435 research outputs found

    Automation Process for Morphometric Analysis of Volumetric CT Data from Pulmonary Vasculature in Rats

    Get PDF
    With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention

    Fuzzy Hybrid Method for the Reconstruction of 3D Models Based on CT/MRI Data

    Get PDF
    This research proposes a hybrid method for improving the segmentation accuracy of reconstructed 3D models from computed tomography/magnetic resonance imaging (CT/MRI) data. A semi-automatic hybrid method based on combination of Fuzzy C-Means clustering (FCM) and region growing (RG) is proposed. In this approach, FCM is used in the first stage as a preprocessing step in order to classify and improve images by assigning pixels to the clusters for which they have the maximum membership, and manual selection of the membership intensity map with the best contrast separation. Afterwards, automatic seed selection is performed for RG, for which a new parameter standard deviation (STD) of pixel intensities, is included. It is based on the selection of an initial seed inside a region with maximum value of STD. To evaluate the performance of the proposed method, it was compared to several other segmentation methods. Experimental results show that the proposed method overall provides better results compared to other methods in terms of accuracy. The average sensitivity and accuracy rates for cone-beam computed tomography CBCT 1 and CBCT 2 datasets are 99 %, 98.4 %, 47.2 % and 89.9 %, respectively. For MRI 1 and MRI 2 datasets, the average sensitivity and accuracy values are 99.1 %, 100 %, 75.6 % and 99.6 %, respectively. The average values for the Dice coefficient and Jaccard index for the CBCT 1 and CBCT 2 datasets are 95.88, 0.88, 0.6, and 0.51, respectively, while for MRI 1 and MRI 2 datasets, average values are 0.96, 0.93, 0.81 and 0.7, respectively, which confirms the high accuracy of the proposed method

    Fuzzy Hybrid Method for the Reconstruction of 3D Models Based on CT/MRI Data

    Get PDF
    This research proposes a hybrid method for improving the segmentation accuracy of reconstructed 3D models from computed tomography/magnetic resonance imaging (CT/MRI) data. A semi-automatic hybrid method based on combination of Fuzzy C-Means clustering (FCM) and region growing (RG) is proposed. In this approach, FCM is used in the first stage as a preprocessing step in order to classify and improve images by assigning pixels to the clusters for which they have the maximum membership, and manual selection of the membership intensity map with the best contrast separation. Afterwards, automatic seed selection is performed for RG, for which a new parameter standard deviation (STD) of pixel intensities, is included. It is based on the selection of an initial seed inside a region with maximum value of STD. To evaluate the performance of the proposed method, it was compared to several other segmentation methods. Experimental results show that the proposed method overall provides better results compared to other methods in terms of accuracy. The average sensitivity and accuracy rates for cone-beam computed tomography CBCT 1 and CBCT 2 datasets are 99 %, 98.4 %, 47.2 % and 89.9 %, respectively. For MRI 1 and MRI 2 datasets, the average sensitivity and accuracy values are 99.1 %, 100 %, 75.6 % and 99.6 %, respectively. The average values for the Dice coefficient and Jaccard index for the CBCT 1 and CBCT 2 datasets are 95.88, 0.88, 0.6, and 0.51, respectively, while for MRI 1 and MRI 2 datasets, average values are 0.96, 0.93, 0.81 and 0.7, respectively, which confirms the high accuracy of the proposed method

    A Parallel Thinning Algorithm for Grayscale Images

    Get PDF
    International audienceGrayscale skeletonization offers an interesting alternative to traditional skeletonization following a binarization. It is well known that parallel algorithms for skeletonization outperform sequential ones in terms of quality of results, yet no general and well defined framework has been proposed until now for parallel grayscale thinning. We introduce in this paper a parallel thinning algorithm for grayscale images, and prove its topological soundness based on properties of the critical kernels framework. The algorithm and its proof, given here in the 2D case, are also valid in 3D. Some applications are sketched in conclusion

    Fuzzy-Logic Based Detection and Characterization of Junctions and Terminations in Fluorescence Microscopy Images of Neurons

    Get PDF
    Digital reconstruction of neuronal cell morphology is an important step toward understanding the functionality of neuronal networks. Neurons are tree-like structures whose description depends critically on the junctions and terminations, collectively called critical points, making the correct localization and identification of these points a crucial task in the reconstruction process. Here we present a fully automatic method for the integrated detection and characterization of both types of critical points in fluorescence microscopy images of neurons. In view of the majority of our current studies, which are based on cultured neurons, we describe and evaluate the method for application to two-dimensional (2D) images. The method relies on directional filtering and angular profile analysis to extract essential features about the main streamlines at any location in an image, and employs fuzzy logic with carefully designed rules to reason about the feature values in order to make well-informed decisions about the presence of a critical point and its type. Experiments on simulated as well as real images of neurons demonstrate the detection performance of our method. A comparison with the output of two existing neuron reconstruction methods reveals that our method achieves substantially higher detection rates and could provide beneficial information to the reconstruction process

    A pilot study on discriminative power of features of superficial venous pattern in the hand

    Get PDF
    The goal of the project is to develop an automatic way to identify, represent the superficial vasculature of the back hand and investigate its discriminative power as biometric feature. A prototype of a system that extracts the superficial venous pattern of infrared images of back hands will be described. Enhancement algorithms are used to solve the lack of contrast of the infrared images. To trace the veins, a vessel tracking technique is applied, obtaining binary masks of the superficial venous tree. Successively, a method to estimate the blood vessels calibre, length, the location and angles of vessel junctions, will be presented. The discriminative power of these features will be studied, independently and simultaneously, considering two features vector. Pattern matching of two vasculature maps will be performed, to investigate the uniqueness of the vessel network / L’obiettivo del progetto è di sviluppare un metodo automatico per identificare e rappresentare la rete vascolare superficiale presente nel dorso della mano ed investigare sul suo potere discriminativo come caratteristica biometrica. Un prototipo di sistema che estrae l’albero superficiale delle vene da immagini infrarosse del dorso della mano sarà descritto. Algoritmi per il miglioramento del contrasto delle immagini infrarosse saranno applicati. Per tracciare le vene, una tecnica di tracking verrà utilizzata per ottenere una maschera binaria della rete vascolare. Successivamente, un metodo per stimare il calibro e la lunghezza dei vasi sanguigni, la posizione e gli angoli delle giunzioni sarà trattato. Il potere discriminativo delle precedenti caratteristiche verrà studiato ed una tecnica di pattern matching di due modelli vascolari sarà presentata per verificare l’unicità di quest

    Segmentation of Vascular Structures and Hematopoietic Cells in 3-D Microscopy Images and Quantitative Analysis

    Get PDF
    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery
    corecore