34 research outputs found

    An Efficient Implementation of the Robust Tabu Search Heuristic for Sparse Quadratic Assignment Problems

    Full text link
    We propose and develop an efficient implementation of the robust tabu search heuristic for sparse quadratic assignment problems. The traditional implementation of the heuristic applicable to all quadratic assignment problems is of O(N^2) complexity per iteration for problems of size N. Using multiple priority queues to determine the next best move instead of scanning all possible moves, and using adjacency lists to minimize the operations needed to determine the cost of moves, we reduce the asymptotic complexity per iteration to O(N log N ). For practical sized problems, the complexity is O(N)

    Performance Comparison of New Heuristic With Genetic Algorithm in Parallel Flow Line Set Up

    Get PDF
    A new heuristic has been developed to solve the problem in parallel flow line scheduling. It involves the minimization of the makespan by the optimal allocation of a finite number of jobs to finite number of lines in the first phase and the optimal sequencing of allocated jobs in each line in the second phase. Here new heuristic and genetic algorithm for analyzing the parallel flow line scheduling are discussed and executed on a set of randomly generated problems. The results obtained for the test problems suggest that the developed new heuristic can be used successfully to solve large scale parallel flow line scheduling problems

    Image Reconstruction from Bag-of-Visual-Words

    Full text link
    The objective of this work is to reconstruct an original image from Bag-of-Visual-Words (BoVW). Image reconstruction from features can be a means of identifying the characteristics of features. Additionally, it enables us to generate novel images via features. Although BoVW is the de facto standard feature for image recognition and retrieval, successful image reconstruction from BoVW has not been reported yet. What complicates this task is that BoVW lacks the spatial information for including visual words. As described in this paper, to estimate an original arrangement, we propose an evaluation function that incorporates the naturalness of local adjacency and the global position, with a method to obtain related parameters using an external image database. To evaluate the performance of our method, we reconstruct images of objects of 101 kinds. Additionally, we apply our method to analyze object classifiers and to generate novel images via BoVW

    Parallel hybrid chicken swarm optimization for solving the quadratic assignment problem

    Get PDF
    In this research, we intend to suggest a new method based on a parallel hybrid chicken swarm optimization (PHCSO) by integrating the constructive procedure of GRASP and an effective modified version of Tabu search. In this vein, the goal of this adaptation is straightforward about the fact of preventing the stagnation of the research. Furthermore, the proposed contribution looks at providing an optimal trade-off between the two key components of bio-inspired metaheuristics: local intensification and global diversification, which affect the efficiency of our proposed algorithm and the choice of the dependent parameters. Moreover, the pragmatic results of exhaustive experiments were promising while applying our algorithm on diverse QAPLIB instances . Finally, we briefly highlight perspectives for further research

    Dviejų lygių iteracinis tabu paieškos algoritmas kvadratinio paskirstymo uždaviniui

    Get PDF
     In this paper, a 2-level iterated tabu search (ITS) algorithm for the solution of the quadratic assignment problem (QAP) is considered. The novelty of the proposed ITS algorithm is that the solution mutation procedures are incorporated within the algorithm, which enable to diversify the search process and eliminate the search stagnation, thus increasing the algorithm’s efficiency. In the computational experiments, the algorithm is examined with various implemented variants of the mutation procedures using the QAP test (sample) instances from the library of the QAP instances – QAPLIB. The results of these experiments demonstrate how the different mutation procedures affect and possibly improve the overall performance of the ITS algorithm.Šiame straipsnyje nagrinėjamas vadinamasis dviejų lygių iteracinis tabu paieškos (ITP) algoritmas kvadratinio paskirstymo (KP) uždaviniui. Algoritmo naujumas yra tas, jog į jį yra integruotos sprendinių mutavimo procedūros, kurių esminė paskirtis yra diversifikuoti paieškos procesą, išvengiant paieškos stagnacijos ir taip padidinant jos efektyvumą. Algoritmo veikimas išbandytas su įvairių tipų mutavimo procedūrų realizavimo variantais. Atlikti kompiuteriniai eksperimentai su KP uždavinio testavimo duomenų pavyzdžiais iš standartinių pavyzdžių bibliotekos QAPLIB. Pateikti eksperimentų rezultatai, kurie iliustruoja, kaip skirtingos prigimties mutavimo procedūros, esančios ITP sudėtyje, gali įvairiai paveikti algoritmo efektyvumą

    A Graph-based Framework for Complex System Simulating and Diagnosis with Automatic Reconfiguration

    Get PDF
    Fault detection has a long tradition: the necessity to provide the most accurate diagnosis possible for a process plant criticality is somehow intrinsic in its functioning. Continuous monitoring is a possible way for early detection. However, it is somehow fundamental to be able to actually simulate failures. Reproducing the issues remotely allows to quantify in advance their consequences, causing literally no real damage. Within this context, signed directed graphs have played an essential role within the years, managing to model with a relatively simple theory diverse elements of an industrial network, as well as the logic relations between them.\\ In this work we present a quantitative approach, employing directed graphs to the simulation and automatic reconfiguration of a fault in a network. To model the typical operation of industrial plants, we propose several additions with respect to the standard graphs: 1. a quantitative measure to control the overall residual capacity, 2. nodes of different categories - and then different behaviors - and 3. a fault propagation procedure based on the predecessors and the redundancy of the system. The obtained graph is able to mimic the behaviour of the real target plant when one or more faults occur. Additionally, we also implement a generative approach capable to activate a particular category of nodes in order to contain the issue propagation, equipping the network with the capability of reconfigure itself and resulting then in a mathematical tool useful not only for simulating and monitoring, but also to design and optimize complex plants. The final asset of the system is provided in output with its complete diagnostics, and a detailed description of the steps that have been carried out to obtain the final realization

    An Application of an Unequal-Area Facilities Layout Problem with Fixed-Shape Facilities

    Get PDF
    The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular facilities on a rectangular floor space such that facilities do not overlap while optimizing some objective. The objective considered in this paper is minimizing the total distance materials travel between facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and was motivated by the investigation of layout options for a production area at the Toyota Motor Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathematical model and a genetic algorithm for locating facilities on a continuous plant floor. More specifically, a genetic algorithm, which consists of a boundary search heuristic (BSH), a linear program, and a dual simplex method, is developed for an UA-FLP. To test the performance of the proposed technique, several test problems taken from the literature are used in the analysis. The results show that the proposed heuristic performs well with respect to solution quality and computational time

    An Application of an Unequal-Area Facilities Layout Problem with Fixed-Shape Facilities

    Get PDF
    The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular facilities on a rectangular floor space such that facilities do not overlap while optimizing some objective. The objective considered in this paper is minimizing the total distance materials travel between facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and was motivated by the investigation of layout options for a production area at the Toyota Motor Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathematical model and a genetic algorithm for locating facilities on a continuous plant floor. More specifically, a genetic algorithm, which consists of a boundary search heuristic (BSH), a linear program, and a dual simplex method, is developed for an UA-FLP. To test the performance of the proposed technique, several test problems taken from the literature are used in the analysis. The results show that the proposed heuristic performs well with respect to solution quality and computational time
    corecore