for the

documents, i.e. a table where the keys are the words, and the contents are the documents

containing the key-word. Consequently, only documents that have some terms in com-

mon with the query must be examined during the retrieval process, however in the LSA

representation, the query must be compared to every document in the collection.

2.3 Recommendation Systems

Recommendation systems aim at predicting the opinion of a certain user whether a given object

is relevant, interesting or preferred. For instance, an application of very high importance is to

recommend the advertisements best matching a given content, which is the basis for the business

success of Google in connection with search results.

Applications of recommendation systems include building shared user models that are able

to recognize the same client through signing in using different technologies; estimating the

probability of a certain user buying a given product or liking a given media content; recom-

mending customers products they most likely prefer; recommending products for a certain on-

line customer that either belong to the category just being searched for, or are similar to the

product just purchased, and to construct personalized view of newsletters and online content.

The recommendation problem can be formulated as follows: Let U be the set of all users,

and I the set of all items that can be recommended. Let f be a function that measures the

preference of an item for a user. f : U × I → R, where R is a totally ordered set. For each user

u ∈ U we want to recommend the best item i′ ∈ I , formally:

∀u ∈ U, i′u = argmax
i∈I

f(u, i).

In recommender systems there can be many kinds of preference functions. For example:

• There exists a user given rating like the star system on many online site.

• A rating is computed based on user-behavior, like the amount of time the user spent on

with an item.

• In a profit-based system the price of items are also taken into account.

The central problem of recommendation system is that the goodness function f is not

definied on the whole U × I matrix, but only on a part of it. This means that f has to be

10

extrapolated to the whole matrix. Once the unknown goodness is estimated, we recommend the

best N items for the users.

Recommender algorithms are classified, based on how recommendations are computed:

• Content-based recommendations: The user will be recommended items similar to the

ones the user preferred in the past.

• Collaborative recommendations: The user will be recommended items that people with

similar tastes liked in the past.

• Hybrid approaches: Combination of the previous two.

There are some problems that recommenders usually have to deal with.

• New user problem: A user profile or history has to be created before accurate recommen-

dations can be given.

• New item problem: Collaborative systems cannot make recommendation to items, not yet

rated by some users.

• Abundance of items: The best items has to be choosen from thousands of items, comput-

ing goodness for all items is slow.

• Limited content analysis: Content-based techniques can only work on features explicitly

associated with items. For items like movies these features can be hard to calculate.

The most common method for giving recommendations is the neighborhood based ap-

proach, also known as kNN(k Nearest Neighbors). It identifies similar users or items, and

combines the goodness of these neighbors to get the unknown value.

Another approch is the matrix factorization method. The goal of these methods to uncover

latent features that explain the goodness function. The methods to compute the features include:

SVD, PCA, Non-negative Matrix Factorization.

Applying an SVD-based technique raises unique difficulties due to the sparsity issue. The

conventional SVD computation requires that all entries of the matrix are known. In fact, the

goal of SVD is not properly defined when some entries are missing.

11

12

Chapter 3
Exploration of Real Life Social Networks

There has been a considerable growth of interest in the properties of networks with a particular

focus on the evolution of the contacts, the analysis of communities within networks or the

classification of network objects. Networks underline all aspects of our life including friends,

social contacts, computers and even brain cells or protein interaction in bacteria. Several surveys

cover recent results: Barabási [15], Newman [121] or Scott [146] to name a few.

The purpose of investigating, measuring and modeling social networks may include the

analysis of community formation or information spread within the network. The network of

telephone communication contacts is particularly important in practice. Telephone call network

models may serve the purposes of user segmentation or the selection of communities with de-

sired or undesired properties. A desired community may be one with high ADSL penetration

where new ADSL lines or other advanced services are likely sold with success to those mem-

bers who have no subscription yet. An undesired community may be one with high recent churn

rate where a campaingn may have to be designed to keep the members in the service. Other

applications include viral marketing analysis [140] and other means of enhancing marketing

communication by also relying on the spread of information within the social network.

In this chapter we introduce the three main data sets used in our experiments as well as

explore the properties of these real life networks. We experiment with the LiveJournal Friends

network, the call graph of Hungarian Telekom, and also the linkage of a 100,000-site crawl

of the .uk domain. As an introduction, we perform the measurements of [111] and [97] over

the telephone call graph. First in Section 3.2 we compare measures for the strength of the

connection between members of the network by performing a link prediction experiment. Then

in Section 3.3 we investigate the geographic location as a predictor of proximity in the social

network.

Our experiments are performed on the LiveJournal Friends of more than three million users,

where large scale methods are required to mine the latent information within the network. Com-

pared to other networks such as the post network, this network is more robust in time and our

13

methods give access to patterns persistent on longer time scale.

The telephone graph appears less frequently in publications of the data mining community

compared to the social network of bloggers [101, and references therein] or the World Wide Web

[53, and many others]. Few exceptions include a theoretical analysis of connected components

and eigenvalues [6, 45, 46] and several machine learning methods for churn prediction on real

data [12, 157, etc.]. Closest to our results are the structural investigations of mobile telephone

call graphs [119, 125, 126] and the sketch-based approximate k-means clustering of traffic

among AT&T collection stations over the United States [48]; for the latter result however the

underlying graph is much smaller (20,000 nodes) and the main goal was to handle the time

evolution as an additional dimension.

In general we observe a strong topdown regional structure with large cities appearing as

single clusters. These small world power law graphs are centered around very large degree

nodes that distort clustering structure and must be removed prior to clustering to get any us-

able information even in the subgraph of private users. The heavily interconnected clusters are

very hard to split further and bottom-up approaches for clustering get easily confused in their

neighborhood. We find large fraction of users belonging to tentacles near community centers

that require special pre and postprocessing in clustering algorithms that may efficiently build on

breadth-first heuristics.

We compare measures for the strength of the connection between members of the network

by performing a link prediction experiment. We investigate the geographic location as a pre-

dictor of proximity in the social network. We describe the characteristics of clusters that can

be algorithmically found by measuring both graph properties and external sociodemographic

parameters such as geographic location.

3.1 Data sets

Before presenting the main results, we describe the data sets that we use for illustration and

show their main graph theoretic parameters. Our graphs obey the generally observed properties

of social networks: they have power law degree distribution [17, 18, 31], small diameter [7, 156]

and consist of a single giant component [6].

3.1.1 LiveJournal Friends network

For our experiments we use the LiveJournal friends network downloaded in a two-week period

of November 20071. The total number of users is 3,583,332 with 44,913,072 directed edges,

out of which 14,286,827M is reciprocal. Another data set of Backstrom et al. [14] has 4.2M

1Available for research upon request from the author.

14

Figure 3.1: The Bow Tie structure of the LiveJournal friends network.

Table 3.1: Availability of metadata over the LiveJournal friends network.

Country Age Interest School

76.03 39.79 62.82 47.31

users with no major reason for difference between the two collections. By manual analysis we

observed certain users missing due to timeouts, some users renamed, also some friends changed.

The union of the two collections has 4,720,668 users, less than 28% of the 14 million listed by

LiveJournal as of November 2007.

Since we downloaded the Friends network starting from a single user, our collection con-

sists of a giant strongly connected component (SCC) as well as nodes reachable from the SCC

(OUT). The collection of [14] is started from community listings, hence the union of the two

data sets partly reveal the bow-tie structure of Fig. 3.1 with 197,325 nodes not reachable from

SCC but from which SCC can be reached (IN), and 31,157 users either disconnected (ISLAND)

or reachable from IN or reach OUT but not in IN or OUT (TUNNEL). The number of strongly

connected components is 768351 with a single giant one, leaving tiny pieces for others. The

bow tie structure observed first for Web pages by [37], then by [168] for mailing lists is depicted

in Fig. 3.1; the relation of the size of the strongly and weakly connected component of the post

network is also described by [148].

In our analysis below we rely solely on our crawl since no user data is collected by [14]. We

keep only bidirectional edges; this procedure leaves us with a giant component with 2,379,267

nodes and 14,286,827 reciprocal edges. Since graph partitioning requires a connected graph,

we discard all other nodes.

The available metadata provided via a LiveJournal XML interface and the percentage of

users who provide the information is summarized in Table 3.1 with a list of characteristic coun-

try locations in table 3.2.

15

Table 3.2: Top list of country location.

Country Number % known % all

US 1 463 654 76.9 40.9

CA 87 609 4.6 2.4

RU 82 801 4.3 2.3

UK 73 789 3.8 2.1

AU 32 508 1.7 0.9

SG 14 986 0.7 0.4

DE 11 329 0.6 0.3

PH 10 380 0.5 0.3

UA 10 260 0.5 0.3

JP 7 778 0.4 0.2

FI 7 104 0.4 0.2

NL 5 970 0.3 0.2

NZ 4 958 0.3 0.1

FR 3 747 0.2 0.1

3.1.2 Telephone Call Graph

Our second data set consists of the telephone call graph of the Hungarian Telecom used in [104].

The telephone call graph is formed from the call detail record, a log of all calls within a time

period including caller and callee id, duration, cost and time stamp. The vertex set consists of

all nodes that appear at least once as caller or callee; over this set calls form directed edges

from caller to callee. Edges are weighted by various aggregates of call multiplicity, duration

or cost; time stamps are ignored in this work. The resulting graph obeys the power law degree

distribution and contains a giant connected component of almost all nodes [6]. For a time

range of 8 months, after aggregating calls between the same pairs of callers we obtained a

graph with n = 2, 100, 000 nodes and m = 48, 400, 000 directed edges that include 10,800,000

bidirectional pairs.

Bidirectional edges are crucial in some of our applications since they show mutual con-

nection compared to a one-directional call to e.g. a public service number. When considering

bidirectional edges only, approximately 30,000 users (1.5%) become isolated from the giant

component of the large graph.

Information on the name and geographic location of the settlement (city, village, subur-

ban district) of the nodes is used in several of our experiments and models. Settlement sizes

(Fig. 3.2, right) follow a distribution very close to lognormal with the exception of a very heavy

tail of Hungary’s capital Budapest of near 600,000 users. In a rare number of cases the data

consists of subpart names of settlements resulting in a relatively large number of settlements

with one or two telephone numbers; since the total number of such nodes is negligible in the

graph, we omit cleaning the data in this respect.

16

large small

Number of nodes

(thousands)

2,072 74

Nodes outside

giant component

130 15

Time coverage

(months)

8 12

Number of edges,

directed (thou-

sands)

48,400 3,965

Number of edges,

bidirectional

(thousands)

10,800 706

 0

 50

 100

 150

 200

 250

 300

163844096102425664164

C
ou

nt

Size

Figure 3.2: Left: Main parameters of the call graphs. Right: Distribution of the user number

by settlements in the data; the capital Budapest of near 600,000 users is trimmed.

The graph has strong top-down regional structure with large cities appearing as single clus-

ters. These small world power law graphs are centered around very large degree nodes and very

hard to split. In most parameter settings of the original spectral method we are left with a large

cluster of size near that of the Budapest telephone users.

3.1.3 UK2007-WEBSPAM host graph

The third data set is the host graph of the UK2007-WEBSPAM crawl of Boldi et al. [29] that

contains 111,149 hosts and 1,836,441 directed weighted edges. The hosts are labeled with the

top level Open Directory [127] categories as in [85]. The list of the largest categories are seen

in Fig. 4.13, right.

Web content categorization is a research area that abounds with opportunities for practical

solutions. The performance of most traditional machine learning methods is limited by their

disregard for the interconnection structure between web data instances (nodes). At the same

time, relational machine learning methods often do not scale to web-sized data sets. Beyond

the choice of the method, creative feature generation and selection can greatly improve web

categorization performance. For instance, it has been shown [11] that in addition to textual

contents, the link structure of web hosts offer valuable clues in predicting their type.

3.1.4 Cluster quality measures

Next we define the graph and sociodemographic based quality measures we use for evaluating

the output of a clustering algorithm. Let there be N users with Nk of them in cluster Ck for

17

k = 1, . . . , m. The cluster ratio is the number of edges between different clusters divided

by
∑

i�=j Ni · Nj . The weighted cluster ratio is obtained by dividing the total weight of edges

between different clusters by
∑

i�=j wijNi·Nj , where wij is the total weight of the edges between

cluster i and j.

Modularity, a measure known to suit social networks well [161] is defined as follows:

Q =
∑

clusters s

[
d(Cs, Cs)

M
−

(
d(Cs, Cs)

2M

)2
]

, (3.1.1)

where M is the total weight of the edges and d(X, Y) is the weight of the edges with tail in X

and head in Y . Since modularity is not balanced by the cluster size, we use normalized network

modularity [149], defined as

Qnorm =
∑

clusters s

N

Nk

[(
d(Cs, Cs)

2M

)2

− d(Cs, Cs)

M

]
,

We remark that the authors in [149] negate nomalized modularity compared to modularity; we

stick to their notation and use negative values of normalized modularity. In our experiments

normalized modularity turned out to be instable and we suspect it may not be an appropriate

measure for cluster quality.

Telephone users as nodes have rich sociodemographic attributes beyond graph theory. We

may measure clustering quality by the entropy and purity of the geographic location or other

external property within the cluster. By using the notation of the previous subsection, let Ni,k

denote the cluster confusion matrix, i.e. the number of elements in cluster k from settlement i

and let pi,k = Ni,k/Nk denote the ratio within the cluster. Then the entropy E and purity P are

defined as

E =
−1

log m

∑
k

Nk

N

∑
i

pi,k log pi,k and P =
1

N

∑
k

max
i

Ni,k,

where the former is the average entropy of the distribution of settlements within the cluster and

the latter measures the ratio of the “best fit” within each cluster.

3.2 Link prediction

In this section we provide a link prediction experiment that, given an observed period of usage,

predicts pairs of users (edges, or links) that will appear in a future time period. By such an

experiment we may investigate node similarity measures for finding important connections and

ignoring “accidental” unimportant ones.

18

Link prediction is to our best knowledge first investigated by Liben-Nowell and Kleinberg

[111] with very similar motivations in an earlier paper of Newman [123]. They consider a wide

variety of methods based on the neighborhood and the ensemble of paths corresponding to the

pair of nodes in question. Next we describe a selection of these methods including those that

performed best in their experiments. Then we will show link prediction measurements over the

telephone call graph.

Several algorithms were designed to evaluate node-to-node similarities in networks that can

be used to give alternate, similarity based weights to node pairs. We refer to [111] for an ex-

haustive list of the available methods ranging from co-citation to more complex measures such

as max-flow/min-cut-based similarities defined in [112]. These weights are used in applications

outside the link prediction area: [77, and many more] apply them to improve clustering quality;

co-citation is for example first used in [82] as an elementary step of trust propagation.

Similarity in a telephone call graph is best characterized by the undirected graph since com-

munication is typically bidirectional regardless of the actual caller–callee direction. We also

have a choice to use cost, duration or number of calls as a weight of a pair of users, or we may

ignore weights and consider an unweighted graph. We will compare both the input directed

graph, its transpose by changing the direction of each edge, or the undirected version arising as

the union of the previous two graphs. We will refer to the three variants as directed, reversed and

undirected versions. For an edge weight function d : V × V → R we use d−(u, v) = d(v, u)

for the reversed and d↔ = d + d− for the undirected version. We extend this notion for an

arbitrary similarity measure sim(u, v) computed over edge weights d and compute sim−(u, v)

over d− and sim↔(u, v) over d↔.

In the discussion below we identify scalability as the main challenge for computing node

similarities. Computing all pairs’ similarities is computationally challenging even for our net-

works of a few million nodes since the entire quadratic size similarity matrix would occupy

several Terabytes. Notice that the experiments of Liben-Nowell and Kleinberg [111] were con-

ducted on much smaller data. As one possibility we may calculate similarity only for existing

edges. The resulting scheme downweights unimportant edges but is unable to add “uncaught

contacts” to the network. As a possible solution to finding the potential strong relationship be-

tween pairs of nodes not connected by an edge, we may find all pairs with weight above a given

threshold by fingerprinting techniques; these techniques will however be specific to the given

similarity measure.

3.2.1 Neighborhood based methods

The first broad class of measures for the strength of the connection between two nodes u and v

depends on the strength of the overlap between the neighborhood of u and v. Next we define

the measures of cocitation, Jaccard, Adamic/Adar and cosine similarities.

19

The cocitation or common neighbors coc(u, v) is defined as the number of common in-

neighbors of u and v. This measure turned out most effective for Web spam classification [23].

By the notation of edge directions, coc−(u, v) denotes the bibliographic coupling (nodes pointed

to by both u and v) and coc↔(u, v) is the total number of (undirected) common neighbors. We

may also define a variant of cocitation that is downweighted by degree as coc(u, v)/d(u) · d(v).

The Jaccard coefficient Jac(u, v) is the ratio of common neighbors within all neighbors. If

we let Γ(u) denote the neighbors of u, then

Jac(u, v) = |Γ(u) ∩ Γ(v)|/|Γ(u) ∪ Γ(v)|

For a weighted graph we may divide the total weight of edges leading to common neighbors by

the total weight of edges from u and v. Unfortunately this measure does not correlate the pairs

of weights ux and vx for common neighbors x. Due to this problem we observe a particularly

poor performance in the case when we have a single strongly related neighbor x of u and y of

v and the Jaccard similarity is 0. If edges uy and vx receive an “accidental” low weight, the

Jaccard coefficient however immediately becomes very high while the actual similarity remains

very low.

Cosine similarity fixes the above problem of the Jaccard coefficient. We consider the row of

the adjacency matrix corresponding to node u as vector u. The cosine similarity of nodes u and

v is simply cos(u, v) = uT v. We may similarly define cos−(u, v) over the transpose matrix and

cos↔(u, v) over the sum.

Adamic and Adar [3] define a measure that downweights high degree common neighbors as

they may occur simply by chance. The Adamic/Adar measure is defined as

AdamicAdar(u, v)
∑

z∈Γ(u)∩Γ(v)

1/ log |Γ(z)|.

Simple neighborhood based edge weighting schemes already pose computational challenges

for large networks since filling the quadratic size similarity matrix is infeasible. Next, we de-

scribe the min-hash fingerprint of Broder et al. [36] to identify all pairs with weight above a

given threshold. Based on the min-hash fingerprint and embedding, more complex approxima-

tion of related measures such as cosine is described in [41].

The fingerprint of node u under a random permutation2 π of all nodes is defined as the

minimum neighbor of u in the ordering of π:

fingerprintπ(u) = min{π(u′) : u′ ∈ Γ(u)}.

Where π(u) denotes the position of u in the permutation. For two nodes u and v the fingerprints

2In fact π does not have to be random: the weaker so-called min-wise independence requirement suffices.

20

coincide if and only if the minimum of Γ(u) ∪ Γ(v) under π belongs to Γ(u) ∩ Γ(v), hence

the probability of this event is equal to the Jaccard similarity of the nodes. By generating a

sufficiently large number of fingerprints (in practice 100–10000) we may approximate Jac(u, v)

as the fraction of the fingerprints of u and v that coincide.

3.2.2 Multi-step propagation: Methods based on path ensembles

Advanced node similarity measurement methods are capable of using a part or all of the entire

path ensemble connecting the given pair of nodes and not just the neighborhood that corre-

sponds to length 2 paths. In this section we briefly introduce such methods and the efficient

algorithms [69, 143] for approximately computing them.

Path ensemble measures became widespread with the success story of Google’s PageRank

[34, 128] and other hyperlink-based quality measures [32, 98]. Since its introduction in 1998,

PageRank remains the prominent example of a path ensemble measure as it is defined as a

certain multi-step generalization of the degree defined below. In fact, PageRank is best known

as a quality measure based on the recursive reasoning that the importance of a node is high if it

is pointed to by several important nodes. Personalized PageRank, a variant of PageRank dating

back to the original paper of Page et al. [128], is however capable of measuring the strength of

the connection between a node or a weighted set of nodes and another node.

Next we introduce notation for (personalized) PageRank. Let A denote the stochastic matrix

corresponding to the random walk on the network, i.e.

Aij =

⎧⎨
⎩1/outdeg(i) if host i points to j,

0 otherwise.

The PageRank vector p = (p1, . . . , pN) is defined as the solution of the following equation [34]:

pr = (1 − c) ·
N∑

v=1

pvAvu + c · r , (3.2.1)

where r = (r1, . . . , rN) is the teleportation distribution and c is the teleportation probability

with a typical value of c ≈ 0.15. We get the PageRank if we set all ri to 1/N ; for general r

we get PageRank personalized on r. If r = χ(w) consisting of all 0 except for node w where

χw(w) = 1, then we personalize on the single vertex and let PPRw denote the corresponding

vector.

As we will see, variants of the PageRank of u personalized on v define similarity measures

of u and v. These values are however even more expensive to compute for all u, v than the

neighborhood based measures of the previous subsection. Below we describe two reformula-

21

tions of the PageRank equation that yield scalable approximation algorithms for several related

measures. The Monte Carlo simulation procedure of Fogaras and Rácz [70] is a general method

to estimate random walk based path ensemble measures. The Dynamic Programming algo-

rithm [91] gives rise to approximation algorithms [143] that can also be used for estimating

several weighted neighborhood values similar to those of [20].

The first PageRank reformulation was noticed independently by [68, 91]. The (personalized)

PageRank of a vertex is equal to the probability of a random walk terminating at the given vertex

where the length is given by a geometric distribution: we terminate at step t with probability

c · (1 − c)t. To justify this, notice that PPRw (and PageRank in general) can be rewritten as a

power series

PPRw = χ(w) ·
∞∑

t=0

c(1 − c)t · At. (3.2.2)

The term χ(w)At corresponds to a random walk of length t starting at w and c · (1 − c)t is the

probability of termination. The above equation also explains why PPRw(u) is a path ensemble

based similarity of u and w: we enumerate all paths from w to u by giving exponentially

decreasing weight to long paths.

As described by Fogaras and Rácz [70], equation (3.2.2) can be approximated by randomly

generating paths with length according to the geometric distribution c(1−c)t. They empirically

observe that 1000 samples suffice for a good quality approximation even in large graphs. For

algorithmic details and error analysis we refer to [70].

A second, equivalent reformulation of the path summing formula (3.2.2) is the Decompo-

sition Theorem proved by Jeh and Widom [91] stating that a node’s personalized PageRank

vector is expressible with the average personalized PageRank vector of its out-neighbors giving

extra weight to the node itself:

PPRu = cχu + (1 − c) ·
∑

v:(uv)∈E

PPRv/d
+(u). (3.2.3)

As observed by Sarlós et al. [143], the above equation is the right choice for computing all

PPR values above certain threshold. The other altenative is the path summation formula (3.2.2);

however there we accumulate all error when entering a large in-degree node and hence we must

compute partial results fairly exact. The dynamic programming equation (3.2.3) in contrast

averages all partial results into a new PPRu and because of averaging we do not amplify error at

large in-degrees. In particular we may safely discard all partial PPRu(vi) values below threshold

for further computations since the total error will remain below the threshold in (3.2.3).

Given the path summation reformulation (3.2.2) of personalized PageRank we may define

several variants of weighting neighbors at distance k. We may define reachability and exact

reachability by dk(u, v)reach = 1 if v is reachable from u by a walk over k edges, 0 otherwise,

22

respectively dk
exact(u, v) = 1 if v is reachable from u in exactly k steps and over no shorter paths,

0 otherwise. We may use the number and the weighted number of such walks in the definition:

dk
num(u, v) is the number of walks over k edges that reach from u to v and dk

wnum(u, v) is the

probability of reaching v when starting at u and at each step choosing a random neighbor with

probability proportional to the outgoing edge weights.

One example of the generalization of path summation is the historically earliest path ensem-

ble measure of Katz [95] dating back to the fifties defined as

Katzβ(u, v) =
∞∑

t=1

βt · dk
num(u, v);

weighted Katz measure arises if we replace dk
num by dk

wnum. These measures can be approximated

by both of the above methods.

More complex path ensemble measures arise as the multi-step variants of cocitation and

the Jaccard coefficient. Jeh and Widom [90] define SimRank as a multi-step generalization of

downweighted cocitation as follows:

Sim(k)(u1, u2) =

⎧⎨
⎩(1 − c) · ∑v1∈Γ(u1),v2∈Γ(u2) Sim(k−1)(v1, v2)/(d−(u1)d

−(u2)) if u1 �= u2

1 if u1 = u2.

In an alternative formulation [143] SimRank equals the total weight of pairs of walks

v1 = w0, w1, . . . , wk−1, wk = u

v2 = w′
0, w

′
1, . . . , w

′
k−1, w

′
k = u

that both end at u and one of them comes from v1 while the other one from v2. The weight of

the pair of walks is the expected (1 − c) meeting distance as defined in [90]:

(1 − c)k/(d−(w1) · · · d−(wk) · d−(w′
1) · · · d−(w′

k)); (3.2.4)

notice that we get cocitation back for k = 1. Fogaras and Rácz [69] describe XJaccard as the

weighted sum of Jaccard coefficients of the distance k neighborhoods as follows:

XJac(u, v) =
∑

(1 − c)kJac(k)(u, v)

where Jac(k)(u, v) is the Jaccard similarity of the distance k neighborhood of u and v. These

measures can be approximated in a similar way of PageRank by path sampling in equation (3.2.4)

[69]; more complex space optimal algorithms are also described in [143] for certain SimRank

variants.

23

3.2.3 Link prediction experiments

In order to illustrate the strength of the methods from the previous two subsections, we set up

the following link prediction experiment. We compute the similarity measures based on the first

four months (training period) of the large data (Fig. 3.2). We use these similarity measures as

a prediction for the next four months period (test period). Given a threshold value, we measure

precision and recall as

Precision =
|{edges above threshold} ∩ {actual edges at months 5–8}|

|{edges above threshold}| ;

Recall =
|{edges above threshold} ∩ {actual edges at months 5–8}|

|{actual edges at months 5–8}| .

We also introduce weighted recall to bias quality measures towards correctly identifying heavy

weight edges and penalizing less for low weight ones. By letting we denote the weight of an

edge in the second (test) four months period we let

WRecall =

∑{we : e has weight above threshold}∑
e we

.

Results of the link prediction experiment are shown in Fig. 3.3 in terms of precision–recall

(top) and precision–weighted recall (bottom) curves. The curves are obtained by varying the

threshold. Weighted recall is significantly higher in all cases, indicating that heavy weight edges

are easier to predict; the relative order of the quality of the predictions however remains the same

for both curves. Similarly to the findings of Liben-Nowell and Kleinberg [111], variants of Katz

performed best among path ensemble measures while cosine among neighborhood measures.

Due to the limitations of the visualization, we could not place all variants in Fig. 3.3. We only

show Jaccard and Adamic/Adar in addition to the above neighborhood based measures as well

as preferential attachment, a trivial baseline method defined by the product of the degrees of the

two node in question.

A key difference in our experiment compared to [111] is that we predict all edges in the test

period, not just new edges. This distinction is visible when comparing the left and right graphs

of Fig. 3.3. The left hand side graphs show lower quality because those u–v similarity measures

do not take into account whether u and v are connected by an edge or not. The measures on

the right hand side count the existence of an edge between u and v either as a part of the Katz

measure, or else directly add it to neighborhood measures (common neighbors, cosine, Jaccard).

Best performance is obtained when the logarithm of the edge weight (in time duration) is added;

these measures are shown in Fig. 3.3, right.

Since in our task we also have to predict edges that already existed in the training period,

aggregated time duration of an edge turns out to be a very strong predictor in itself. This

24

Figure 3.3: Precision-recall curves of the link prediction experiment trained on the first 4 months

and tested on the last 4 months of the large graph. Top graphs: precision–recall curves. Bottom
graphs: precision and weighted recall curves. Precision is over the vertical axis in both cases.

Left graphs: curves corresponding to measures that exclude the (logarithmic) weight of the

training period. Right graphs: curves for measures that all include a logarithmic edge weight

term.

25

measure is outperformed only for high recall ranges when neighborhood based measures are

capable of identifying additional new edges in the network. In this range Katz performs very

well.

We also draw attention to the importance of edge weights. In the graphs we use weights

in two places. Time duration values are on one hand entries in the vectors that define the

weighted cosine measure; on the other hand they modify the path probabilities in weighted

Katz. Weighted cosine turns out to be the best neighborhood based measure while weighted

Katz is only defeated by logarithmic weight plus weighted cosine at certain ranges of recall.

To draw a conclusion, we have surveyed a number of node similarity measures based on both

neighborhood overlap and entire path ensembles and sketched some scalable algorithms and

techniques to approximate them. Having analyzed precision-recall curves of a link prediction

experiment, we have observed best performance for weighted cosine and Katz similar to the

findings of [111]. In the next sections we will also use these measures as alternative weights to

the edges as an input to further processing.

3.3 Network topology: navigation in the Small World

The so-called “small world” phenomenon was first observed in social networks by Milgram

[118] who examined the average path length for social networks of people in the United States

and found an average distance of six steps, later referred to as “six degrees of separation”. Social

and other networks exhibit low diameter as demonstrated by several results. As an example,

in [7] the diameter of the World Wide Web is measured. As another one, in [44] the low

diameter of a wide class of networks obeying degree distribution constraints such as power law

distribution is proved. Telephone call networks fall into this category; in this section we observe

low distances and efficient navigation in our graphs.

The first graph model explaining the small world phenomenon is described by Watts and

Strogatz [156] and later extended by Kleinberg [96, 97] who also incorporate a path finder

algorithm in the model that uses local information only in each step. Notice that Milgram’s

experiment [118] did not only show low average distances but also a capability of network nodes

to find these paths based solely on their local information on the network. In fact information is

not entirely local, we must have at least certain global information on the target node. It is easy

to see that if all we can determine whether a given node is the target or not, we have no choice

other than to perform a random walk until we reach the target, an algorithm that visits each

node several times on average. In Milgram’s experiment among others the geographic location

of the target was given to the node. By using this information, an algorithm may for example

select the current node’s neighbor geographically closest to the target, a clear advantage over a

random walk.

26

Figure 3.4: Left: The geographical distribution of the customer network within Hungary with

axes showing latitude and longitude. Right: the western region avoiding the capital Budapest

at latitude 47 ◦ 28’ 19” N and longitude 19 ◦ 03’ 01” E selected for the experiment.

Kleinberg’s celebrated small world model [97] describes the following network with a geo-

graphic path finder algorithm. We obtain a small world graph in a d dimensional attribute space

by placing nodes in a d-dimensional grid, connecting all pairs within a constant distance and

adding long range contacts with probability proportional to r−d where r is the distance. In a

recent extension, Kumar et al. [101] observe over the network of bloggers that nodes are not

distributed evenly over the grid and r−d should be replaced by t(r)−1 where t(r) is the number

of users of distance at most r.

In the following we show measurements for the distribution of the distance between pairs

of contacts and fit the results to Kleinberg’s model. We conduct this experiment over the graph

with nodes formed by the users in the large data of Fig. 3.2; in Fig. 3.4 we show the geographic

location of these users. Since the capital Budapest locates roughly 1/3 of all nodes that are hence

of geographic distance 0, we have selected the western region of near 750,000 users shown in

the right of Fig. 3.4. By Kleinberg’s model the distribution of the distance of a given node from

its neighbors is inverse polynomial; for a two-dimensional area as in Fig. 3.4 the exponent is

-2. Our measurements shown in Fig. 3.5 justify this model as follows. On the left hand side we

see a noisy behavior due to large cities and in particular the capital; the distribution fits slightly

better to r−1 but the quality is poor. The quality of the fit however significantly improves if

we remove the effect of the capital: the western region with no city containing 50,000 or more

users fits r−2 very well.

We also describe a path finder experiment where for each intermediate node we greedily

select the neighbor geographically closest to the target node. Unfortunately we have no infor-

mation other than location, hence we say that the path terminates if it reaches the settlement of

the target. In Fig. 3.6 we show the number of steps required by this greedy routing algorithm to

27

Figure 3.5: Left: The number of edges as a function of the distance between its endvertices.

Right: The same measurement over the western region (Fig. 3.4) to filter out the effect of the

capital. Both figures contain the data transformed to test linear fit with functions x−1 and x−2.

Horizontal axes show distance in the coordinates of Fig. 3.4.

Figure 3.6: The distribution of the greedy distance routing steps for a random pair of 1M users.

find the target for a set of 1,000,000 randomly selected pairs of users. We see a fast exponen-

tial decay in the number of paths required beyond distance 10. The distances we measure are

close to the “magical” six in Milgram’s experiment despite of the fact that our network is much

smaller and we are satisfied with simply reaching the settlement location of the node. Notice

however, that we are unable to use information other than location in intermediate steps and thus

for example we never move to a node within the same settlement. In a practical scenario, in

contrast, a participant may know a neighbor who have relatives near the target area and the walk

may advance very close after a local step that is seemingly useless in the model. In this sense

the participants in Milgram’s experiment were able to use much richer data for their routing

decision.

An external, non-graph-theoretic attribute can explain social contacts if edges are more sim-

28

ilar in this attribute than non-edges. However as social networks are small world, short distances

in a low dimensional attribute space may only occur if we allow long range contacts as well.

3.4 Conclusion and bibliographic notes

While most of the results in this Chapter are introductory, some experiments appeared in [24]

where I conducted most of the experiments described in this Chapter.

We have surveyed some results of social network modeling and analysis with illustrations

over the call logs of major Hungarian telephone companies with millions of users, long time

range, and sufficiently strong sociodemographic information on the users. We have analyzed

the results of link prediction and route finding and compared the performance of various node

similarity measures in these tasks.

29

30

Chapter 4
Spectral Partitioning of Social Networks

In this chapter we describe and compare several clustering algorithms on the real life networks

of Section 3.1. Unlike in the examples of [92], in our graphs the “right” clustering is by no

means obvious but, similar to the findings of [92], the goodness measures can be fooled. The

typical examples of practically useless spectral splits have uneven sizes or disconnected clusters;

in certain cases the clustering procedure simply wastes computational resources for unnecessary

steps, a phenomenon reported in particular for power law graphs [109]. We believe our findings

are beyond “it works well on my data” and apply to a more general class of social networks or

other small-world power law graphs.

Prior to our work, spectral clustering was known to fail for large power law graphs with

several partly successful attempts [109]. As a particular example, previously the only known

large scale formation of the LiveJournal blogger network was the Russian user group [81, 165].

By our methods we reveal clusters arranged by location, age and certain types of interest such

as religion.

When clustering large social networks, spectral methods tend to chop off tentacles attached

loosely to a densely connected larger subset, resulting in a disconnected part and keeping the

dense component in one [109]. While even the optimum cluster ratio cut might have this struc-

ture, the disconnected cluster consists of small graph pieces that each belong strongly to certain

different areas within the dense component. In addition a disconnected graph has multiple top

eigenvalues, meaning that we must compute eigenvectors separately for each connected com-

ponent. However if we treat each connected component as a separate cluster, we obtain an

undesired very uneven distribution of cluster sizes.

As a related area, the HITS [98] ranking algorithm is a direct application of the SVD since

the hub and authority ranks correspond to the first left and right singular vectors. It has been

known for long that HITS is instable [124] and it should be applied for subgraphs only. We

believe that the reason is the same as for the failure of spectral partitioning. In particular by

using our preprocessing method we avoid the Tightly Knit Community (TKC) phenomenon

31

caused by communities that are small on a global level but still grab the first (or, as we show,

even the first many) principal axes. Lempel et al. [110] are the probably the first who identify

the TKC problem in the HITS algorithm, their algorithmic solution (SALSA) however turns out

to merely compute in- and out-degrees [32]

In our main results we define a set of heuristics that prevent low level communities from

overtaking the first principal axes. Our method is based on the combination of the removal of

TKCs [110] and the contraction of long tentacles. We build on the recent findings of Xu et al.

[161] who identify bridges across TKCs as the main reason for the failure of graph partitioning

methods.

As a core procedure, we modify the SCAN method of Xu et al. [161] by using a different

similarity measure that can then be approximated to yield an efficient implementation for very

large graphs. We remark the importance of the choice of SCAN for dense community removal;

other methods such as those of [52, 56] either produce huge communities or add too few nodes

into communities to have effect on graph partitioning.

While the method of Xu et al. [161] promises a partitioning of the network based on the

identification of community cores, similar to several other core finder methods [65, 66] the

cores identified are of small size on the global scale and cannot yield information on the global

structure. Xu et al. [161] test their method in part on real graphs that are mere few 100 nodes

and in part on graphs generated for particular use for their algorithm based on the construction

of [122] that first determines target clusters and then connects nodes within the same cluster

with higher probability than between two clusters but otherwise independent at random.

Even though in our observations community core finder algorithms are insufficient in them-

selves for partitioning very large networks, these methods however can be used prior to spectral

partitioning to remove a large number of cores that act as TKCs by attracting a large number of

principal vectors. When combining core removal and tentacle contraction, we obtain high level

distinctive characteristics of the connections between network that include geography, religion

and age. Of particular interest are our findings on how LiveJournal friends are organized on the

top level of the network along these dimensions.

While a comprehensive comparison of clustering algorithms is beyond the scope of this

work, we justify the use of a top-down hierarchical clustering by observing that telephone call

graphs and social networks in general are small world power law graphs. Small world implies

very fast growth of neighborhood that strongly overlap; power law implies high degree nodes

that locally connect a large number of neighboring nodes. Recent bottom-up alternatives such

as clique percolation [52] suffer from these phenomena: the extreme large number of small (size

5 or 6) cliques do not only pose computational challenges but also connect most of the graph

into a single cluster; the number of larger sized cliques however quickly decays and by using

them we leave most of the nodes isolated or in very small clusters. The superiority of spectral

32

clustering over density based methods is also suggested in [42] for document collections.

Practical evaluation of spectral clustering in graphs is investigated mainly in the area of

netlist partitioning [10] with the recent exception of the findings of Lang [108, 109]. He sug-

gests semidefinite programming techniques to avoid imbalanced cuts, however the reported

running times are several hours for a single cut even for 10 million edge graphs. Techniques

to scale the semidefinite programming based approaches and a comparison of the performance

remains future work.

While implementation issues of SVD computation are beyond the scope of this Chapter,

we compare the performance of the Lanczos and block Lanczos code of svdpack [26] and

our implementation of a power iteration algorithm. Hagen et al. [86] suggest fast Lanczos-type

methods as robust basis for computing heuristic ratio cuts; others [43, 92] use power itera-

tion. Since the SVD algorithm itself has no effect on the surrounding clustering procedure, we

only compare performances later in Section 4.3.1. Our key findings on implementing spectral

clustering in real-world networks are:

• We give a k-way hierarchical clustering algorithm variant that outperforms the recently

described Divide-and-Merge algorithm of Cheng et al. [43] both for speed and accuracy.

• We give two pre-processing heuristics that remove community cores and loosely con-

nected tentacles to successfully attack the hardest-to-partition real networks.

• Compared to the Laplacian D − A typically used for graph partitioning, we show su-

perior performance of the normalized Laplacian D−1/2AD−1/2 introduced for spectral

bisection in [147] and [54] as the relaxation of the so-called normalized cut and min-max

cut problems, respectively. We are aware of no earlier systematic experimental compar-

ison. While in [53, 147] both described, their performance is not compared in practice;

Weiss [158] reports “unless the matrix is normalized [. . .] it is nearly impossible to ex-

tract segmentation information” but no performance measures are given; finally [155]

give theoretic evidence for the superiority of normalization.

• We compare various edge weighting schemes, in particular introduce a neighborhood

Jaccard similarity weight. This weight outperforms the best logarithmic weighting in

certain cases, justifying the discussion of [92, Section 2] that the input matrix should

reflect the similarity of the nodes instead of their distance.

• We introduce size balancing heuristics that improve both the geographic homogeneity and

the size distribution of the clusters formed by the algorithm. These methods outperform

and completely replace Lin-Kernighan type heuristics proposed by [54].

• We partially justify previous suggestions to use several eigenvectors [10, 113]; however

we observe no need for too many of them.

33

4.1 Two recent clustering methods

Before turning to our spectral clustering experiments we describe two recent community detec-

tion algorithms and show that although they are reported to work well for small networks, they

are unable to identify homogeneous large scale structures in our telephone call networks.

In this section we give a brief sketch of the clique percolation algorithm of Derényi and

Palla et al. [52, 130]. Instead of presenting the deep theory behind the method, our emphasis

is on the implementational details for very large graphs. Note that in [130] measurements over

only a few thousand node graphs are described. In another closely related publication on clique

percolation [129] a telephone call graph with over 4 million users is used as input and the time

evolution of the clusters is analyzed. In that paper however no details are given on how to

implement the algorithm for such a large scale problem, the communities analyzed have less

than 1000 users, and no global analysis of the community size distribution is given. In order to

easier relate all results in this Chapter we hence show some additional measurements on clique

percolation in this subsection.

Clique percolation grows communities from k-cliques as building blocks. A k-clique is

a complete subgraph over k nodes; we call two such cliques connected if they share k − 1

nodes. Clique percolation identifies the maximal connected components of k-cliques as possibly

overlapping clusters.

We describe a possible implementation of the clique percolation algorithm we use that is

based on the modification of the APRIORI frequent itemset mining algorithm [5]. In one step

described in Algorithm 4.1.1 we enumerate all (k + 1)-cliques for increasing values of k = 0,

1, . . . and store them as lexicographically ordered sets in a trie. Given a (k + 1) element set

U ∪ u ∪ v with |U | = k − 1 and u and v of index higher than all elements in U , this set is a

(k + 1)-clique if and only if U ∪ u and U ∪ v are k-cliques and there is an edge between u and

v. This condition can easily checked since U ∪ u and U ∪ v are both children of a level k − 1

element U of the trie of k-cliques.

Algorithm 4.1.1 Construction of the trie O of (k + 1)-cliques from the trie I of k-cliques.

O ← empty trie

for all sets U in the trie I on level k − 1 do
for all pairs of nodes u and v such that U ∪ u and U ∪ v ∈ I do

if u and v are connected by an edge then
add U ∪ u ∪ v to O

return O

Clique percolation in our experiment suffers from two problems due to the scale of the input

data. Firstly for dense graphs there are simply too many cliques to enumerate: in the top table

of Fig. 4.1 we see that, when run on the small graph (Fig. 3.2), we have to discard the largest

degree nodes. In this mere 74,000 node graph there are 39M 3-cliques without filtering; for

34

small, x nodes discarded large

x 500 2000 9000 24000

edges 3180989 2409073 1212284 400892 26758776

3-cliques 14747294 6669967 1400158 171657 11194867

4-cliques 37100792 10197104 803202 34512 2914247

5-cliques 72445357 12113978 354230 5251 688114

6-cliques n/a 12171488 138053 687 225204

7-cliques n/a 11122318 48277 52 105853

8-cliques n/a 9625892 14743 2 48860

k 5 4 3

number of

cliques

688114 2914247 11194867

largest

cluster

13988 88785 1605756

number

of compo-

nents

74841 323077 360745

nodes in at

least one

component

358544 1105731 1798855

 1

 10

 100

 1000

 10000

 100000

 1e+006

 10 20 30 40 50 60 70 80 90 100

3-cliques
4-cliques
5-cliques

Figure 4.1: Top: The size of the cliques for the small and large graphs of Fig. 3.2. For the small

graph the highest degree x nodes are discarded for different values of x. Bottom: properties of

clusters over the large graph with k = 3, 4 and 5 and the histogram of their size distribution.

35

4-cliques we ran out of memory at over 100M enumerated.

Secondly, it turns out to be hard to balance between an extreme large number of small

cliques that do not only pose computational challenges but also connect most of the graph into

a single cluster and a low number of larger cliques that leave most of the nodes isolated or in

very small clusters. As seen in Fig. 4.1, bottom, in our large graph for k = 5 most of the nodes

remain in isolation while for k = 3 we are left with a giant component. The best k = 4 choice

places slightly more than half of the nodes in some cluster, although many of these clusters are

very small as seen in Fig. 4.1, bottom left.

As another proposed solution, the assumption of Xu et al. [161] is that there exist hub

vertices in a network that connect or, in their terminology, bridge many clusters. Therefore

they define the SCAN algorithm that selects pairs of vertices with a concentration of common

neighbors as candidate intra-cluster nodes limited by parameter ε. Hubs, as opposed to intra-

cluster nodes, are then characterized by the distraction of neighbors. Finally cores are formed

by nodes that have at least μ neighbors within the core.

The key step in the SCAN algorithm is the selection of edges between pairs of nodes whose

neighborhood similarity is above a threshold ε. In the original algorithm of Xu et al. [161], with

Γ(u) denoting the neighbors of u, the similarity is measured as

σ(u, v) = |Γ(u) ∩ Γ(v)|/
√
|Γ(u)||Γ(v)|.

For power law graphs, in particular for the Web graph in our experiments, however the running

time for computing σ(u, v) is very large due to the huge neighborhood sets Γ(u) involved.

Hence, we use the Jaccard similarity

Jac(u, v) = |Γ(u) ∩ Γ(v)|/|Γ(u) ∪ Γ(v)|

that we approximate by 100 min-hash fingerprints [35] as described in Section 3.2.1.

The SCAN Algorithm 4.1.2 (modified to use Jaccard similarity) proceeds as follows. First it

discards edges that connect pairs of dissimilar nodes below threshold ε; these edges may bridge

different dense regions [161]. Then nodes with more than μ remaining edges are considered

as community cores. Finally, connected components of cores along remaining edges are aug-

mented by neighboring non-core nodes. The resulting components C may overlap at these aug-

mented vertices; these vertices are called hubs in [161] since they provide connectivity across

different communities.

Tests with various parameter settings of the SCAN algorithm over the large graph (Fig. 3.2)

are shown in Fig. 4.2. As an overall evaluation we observe that SCAN is unable to detect

communities of size beyond a few tens in our network. The better the parameter setting we use,

the more communities are found in the size range around 20 nodes. In more detail we compare

36

Algorithm 4.1.2 Modified SCAN.

input: ε: similarity threshold of neighbors within same core, μ: size threshold of neighborhood

within core

output: list of communities
for all edges uv do

compute approximate Jac(u, v) by min-hash fingerprints

E ′ ← {(uv) : σ(u, v) ≥ ε}
V ′ ← {u : degE′(u) ≥ μ}
compute the connected components C of V ′ with edges E ′

for all components C of C do
Add all vertices to C that are connected to C by edges of E ′

return C

Figure 4.2: The distribution of the community sizes identified by the SCAN algorithm. Left:
the effect of varying μ for a low ε = .3 similarity value. Right: the effect of varying ε for the

weakest μ = 2 core size bound. Both figures contain the weighted cosine input graph with the

best parameter settings in addition to Jaccard as in Algorithm 4.1.2.

the Jaccard similarity as described in Algorithm 4.1.2 and the weighted cosine similarity; due

to computational constraints the latter is only computed for the existing edges of the network.

Even in this weaker setting weighted cosine identifies more meaningful communities. Best

performance is obtained by the smallest possible μ = 2 and small ε. If we increase either μ

(Fig. 4.2, left) or ε (Fig. 4.2, right), the number of communities identified decreases at all size

ranges.

37

Figure 4.3: Distribution of the edge weights across different clusters, for a spectral clustering

and a trivial clustering obtained by considering one settlement as one cluster. The vertical axis

contains the total edge weight in seconds and the horizontal axis shows the number of cluster

pairs with the given weight between them.

4.2 Algorithms

4.2.1 Spectral clustering: an experiment

In order to illustrate the importance of the choice of parameters and input graph weights for

clustering as well as the issues on the quality measurement of the outcome, we present spectral

clustering experiments over the large graph of over 2M nodes and 10M bidirectional edges (for

detailed data see Fig. 3.2).

One may argue whether clustering reveals additional information compared to the settle-

ments themselves as “ground truth” clusters. We give a positive answer to this question by

showing that the distribution of the total call duration across different clusters is optimal for

those obtained by spectral clustering. In Fig. 4.3 we form two graphs, one with a node for each

settlement and another with a node for each (spectral) cluster. The weight of an edge between

two such nodes is the total call duration between the corresponding clusters. We observe that

the edge weights follow a power law distribution in both graphs. The graph obtained by spec-

tral clustering has a much smaller exponent and the edges across clusters have much smaller

weight, indicating an improved arrangement of weight mass for the spectral clusters. In fact we

use settlement information as an external validation tool for our experiments and not as ground

truth.

We have several choices to extract the network based on telephone calls between users: we

may or may not ignore the direction of the edges and weight edges by number of calls, duration

or price, the latter emphasizing long range contacts. First of all we may try to use the total cost

38

or duration directly as a weight in the adjacency matrix. It turns out that the Lanczos algorithm

converges extremely slowly. While it converges within a maximum of 120 iterations in all other

cases, 900 iterations did not suffice for a single singular vector computation with raw values.

We therefore use 1+log wij where wij is either the total cost or duration between a pair of users

i and j.

We also investigate a Jaccard and a cosine similarity based weight of user pairs in line with

the remark of Kannan et al. [92] who suggest node similarities for input weights. These methods

yield weights between 0 and 1, and clustering in the reweighted graph has quality similar to the

logarithm of call cost or duration. For both similarity measures we use 1 + simij to distinguish

non-edges from low-weight edges.

4.2.2 Small cluster redistribution heuristics

The key in using spectral clustering for power law graphs is our small cluster redistribution

heuristics described in the next subsection. After computing a k-way split, we test the resulting

partition for small clusters. First we try to redistribute nodes to make each component con-

nected. This procedure may reduce the number of clusters. In a degenerate case we may even

be left with a single cluster; in this case the output is rejected and clustering fails.

Algorithm 4.2.1 redistribute(C1, . . . , Ck): Small cluster redistribution

for all Ci do
C ′

i ← largest connected component of Ci

if |C ′
i| < limit · |C1 ∪ . . . ∪ Ck| then

C ′
i ← ∅

Outlier = (C1 − C ′
1) ∪ . . . ∪ (Ck − C ′

k)
for all v ∈ Outlier do

p(v) ← j with largest total edge weight d(v, C ′
j)

for all v ∈ Outlier do
Move v to new cluster Cp(v)

return all nonempty Ci

We give a subroutine to reject very uneven splits that is used in both our Divide-and-Merge

implementation (Section 4.2.2) and in k-way clustering (Section 4.2.3). Given a split of a cluster

(that may be the entire graph) into at least two clusters C1∪ . . .∪Ck, we first form the connected

components of each Ci and select the largest C ′
i. We consider vertices in Ci − C ′

i outliers. In

addition we impose a relative threshold limit and consider the entire Ci outlier if C ′
i is below

limit.

Next we redistribute outliers and check if the resulting clustering is sensible. In one step we

schedule a single vertex v to component Cj with d(v, Cj) maximum where d(A, B) denotes the

number of edges with one end in A and another in B. Scheduled vertices are moved into their

39

clusters at the end so that the output is independent of the order vertices v are processed. By

this procedure we may be left with less than k components; we will have to reject clustering if

we are left with the entire input as a single cluster. In this case we either try splitting it with

modified parameters or completely give up forming subclusters.

4.2.3 K-way hierarchical clustering

Algorithm 4.2.2 k-way hierarchical clustering

while we have less than cnum clusters do
A ← adjacency matrix of largest cluster C0

Project D−1/2AD−1/2 into first d eigenvectors

For each node i form vector v′
i ∈ Rd of the projection

vi ← v′
i/||v′

i||
(C1, . . . , Ck) ←output of k-means(v1, . . . , v|C0|)
Call redistribute(C1, . . . , Ck)
Discard C0 if C0 remains a single cluster

In our benchmark implementation we give k, the number of subclusters formed in each step,

d, the dimension of the SVD projection and cnum, the required number of clusters as input.

Algorithm 4.2.2 then always attempts to split the largest available cluster into k′ ≤ k pieces by

k-means after a projection onto d dimensions. Note that k-means may produce less than the

prescribed number of clusters k; this scenario typically implies the hardness of clustering the

graph. If, after calling small cluster redistribution (Algorithm 4.2.1), we are left with a single

cluster, we discard C0 and do not attempt to split it further.

In our real life application we start out with low values of d and increase it for another try

with C0 whenever splitting a cluster C0 fails. We may in this case also decrease the balance

constraint.

Notice the row normalization step vi ← v′
i/||v′

i||; this step improves clustering qualities for

our problem. We also implemented column normalization, its effect is however negligible.

4.2.4 Divide-and-Merge Baseline

The Divide-and-Merge algorithm of Cheng et al. [43] is a two phase algorithm. In the first

phase we recursively bisect the graph: we perform a linear scan in the second eigenvector of

the Laplacian sorted by value to find the optimal bisection. The algorithm produces cnum0

clusters that are in the second phase merged to a required smaller number cnum of clusters by

optimizing cut measures via dynamic programming.

In order to adapt the Divide-and-Merge algorithm originally designed for document clus-

tering [43], we modify both phases. First we describe a cluster balancing heuristic based on

40

Algorithm 4.2.3 Divide and Merge: Divide Phase

while we have less than cnum0 clusters do
A ← adjacency matrix of largest cluster C0

Compute the second largest eigenvector v′ of D−1/2AD−1/2

Let v = D−1/2v′ and sort v
i ← ratio_init
while C0 is not discarded do

Find 1/i ≤ t ≤ 1 − 1/i such that the cut

(S, T) = ({1, . . . , t · n}, {t · n + 1, . . . , n})

minimizes the cluster ratio

(C1, . . . , C�) ← redistribute(S, T)
if � > 1 then

Discard C0 and add clusters C1, . . . , C�

else
if i = 3 then

Discard cluster C0

else
i ← i − 1

Algorithm 4.2.1 for the divide phase. Then for the merge phase we give an algorithm that pro-

duces low cluster ratio cuts, a measure defined below in this section. In [43] the merge phase of

the divide-and-merge algorithm is not implemented for cluster ratio. Since this measure is not

monotonic over subclusters, we give a new heuristic dynamic programming procedure below.

We observed tiny clusters appear very frequent in the Divide phase (Algorithm 4.2.3) as

described in Section 4.2.2. Splits along the second eigenvector are apparently prone to find a

disconnected small side consisting of outliers. In this case the small component heuristics of

Algorithm 4.2.1 are insufficient themselves since we are starting out with two clusters; if we

completely redistribute one, then we are left with the component unsplit. We hence introduce

an additional balancing step with the intent to find connected balanced splits along the second

eigenvector. We could restrict linear scan to an 1/3-2/3 split; in many cases this however leads

to a low quality cut. Hence first we weaken the restriction to find an 1/ratio_init–(1 −
1/ratio_init) cut and gradually decrease the denominator down to 3. We stop with the first

cut not rejected by Algorithm 4.2.1. If no such exists, we keep the cluster in one and proceed

with the remaining largest one.

Now we turn to the Merge phase (Algorithm 4.2.4). Our goal is to optimize the final out-

put for cluster ratio defined below. Let there be N users with Nk of them in cluster k for

k = 1, . . . , m. The cluster ratio is the number of calls between different clusters divided by∑
i�=j Ni · Nj . The weighted cluster ratio is obtained by dividing the total weight of edges

between different clusters by
∑

i�=j wijNi · Nj where wij is the total weight of edges between

41

Algorithm 4.2.4 Merge Phase

for all clusters C0 from leaves up to the root do
if C0 is leaf then

OPTn(C0, 1) = 0, OPTd(C0, 1) = |C0|
else

Let C1, . . . , C� be the children of C0

for i between 1 and total below C0 do
numer(i1, . . . , i�) ← 0; denom(i1, . . . , i�) ← 1
for all i1 + . . . + i� = i do

numer(i1, . . . , i�) ←
∑

j �=j′ d(Cj, Cj′) +
∑

j=1...� OPTn(Cj, ij)
denom(i1, . . . , i�) ←

∑
j �=j′ |Cj| · |Cj′| +

∑
j=1...� OPTd(Cj, ij)

if
OPTn(C0, i)

OPTd(C0, i)
>

numer(i1, . . . , i�)

denom(i1, . . . , i�)
then

OPTn(C0, i) = numer(i1, . . . , i�); OPTd(C0, i) = denum(i1, . . . , i�)

clusters i and j.

In order to compute the optimal merging upwards from leaves by dynamic programming

(Algorithm 4.2.4) we aim to use an idea similar to computing cluster ratio when linearly scan-

ning in the Divide step as described in Section [42]. Unfortunately however cluster ratio is

not monotonic in the cluster ratio within a subcomponent; instead we have to add the numer-

ator and denominator expressions separately within the subcomponents. We can only give a

heuristic solution below to solve this problem.

In order to find a good cluster ratio split into i subsets of a given cluster C0, we try all

possible i1+. . .+i� = i split sizes within subclusters C1, . . . , C�. By the dynamic programming

principle we assume good splits into ij pieces are known for each subcluster Cj; as we will see,

these may not be optimal though. For these splits we require the values OPTn(Cj, ij) and

OPTd(Cj, ij), which denote the optimal numerator and denomiator values of the ij-way split of

cluster Cj . If we use the corresponding splits for all j, we obtain a split of cluster ratio

∑
j �=j′ d(Cj, Cj′) +

∑
j=1...� OPTn(Cj, ij)∑

j �=j′ |Cj| · |Cj′| +
∑

j=1...� OPTd(Cj, ij)

for the union of the subcomponents. Note however that this expression is not monotonic in

the cluster ratio of subcomponent j, OPTn(Cj, ij)/OPTd(Cj, ij), and the minimization of the

above expression cannot be done by dynamic programming. As a heuristic solution, in Algo-

rithm 4.2.4 we always use the optimal splits from children. Even in this setting the algorithm is

inefficient for branching factor more than two; while in theory Merge could be used after k-way

partitioning as well, the running time is exponential in k since we have to try all (or at least

most) splits of i into i1 + . . . + i�.

42

Figure 4.4: Left: A 82-node subgraph of the LiveJournal Friends network, with two cores and

several short tentacles. Right: a similar 317-node subgraph of the UK2007-WEBSPAM host

graph.

4.2.5 Tentacles: loosely connected regions

Algorithm 4.2.5 Tentacle contraction.

input: dmax: maximum degree of a tentacle node.

output: graph G′ with all tentacles contracted.

while node v of degree ≤ dmax exists in G′ do
Contract v to its neighbor u with lowest degree in G′

Record v → u for tentacle set reconstruction

We introduce a pre-processing heuristics for handling loosely connected parts of the net-

work. We recursively contract all nodes that have degree below a threshold into a neighbor. In

this way tentacles are eliminated and close communities are moved in proximity of each other.

In a recursive definition we say that a node belongs to a tentacle if its degree is not more

than a prescribed value dmax; we use dmax = 3. As long as there are tentacle nodes in the graph,

we contract them into (one of) their neighbors with smallest degree. In this way we may create

new small degree nodes; the procedure may recursively continue. By recording the contractions

we may also reconstruct all nodes that get contracted into a final node; such a set of nodes is

called a tentacle. The procedure is described in Algorithm 4.2.5. We note that the definition

of a tentacle depends on the order of contractions and hence we only use it as a preprocessing

heuristic and do not use tentacles for characterizing a particular node.

43

4.2.6 Tightly knit communities and the SCAN algorithm

Another main ingredient of our algorithm consists of the removal of community cores seen

in Fig. 4.4 or, in another terminology, tightly knit communities (TKC) before singular value

decomposition. Several authors observe difficulties caused by the TKCs: Lempel and Moran

[110] investigate hyperlink based ranking on the Web; very recently [161] identifies hubs that

bridge between several TKCs as the main difficulty in network partitioning.

Several algorithms are proposed to identify community cores. Flake et al. use network flows

[65] or min-cut trees [66]; Xu et al. [161] use an agglomerative method that prefers core nodes

and avoids bridges that connect more than one TKC. All these methods however suffer from the

abundance of very small communities with no superimposed larger scale structure that network

flow based heuristics could exploit.

Our heuristic solution is based on the Structural Clustering Algorithm for Networks (SCAN)

algorithm [161]; however instead of using moderate parameters to build large clusters directly

as community cores, we use SCAN with restrictive values and remove 1–5% of the nodes that

belong to TKC prior to PCA.

Algorithm 4.2.6 Spectral Clustering.

input: k: desired branching factor of the cluster hierarchy.

output: hierarchical clustering
while desired number or cluster size is not reached do

Select largest cluster C0 and induced subgraph G
Q1, . . . , Qs ← cores given by SCAN(G, ε, μ)
G′ ← G − ⋃

Qi

G′′ ← Contract all tentacles in G′

A ← adjacency matrix of G′′

Project D−1/2AD−1/2 into first d eigenvectors

For each node i form vector v′
i ∈ Rd of the projection

vi ← v′
i/||v′

i||
(C1, . . . , Ck) ←output of k-means(v1, . . . , v|C0|)
Call redistribute(C1, . . . , Ck, Q1, . . . , Qs)
Discard C0 if C0 remains a single cluster

return all discarded and remaining clusters

4.2.7 Components of the algorithm

First the pre-filtering heuristics (Sections 4.2.5 and 4.2.6) are applicable in general to obtain

globally meaningful principal axes. These heuristics not only improve the clustering quality by

filtering out the globally relevant network structure, but they also decrease running times.

Then we apply one of the two graph bisection relaxation methods (SVD or SDP). For the

SVD we may choose to use the Laplacian or the weighted Laplacian matrix. These methods

44

project the graph into a d-dimensional vector space [40]. We use k-means to get an initial split

into more than two parts as suggested first by [166], or a much simpler approach for the d = 1

case as described in 4.2.3.

For SVD we use the Lanczos code of svdpack [26] and for SDP we use Burer and Mon-

teiro’s solver [38].

After computing a 2-way or k-way split we test the resulting partition for small clusters.

First we try to redistribute nodes to make each component connected Algorithm (4.2.2). This

procedure may reduce the number of clusters; when we are left with a single cluster, the output

is rejected.

Finally, to get a hierarchical clustering algorithm we can choose from two algorithms. The

first algorithm in Section 4.2.3 is based on k-way hierarchical clustering as described among

others by Alpert et al. [10]; the second one in Section 4.2.4 on the more recent Divide-and-

Merge algorithm [43].

Both of the algorithms target at balancing the output clusters. The original Divide-and-

Merge algorithm of [43] achieves this simply by producing more clusters than requested and

merging them in a second phase. We observed this algorithm itself is insufficient for clustering

power law graphs since for our data it chops off small pieces in one divide step. In a recursive

use for hierarchical clustering the number of SVD calls hence becomes quadratic in the input

size even if only a relative small number of clusters is requested.

The two main ingredients of our algorithm consist of the removal of small dense regions

and contracting long interconnecting tentacles. In Fig. 4.4 we see typical subgraphs of the

entire network that consist of several small community cores, two of which are seen, with low

degree nodes loosely connected to some of them or interconnecting pairs of them. Since PCA

is unable to select from the abundance of small cores, it falls into the trap of the so-called TKC

effect [110] by selecting the most dominant such structure that is still very small on the scale

of the entire network. We demonstrate that after the proposed preprocessing these traps are

avoided and meaningful principal axes are found.

4.3 Experiments

In this section we describe our experiments performed mainly on the Hungarian Telecom call

detail record and, in order to extend the scope of applicability, on the UK2007-WEBSPAM

crawl and the LiveJournal blogger friends network.

The experiments were carried out on a cluster of 64-bit 3GHz P-D processors with 4GB

RAM each. Depending on algorithms and parameter settings, the running time for the construc-

tion of 3000 clusters is in the order of magnitude of several hours or a day for the Hungarian

Telecom data, the largest of the graphs used in our experiments.

45

Algorithm d = 2 d = 5 d = 10 d = 15 d = 20 d = 25
Lanczos 17 24 44 47 55 96

Block Lanczos 19 34 66 105 146 195

Power 15 40 95 144 191 240

Table 4.1: Running times for the d dimensional SVD computation by various algorithms, in

minutes.

4.3.1 Telephone graph

Evaluation of Singular Value Decomposition algorithms

In our implementation we used the Lanczos code of svdpack [26] and compared it with block

Lanczos and a power iteration developed from scratch. While block Lanczos runs much slower,

it produces the exact same output as Lanczos; in contrast power iteration used by several results

[43, 92] is slightly faster for computing the Fiedler vector but much less accurate; computing

more than two dimensions turned out useless due to the numerical instability of the orthogonal

projection step. Improving numerical stability is beyond the scope of this work and we aware

of no standard power iteration implementation. Running times for the first split are shown in

Table 4.1; in comparison the semidefinite programming bisection code of Lang [109] ran 120

minutes for a much smaller subgraph (n = 65, 000, m = 1, 360, 000) while for the entire graph

it did not terminate in two days.

We remark that modifications of svdpack are necessary to handle the size of our input.

After removing the obsolete condition on the maximum size of an input matrix, we abstracted

data access within the implementation to computing the product of a vector with either the input

matrix or its transpose.

The entire running time for producing 3000 clusters depend more on the parameter settings

than the choice of Divide-and-Merge vs. k-way partitioning. All runs took several hours up to a

day; only the slowest Divide-and-Merge with limit = 100 runs over a day. Since the number

of possible parameters is very large, we omitted running time graphs.

Divide-and-Merge vs. k-way hierarchical algorithm

The comparison of various input matrices to both divide-and-merge and k-way hierarchical

clustering is shown in Fig. 4.5. Most importantly we notice the weighted Laplacian D−1/2AD−1/2

significantly outperforms the unweighted D−A in all respects. Call length and call cost behave

similar; as expected, the former yields geographically more homogeneous clusters by underem-

phasizing long distance calls, while the latter performing better for the cluster ratio measure.

The logarithm of the price or duration performs very close to Jaccard reweighting with no clear

winner.

When comparing Divide-and-Merge and k-way partitioning (Fig. 4.5) we observe the supe-

46

Figure 4.5: Evaluation of various reweighting techniques over the adjacency matrix for pu-

rity (left), entropy (right) and cluster ratio (bottom) of the arising clusters on the vertical axis.

Curves correspond to combinations of unweighted vs. weighted Laplacian (NCut for normal-

ized cut relaxation, as opposed to RCut, ratio cut relaxation), length vs. cost based, and Jaccard

vs. logarithmic weight input matrices. Four different algorithms, Divide-and-Merge bipartition

as well as k-way partition with d = 30 for three values k = 2, 4 and 8 are on the horizontal

axis.

47

riority of the latter for larger k. For k = 2 we basically perform Divide without Merge; the poor

performance is hence no surprise. For k = 4 however the small cluster redistribution heuris-

tic already reaches and even outperforms the flexibility of the Merge phase in rearranging bad

splits.

Size limits and implications on the size distribution of clusters

In Fig. 4.6 we see the effect of changing limit for the k-way and Divide-and-Merge algo-

rithms. Recall that in Algorithm 4.2.1 used as subroutine in both cases, the parameter limit

bounds the ratio of the smallest cut from the average. If this is very large (100 in the Figure),

we are left with no constraint. If however it is close to one, we enforce very strict balancing that

deteriorates clustering quality. The optimal values lie around 4. . . 6; these values are also opti-

mal for running time. Very large values, in particular for Divide-and-Merge, slow algorithms

down by only marginally reducing the largest cluster size after the costly SVD computation.

We checked that the strict balancing constraints required for efficiency has no negative effect

on cluster quality. This is clearly seen for purity and entropy in Fig. 4.6, top. Notice however

the unexpected increase of cluster ratio (middle left) for large values; this is due to the fact that

the densely connected near 600,000 Budapest users could only be split with liberal balancing

conditions as also seen in the table of largest remaining cluster sizes in Fig. 4.6, middle right.

While splitting Budapest has no effect on purity or entropy, it adds a large number of edges cut

in cluster ratio. For this reason we repeated the experiment by removing Budapest users to see

no negative effect of the strict balance constraint on the clustering quality measures anymore.

We did not include normalized modularity in the figures since, as we will see in Section 4.3.2,

normalized modularity turned out to be instable.

Notice the superiority of the k-way algorithm over Divide-and-Merge is also clear for their

best parameter settings of Fig. 4.6, top.

We also remark here that we implemented a Lin-Kernighan type point redistribution at cut

borders proposed by [54] but it had negligible effect on the quality.

Besides clustering quality, we also look at how “natural” are the cluster sizes produced by

the algorithms in Fig. 4.6, bottom. We observe strong maximum cluster size thresholds for

Divide-and-Merge: that algorithm forces splitting hard regions for the price of producing a

negatively skewed distribution of a large number of small clusters that are of little practical

use. With the exception of Divide-and-Merge with no limits we never split Budapest users as

seen from the top list (Fig. 4.6, middle right). When repeating the experiment by discarding

Budapest users, the huge clusters disappear.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

100 6 4 3 2 1.5

Pu
rit

y

Limit

K-way with Budapest
Divide-Merge with Budapest

K-way without Budapest
Divide-Merge without Budapest

 0

 0.2

 0.4

 0.6

 0.8

 1

100 6 4 3 2 1.5

En
tro

py

Limit

K-way with Budapest
Divide-Merge with Budapest

K-way without Budapest
Divide-Merge without Budapest

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

100 6 4 3 2 1.5

C
lu

st
er

 R
at

io

Limit

K-way with Budapest
Divide-Merge with Budapest

K-way without Budapest
Divide-Merge without Budapest

Algorithm 1. 2. 1. w/o

&Limit Budapest

K-way 1.5 947571 134450 161515

K-way 2.0 828543 104421 86904

K-way 3.0 746869 63433 73683

K-way 4.0 746869 49240 61922

K-way 6.0 746869 55287 61922

K-way 100.0 712557 49577 60667

D-M 2.0 956415 643520 195418

D-M 3.0 817094 120746 163169

D-M 4.0 817094 120746 163169

D-M 6.0 725058 190964 150666

D-M 100.0 357618 297407 timeout

Figure 4.6: Effect of size limits on clustering quality, k = 4 and d = 30 for purity, entropy (top)

and cluster ratio (middle left). The size of the largest and second largest remaining cluster as

well as the largest one after the removal of Budapest lines (middle right). Distribution of cluster

sizes for k-way hierarchical partitioning (k-way) and Divide-and-Merge (Divide-Merge) for

various parameters of the size limit (bottom).

49

 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

 0 5 10 15 20 25 30 35
 0
 5
 10
 15
 20
 25
 30
 35

Purity

K

 0.14
 0.16
 0.18
 0.2
 0.22
 0.24
 0.26
 0.28

 0 5 10 15 20 25 30 35
 0
 5
 10
 15
 20
 25
 30
 35

Entropy

K

 0.022
 0.024
 0.026
 0.028
 0.03
 0.032
 0.034
 0.036

 0 5 10 15 20 25 30 35
 0
 5
 10
 15
 20
 25
 30
 35

Cluster Ratio

K

-800
-750
-700
-650
-600
-550
-500

 0 5 10 15 20 25 30 35
 0
 5
 10
 15
 20
 25
 30
 35

Normalized Modularity

K

Figure 4.7: Relation between dimensions d (vertical), branching k (horizontal) and quality

(darkness) for purity (top left), entropy (top right), cluster ratio (bottom left) and normalized

modularity (bottom right). The darker the region, the better the clustering quality except for

purity where large values denote good output quality.

50

Purity Entropy Norm. Mod.

(location)

No heuristics 0.501557 1.182126 3.556151

Tentacle + SCAN 0.504375 0.634847 11.781545

Figure 4.8: Principal axes 4 and 5 within the Russian cluster before (top) and after (middle) the

removal of cores and tentacles as well as two dimensions of the SDP relaxation (bottom). The

quality of subpartitioning the first cluster is in the bottom table.

4.3.2 The LiveJournal Friends Network

The effect of more dimensions

Our first observation is that direct spectral partitioning of the non-Russian LiveJournal is impos-

sible due to a singular value sequence with even the 100th largest above 0.99. In accordance, the

principal axes are non-characteristic. For example in Fig. 4.8 we observe no difference between

Russians and other nations within the Russian cluster (UA, BY, EE etc.) without preprocessing;

this distinction becomes however strongly visible by using our algorithm. In Table 5.1 we see

that 15 dimensions suffice for a balanced partitioning only if all preprocessing heuristics are

applied.

The running times and cluster quality measures are summarized in Table 4.3. The most

51

Clockwise:

16–18

19–21

22–24

25–27

28–30

Clockwise:

Jesus

Paganism

Atheism

No Size characteristics

1 60 681 International/Europe

2 699 199 US college

3 447 694 International/English speaking + SG, PN

4 170 257 US high school

5 729 604 US Atheist/Pagan

6 216 832 Russian

Figure 4.9: Partition of LiveJournal users into six, with the distribution of location (top), age

(middle) and religious interest (bottom). Characteristics of the parts 1–6 (left to right) are shown

in the table.

729093 music

480443 movies

353412 reading

331027 writing

312060 friends

251376 art

229519 photography

217465 books

214479 dancing

26266 Jesus

17828 Paganism

9845 Theology

9752 Atheism

6834 Democrats

5054 Jesus Christ

2486 Republicans

1677 Democrat

1291 Republican

Table 4.2: Number of users who express certain type of interest. Left: the top list. Right:

polarized interest categories.

52

Figure 4.10: Subpartition of LiveJournal cluster No. 3, with the distribution of location (top)

and age (bottom). Dominant location US is distributed into three clusters (#1, 2 and 6) with an

age distribution moving from older groups towards a majority 16–18 from subcluster 1 to 6.

important observation is the huge running time difference between SDP and SVD with only

minor differences in cluster quality. As for the reliability of the measures, since entropy and

purity relate the clustering to a ground truth, we may take them more reliable measures as the

pure graph based ones. In this sense cluster ratio apparently does not form a reliable comparison

probably due to its dependence on the number of clusters. The remaining three measures,

although noisy in certain cases, do not show major differences in judgment.

The quality improvement for clustering is justified by observing that our method makes

PCA easier while not destroying the essential network properties. When comparing the quality

of the partitions given by different algorithms, we observe that SVD with the heuristics works

always nearly as good as SDP; in fact for LiveJournal, the hardest instance it outperforms SDP

in entropy and normalized modularity. The very low normalized modularity of SDP here may

indicate an unfortunate split; note that the purity values are very close to .8, the fraction of US

location that corresponds to a random split. Here our heuristics greatly improve SDP as well;

for the other data sets however SDP performs in general better without them.

The advantages of our method become even clearer when we dig deeper into subclusters.

We considered a component (No. 1 in Fig. 4.9) with 60,681 nodes and 228,644 edges where

partitioning is not even possible without our heuristics. The cluster quality parameters are seen

in the table on figure 4.8.

Countries and regions

Characteristic countries are those that, in a 6-level hierarchical clustering into 3000 components,

constitute 20% of at least one cluster. Other than US that constitutes near 80% of the users (see

53

Figure 4.11: Subpartition of the Russian cluster, with the distribution of location (top) and

age (bottom). Primarily Russian clusters (#2, 4, 6 and 8) have characteristic age distribution

difference.

Figure 4.12: Location distribution of the subpartition of the International/Europe cluster. Black

pie denotes locations other than the top 10. Since the parent cluster contains near 1/3 US

location, several subclusters (#4, 8, 9, 13 and 15) still have a majority of US users (light pie).

Certain countries have characteristic clusters; we marked the largest ones NL, ES and FI.

54

also Table 3.2), these include English-speaking clusters US, CA, UK, AU; the Russian cluster

RU, BY, UA, EE, LT, IL; as well as non-English and Russian speaking characteristic countries

BR, DE, ES, FI, NL, PH, SG.

In the top-level partitioning (Fig. 4.9) we see the characteristic Russian cluster [81, 165] as

well as two international clusters, one with European connection, the other with mostly English

speaking countries. The European cluster splits further by location with NL, ES, FI and several

other characteristic countries (Fig. 4.12). The English-speaking cluster (Fig. 4.10) consists of

UK, CA and AU; in addition they are clustered together with SG and PH. Finally the Russian

cluster (Fig. 4.11) splits again by location with a US-IL partition also dominantly appearing.

Location within US is also known to be important. Unfortunately state information is com-

pletely missing from our recent crawl. We tried to reconstruct location within US by considering

interest in California, San Francisco, New York, Chicago, Los Angeles or Boston. While we

see indications of effect within the US sub-clusters, results are less indicative due to the lack of

a more-or-less complete state information. We also observe strong international bounds across

English-speaking countries except for the US-only clusters predominantly consisting of young

people.

Age

Age is closely related to interest as noted in [101]. We bin ages after discarding people younger

than 16 and older than 30 as in Fig. 4.9, middle. We see three clusters (No. 2, 3 and 5) with

users predominantly from US; these clusters are distinguished by the age distribution. When

considering splits in the lower level of the hierarchy, we also see clustering by age within a

given location as soon as the location becomes dominant within a cluster. For example SG

(Fig. 4.10) and RU (Fig. 4.11) users are already partitioned into two by age on the second level.

Polarized opinions

Polarization over political views [4] is examined by several authors. In our experiment we

manually selected interest from user profiles that may be related to polarized opinion as in

Table 4.2. While US parties did not show effect on principal axes, religion and atheism is

characteristic in the LiveJournal Friends network. We selected users expressing Jesus, Jesus

Christ, Atheism and Paganism as interest.

The top-level partitioning (Fig. 4.9) defines three US clusters, two with predominant interest

in Jesus, while the third with Jesus in minority compared to Paganism and Atheism (this last

cluster is also more international). In Fig. 4.9 we may also notice the apparent correlation with

younger age and interest in Jesus. We note that certain clusters such as the Russian one are

underrepresented for this type of interest.

55

Table 4.3: The running time, entropy, purity, normalized modularity and cluster ratio over the

three real data sets. Cluster ratio is shown multiplied by 106. We test four algorithms: SVD

with small component redistribution heuristic only, with all heuristics, semidefinite relaxation

(SDP) and SDP with core and tentacle removal.
LiveJournal runtime entropy purity n.mod. c.ratio

SVD redist only 1980m 0.105 0.812 2339 2

SVD all preproc 150m 0.073 0.853 2561 8

SDP no preproc 1755m 0.111 0.857 272 6

SDP all preproc 675m 0.072 0.854 2537 4

Telephone runtime entropy purity n.mod. c.ratio

SVD redist only 80m 0.263 0.653 257 15

SVD all preproc 87m 0.239 0.648 206 12

SDP no preproc 2520m 0.237 0.634 237 14

SDP all preproc 2865m 0.252 0.628 251 13

UK-WEBSPAM runtime entropy purity n.mod. c.ratio

SVD redist only 3m 0.362 0.199 35.69 116

SVD all preproc 5m 0.277 0.416 101.14 238

SDP no preproc 45m 0.266 0.426 51.77 864

SDP all preproc 47m 0.277 0.410 82.38 208

4.3.3 The UK2007-WEBSPAM host graph

Over this host graph the k-way partitioning algorithm with k = 15 and d = 30 produced 100

clusters with three giant clusters remaining unsplit as seen in Fig. 4.13. In contrast, the Divide-

and-Merge algorithm was not able to construct a single split, even with ratio-init = 8.

The distribution of the 14 categories are shown in the pie charts. The first cluster has a very

low fraction of known labels, most of which belongs to business (BU), computers (CO) and

sports (SP), likely a highly spammed cluster. The second cluster has high ODP reference rate

in business (BU), shopping (SH), computers (CO), arts (AR) and recreation (RC). Finally the

largest cluster an opposite topical orinetation with high fraction of health (HE), reference (RE),

science (SC) and society (SO). Among the less frequent four more categories, this latter cluster

has a high fraction of kids and home while the second cluster contains games; news is negligible

in the three clusters.

We experimented with various edge weighting schemes for the host graph, all of which

resulting in roughly the same largest clusters that could not be further split as in Fig. 4.13, left.

With an initial purity and entropy of 0.18 and 3.4, 100 clusters using the logarithm of edge

weights resulted in purity 0.29, entropy 0.45, cluster ratio 0.00024 and normalized modularity

-20.9, improved to 0.31, 0.44, 0.00026 and -17.9 by Jaccard weighting.

56

hosts labeled

23595 2622

13111 8754

38279 14964

111149 35814

AR arts

BU business

CO computers

HE health

RC recreation

RE reference

SC science

SH shopping

SO society

SP sports

Figure 4.13: The size of the three largest remaining clusters and the number of labeled hosts

within the cluster and in the entire crawl (bottom) as well as the distribution of categories within

these clusters in the same order, left to right, with the list of abbreviations (left).

4.4 Conclusion and bibliographic notes

The results in this Chapter appeared in [104, 106] where I devised most of the heuristics. The

first paper is cited by [61, 120, 167].

We gave a k-way hierarchical spectral clustering algorithm with heuristics to balance clus-

ter sizes. We also implemented the heuristics in the recent Divide-and-Merge algorithm [43].

Our algorithm outperformed Divide-and-Merge for clustering the telephone call graph. We also

measured the effect of several choices for the input to SVD: we found the weighted Lapla-

cian performing much better than the unweighted counterpart and introduced a neighborhood

Jaccard weighting scheme that performs very good for SVD input.

We demonstrated that spectral graph partitioning can be performed on very large power

law networks after appropriate preprocessing heuristics. Our preprocessing steps include the

removal of densely connected communities that are of small size on the global scale as well as

the contraction of long “tentacles”, loosely connected users that form large chains out of the

center of the network.

Our central findings are related to the comparison of the SVD vs. semidefinite programming

relaxation of the graph partitioning problem [109]. We show the SVD based partitioning quality

can be improved to at least as good as the semidefinite one with large gains in speed. In partic-

ular the Lanczos algorithm based SVD can be parallelized since it consists of the multiplication

of a vector with the input Laplacian. In addition SVD has good approximate solutions [59, 142].

In future work we plan to test distributed approximate SVD for very large graphs such as the

UK2007-WEBSPAM page level graph with over 3 billion edges.

Of independent interest is our top-level analysis of the LiveJournal blogger Friends network,

a data set of over three million users, in near 80% from US, 6% from Western Europe and 5%

from Russia and East Europe. Here the components reveal global aspects of the network such

as location, age, or religious belief. In future work more types of interest can be analyzed and

the techniques presented here can be applied to blog posts or other large social networks.

57

58

Chapter 5
Generative Models of Hard-to-Partition

Social Networks

In this Chapter we investigate the hardness of clustering synthetic graphs constructed by various

social network models. Spectral graph partitioning has recently gathered bad reputation for

failure over large scale social networks. While Lang [109] in part suggests this may be due

to the expansion and the power law degree distribution in these networks, in our experiments

graphs generated by known models for social-like networks, the preferential attachment model

of Barabási et al. [18], the evolving copy model of Kumar et al. [100] and the small world model

of Kleinberg [97] are all easily partitioned in a balanced way by the spectral method.

In our experiments the existing models are insufficient to explain the failure of spectral

partitioning. As a main reason we find dense communities interconnected by long tentacles.

We call a subgraph tentacle if it can be built by recursively adding low degree nodes. A tree

is an obvious example of a tentacle; we may however have cycles or even somewhat wider

objects built by degree 3 or higher nodes in a tentacle. Notice that our notion of a tentacle is

reminiscent to the octopus structure described by Lang [109], although key is that the tentacles

connect a large number of dense regions. The dense regions are seemingly similar to the dense

bipartite communities described by the evolving copy model [100]; surprisingly however this

model does not generate sufficiently dense communities needed for the observed bad behavior

of spectral partitioning.

We construct a new combined model that generates graphs hard to partition with the spectral

method and shows the observed size distribution of dense communities and tentacles. We first

model densely settled regions in the Kleinberg geographic small world model [97] over a 2D

grid by selecting nodes uniformly at random and replacing them by small cliques. Then we

prescribe a power law degree distribution over this graph and generate the given number of

edges independent with probability proportional to the Euclidean distance in the underlying

grid. Certain properties such as the number of dense regions and the distribution of tentacle

59

Figure 5.1: Left: the distribution of the size of the tentacles identified by Algorithm 4.2.5.

Right: the distribution of the size of the communities identified by the modified SCAN Algo-

rithm 4.1.2. Both charts are on the log-log scale and the horizontal axis shows the size of the

component while the vertical the number of components with that size.

sizes observed in graphs generated by this model are very similar to the hard instances for

spectral partitioning.

Network models such as the preferential attachment [18], evolving copy [100] or Klein-

berg’s small world [97] describe certain properties of social networks and Web graphs such as

the degree distribution, low diameter, geographic concentration of the contacts and even certain

dense communities.

We show that the above models however do not explain the hardness of clustering. In what

follows we describe our procedures to generate graphs according to these models and also give

our new model based on Kleinberg’s small world [97] combined with power law degree and

community distributions. In Fig. 5.1 we show the distribution of the sizes of community cores

and tentacles in the models as well as the real graphs in Section 3.1. And in Table 5.1 we

show the 15th largest singular value under different heuristics as an indicator of the hardness

for partitioning.

5.1 The Barabási-Albert model

While the simplest random graph model, the Erdős-Rényi (ER) model [30, 63] assumes that

edges are chosen independent at random for a graph with a fixed vertex set. Most real world

networks are however open and new nodes may get in and out of it. The ER model assumes

that two nodes are connected by uniform distribution. Experiment on real graphs show that

the edges have a “preferential attachment” property, new nodes are more likely to connect to

popular, high-degree nodes.

60

Barabási and Albert [16, 17, 18] propose a growing model, where the degree-distributions

correspond to observations. The BA model is defined as follows:

Growing Start from a few (m0) node, then in every timeperiod add some new node with m ≤
m0 edge, that connect to old nodes. The nodes are labeled by age, the degree of the i-th

is ki.

Preferential attachment The probability to connect to the node i is

C · ki

/∑
j

kj

where C is the growth constant.

After t time this will lead to a network, that contains N = t + m0 node, and m · t edge.

The degrees will follow a P (k) ∼ k−γ like distribution, where γBA = 3. The scale exponent

is independent from m, the only parameter. Also Pk is independent from time, or the size of

network, so the model is scale-free.

We can observe that the older nodes gather more degree than new ones. A node that becomes

popular will be even more popular.

This model generates power law degree distribution with the exponent -3; if random noise

is added to the edge selection procedure, we may obtain different exponents as well [136]. By

generating graphs according to these models we obtain neither cores nor tentacles and all such

graphs can be partitioned by the basic spectral method.

5.2 The Evolving Copy Model

In the evolving copy model of Kumar et al. [100] whenever new vertices arrive, they select an

old vertex uniform at random and copy their edges with noise.

The parameters of the model are α ∈ (0, 1) copy-factor and d ≤ 1 outdegree factor. Let u

be a new node, its outdegree du. The outedges of u are generated in the following way:

• Choose an existing p node uniformly random as prototype.

• For each i ∈ 1..dp for the i-th edge with probability α connect to another node chosen

uniformly random, with probability (1 − α) copy the i-th edge of p.

Two variants of this model exist, the first one adds one new node to the network in every

time period. The second one adds k new nodes to the network where k is proportional to the

network size. While we observed no significant difference between the two variants with respect

to clustering hardness, all experiments in this section belong to the latter one.

61

Figure 5.2: Left: the local contacts. Right: the distant contacts.

In addition to achieving power law degree distribution, the graphs in this model have a large

number of dense bipartite cliques, a property characteristic to Web graphs and a possible cause

of dense regions that could result in imbalanced spectral clusters. This model already generates

hard instances for spectral partitioning, however they can be resolved by tentacle removal itself

(Table 5.1). We observe no cores; tentacle size distributions are similar to the hard instances

(Fig. 5.1).

5.3 Kleinberg’s Small World Model

The small world graph model of Kleinberg [97] captures a different property of social networks,

namely the fact that short paths don’t just exist but they can be found efficiently by using only

local information. In his model there is an underlying 2D grid. Kleinberg defines lattice dis-

tance between two nodes (i,j) and (k,l) to be the number of “lattice steps” separating them:

d((i, j), (k, l)) = |k− i|+ |l− j|. For the constant p ≥ 1, the node u is connected to every other

node within lattice distance p, these are its local contacts. Nodes also select a constant q ≥ 0

number of distant neighbors in the grid. The ith edge of u is connected to v with probability

proportional to [d(u, v)]−r where r is another input parameter of the model.

It has been shown that with the choice of r = 2 routing is possible in the network quickly.

For smaller values than 2 the connections become to local, for greater values the network be-

comes to random.

For an appropriate good choice of q, a medium number of edges are generated from each

node, then, similar to the evolving copy model, tentacles appear and partitioning is possible

only after contracting them (Table 5.1). This model generates no cores.

62

Table 5.1: The 15th largest singular value for different input and the choice of the heuristics for

tentacle contraction (tent) and core removal (SCAN). Figures in boldface denote cases when no

balanced partitioning is possible at the first split by Algorithm 4.2.1.

σ15 plain tent. SCAN both

Kumar 0.956 0.783 0.956 0.783

Kleinberg 0.980 0.811 0.980 0.811

New Model 0.997 0.994 0.988 0.810

LiveJournal 0.999 0.989 0.993 0.987

Telephone 0.897 0.886 0.897 0.881

UK2007-WEBSPAM 0.894 0.856 0.867 0.698

5.4 A model for hard-to-cluster networks

Our new model is a power-law-degree-and-clique small world, defined as follows. The start-

ing point is the small world graph model of Kleinberg [97] with nodes placed over a 2D grid1.

Next we generate geographically dense regions over the grid by assigning density to each node

according to a power law distribution with exponent -3. Finally as in Kleinberg’s model we con-

nect nodes with probability inversely proportional to their squared Euclidean distance. However

in Kleinberg’s model the degree is constant; in our model for each vertex we generate a number

t by a power law distribution with exponent -3 and add t edges independent with probability as

in Kleinberg’s model.

In this new model, as seen in Table 5.1, spectral partitioning produces balanced enough

partitions to pass the small component redistribution heuristics (Algorithm 4.2.1) only after

both dense community removal and tentacle contraction. The distribution of community and

tentacle sizes follow close power law very similar to those of the real graphs and in particular

to LiveJournal, the hardest instance.

We remark that a simpler version itself suffices as a hard example for spectral partitioning.

Instead of a power law density generation, we may simply select roughly 1% of the grid points

and add 10 element clusters to these points. The tentacle size distribution remains the same and

spectral partitioning remains hard. We also remark that power law and log-normal distributions

are similar in their heavy tail; a power law community size distribution may hence follow from

the log-normal settlement size distribution as seen in Fig. 4.3.

5.5 Conclusion and bibliographic notes

The results in this Chapter appeared in [102] in a joint work with my Thesis advisor.

We showed that graphs generated by existing social network models are not as difficult to

cluster as they are in the real world. For this end we gave a new combined model that yields

1To simplify generation we in fact used a 2D torus.

63

degenerate adjacency matrices and hard-to-partition graphs.

64

Chapter 6
Large Scale SVD with Missing Values in

Recommenders

Recommender systems predict the preference of a user on a given item based on known ratings.

In order to evaluate methods, in October 2006 Netflix provided movie ratings from anonymous

customers on nearly 18 thousand movie titles [25].

In this chapter we concentrate on recommenders based solely on low rank approximation

and compare various implementations and parameter settings. The low rank approximation of

the rating matrix as a recommendation is probably first described in [28, 84, 138, 144] and many

others near year 2000.

The key difficulty in computing the low rank approximation lies in the abundance of missing

values in the rating matrix: the Netflix matrix for example consists in 99% of missing values.

While several authors describe expectation maximization (EM) based SVD algorithms dating

back to the seventies [75] and [39, 150, 169] describe the method for a recommender appli-

cation, we are aware of no systematic studies on large scale problems. In particular all these

results consider small, few thousands by few thousands submatrices of the EachMovie or Jester

databases, of several orders of magnitude smaller than handled by our algorithms.

A successful approach to a low rank recommender is described by Simon Funk in [74] is

based on an approach reminiscent of gradient boosting [72]. The algorithm opens a number

of theoretic questions including its relation to published results that solve SVD with missing

values as well as the effect of the parameters on convergence speed and overfitting. One of the

main intents of this Chapter is to understand the relation of his method to existing missing value

SVD approaches.

We note that several more advanced results appeared after our result, including the matrix

factorization methods of Paterek [134] and Teams Gravity [152] and BellKor [99] of the Netflix

Prize competition.

65

6.1 Introduction

In this chapter, our main contributions are:

• The implementation of SVD based recommenders for large scale problems with specific

attention to the scalability issues of handling full matrix imputation values. Note that

previous results except for [74] handle data of several orders of magnitude smaller than

ours.

• The application of these methods for the KDD Cup 2007 Task 1, the prediction whether

a user rated a given movie in a given period of time.

• The comparison of various methods in terms of recommendation accuracy and conver-

gence rate, with emphasis on the explanation of parameters that speed up convergence.

The rest of this Chapter is organized as follows. In the rest of the Introduction we describe

related approaches, the experimental setup, and the SVD algorithm implementation used. In

Section 6.3 we measure the effect of filling missing values by zeroes, by averages and finally

by the output of an item-item similarity based recommender. This is a challenging task since

the full recommendation matrix has several billion entries.

After imputation by external values we turn to EM approaches that compute a low rank

approximation in one iteration and impute the outcome for a next iteration. In Sections 6.4

and 6.5 we use the Lanczos algorithm and power iteration, respectively. In both cases we resolve

the implementational challenge of handling the full matrix arising by the previous iteration. We

observe slow convergence of the methods; we evaluate methods to speed up by combining

partial results.

Finally in Section 6.6 we describe a least squares based EM approach to directly optimize

a low rank solution for small error. In this algorithm we optimize each user vector separately,

thus enabling a user-by-user adaptive control on the number of dimensions used. Our key

observation is that for a user with r ratings, roughly r/25 dimensions should be used.

In all cases we investigate the effect of the dimensionality of the low rank approximation;

we observe best performance at a few dimensions and overtraining (good performance on the

training but deterioration on the test (probe) set) as the number of dimensions approaches 100.

All methods are compared in Section 6.7.

6.1.1 Data set, evaluation and experimental setup

Netflix provided over 100 million ratings from n over 480 thousand randomly-chosen, anony-

mous customers on m nearly 18 thousand movie titles [25]. The company withheld certain

portion of the ratings as a competition qualifying set that we will not use in this report. Netflix

66

also identified a probe subset of the complete training set; we refer the remaining known ratings

as the training data.

We use the root mean squared error

RMSE
2 =

∑
ij∈R

(wij − ŵij)
2 (6.1.1)

as the single evaluation measure, where wij is the actual rating, an integer in the range 1–5,

given by user i to movie j, and ŵij is the prediction given by the recommender system. We

present RMSE values for the train and the separated test set but not the qualifying set.

The experiments were carried out on a cluster of 64-bit 3GHz P-D processors with 4GB

RAM each and a multiprocessor 1.8GHz Opteron system with 20GB RAM.

6.1.2 Related work

Recommenders based on the rank k approximation of the rating matrix based on the first k

singular vectors are probably first described in [28, 84, 138, 144] and many others near year

2000.

The Singular Value Decomposition (SVD) of a rank ρ matrix W is given by W = UΣV T

with U an m × ρ, Σ a ρ × ρ and V an n × ρ matrix such that U and V are orthogonal. By the

Eckart-Young theorem [80] the best rank-k approximation of W with respect to the Frobenius

norm is

||W − UkΣkV
T
k ||2F =

∑
ij

(wij −
∑

k

σkukivkj)
2. (6.1.2)

where Uk is an m × k and Vk is an n × k matrix containing the first k columns of U and V and

the diagonal Σk containing first k entries of Σ.

The RMSE differs from the above equation only in that summation is over known ratings

RMSE
2 =

∑
ij∈R

err2ij where errij = wij −
∑

k

σkukivkj (6.1.3)

where R denotes either the training or the test set. To simplify notation we extend errij with

value 0 for ij /∈ R.

As already emphasized in one of the early works [144], the crux in using SVD for recom-

menders lies in handling missing values in the rating matrix W . Goldberg et al. [78] for example

require a gauge set where all ratings are known, an assumption clearly infeasible on the Netflix

data scale. Azar et al. [13] prove asymptotic results on replacing missing values by zeroes and

scaling known ratings inversely proportional to the probability of being observed.

The expectation maximization algorithm proceeds as follows. Given the output Uk, Σk and

Vk matrices of sizes m × k, k × k and n × k, respectively, produced by SVD in the maximiza-

67

tion step, the expectation step produces a matrix with entries

ŵij =

⎧⎨
⎩wij if ij ∈ R

[UkΣkVk]ij otherwise

= errij + [UkΣkVk]ij (6.1.4)

where the last equality follows by the definition of err as in (6.1.3). The algorithm alternates

between SVD computation (maximization) and the expectation equation (6.1.4) until conver-

gence. It is easy to see that U , Σ and V minimizing (6.1.3) is a fixed point of this iteration; up

to our best knowledge, this is the only theoretical result known about the convergence properties

of the above EM missing value SVD algorithm. While in our implementation k is typically fixed

as input parameter, variants of this algorithm may increase or even decrease k as the iterations

proceed.

This algorithm is perhaps first used for recommenders by Canny [39] and then several others

[150, 169]. Canny [39] concentrates on privacy issues; he reports experiments on much smaller

scale such as a subset of the EachMovie data. Srebro and Jaakkola [150] compare methods

that fill missing entries by zeroes, also by scaling known entries as in [13], using a gauge set

as in [78] as well as a variant of the EM procedure. They also give a number of hints related

to the convergence of the EM method. First of all they observe the algorithm may reach local

optimum; it is unclear whether this may happen in the missing value case as well. They also

show that different rank solutions are non-orthogonal; for this end they propose starting out

with a large rank approximation and gradually reduce the rank in the EM iterations.

The EM algorithm for solving SVD with missing values dates back to the seventies; [76]

gives a more recent description. In early results, the generic idea of filling missing values by

expectation maximization to our knowledge appears first in [87] and is perhaps best described

by [51] with the explicit mention of factor analysis as an application but apparently no refer-

ences between another line of work [75, 141]. To our knowledge, the first paper that presents

the missing value problem is [141]; [75] generalizes the missing value problem to a weighted

regression and solves it by EM.

More recently several authors reinvented EM for SVD. In [33] the idea of representing the

missing data imputation matrices by their known SVD U and V appears that is key in our

sparse implementation. Zhang et al. [169] give an approximate SVD algorithm with theoretical

analysis, however tests are only shown on small scale data.

Theoretical works on SVD based recommenders exist [57] but we are aware of none that

address the missing value problem. In particular we aware of no results on the convergence

except for the negative experimental findings of Srebro and Jaakkola [150].

Dimensionality reduction is investigated for gene expression data as well. Several authors

68

Algorithm k = 10 k = 15 k = 20 k = 25 k = 30 k = 50
Lanczos 1:58 7:40

Power 1:57 5:50

Adaptive 33.7 33 31 29 28 25

Table 6.1: Running times in the form of minutes or hours:minutes for a single iteration over the

Netflix Prize matrix with n over 480 thousand, m nearly 18 thousand and over 100 million non-

zeroes. For Lanczos and Power the top column k gives dimensionality while for Adaptive the

dimensionality is 1 + r/k for a user with r ratings, i.e. here unlike for the other two algorithms

the running time decreases with k. For Lanczos we use 40 iterations altogether. For Power we

use 100 for a single dimension, hence here we get linear dependency on k.

[88, 154] compare imputation methods including nearest neighbors as well as the EM approach

with controversial findings for accuracy but a definite identification of the very slow conver-

gence for EM.

6.1.3 SVD implementation

In our implementation we used the Lanczos code of svdpack [26] and compared it with a

power iteration developed from scratch (See Section 4.3.1). Running times are shown in Ta-

ble 6.1.

We also measure the number of dimensions of the approximation. Typically, in SVD the

use of dimensionality is restricted by efficiency considerations, and for example for spectral

clustering [10, 113] suggest that more eigenvalues produce better quality cuts. However we

observe that as the number of dimensions increase beyond roughly 10, we overtrain and predic-

tion quality deteriorates; for this reason we also test an algorithm that adaptively selects more

dimensions for users with more ratings in Section 6.6.

6.2 KDD Cup 2007

6.2.1 Problem description

We present our first place winner method for Task 1 “Who Rated What in 2006”. The task was

to predict the probability that a user rated a movie in 2006 (with the actual date and rating being

irrelevant) for a given list of 100,000 user–movie pairs of the Netflix Prize data set [25] . The

users and movies are drawn from the Prize data set, i.e. the movies were released (or at least

received ratings) before 2006 and the users also gave their first rating before 2006. In addition,

none of the pairs selected for the KDD Cup task were rated in the training set.

Our method is summarized as follows:

1. The combination of separate estimates for the number of ratings for each movie and

69

each user by a naive user–movie independence assumption. Our movie ratings prediction

uses time series analysis aligned with movie and DVD release dates from the IMDB and

videoeta.com databases. User rating numbers are on the other hand reconstructed

from sample margins.

2. The implementation of an SVD (Section 6.2.2) and an item-item similarity based recom-

mender as well as association rule mining.

3. Method fusion by using the machine learning toolkit Weka [160].

We use the root mean squared error equation (6.1.1) as the single evaluation measure, where

wij is a 0–1 matrix with value 1 if user i gave rating for movie j, and ŵij is the predicted value

in the range of 0 to 1 given by the recommender system.

The use of RMSE implies that we actually predict the probability of the existence of a rating:

for a random variable that has value 1 with probability p and 0 otherwise, the RMSE of the

prediction of its value is minimized by p. If we correctly guess the number of ratings 7,804 in

the 100,000 sample, then this method results in an RMSE of 0.268 that would reach 5-6th place

in the Cup, indicating the hardness of correctly predicting this value. Notice however that the

RMSE of 0.279 of the trivial all zeroes prediction would also reach 10-13th place and remains

not very far from the winner RMSE.

With certain variation depending on parameter settings, the running time range was 15 min-

utes for SVD, few hours for the item-item similarity based recommender, few days for frequent

patterns and finally few minutes for linear regression. Mining frequent patterns turned out to be

the most time consuming. We present a more thorough experimentation with frequent patterns

that we could not afford for the KDD Cup competition due to CPU time limitations.

6.2.2 SVD based recommendation

For training we use the full 0–1 matrix of all known ratings; the rank k approximation of the

matrix yields our prediction.

While the Frobenius norm is simply the RMSE of the prediction for the existence of the

rating if the user–movie pairs are selected uniformly at random, this is not true for the sampling

method used for producing the Task 1 pairs. If the probability that the pair formed by user i and

movie j is selected in the sample is pij , then we have to minimize

∑
ij

pij · (wij −
∑

k

σkukivkj)
2 =

∑
ij

(
√

pij · wij −√
pij ·

∑
k

σkukivkj)
2, (6.2.1)

which is minimized similarly by the SVD of
√

pij · wij , divided pointwise by
√

pij .

70

Figure 6.1: The distribution of the 10-dimensional approximation of the user–movie matrix for

pairs with, respectively without ratings.

In our implementation we used the Lanczos code of svdpack [26] that turned out both the

fastest and the most precise in our recent experiments [103, 104]. Since we observed overfitting

for larger number of dimensions [103] we used the 10-dimensional approximation of the scaled

matrix as in equation (6.2.1) where the pij values are those obtained by naive user–movie in-

dependence assumption. The difference between the distribution of the predicted value for the

actual ratings, respectively no-ratings is seen in Fig. 6.1.

6.2.3 Results

We combined the four predictions of the naive independence, SVD, item-item correlation and

association rule based approaches by the linear regression method of the machine learning

toolkit Weka [160]. We obtained the equation

0.5533 · pum +

0.029 · correlation +

0.1987 · SVD +

−0.0121 · assoc_rules − 0.0042

as the final prediction that reaches RMSE 0.256, gaining 0.007 over the first runner up and 0.023

over a pure all zeroes prediction.

71

Figure 6.2: The RMSE as the function of the iterations for the simple Lanczos EM algorithm,

the missing values are filled with zeros in the initial matrix.

6.3 Missing data imputation from external results

In the simplest approach we use external sources of data to fill missing ratings and optimize

for error in Frobenius norm as in equation (6.1.2) in the hope that external data fit well and

optimization for Frobenius yields good approximation for the RMSE equation (6.1.3) as well.

First, as expected, we show filling missing data with zeroes as suggested for example by [13]

badly fail over the rare Netflix data by providing recommendations near 0 due to the abundance

of zeroes in the matrix after imputation. We improve performance first by using averages,

then by the outcome of a more sophisticated recommender based on item-item similarities.

Surprisingly user averages perform better than the output of the recommender in this case.

Imputation by zeroes and averages are fairly straightforward given control over data access

within the SVD algorithm as described in Section 6.1.3. It is however a challenging question

for a full recommendation matrix that we describe in Section 6.3.1.

We show RMSE values for imputation with zeroes and averages as the first iterations in

Fig. 6.4. We observe very poor performance; in particular by filling with zeroes we are so far

off from optimum that even a large number of EM iterations remain insufficient to converge.

6.3.1 Output of an item-item similarity based recommender

We implemented the adjusted cosine similarity [145] for an item-item similarity based recom-

mender that recommends an unrated movie j to a given user i by the weighted average of the

nearest N movies to i rated by the user. Here N is a parameter; roughly speaking, this approach

increases the fraction of known values by a factor of N .

72

The Lanczos implementation of svdpack [26] accesses the matrix by in one step comput-

ing a product of a vector with either the matrix or its transpose. The SVD implementation may

hence access the nearest neighbor lookup table whenever a matrix multiplication is needed. The

implementation requires space to store the rating matrix and the nearest neighbor index. In the

running time however the matrix multiplication time becomes dependent on the size of the full

matrix mn instead of the much smaller number of known ratings. While this implementation is

memory efficient, it is so slow that we had to give up tests in this direction.

We may however give an efficient item-item similarity based imputation by slightly regress-

ing the item-item similarity based output towards the user average ûi, as follows. We form the

submatrix S of the item-item similarities where for efficiency considerations we only keep the

top 100 largest entries in each row. We even discard those of the values below 0.5. When pre-

dicting a rating for user i and movie j, we then compute the sum of wij′ − ûi weighted by the

similarity of j and j′ for all j′ where both the similarity and the rating wij′ are known. Next in

order to give a prediction we have to add the normalized value to ûi. In order to be efficiently

computable, we simply normalize by 100, even though typically there are less than 100 j′ terms

in the sum and their similarity values may be as low as 0.5.

The algorithm proceeds as follows. We let H be an n × m matrix where each row contains

the user averages ûi as identical values and

Fij =

⎧⎨
⎩(wij − ûi)/100 if (ij) ∈ R

0 otherwise.

The product of vector x with the imputed matrix W ′ can be efficiently computed as

x · W ′ = x · H + x · F · S + x · E

where

Eij =

⎧⎨
⎩W ′ − H − F · S if (ij) ∈ R

0 otherwise

removes the effect of the similarity based recommendation where the actual rating is known. In

Fig. 6.3 we see the RMSE for a 10-dimensional SVD started by these values.

6.4 Sparse Lanczos implementation within an EM framework

When using the Lanczos algorithm after an expectation step, we face the same difficulty of

imputing a full matrix as in Section 6.3.1. We provide a similar solution below, with careful

analysis of the number of operations used. Note that unlike in the previous section, we need

73

Figure 6.3: The RMSE as the function of the number of iterations for the simple Lanczos EM

algorithm with the first iteration imputed with the output of the simplified item-item similarity

based recommender.

a large number of iterations until convergence hence not just the space but also the speed of

handling the dense input is crucial.

Since in a Lanczos iteration we require the product of vector x = (x1, x2, . . .) with ŵ (or

similarly with its transpose), by the EM algorithm equation (6.1.4) we compute

err · x + UkΣkVk · x.

The space required by this algorithm is equal to O(kn+km) for multiplying x with the imputed

low rank approximation term by term from right to left, in addition to the number of non-missing

values in the rating matrix. Hence the additional work due to imputation is negligible in the

Lanczos computation.

6.4.1 Speeding up convergence

In order to speed up convergence we apply the generic method of finding an optimal linear

combination of the values ŵ =
∑

k σkukivkj in the current and w(t−1) in the previous iterations:

we minimize the quadratic expression of λ in the RMSE equation (6.1.3):

∑
ij∈R

(wij − λŵij − (1 − λ)w
(t−1)
ij)2.

We then let w(t) = λŵ − (1 − λ)w(t−1) for the λ value at the minimum.

In the above naive form however matrix values in the next iteration will arise as a linear

combination of a rank k matrix and the previous w(t−1), which in turn depends on w(t−2) and

74

Figure 6.4: The RMSE as the function of the iterations for the simple Lanczos EM algorithm

and the two convergence boosting variants. The results for the training set are on the left, and

for the test set they are on the right. Curves correspond to different dimensionality with V1 and

V2 denoting the two convergence boosting variants.

inductively on all previous partial results. Since it is infeasible to store either full matrices or all

partial results, we have to relax the above algorithm. We give two versions next that obey the

scalability requirements.

Our two implementations of linearly combining current and previous results use the last two

low rank approximations U
(t)
k , Σ

(t)
k , V

(t)
k and U

(t−1)
k , Σ

(t−1)
k , V

(t−1)
k . In the first algorithm we

combine as

λU
(t)
k Σ

(t)
k V

(t)
k + (1 − λ)U

(t−1)
k Σ

(t−1)
k V

(t−1)
k ,

i.e. using only the low rank matrix instead of the combined iteration t − 1 approximation. The

minimum of the quadratic expression in λ is attained, with the notation of W = U
(t)
k Σ

(t)
k V

(t)
k

and W ′ = U
(t−1)
k Σ

(t−1)
k V

(t−1)
k , at

λ = −
∑

ij∈R(Wij − W ′
ij)(W

′
ij − wij)∑

ij∈R(Wij − W ′
ij)

2
.

In the second variant we combine the low rank decomposition elements: from U
(t)
k , V

(t)
k and

the previous result we get Û
(t)
k and V̂

(t)
k . We ignore Σ

(t−1)
k based on the observation that the

Σk converges fast. With the simplified notation Ui and U ′
i for the i-th row of U

(t)
k and U

(t−1)
k ,

respectively and the same notation for the columns of the V , we minimize

∑
ij∈R

(
(λ(Ui − U ′

i) + U ′
i)Σ(λ′(Vi − V ′

i) + V ′
i) − wij

)2
.

75

Here for each λ′ there is a corresponding optimum λ given by

Xij = λ′(Ui − U ′
i)(Vj − V ′

j) + (Ui − U ′
i)V

′
j ,

λ = −
∑

ij∈R λ′UiΣ(Vj − V ′
j) + U ′

iV
′
j − wij)Xij∑

ij∈R X2
ij

;

we select the best by substituting a low number of probe λ values.

6.5 Power iteration within an EM framework

For a full matrix W , power iteration proceeds by repeatedly letting

u(t+1) = W T · v(t)/||v(t)||, (6.5.1)

v(t+1) = W · u(t)/||u(t)||. (6.5.2)

The algorithm converges to the first singular vectors also called the “hub” and “authority” vec-

tors [98]; due to numeric errors this holds even if we start out with an initial v(0) orthogonal to

the first vector V.1 unless we orthogonalize, i.e. project each or some v(t) onto the hyperplane

orthogonal to V.1. By orthogonalization to the first k−1 singular vectors Vk−1 however we may

obtain the next V.k by iteration (6.5.1–6.5.2).

In the presence of missing data we may use (6.5.1–6.5.2) in the expectation maximization

framework by filling ij /∈ R by wij = σ1u
(t)
i · v

(t)
j . First we observe that if v(t) is a good

approximation of V.1, then ||v(t+1)|| ≈ σ1, hence the iteration turns to

u
(t+1)
i =

∑
j:ij∈R

wjiv
(t)
j /σ1 +

∑
j:ij /∈R

v
(t)
j

2 · u(t)
i , (6.5.3)

v(t+1) = W · u(t)/||u(t)||. (6.5.4)

This approach is split into two different heuristic implementations in the next two subsections.

The RMSE for the basic implementation (6.5.3–6.5.4) is shown in Fig. 6.5.

6.5.1 Method of individual increments

We rewrite (6.5.3) as

u
(t+1)
i =

∑
j:ij∈R

(wji

σ1

− v
(t)
j · u(t)

i

)
v

(t)
j +

∑
j

v
(t)
j

2 · u(t)
i . (6.5.5)

76

Figure 6.5: The RMSE as the function of the number of iterations for the basic power iteration

method given by equations (6.5.3–6.5.4).

Given the assumption that the v are normalized that we may enforce in our algorithm, the

second term is simply u
(t)
i . As a heuristic speedup, we split (6.5.5) into increments over ui for

individual j, replacing ui by a new value in each step. This yields an algorithm with a cycle

over

ui ← ui + (wji/σ1 − vj · ui)vj (6.5.6)

very closely reminiscent of Simon Funk’s steps [74]

ui ← (1 − lRate)ui + K(wij − σ1uivj)vj. (6.5.7)

We use an idea similar to the convergence acceleration in Section 6.4: we multiply the

increment in (6.5.6) by a factor δ that minimizes the RMSE of the approximation with modified

ui,

δ =
∑

j′:ij′∈R

(
wij′ − σvj′(ui + δvjerrij)

)2
.

The minimum is easily computed as

δ =

∑
j′:ij′∈R vj′errij′∑

j′:ij′∈R v2
j′

σvjerrij.

Unfortunately this algorithm appeared to diverge due to numeric errors for ratings with very

small errij . Best results are obtained by using a median value near σ/100 very close to that

suggested by [74].

77

Figure 6.6: The RMSE as the function of the number of iterations for power iteration with

individual increments given by equation (6.5.6).

6.5.2 Repeated hub and authority steps

If we repeat the “hub” iteration (6.5.1) more than once before an “authority” iteration (6.5.2),

we observe no change in the full matrix case since the right hand side of (6.5.1) is independent

of u. This is no longer the case for missing values however since imputation values depend on

u. If we let

Δ =
∑

j:ij∈R

(wij/σ − uivj)vj , v =
∑

j:ij∈R

v2
j

then t iterations of (6.5.3) give

ui ← (1 − h)tui + (1 − (1 − v)t)v−1Δ. (6.5.8)

Best results are obtained in Fig. 6.7 if we use values k = 5 for the first singular vector compu-

tation and then decrease to 3, 2 and finally 1 for next dimensions. In addition we also combined

this technique with individual increments as in (6.5.5):

ui ← (1 − v2
j)

tui + (1 − (1 − v2)t)v−2Δ, (6.5.9)

a formula again reminiscent of (6.5.7) of [74].

We may repeat the idea of the previous subsection and compute these steps individually for

each i and j.

78

Figure 6.7: The RMSE as the function of the number of iterations for power iteration with

repeated hub and authority steps given by equation (6.5.9).

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 20 40 60 80 100 120

10
15
25
30
50

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 10 20 30 40 50 60 70 80 90 100

10
15
25
30
50

Figure 6.8: The RMSE as the function of the number of iterations for adaptive least squares

given by equation (6.6.1). Different curves correspond to values of K where we compute least

squares over the first 1 + r/K dimensions for a user with r ratings. Left: RMSE over the test

set. Right: RMSE over the probe set.

79

6.6 A least squares approach with adaptive dimensionality

We give an algorithm that alternately computes and optimal Uk for a fixed Vk and then exchanges

the role of U and V , similar to the “hub” (6.5.1) and “authority” (6.5.2) steps of the power

iteration. For fixed Vk, optimizing the RMSE equation (6.1.3) can be done separately for the

columns of Uk as ∑
j

(wij∈R −
∑

k

σkukivkj)
2 (6.6.1)

as n regression problems.

The key idea in our algorithm is that once the regression is made separate for each user, we

may adaptively select the right dimensionality for user i depending on the amount of ratings r

given by her. Fig. 6.8 depicts RMSE for different values of constant K where we use the first

1 + r/K dimensions in the above expression. We observe overfitting on the training set: the

more dimensions used, the better is the RMSE; however over the probe set values of K between

25 and 30 perform the best; for a large number of iterations apparently K = 25 takes lead.

6.7 Conclusion and bibliographic notes

The results in this Chapter appeared in [105] (KDD Cup) where I led the team and devised the

SVD and combination methods as well as in [103] (missing value methods) where I devised

most of the imputation methods. The first paper is cited by [94, 131, 132, 162] while the second

by [71, 83, 107, 115, 139, 151, 153, 163, 164, 170]. As being one of the early results for

matrix factorization, our methods were later outperformed by the methods of the Netflix Prize

participants [99, 152].

In our findings the best method is Lanczos with 10 dimensions. Unfortunately the iterations

are relative costly and convergence boosting approaches tend to give minor improvements only.

Power iteration based methods, though performing very similar steps as Funk’s algorithm [74],

tend to overfit the training set. We believe more careful tuning could improve performance. The

runner up is the adaptive dimensionality least squares approach.

The most carefully tuned implementation of Funk’s algorithm (6.5.7) [74] reaches an RMSE

slightly below 0.92 on the probe set with 95 dimensions in over 100 iterations and K = 0.015,

lRate = .001. By setting K = 0 performance similar to ours is reported. We believe a thorough

measurement over our algorithms might find improvements, however our main goal here was to

understand the behavior of the missing value problem by investigating a large number of related

algorithms.

For further work we propose the implementation and comparison of fast SVD approxima-

tions and experiments with graphs of even larger scale. We also plan to mix results, a method

80

that is known to yield significant improvement and in addition sometimes prefer weaker recom-

menders and thus slightly redraw the picture.

81

82

Chapter 7
Conclusions

We have surveyed some results of social network modeling and analysis as well as recom-

mender systems with illustrations over the call logs of major Hungarian telephone companies

with millions of users, the LiveJournal friends network, Web host graphs as well as the Netflix

movie ratings data set.

We have considered real networks from the point of view of data mining, a new discipline

that builds on results from machine learning, modeling and algorithmics with emphasis on data

scale. Improved hardware capabilities enable the production of huge data volumes. In order

to scale to the new demands, traditional problems require new algorithms and lead to new

empirical findings.

Our key results also point out to the importance of data mining methodologies in network

analysis. A generic data mining process starts with the appropriate choice for data preparation,

cleansing and modeling. Given the results provided by the final algorithm, we may have to

reiterate: based on the results of the first experiments we may have to completely revise our

models. The iterative data mining process cycle has been best illustrated by selecting the ap-

propriate graph weighting scheme for the data mining problem: link prediction, clustering or

recommendation.

83

84

Chapter 8
References

[1] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In

Proceedings of the 18th Annual Conference on Learning Theory (COLT), pages 458–

469, 2005.

[2] D. Achlioptas, A. Fiat, A. R. Karlin, and F. McSherry. Web search via hub synthesis. In

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS),

pages 500–509, 2001.

[3] L. Adamic and E. Adar. Friends and neighbors on the Web. Social Networks, 25(3):

211–230, 2003.

[4] L. A. Adamic and N. Glance. The political blogosphere and the 2004 u.s. election:

divided they blog. In LinkKDD ’05: Proceedings of the 3rd international workshop on

Link discovery, pages 36–43, New York, NY, USA, 2005. ACM.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of

association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,

editors, Advances in Knowledge Discovery and Data Mining, pages 307–328. MIT Press,

1996.

[6] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Pro-

ceedings of the 32th ACM Symposium on Theory of Computing (STOC), pages 171–180,

2000.

[7] R. Albert, H. Jeong, and A.-L. Barabási. Diameter of the world wide web. Nature, 401:

130–131, 1999.

[8] C. J. Alpert and A. B. Kahng. Multiway partitioning via geometric embeddings, or-

derings, and dynamic programming. IEEE Trans. on CAD of Integrated Circuits and

Systems, 14(11):1342–1358, 1995.

85

[9] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: a survey. Integr.

VLSI J., 19(1-2):1–81, 1995.

[10] C. J. Alpert and S.-Z. Yao. Spectral partitioning: the more eigenvectors, the better. In

DAC ’95: Proceedings of the 32nd ACM/IEEE conference on Design automation, pages

195–200, New York, NY, USA, 1995. ACM Press.

[11] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and A. Soffer. The Connectivity Sonar:

Detecting site functionality by structural patterns. In Proceedings of the 14th ACM Con-

ference on Hypertext and Hypermedia (HT), pages 38–47, Nottingham, United Kingdom,

2003.

[12] W.-H. Au, K. C. C. Chan, and X. Yao. A novel evolutionary data mining algorithm with

applications to churn prediction. IEEE Trans. Evolutionary Computation, 7(6):532–545,

2003.

[13] Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. In

Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC), pages 619–

626, 2001.

[14] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large

social networks: membership, growth, and evolution. In KDD ’06: Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 44–54, New York, NY, USA, 2006. ACM Press.

[15] A. Barabási. Linked. Perseus Publishing, 2002.

[16] A.-L. Barabási and R. Albert. Dynamics of complex system: Scaling laws for the period

of boolean networks. Physical Rewiew Letters, 84:5660–5663, 2000.

[17] A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free random net-

work. Physica A, 272:173–187, 1999.

[18] A.-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks:

the topology of the word-wide web. Physica A, 281:69–77, 2000.

[19] E. R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal on

Algebraic and Discrete Methods, 3(4):541–550, Dec. 1982.

[20] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-Yates. Link-based char-

acterization and detection of web spam. In Proceedings of the 2nd International Work-

shop on Adversarial Information Retrieval on the Web (AIRWeb), 2006.

86

[21] E. Beltrami. Sulle funzioni bilineari. Giornale di Matematiche ad Uso degli Studenti

Della Universita, (11):98–106, 1873.

[22] A. A. Benczúr, K. Csalogány, M. Kurucz, A. Lukács, and L. Lukács. Sociodemographic

exploration of telecom communities. In NSF US-Hungarian Workshop on Large Scale

Random Graphs Methods for Modeling Mesoscopic Behavior in Biological and Physical

Systems, 2006.

[23] A. A. Benczúr, K. Csalogány, and T. Sarlós. Link-based similarity search to fight web

spam. In Proceedings of the 2nd International Workshop on Adversarial Information

Retrieval on the Web (AIRWeb), held in conjunction with SIGIR2006, 2006.

[24] A. A. Benczúr, K. Csalogány, M. Kurucz, A. Lukács, and L. Lukács. Telephone call net-

work data mining: A survey with experiments. In B. Bollobás, R. Kozma, and D. Miklós,

editors, Handbook of Large-Scale Random Networks, volume 18 of Bolyai Society Math-

ematical Studies. Springer Verlag in conjunction with the Bolyai Mathematical Society

of Budapest, 2009.

[25] J. Bennett and S. Lanning. The netflix prize. In KDD Cup and Workshop in conjunction

with KDD 2007, 2007.

[26] M. W. Berry. SVDPACK: A Fortran-77 software library for the sparse singular value

decomposition. Technical report, University of Tennessee, Knoxville, TN, USA, 1992.

[27] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intelligent

information retrieval. SIAM Review, 37(4):573–595, 1995.

[28] D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML ’98:

Proceedings of the Fifteenth International Conference on Machine Learning, pages 46–

54, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[29] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable fully distributed

web crawler. Software: Practice & Experience, 34(8):721–726, 2004.

[30] B. Bollobás. Random Graphs. Academic Press, 1985.

[31] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. The degree sequence of a scale-free

random graph process. Random Struct. Algorithms, 18(3):279–290, 2001.

[32] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Finding authorities and hubs

from link structures on the world wide web. In Proceedings of the 10th World Wide Web

Conference (WWW), pages 415–429, 2001.

87

[33] M. Brand. Incremental singular value decomposition of uncertain data with missing

values. In ECCV (1), pages 707–720, 2002.

[34] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.

Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[35] A. Z. Broder. On the Resemblance and Containment of Documents. In Proceedings of

the Compression and Complexity of Sequences (SEQUENCES’97), pages 21–29, 1997.

[36] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. Journal of Computer and System Sciences, 60(3):630–659, 2000.

[37] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,

and J. Wiener. Graph structure in the web. In Proceedings of the 9th World Wide Web

Conference (WWW), pages 309–320. North-Holland Publishing Co., 2000.

[38] S. Burer and R. Monteiro. A nonlinear programming algorithm for solving semidefinite

programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

[39] J. Canny. Collaborative filtering with privacy via factor analysis. In SIGIR ’02: Pro-

ceedings of the 25th annual international ACM SIGIR conference on Research and de-

velopment in information retrieval, pages 238–245, New York, NY, USA, 2002. ACM

Press.

[40] P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-cut partitioning and

clustering. In DAC ’93: Proceedings of the 30th international conference on Design

automation, pages 749–754, New York, NY, USA, 1993. ACM Press.

[41] M. Charikar. Similarity estimation techniques from rounding algorithms. Proceedings of

the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.

[42] D. Cheng, R. Kannan, S. Vempala, and G. Wang. On a recursive spectral algorithm

for clustering from pairwise similarities. Technical report, MIT LCS Technical Report

MIT-LCS-TR-906, 2003.

[43] D. Cheng, S. Vempala, R. Kannan, and G. Wang. A divide-and-merge methodology for

clustering. In PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 196–205, New York, NY,

USA, 2005. ACM Press.

[44] F. Chung and L. Lu. The average distances in random graphs with given expected de-

grees. Proceedings of the National Academy of Sciences of the United States of America,

99(25):15879–15882, 2002.

88

[45] F. Chung, L. Lu, and V. Vu. Eigenvalues of random power law graphs. Annals of Com-

binatorics, 2003.

[46] F. Chung, L. Lu, and V. Vu. Spectra of random graphs with given expected degrees.

Proceedings of National Academy of Sciences, 100:6313–6318, 2003.

[47] E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern recognition

tasks. Journal of Algorithms, 30(2):211–252, 1999.

[48] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining of massive tabular

data via approximate distance computations. In ICDE ’02: Proceedings of the 18th

International Conference on Data Engineering, page 605, Washington, DC, USA, 2002.

IEEE Computer Society.

[49] K. C. Cox, S. G. Eick, G. J. Wills, and R. J. Brachman. Brief application description;

visual data mining: Recognizing telephone calling fraud. Data Min. Knowl. Discov., 1

(2):225–231, 1997.

[50] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman.

Indexing by latent semantic analysis. Journal of the American Society of Information

Science, 41(6):391–407, 1990.

[51] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em algorithm.

[52] I. Derényi, G. Palla, and T. Vicsek. Clique percolation in random networks. Physical

Review Letters, 94:49–60, 2005.

[53] C. H. Q. Ding, X. He, and H. Zha. A spectral method to separate disconnected and

nearly-disconnected web graph components. In KDD ’01: Proceedings of the seventh

ACM SIGKDD international conference on Knowledge discovery and data mining, pages

275–280, New York, NY, USA, 2001. ACM Press.

[54] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm

for graph partitioning and data clustering. In ICDM ’01: Proceedings of the 2001 IEEE

International Conference on Data Mining, pages 107–114, Washington, DC, USA, 2001.

IEEE Computer Society.

[55] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM

Journal of Research and Development, 17(5):420–425, Sept. 1973.

89

[56] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense

communities in the web. Proceedings of the 16th international conference on World

Wide Web, pages 461–470, 2007.

[57] P. Drineas, I. Kerenidis, and P. Raghavan. Competitive recommendation systems. In

Proceedings of the 34th ACM Symposium on Theory of Computing (STOC), pages 82–

90, 2002.

[58] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large graphs via

the singular value decomposition. Machine Learning, pages 9–33, 2004.

[59] P. Drineas, M. W. Mahoney, and R. Kannan. Fast Monte Carlo algorithms for matrices

II: Computing a low rank approximation to a matrix. SIAM Journal on Computing, 36:

158–183, 2006.

[60] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sampling algorithms for �2 regres-

sion and applications. In Proceedings of the 17th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1127–1136, 2006.

[61] D. Duan, Y. Li, Y. Jin, and Z. Lu. Community mining on dynamic weighted directed

graphs. In Proceeding of the 1st ACM international workshop on Complex networks

meet information & knowledge management, pages 11–18. ACM, 2009.

[62] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1:211–218, 1936.

[63] P. Erdős and A. Rényi. On the evolution of random graph. Math. Inst., 1960.

[64] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23

(98), 1973.

[65] G. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communities.

In Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 150–160, Boston, MA, August 20–23 2000.

[66] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum cut

trees. Internet Mathematics, 1(4):385–408, 2003.

[67] D. Fogaras. Singular Value Decomposition with Applications (in Hun-

garian). Technical report, Computer and Automation Research Insti-

tute of the Hungarian Academy of Sciences (MTA SZTAKI), 2002.

http://datamining.sztaki.hu/?q=en/en-publications.

90

[68] D. Fogaras. Where to start browsing the web? In Proceedings of the 3rd International

Workshop on Innovative Internet Community Systems (I2CS), volume 2877/2003 of Lec-

ture Notes in Computer Science (LNCS), pages 65–79, Leipzig, Germany, June 2003.

Springer-Verlag.

[69] D. Fogaras and B. Rácz. Practical Algorithms and Lower Bounds for Similarity Search

in Massive Graphs. IEEE Transactions on Knowledge and Data Engineering, 19(5):

585–598, 2007. Preliminary version appeared at WWW 2005.

[70] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards Scaling Fully Personalized

PageRank: Algorithms, Lower Bounds, and Experiments. Internet Mathematics, 2(3):

333–358, 2005. Preliminary version from the first two authors appeared in WAW 2004.

[71] E. Frank and M. Hall. Additive Regression Applied to a Large-Scale Collaborative Fil-

tering Problem. AI 2008: Advances in Artificial Intelligence, pages 435–446, 2008.

[72] J. H. Friedman. Greedy function approximation: A gradient boosting machine. The

Annals of Statistics, 29(5):1189–1232, 2001.

[73] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low

rank approximations. In Proceedings of the 39th IEEE Symposium on Foundations of

Computer Science (FOCS), pages 370–378, 1998.

[74] S. Funk. Netflix update: Try this at home., 2006.

http://sifter.org/ simon/journal/20061211.html.

[75] K. R. Gabriel and S. Zamir. Lower rank approximation of matrices by least squares with

any choice of weights. Technometrics, 21:489–498, 1979.

[76] Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via an EM

approach. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural In-

formation Processing Systems, volume 6, pages 120–127. Morgan Kaufmann Publishers,

Inc., 1994.

[77] M. Girvan and M. E. Newman. Community structure in social and biological networks.

Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, June 2002.

[78] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collabo-

rative filtering algorithm. Inf. Retr., 4(2):133–151, 2001.

[79] G. Golub and C. Reinsch. Singular value decomposition and least squares solutions.

Numerische Mathematik, 14(5):403–420, Apr. 1970.

91

[80] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, 1983.

[81] E. Gorny. Russian livejournal: National specifics in the development of a virtual com-

munity. pdf online, May 2004.

[82] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust.

In Proceedings of the 13th International World Wide Web Conference (WWW), pages

403–412, 2004.

[83] A. Gunawardana and C. Meek. A unified approach to building hybrid recommender

systems. In Proceedings of the third ACM conference on Recommender systems, pages

117–124. ACM, 2009.

[84] D. Gupta, M. Digiovanni, H. Narita, and K. Goldberg. Jester 2.0 (poster abstract): evalu-

ation of an new linear time collaborative filtering algorithm. In SIGIR ’99: Proceedings

of the 22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 291–292, New York, NY, USA, 1999. ACM Press.

[85] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Web content categorization using link

information. Technical report, Stanford University, 2006–2007.

[86] L. W. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and

clustering. IEEE Trans. on CAD of Integrated Circuits and Systems, 11(9):1074–1085,

1992.

[87] H. O. Hartley. Maximum likelihood estimation from incomplete data. Biometrics, 14:

174–194, 1958.

[88] T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen, O. Alter, D. Botstein, and P. Brown. Im-

puting missing data for gene expression arrays. Technical report, Department of Statis-

tics, Stanford University, 2000.

[89] D. Hull. Improving text retrieval for the routing problem using latent semantic index-

ing. In W. B. Croft and C. J. van Rijsbergen, editors, Proceedings of the 17th Annual

International Conference on Research and Development in Information Retrieval, pages

282–291, London, UK, July 1994. Springer Verlag.

[90] G. Jeh and J. Widom. SimRank: A measure of structural-context similarity. In Proceed-

ings of the 8th ACM International Conference on Knowledge Discovery and Data Mining

(SIGKDD), pages 538–543, 2002.

92

[91] G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th World

Wide Web Conference (WWW), pages 271–279. ACM Press, 2003.

[92] R. Kannan, S. Vempala, and A. Vetta. On clusterings — good, bad and spectral. In

IEEE:2000:ASF, pages 367–377, 2000.

[93] R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture

models. In Proceedings of the 18th Annual Conference on Learning Theory (COLT),

pages 444–457, 2005.

[94] T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Conic Programming for Multi-Task

Learning. IEEE Transactions on Knowledge and Data Engineering, 2009.

[95] L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):

39–43, 1953.

[96] J. Kleinberg. Navigation in a small world. Nature, page 845, 2000.

[97] J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In Proceed-

ings of the 32nd ACM Symposium on Theory of Computing, 2000.

[98] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,

46(5):604–632, 1999.

[99] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender

systems. Computer, 42(8):30–37, 2009.

[100] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.

Stochastic models for the web graph. In Proceedings of the 41st IEEE Symposium on

Foundations of Computer Science (FOCS), pages 1–10, 2000.

[101] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. Structure and evolution of blogspace.

Commun. ACM, 47(12):35–39, 2004.

[102] M. Kurucz and A. Benczúr. Geographically Organized Small Communities and the Hard-

ness of Clustering Social Networks. Annals of Information Systems, pages 177–199,

2010.

[103] M. Kurucz, A. A. Benczúr, and K. Csalogány. Methods for large scale svd with missing

values. In KDD Cup and Workshop in conjunction with KDD 2007, 2007.

[104] M. Kurucz, A. A. Benczúr, K. Csalogány, and L. Lukács. Spectral clustering in telephone

call graphs. In WebKDD/SNAKDD Workshop 2007 in conjunction with KDD 2007, 2007.

93

[105] M. Kurucz, A. A. Benczúr, T. Kiss, I. Nagy, A. Szabó, and B. Torma. Who rated what: a

combination of svd, correlation and frequent sequence mining. In KDD Cup and Work-

shop in conjunction with KDD 2007, 2007.

[106] M. Kurucz, A. Benczúr, and A. Pereszlényi. Large-Scale Principal Component Analysis

on LiveJournal Friends Network. In Workshop on Social Network Mining and Analysis

Held in conjunction with The 13th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD 2008), 2008.

[107] S. Lalas, N. Ampazis, A. Tsakonas, G. Dounias, and K. Vemmos. Modeling Stroke Di-

agnosis with the Use of Intelligent Techniques. Artificial Intelligence: Theories, Models

and Applications, pages 352–358, 2008.

[108] K. Lang. Finding good nearly balanced cuts in power law graphs. Technical report,

Yahoo! Inc, 2004.

[109] K. Lang. Fixing two weaknesses of the spectral method. In NIPS ’05: Advances in

Neural Information Processing Systems, volume 18, Vancouver Canada, 2005.

[110] R. Lempel and S. Moran. The stochastic approach for link-structure analysis (SALSA)

and the TKC effect. Computer Networks, 33(1–6):387–401, 2000.

[111] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks.

In Proceedings of the 12th Conference on Information and Knowledge Management

(CIKM), pages 556–559, 2003.

[112] W. Lu, J. Janssen, E. Milios, and N. Japkowicz. Node similarity in networked informa-

tion spaces. In Proceedings of the Conference of the Centre for Advanced Studies on

Collaborative research, page 11, 2001.

[113] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image

segmentation. Int. J. Comput. Vision, 43(1):7–27, 2001.

[114] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.

The MIT Press, Cambridge, England, 2000.

[115] J. Martinez, J. Huang, R. Burghardt, R. Barhoumi, and R. Carroll. Use of multiple

singular value decompositions to analyze complex intracellular calcium ion signals. The

annals of applied statistics, 3(4):1467, 2009.

[116] F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd IEEE

Symposium on Foundations of Computer Science (FOCS), pages 529–537, 2001.

94

[117] M. Meila and J. Shi. A random walks view of spectral segmentation. In AISTATS, 2001.

[118] S. Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

[119] A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta, S. Mukherjea,

and A. Joshi. On the structural properties of massive telecom graphs: Findings and

implications. In CIKM, 2006.

[120] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In 2009 30th IEEE

Symposium on Security and Privacy, pages 173–187. IEEE, 2009.

[121] M. Newman. The Structure and Function of Complex Networks. SIAM Review, 45(2):

167–256, 2003.

[122] M. Newman. Detecting community structure in networks. The European Physical Jour-

nal B - Condensed Matter, 38(2):321–330, March 2004.

[123] M. Newman. Clustering and preferential attachment in growing networks. Physical

Review E, 64(2):25102, 2001.

[124] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors and stability. In

Proc. Int. Joint Conf. Artificial Intelligence, Seattle, WA, August 2001.

[125] J. Onnela, J. Saramaki, J. Hyvonen, G. Szabó, M. de Menezes, K. Kaski, A. Barabási,

and J. Kertész. Analysis of a large-scale weighted network of one-to-one human com-

munication. New Journal of Physics, 9(6):179, 2007.

[126] J. Onnela, J. Saramaki, J. Hyvonen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, and

A. Barabási. Structure and tie strengths in mobile communication networks. Proceedings

of the National Academy of Sciences, 104(18):7332, 2007.

[127] Open Directory Project (ODP). Open Directory Project (ODP).

http://www.dmoz.org.

[128] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing

order to the web. Technical Report 1999-66, Stanford University, 1998.

[129] G. Palla, A. Barabási, and T. Vicsek. Quantifying social group evolution. Nature, 446

(7136):664–667, 2007.

[130] G. Palla, D. Ábel, I. J. Farkas, P. Pollner, I. Derényi, and T. Vicsek. K-clique percolation

and clustering. Handbook of Large-Scale Random Networks, 18:369–408, 2008.

95

[131] R. Pan and M. Scholz. Mind the gaps: weighting the unknown in large-scale one-class

collaborative filtering. In Proceedings of the 15th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 667–676. ACM, 2009.

[132] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class col-

laborative filtering. In Eighth IEEE International Conference on Data Mining, 2008.

ICDM’08, pages 502–511, 2008.

[133] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent semantic indexing:

A probabilistic analysis. Journal of Computer and System Sciences, 61(2):217–235,

2000.

[134] A. Paterek. Improving regularized singular value decomposition for collaborative filter-

ing. In Proceedings of KDD Cup and Workshop, volume 2007, pages 5–8, 2007.

[135] K. Pearson. LIII. On lines and planes of closest fit to systems of points in space. Philo-

sophical Magazine Series 6, 2(11):559–572, 1901.

[136] D. M. Pennock, C. L. Giles, G. W. Flake, S. Lawrence, and E. Glover. Winners don’t

take all: A model of web link accumulation. Proceedings of the National Academy of

Sciences, 99:5207–5211, April 2000.

[137] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cam-

bridge Philosophical Society, 51(03):406–413, 1955.

[138] M. H. Pryor. The effects of singular value decomposition on collaborative filtering. Tech-

nical report, Dartmouth College, Hanover, NH, USA, 1998.

[139] S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix factor-

ization models for large-scale recommender systems. In Proceedings of the 2008 ACM

conference on Recommender systems, pages 251–258. ACM, 2008.

[140] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In

KDD ’02: Proceedings of the eighth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 61–70, New York, NY, USA, 2002. ACM Press.

[141] A. Ruhe. Numerical computation of principal components when several observations are

missing. Technical report, UMINF-48, Umeå, Sweden, 1974.

[142] T. Sarlós. Improved approximation algorithms for large matrices via random projec-

tions. In Proceedings of the 47th IEEE Symposium on Foundations of Computer Science

(FOCS), 2006.

96

[143] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz. To randomize or not to

randomize: Space optimal summaries for hyperlink analysis. In Proceedings of the 15th

International World Wide Web Conference (WWW), pages 297–306, 2006.

[144] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction

in recommender systems–a case study. In ACM WebKDD Workshop, 2000.

[145] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recom-

mendation algorithms. In WWW ’01: Proceedings of the 10th international conference

on World Wide Web, pages 285–295, New York, NY, USA, 2001. ACM Press.

[146] J. Scott. Social Network Analysis: A Handbook. Sage Publications, 2000.

[147] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 2000.

[148] X. Shi, B. Tseng, and L. Adamic. Looking at the blogosphere topology through different

lenses. In Proceedings Int. Conf. on Weblogs and Social Media (ICWSM-2007), 2007.

[149] M. Shiga, I. Takigawa, and H. Mamitsuka. A spectral clustering approach to optimally

combining numerical vectors with a modular network. In KDD ’07: Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 647–656, New York, NY, USA, 2007. ACM.

[150] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In T. Fawcett and

N. Mishra, editors, ICML, pages 720–727. AAAI Press, 2003.

[151] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various matrix factoriza-

tion methods for large recommender systems. In Proceedings of the 2nd KDD Workshop

on Large-Scale Recommender Systems and the Netflix Prize Competition, pages 1–8.

ACM, 2008.

[152] G. Takács, I. Pilászy, B. Németh, and D. Tikk. A unified approach of factor models and

neighbor based methods for large recommender systems. In Applications of Digital In-

formation and Web Technologies, 2008. ICADIWT 2008. First International Conference

on the, pages 186–191. IEEE, 2008.

[153] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering approaches

for large recommender systems. The Journal of Machine Learning Research, 10:623–

656, 2009.

97

[154] O. G. Troyanskaya, M. Cantor, G. Sherlock, P. O. Brown, T. Hastie, R. Tibshirani,

D. Botstein, and R. B. Altman. Missing value estimation methods for dna microarrays.

Bioinformatics, 17(6):520–525, 2001.

[155] U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. pages 857–

864, Cambridge, MA, 2005. MIT Press.

[156] D. J. Watts and S. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393(6684):440–442, 1998.

[157] C.-P. Wei and I.-T. Chiu. Turning telecommunications call details to churn prediction: a

data mining approach. Expert Syst. Appl., 23(2):103–112, 2002.

[158] Y. Weiss. Segmentation using eigenvectors: A unifying view. In ICCV (2), pages 975–

982, 1999.

[159] G. J. Wills. NicheWorks — interactive visualization of very large graphs. Journal of

Computational and Graphical Statistics, 8(2):190–212, 1999.

[160] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann,

second edition, June 2005.

[161] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a structural clustering algorithm

for networks. In KDD ’07: Proceedings of the 13th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 824–833, New York, NY, USA,

2007. ACM Press.

[162] J. Yeh and M. Wu. Recommendation Based on Latent Topics and Social Network Anal-

ysis. In 2010 Second International Conference on Computer Engineering and Applica-

tions, pages 209–213. IEEE, 2010.

[163] K. Yu, J. Lafferty, S. Zhu, and Y. Gong. Large-scale collaborative prediction using a

nonparametric random effects model. In Proceedings of the 26th Annual International

Conference on Machine Learning, pages 1185–1192. ACM, 2009.

[164] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix factorization for

large-scale collaborative filtering. In Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information retrieval, pages 211–218. ACM,

2009.

[165] P. Zakharov. Structure of livejournal social network. In Proceedings of SPIE Volume

6601, Noise and Stochastics in Complex Systems and Finance, 2007.

98

[166] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Spectral relaxation for k-means

clustering. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, NIPS, pages 1057–

1064. MIT Press, 2001.

[167] H. Zhang and R. Dantu. Discovery of Social Groups Using Call Detail Records. In

On the Move to Meaningful Internet Systems: OTM 2008 Workshops, pages 489–498.

Springer, 2010.

[168] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise networks in online communities:

structure and algorithms. In WWW ’07: Proceedings of the 16th international conference

on World Wide Web, pages 221–230, New York, NY, USA, 2007. ACM Press.

[169] S. Zhang, W. Wang, J. Ford, F. Makedon, and J. Pearlman. Using singular value de-

composition approximation for collaborative filtering. In CEC ’05: Proceedings of the

Seventh IEEE International Conference on E-Commerce Technology (CEC’05), pages

257–264, Washington, DC, USA, 2005. IEEE Computer Society.

[170] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative

filtering for the netflix prize. Algorithmic Aspects in Information and Management, pages

337–348, 2008.

99

