1,996 research outputs found

    A New Functional Encryption for Multidimensional Range Query

    Get PDF
    Functional encryption, which emerges in the community recently, is a generalized concept of traditional encryption (e.g. RSA and AES). In traditional encryption scheme, decrypting a ciphertext with a correct decryption key will output the original plaintext associated to the ciphertext. In contrast, in functional encryption scheme, decrypting a ciphertext with a correct decryption key will output a value that is derived from both the plaintext and the decryption key, and the decryption output would change when different correct decryption key is used to decrypt the same ciphertext. We propose a new functional encryption scheme for multidimensional range query. Given a ciphertext that is the encryption of some secret plaintext under a public attribute (a multidimensional point), and a decryption key corresponding to a query range and a function key. If the public attribute point is within the query range, a user is able to decrypt the ciphertext with the decryption key to obtain a value, which is the output of a pre-defined \emph{one-way} function with the secret plaintext and the function key as input. In comparison, in previous functional encryption for range query, a decryption will simply output the original secret plaintext when the attribute point is within the query range

    Authenticating Aggregate Range Queries over Dynamic Multidimensional Dataset

    Get PDF
    We are interested in the integrity of the query results from an outsourced database service provider. Alice passes a set {D}\set{D} of dd-dimensional points, together with some authentication tag {T}\set{T}, to an untrusted service provider Bob. Later, Alice issues some query over {D}\set{D} to Bob, and Bob should produce a query result and a proof based on {D}\set{D} and {T}\set{T}. Alice wants to verify the integrity of the query result with the help of the proof, using only the private key. Xu J.~\emph{et al.}~\cite{maia-full} proposed an authentication scheme to solve this problem for multidimensional aggregate range query, including {\SUM, \COUNT, \MIN, \MAX} and {\MEDIAN}, and multidimensional range selection query, with O(d2)O(d^2) communication overhead. However, their scheme only applys to static database. This paper extends their method to support dynamic operations on the dataset, including inserting or deleting a point from the dataset. The communication overhead of our scheme is O(d2logN)O(d^2 \log N), where NN is the number of data points in the dataset

    Security and Privacy for Big Data: A Systematic Literature Review

    Get PDF
    Big data is currently a hot research topic, with four million hits on Google scholar in October 2016. One reason for the popularity of big data research is the knowledge that can be extracted from analyzing these large data sets. However, data can contain sensitive information, and data must therefore be sufficiently protected as it is stored and processed. Furthermore, it might also be required to provide meaningful, proven, privacy guarantees if the data can be linked to individuals. To the best of our knowledge, there exists no systematic overview of the overlap between big data and the area of security and privacy. Consequently, this review aims to explore security and privacy research within big data, by outlining and providing structure to what research currently exists. Moreover, we investigate which papers connect security and privacy with big data, and which categories these papers cover. Ultimately, is security and privacy research for big data different from the rest of the research within the security and privacy domain? To answer these questions, we perform a systematic literature review (SLR), where we collect recent papers from top conferences, and categorize them in order to provide an overview of the security and privacy topics present within the context of big data. Within each category we also present a qualitative analysis of papers representative for that specific area. Furthermore, we explore and visualize the relationship between the categories. Thus, the objective of this review is to provide a snapshot of the current state of security and privacy research for big data, and to discover where further research is required

    Secure and Reliable Data Outsourcing in Cloud Computing

    Get PDF
    The many advantages of cloud computing are increasingly attracting individuals and organizations to outsource their data from local to remote cloud servers. In addition to cloud infrastructure and platform providers, such as Amazon, Google, and Microsoft, more and more cloud application providers are emerging which are dedicated to offering more accessible and user friendly data storage services to cloud customers. It is a clear trend that cloud data outsourcing is becoming a pervasive service. Along with the widespread enthusiasm on cloud computing, however, concerns on data security with cloud data storage are arising in terms of reliability and privacy which raise as the primary obstacles to the adoption of the cloud. To address these challenging issues, this dissertation explores the problem of secure and reliable data outsourcing in cloud computing. We focus on deploying the most fundamental data services, e.g., data management and data utilization, while considering reliability and privacy assurance. The first part of this dissertation discusses secure and reliable cloud data management to guarantee the data correctness and availability, given the difficulty that data are no longer locally possessed by data owners. We design a secure cloud storage service which addresses the reliability issue with near-optimal overall performance. By allowing a third party to perform the public integrity verification, data owners are significantly released from the onerous work of periodically checking data integrity. To completely free the data owner from the burden of being online after data outsourcing, we propose an exact repair solution so that no metadata needs to be generated on the fly for the repaired data. The second part presents our privacy-preserving data utilization solutions supporting two categories of semantics - keyword search and graph query. For protecting data privacy, sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. We define and solve the challenging problem of privacy-preserving multi- keyword ranked search over encrypted data in cloud computing. We establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. We first propose a basic idea for keyword search based on secure inner product computation, and then give two improved schemes to achieve various stringent privacy requirements in two different threat models. We also investigate some further enhancements of our ranked search mechanism, including supporting more search semantics, i.e., TF × IDF, and dynamic data operations. As a general data structure to describe the relation between entities, the graph has been increasingly used to model complicated structures and schemaless data, such as the personal social network, the relational database, XML documents and chemical compounds. In the case that these data contains sensitive information and need to be encrypted before outsourcing to the cloud, it is a very challenging task to effectively utilize such graph-structured data after encryption. We define and solve the problem of privacy-preserving query over encrypted graph-structured data in cloud computing. By utilizing the principle of filtering-and-verification, we pre-build a feature-based index to provide feature-related information about each encrypted data graph, and then choose the efficient inner product as the pruning tool to carry out the filtering procedure

    Energy efficient security and privacy management in sensor clouds

    Get PDF
    Sensor Cloud is a new model of computing for Wireless Sensor Networks, which facilitates resource sharing and enables large scale sensor networks. A multi-user distributed system, however, where resources are shared, has inherent challenges in security and privacy. The data being generated by the wireless sensors in a sensor cloud need to be protected against adversaries, which may be outsiders as well as insiders. Similarly the code which is disseminated to the sensors by the sensor cloud needs to be protected against inside and outside adversaries. Moreover, since the wireless sensors cannot support complex, energy intensive measures, the security and privacy of the data and the code have to be attained by way of lightweight algorithms. In this work, we first present two data aggregation algorithms, one based on an Elliptic Curve Cryptosystem (ECC) and the other based on symmetric key system, which provide confidentiality and integrity of data against an outside adversary and privacy against an in network adversary. A fine grained access control scheme which works on the securely aggregated data is presented next. This scheme uses Attribute Based Encryption (ABE) to achieve this objective. Finally, to securely and efficiently disseminate code in the sensor cloud, we present a code dissemination algorithm which first reduces the amount of code to be transmitted from the base station. It then uses Symmetric Proxy Re-encryption along with Bloom filters and HMACs to protect the code against eavesdropping and false code injection attacks. --Abstract, page iv
    corecore