
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2012-07-31

Secure and Reliable Data Outsourcing in Cloud
Computing
Ning Cao
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Cao, N. (2012). Secure and Reliable Data Outsourcing in Cloud Computing. Retrieved from https://digitalcommons.wpi.edu/etd-
dissertations/333

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212998676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/333?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/333?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Secure and Reliable Data Outsourcing in Cloud Computing

by

Ning Cao

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy
in

Electrical and Computer Engineering

July 2012

Approved:

Professor Wenjing Lou Professor Xinming Huang
ECE Department ECE Department
Dissertation Advisor Dissertation Committee

Professor Berk Sunar Professor Joshua D. Guttman
ECE Department CS Department
Dissertation Committee Dissertation Committee

Abstract

The many advantages of cloud computing are increasingly attracting individuals

and organizations to outsource their data from local to remote cloud servers. In

addition to cloud infrastructure and platform providers, such as Amazon, Google,

and Microsoft, more and more cloud application providers are emerging which are

dedicated to offering more accessible and user friendly data storage services to cloud

customers. It is a clear trend that cloud data outsourcing is becoming a pervasive

service. Along with the widespread enthusiasm on cloud computing, however, con-

cerns on data security with cloud data storage are arising in terms of reliability and

privacy which raise as the primary obstacles to the adoption of the cloud. To address

these challenging issues, this dissertation explores the problem of secure and reliable

data outsourcing in cloud computing. We focus on deploying the most fundamental

data services, e.g., data management and data utilization, while considering relia-

bility and privacy assurance.

The first part of this dissertation discusses secure and reliable cloud data man-

agement to guarantee the data correctness and availability, given the difficulty that

data are no longer locally possessed by data owners. We design a secure cloud

storage service which addresses the reliability issue with near-optimal overall per-

formance. By allowing a third party to perform the public integrity verification, data

owners are significantly released from the onerous work of periodically checking data

integrity. To completely free the data owner from the burden of being online after

data outsourcing, we propose an exact repair solution so that no metadata needs to

be generated on the fly for the repaired data.

The second part presents our privacy-preserving data utilization solutions sup-

porting two categories of semantics – keyword search and graph query. For pro-

tecting data privacy, sensitive data has to be encrypted before outsourcing, which

obsoletes traditional data utilization based on plaintext keyword search. We de-

fine and solve the challenging problem of privacy-preserving multi-keyword ranked

search over encrypted data in cloud computing. We establish a set of strict privacy

requirements for such a secure cloud data utilization system to become a reality.

We first propose a basic idea for keyword search based on secure inner product

computation, and then give two improved schemes to achieve various stringent pri-

vacy requirements in two different threat models. We also investigate some further

enhancements of our ranked search mechanism, including supporting more search

semantics, i.e., TF × IDF, and dynamic data operations.

As a general data structure to describe the relation between entities, the graph

has been increasingly used to model complicated structures and schemaless data,

such as the personal social network, the relational database, XML documents and

chemical compounds. In the case that these data contains sensitive information

and need to be encrypted before outsourcing to the cloud, it is a very challenging

task to effectively utilize such graph-structured data after encryption. We define

and solve the problem of privacy-preserving query over encrypted graph-structured

data in cloud computing. By utilizing the principle of filtering-and-verification, we

pre-build a feature-based index to provide feature-related information about each

encrypted data graph, and then choose the efficient inner product as the pruning

tool to carry out the filtering procedure.

2

To my beloved family

i

Acknowledgements

Without the generous support of many people this dissertation would not have

been possible. First, I want to thank my advisor, Dr. Wenjing Lou, who guided me

into the research area of cloud computing and security, discussed about my ideas,

challenged me with sharping questions, gave suggestions about the structure of the

paper and did proofread with great patience. I appreciate the insightful suggestions

Dr. Lou has given to me and the strong belief she has put in me. Her hard working

and passion for research also has set an example that I would like to follow.

I want to thank my thesis committee, Dr. Xinming Huang, Dr. Berk Sunar and

Dr. Joshua D. Guttman, for serving on my dissertation committee, and for their

good questions and insightful comments on my work. I also want to thank Dr. Kui

Ren for discussing with me on the technique details, helping me think through the

difficult problems and kind support to my job application.

My sincere gratitude further goes to current and former fellow graduate students

in the Cyber Security lab, including Kai Zeng, Shucheng Yu, Zhenyu Yang, Ming

Li, Hanfei Zhao, Qiben Yan, Yao Zheng, Ning Zhang, Wenhai Sun, Bing Wang, and

Tingting Jiang for their friendship and support. Besides, I would like to extend my

thanks to my fellow collaborators, Cong Wang and Qian Wang, for their invaluable

discussions and the kind friendship. I also wish to take this opportunity to say thank

you to my fellow friends at WPI: Sisi Luo, Qi Ao, Xiaodong Huang, Shiquan He,

Xiaolin Hu, Ya Zhang, Yuqin Yao and many others, for their accompany during my

study here.

Finally, I want to thank my family. I am in debt to my parents, Fengjin Cao and

Enying Liang, who always encouraged me to pursue what I wanted. I want to thank

my younger sister, Bo Cao, giving me courage when I face difficulties. I am very

indebted to my dearest grandmother, who passed away during my Ph.D study. I

ii

also want to thank my dearest wife, Ruijun Fu. To accompany me studying abroad,

Ruijun sacrificed many chances of studying and working. Without her support,

encouragement and love, I cannot imagine how I can go through this four-year

study. She is the best gift I have ever received in my life. Special thanks also go to

my parents in-law, Genfa Fu and Yali Yang. Thanks for their support and love in

Ruijun and me. This thesis is dedicated to all my dearest family members.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Roadmap . 6

2 Secure and Reliable Cloud Storage 8

2.1 Introduction . 8

2.2 Problem Formulation . 11

2.2.1 The System Model . 11

2.2.2 The Threat Model . 12

2.2.3 Design Goals . 12

2.2.4 Notations . 13

2.2.5 Preliminary on LT Codes . 14

2.3 LTCS: Design Rationale . 14

2.3.1 Enabling Reliability and Availability 14

2.3.2 Reducing Maintenance Cost 18

2.3.3 Offline Data Owner . 19

2.4 LTCS: The Proposed Secure and Reliable Cloud Storage Service . . . 20

2.4.1 Setup . 20

iv

2.4.2 Data Outsourcing . 20

2.4.3 Data Retrieval . 22

2.4.4 Integrity Check . 23

2.4.5 Data Repair . 25

2.5 Security Analysis . 27

2.5.1 Protection of Data Confidentiality and Integrity 27

2.5.2 Verification Correctness in Integrity Check 28

2.6 Performance Analysis . 28

2.6.1 Outsourcing . 29

2.6.2 Data Retrieval . 31

2.6.3 Integrity Check . 33

2.6.4 Data Repair . 33

2.7 Related work . 34

2.7.1 Network Coding-based Distributed Storage 34

2.7.2 Remote Data Integrity Check 35

2.8 Conclusions . 37

3 Privacy-Preserving Multi-Keyword Ranked Search 39

3.1 Introduction . 39

3.2 Problem Formulation . 43

3.2.1 System Model . 43

3.2.2 Threat Model . 44

3.2.3 Design Goals . 45

3.2.4 Notations . 45

3.2.5 Preliminary on Coordinate Matching 46

3.3 Framework and Privacy Requirements for MRSE 47

3.3.1 MRSE Framework . 47

v

3.3.2 Privacy Requirements for MRSE 48

3.4 Privacy-Preserving and Efficient MRSE 50

3.4.1 Secure Inner Product Computation 50

3.4.2 Privacy-Preserving Scheme in Known Ciphertext Model 53

3.4.3 Privacy-Preserving Scheme in Known Background Model . . . 58

3.5 Discussion . 61

3.5.1 Supporting More Search Semantics 61

3.5.2 Supporting Data Dynamics 64

3.6 Performance Analysis . 66

3.6.1 Precision and Privacy . 66

3.6.2 Efficiency . 68

3.7 Related Work . 73

3.7.1 Single Keyword Searchable Encryption 73

3.7.2 Boolean Keyword Searchable Encryption 74

3.7.3 Secure Top-K Retrieval from Database Community 75

3.7.4 Other Related Techniques . 76

3.8 Conclusion . 77

4 Privacy-Preserving Query over Encrypted Graph-Structured Data 78

4.1 Introduction . 78

4.2 Problem Formulation . 82

4.2.1 The System Model . 82

4.2.2 The Known Background Threat Model 83

4.2.3 Design Goals . 83

4.2.4 Notations . 84

4.3 Preliminaries . 85

4.3.1 Graph Query . 85

vi

4.3.2 Secure Euclidean Distance Computation 87

4.4 PPGQ: The Framework and Privacy 88

4.4.1 The Framework . 88

4.4.2 Choosing Frequent Features 89

4.4.3 Privacy Requirements . 90

4.5 PPGQ: The Proposed Scheme and Analysis 93

4.5.1 Privacy Concerns on Secure Inner Product Computation . . . 94

4.5.2 The Proposed Privacy-Preserving Graph Query Scheme 95

4.5.3 The Analysis . 98

4.6 Experimental Evaluations . 101

4.6.1 False Positive and Index Construction 102

4.6.2 Trapdoor Generation and Query 104

4.7 Related Work . 107

4.7.1 Graph Containment Query . 107

4.7.2 Keyword-based Searchable Encryption 107

4.8 Conclusion . 108

5 Conclusion and Future Work 110

5.1 Conclusion . 110

5.2 Future Work . 111

vii

List of Figures

2.1 Distributed storage systems based on replication. 15

2.2 Distributed storage systems based on optimal erasure codes. 16

2.3 Distributed storage systems based on network coding. 17

2.4 Data availabity after functional repair as in LTNC. 18

2.5 LT codes-based cloud storage service (LTCS). 24

2.6 Outsourcing performance with different ε 30

2.7 Encoding and decoding time for different size of file 32

2.8 Communication cost of repair . 34

3.1 Architecture of the search over encrypted cloud data 43

3.2 Distribution of final similarity score 57

3.3 Tradeoff between precision and rank privacy 67

3.4 Time cost of building index. 69

3.5 Time cost of generating trapdoor. 71

3.6 Time cost of query. 72

4.1 Architecture of graph query over encrypted cloud data 82

4.2 Distribution of Feature Support . 91

4.3 Build subindex for each data graph 96

4.4 Generate trapdoor for query graph 96

viii

4.5 Relation between minimum support and other parameters. 102

4.6 Index construction cost. 103

4.7 Trapdoor size in different dataset . 104

4.8 Trapdoor generation time. 105

4.9 Query execution time on server. 106

4.10 Privacy-Preserving Graph Query Scheme 109

ix

List of Tables

2.1 Performance complexity analysis of storage services 26

3.1 K3 appears in every document . 59

3.2 K3 does not appear in either document 60

3.3 Size of subindex/trapdoor . 73

4.1 Analysis on inner products in two correlated queries 94

x

Chapter 1

Introduction

1.1 Motivation

Cloud computing is the long dreamed vision of computing as a utility, where cloud

customers can remotely store their data into the cloud so as to enjoy the high qual-

ity networks, servers, applications and services from a shared pool of configurable

computing resources [103]. The advantages of cloud computing include on-demand

self-service, ubiquitous network access, location independent resource pooling, rapid

resource elasticity, usage-based pricing, transference of risk, etc. [11] Its great flexi-

bility and economic savings are motivating both individuals and enterprises to out-

source their local complex data management system into the cloud.

Along with the widespread enthusiasm on cloud computing, however, concerns

on data security with cloud storage are arising due to unreliability of the service

and malicious attacks from hackers. Recently more and more events on cloud ser-

vice outage or server corruption with major cloud infrastructure providers are re-

ported [2–4,117]. Data breaches of noteworthy cloud services also appear from time

to time [84,99,100]. Besides, the cloud service providers may also voluntarily exam-

1

ine customers’ data for various motivations. Therefore, we argue that the cloud is

intrinsically neither secure nor reliable from the view point of the cloud customers.

Without providing strong security, privacy and reliability guarantee, it would be

hard to expect cloud customers to turn over control of their data to cloud servers

solely based on economic savings and service flexibility. To address these concerns

and thus motivate the wide adoption of data outsourcing in cloud, in this thesis

we will explore the problem of secure and reliable data outsourcing. We aim at

deploying the most fundamental data services including data management and data

utilization, with built-in reliability and privacy assurance as well as high level service

performance, usability, and scalability.

Firstly, in addition to major cloud infrastructure providers, such as Amazon,

Google, and Microsoft, more and more third-party cloud data service providers are

emerging which are dedicated to offering more accessible and user friendly storage

services to cloud customers [11]. Examples include Dropbox [1] which already has

millions of users. It is a clear trend that cloud storage is becoming a pervasive

service. With the increasing adoption of cloud computing for data storage, assur-

ing data service reliability, in terms of data correctness and availability, has been

outstanding. While existing solutions address the reliability issue by adding data

redundancy to multiple servers, the problem becomes challenging in the “pay-as-

you-use” cloud paradigm where we always want to efficiently resolve it for both

corruption detection and data repair. Prior distributed storage systems based on

erasure codes or replication techniques have either high decoding computational

cost for data users, or too much burden of data storage and repair cost for data

owners. Recently Chen et al. [37] proposed a network coding-based storage system

which provides a decent solution for efficient data repair. This scheme, based on

previous work [43, 44, 78, 121], reduces the communication cost for data repair to

2

the information theoretic minimum. This is achieved by recoding encoded packets

in the healthy servers during the repair procedure. However, as network coding uti-

lizes Gaussian elimination for decoding, the data retrieval in terms of computation

cost is more expensive than erasure codes-based systems. Hence, new secure and

reliable storage solutions with the efficiency consideration of both data repair and

data retrieval are entailed in the cloud computing.

Secondly, to protect data privacy and combat unsolicited accesses in the cloud

and beyond, sensitive data, e.g., emails, personal health records, tax documents,

financial transactions, etc., may have to be encrypted by data owners before out-

sourcing to the commercial public cloud [58]; this, however, obsoletes the traditional

data utilization service based on plaintext keyword search. The trivial solution of

downloading all the data and decrypting locally is clearly impractical, due to the

huge amount of bandwidth cost in cloud systems. Moreover, aside from eliminating

the local storage management, storing data into the cloud serves no purpose unless

they can be easily searched and utilized. Thus, exploring privacy-preserving and

effective search service over encrypted cloud data is of paramount importance. Con-

sidering the potentially large number of on-demand data users and huge amount of

outsourced data documents in the cloud, this problem is particularly challenging as

it is extremely difficult to meet also the requirements of performance, system usabil-

ity and scalability. Related works on searchable encryption focus on single keyword

search or Boolean keyword search, and rarely sort the search results. How to design

an efficient encrypted data search mechanism that supports multi-keyword ranking

semantics without privacy breaches still remains a challenging open problem.

Thirdly, we further explore the data search within another category of search

semantics in cloud computing. As a general data structure to describe the relation

between entities, the graph has been increasingly used to model complicated struc-

3

tures and schemaless data, such as the personal social network (the social graph), the

relational database, XML documents and chemical compounds studied by research

labs [38, 91, 92, 128, 132, 133]. Images in the personal album can also be modeled

as the attributed relational graph (ARG) [20]. For the protection of users’ privacy,

these sensitive data also have to be encrypted before outsourcing to the cloud. More-

over, some data are supposed to be shared among trusted partners. For example,

the lab director and members are given the authorization to access the entire lab

data. Authorized users are usually planning to retrieve some portion of data they

are interested rather than the entire dataset, mostly because of the “pay-for-use”

billing rule in the cloud computing paradigm. Considering the large amount of data

centralized in the cloud datacenter, the key challenge here is to realize an efficient

encrypted query design which supports graph semantics without privacy breaches.

1.2 Contributions

In this dissertation, the fundamental problem of secure and reliable data outsourcing

in Cloud Computing is tackled. The detailed and challenging research tasks we

solved are outlined below:

Secure and Reliable Cloud Storage In Chapter 2, we address the problem of

secure and reliable cloud storage with efficiency consideration of both data repair

and data retrieval. By utilizing a near-optimal erasure codes, specifically LT codes,

our designed storage service has faster decoding during data retrieval than existing

solutions. To minimize the data repair complexity, we employ the exact repair

method to efficiently recover the exact form of any corrupted data. Such a design also

reduces the data owner’s cost during data repair since no verification tag needs to

be generated (old verification tags can be recovered as same as data recovery). Our

4

proposed cloud storage service provides a better overall efficiency of data retrieval

and repair than existing counterparts. It also completely releases the data owner

from the burden of being online by enabling public integrity check and exact repair.

Portions of the work studied in this chapter were presented as extended abstract at

the 31th IEEE Conference on Computer Communications (INFOCOM’12) [32].

Privacy-Preserving Multi-Keyword Ranked Search over Encrypted Cloud

Data In Chapter 3, we address the problem of privacy-preserving multi-keyword

ranked search over encrypted data in cloud computing. We establish a set of strict

privacy requirements for such a secure cloud data utilization system. Among various

multi-keyword semantics, we choose the efficient similarity measure of “coordinate

matching”, i.e., as many matches as possible, to capture the relevance of data doc-

uments to the search query. We further use “inner product similarity” to quanti-

tatively evaluate such similarity measure. We first propose a basic idea for ranked

keyword search based on secure inner product computation, and then give two im-

proved schemes to achieve various stringent privacy requirements in two different

threat models. We also investigate some further enhancements of our ranked search

mechanism, including supporting more search semantics, i.e., TF × IDF, and dy-

namic data operations. Portions of the work studied in this chapter were presented

as extended abstract at the 30th IEEE Conference on Computer Communications

(INFOCOM’11) [30].

Privacy-Preserving Query over Encrypted Graph-Structured Cloud Data

In Chapter 4, we address the problem of privacy-preserving query over encrypted

graph-structured data in cloud computing. Our work utilizes the principle of “filtering-

and-verification”. We pre-build a feature-based index to provide feature-related

information about each encrypted data graph, and then choose the efficient in-

ner product as the pruning tool to carry out the filtering procedure. To meet the

5

challenge of supporting graph query without privacy breaches, we improve the se-

cure inner product computation to achieve various privacy requirements under the

known-background threat model. Portions of the work studied in this chapter was

presented as extended abstract at the 31th International Conference on Distributed

Computing Systems (ICDCS’11) [31].

1.3 Roadmap

The organization of this dissertation is as follows.

Chapter 2 presents our solution for secure and reliable cloud storage. Section

2.1 describes the problem as well as the main idea of our solution. In Section 2.2,

we formulate the problem by introducing the system model, the threat model, our

design goals, and the preliminary. Section 2.3 gives our design rationale, followed

by section 2.4, which describes the proposed scheme. Section 2.5 and 2.6 discuss

security analysis and performance analysis, respectively. We discuss related work

on both network coding-based distributed storage and remote data integrity check

in Section 2.7, and conclude the chapter in Section 2.8.

Chapter 3 presents our proposed privacy-preserving multi-keyword ranked search

over encrypted cloud data. Section 3.1 describes the problem as well as the main idea

of our solution. In Section 3.2, we introduce the system model, the threat model, our

design goals, and the preliminary. Section 3.3 describes the framework and privacy

requirements, followed by section 3.4, which describes the proposed schemes. Section

3.5 discusses supporting more search semantics and dynamic operation. Section 3.6

presents simulation results. We discuss related work on both single and Boolean

keyword searchable encryption in Section 3.7, and conclude the chapter in Section

3.8.

6

Chapter 4 presents our proposed privacy-preserving query over encrypted graph-

structured cloud data. Section 4.1 describes the problem as well as the main idea

of our solution. In Section 4.2, we introduce the system model, the threat model

and our design goals. Section 4.3 gives preliminaries, and section 4.4 describes

the framework and privacy requirements, followed by section 4.5, which gives our

proposed scheme. Section 4.6 presents evaluation results. We discuss related work

on both keyword searchable encryption and graph containment query in Section 4.7,

and conclude the chapter in Section 4.8.

Chapter 5 concludes this dissertation and presents several directions for future

work.

7

Chapter 2

Secure and Reliable Cloud Storage

2.1 Introduction

The many advantages of cloud computing are increasingly attracting individuals

and organizations to move their data from local to remote cloud servers [58]. In

addition to major cloud infrastructure providers [11], such as Amazon, Google, and

Microsoft, more and more third-party cloud data service providers are emerging

which are dedicated to offering more accessible and user friendly storage services to

cloud customers. It is a clear trend that cloud storage is becoming a pervasive ser-

vice. Along with the widespread enthusiasm on cloud computing, however, concerns

on data security with cloud storage are arising due to unreliability of the service.

For example, recently more and more events on cloud service outage or server cor-

ruption with major cloud infrastructure providers are reported [3, 4], be it caused

by Byzantine failures and/or malicious attacks. Such a reality demands for reliable

data storage to tolerate certain outage/corruption. In particular, the cloud storage

service should offer cloud customers with capabilities of: 1) timely detection of any

server (and hence data) corruption event, 2) correct retrieval of data even if a limited

8

number of servers are corrupted, and 3) repair of corrupted data from uncorrupted

data. Although existing techniques have provided solutions for them individually,

the main challenge for cloud storage service is to simultaneously provide these capa-

bilities at minimal cost. This is because in cloud computing both data storage and

transmission are charged in the “pay-as-you-use” manner. Solutions of high cost will

discourage user engagement and be of less practical use. Moreover, it is important

to set cloud customers free by minimizing the complexity imposed on them in terms

of computation/communication cost and burden of being online.

Existing solutions address the reliability issue by adding data redundancy to

multiple servers. These techniques can be categorized into replication-based solu-

tions and erasure codes-based ones. Data replication is the most straightforward

way of adding redundancy. The advantage of replication is its simplicity in data

management. Repair of data on corrupted servers is also straightforward by simply

copying the entire data from a healthy server. The main drawback of replication is

its high storage cost. Moreover, replication-based solutions cannot satisfy the high-

throughput requirement in distributed storage service like cloud computing, where a

large number of users may access the service concurrently. This is because different

users may want to access different pieces of data on a server, which would cause less

cache hits but frequent disk I/O requests. [126] provides a detailed analysis on this

drawback.

As compared to its replication-based counterparts, erasure codes-based solutions

can achieve the required reliability level with much less data redundancy [116]. Dif-

ferent from replication-based solutions, erasure codes-based ones are more suitable

for distributed storage systems with concurrent user access. This is because every

block of data on a server is useful for decoding the original data, which leads to a

high cache hit rate of the system. There have been a large number of related works

9

on erasure codes-based distributed storage systems [60,61,126]. The main drawback

of existing optimal erasure codes-based systems, however, is the high communication

cost needed for repairing a corrupted storage server. It is commonly believed that

the communication cost is equal to the size of the entire original data [43]. For ex-

ample, Reed-Solomon codes [79] usually need to reconstruct all the original packets

in order to generate a fragment of encoded packets. Taking into consideration the

large amount of data outsourced, the entire data reconstruction is expensive which

makes this solution less attractive. Similarly, existing distributed storage systems

based on near-optimal erasure codes [126] do not have an efficient solution for the

data repair problem or pay no attention to it.

Recently Chen et al. [37] proposed a network coding-based storage system which

provides a decent solution for efficient data repair. This scheme, based on previous

work [43, 44, 78, 121], reduces the communication cost for data repair to the infor-

mation theoretic minimum. This is achieved by recoding encoded packets in the

healthy servers during the repair procedure. However, as network coding utilizes

Gaussian elimination for decoding, the data retrieval in terms of computation cost

is more expensive than erasure codes-based systems. Moreover, [37] adopts so-called

functional repair for data repair, i.e., corrupted data is recovered to a correct form,

but not the exact original form. While this is good for reducing data repair cost, it

requires the data owner to produce new verification tags, e.g., cryptographic mes-

sage authentication code, for newly generated data blocks. As the computational

cost of generating verification tags is linear to the number of data blocks, this de-

sign will inevitably introduce heavy computation/communication cost on the data

owner. Moreover, the data owner has to stay online during data repair.

In this chapter, we explore the problem of secure and reliable storage in the “pay-

as-you-use” cloud computing paradigm, and design a cloud storage service with the

10

efficiency consideration of both data repair and data retrieval. By utilizing a near-

optimal erasure codes, specifically LT codes, our designed storage service has faster

decoding during data retrieval than existing solutions. To minimize the data repair

complexity, we employ the exact repair method to efficiently recover the exact form

of any corrupted data. Such a design also reduces the data owner’s cost during data

repair since no verification tag needs to be generated (old verification tags can be

recovered as data recovery). By enabling public integrity check, our designed LT

codes based secure cloud storage service (LTCS) completely releases the data owner

from the burden of being online. Our contributions are summarized as follows,

1) We are among the first to explore the problem of secure and reliable cloud storage

with the efficiency consideration for both data repair and data retrieval.

2) Our proposed cloud storage service provides a better overall efficiency of data

retrieval and repair than existing counterparts. It also greatly reduces cost and

burden of being online for the data owner by enabling public integrity check and

exact repair.

3) The advantages of our proposed service are validated via both numerical analysis

and experimental results.

2.2 Problem Formulation

2.2.1 The System Model

Considering a cloud data storage service which provides both secure data outsourcing

service and efficient data retrieval and repair service, including four different entities:

the data owner, the data user, the cloud server, and the third party server. The data

owner outsources the encoded fragments of the file M to n cloud servers denoted

11

as storage servers. If the data owner requires to keep the data content confidential,

the fileM can be first encrypted before encoding. Outsourced data are attached by

some metadata like verification tags to provide integrity check capability. After the

data outsourcing, a data user can select any k storage servers to retrieve encoded

segments, and recover the file M, which can be further decrypted in case the file

is encrypted. Meanwhile, the third party server periodically checks the integrity of

data stored in cloud servers. Failed cloud servers can be repaired with the help of

other healthy cloud servers.

2.2.2 The Threat Model

The cloud server is considered as “curious-and-vulnerable”. Specifically, the cloud

server is vulnerable to Byzantine failures and external attacks. While Byzantine

failures may be made by hardware errors or the cloud maintenance personnel’s

misbehaviors, external attacks could be ranging from natural disasters, like fire and

earthquake, to adversaries’ malicious hacking. After the adversary gains the control

of the cloud server, it may launch the pollution attack or the replay attack which

aims to break the linear independence among encoded data, by replacing the data

stored in corrupted cloud server with old encoded data. If the cloud server is not

corrupted, it correctly follows the designated protocol specification, but it will try to

infer and analyze data in its storage and interactions during the protocol execution

so as to learn additional information. This represents a threat to the privacy of

cloud users’ data stored on the server.

2.2.3 Design Goals

To provide secure and reliable cloud data storage services, our design should simul-

taneously achieve performance guarantees during data retrieval and repair.

12

• Availability and Reliability: By accessing any k-combination of n storage

servers, the data user could successfully retrieve encoded data and recover all

the original data. The data retrieval service remains functional when up to

n − k storage servers are corrupted in one round, and corrupted servers can

be repaired from other healthy servers.

• Security: The designed storage service protects the data confidentiality and

periodically checks the integrity of data in cloud servers to prevent data

dropout or corruption.

• Offline Data Owner: Data owners can go offline immediately after data

outsourcing, which means they are not required to be involved in tasks such

as data integrity check and repair at a later stage.

• Efficiency: Above goals should be achieved with low storage, computation

and communication cost for the data owner, data users and cloud servers.

2.2.4 Notations

• M : the outsourced file, consisting of m original packets,M = (M1, . . . ,Mm).

• Sl : the l-th storage server, 1 ≤ l ≤ n.

• Cli : the i-th encoded packet stored in the l-th storage server, 1 ≤ i ≤ α.

• ∆li : the coding vector of the encoded packet Cli.

• φl : the coding tag, used to verify all the coding vectors ∆li in Sl.

• ϕli : the retrieval tag, used to verify Cli in the retrieval and repair.

• σlij : the verification tag, used to verify Cli in the integrity check, 1 ≤ j ≤ t.

13

2.2.5 Preliminary on LT Codes

LT codes [69] has a typical property that the encoding procedure can generate un-

limited number of encoded packets, each of which is generated by conducting bitwise

XOR operation on a subset of original packets. LT codes can recover m original

packets from any m + O(
√
m ln2(m/δ)) coded packets with probability 1− δ. The

decoding procedure is performed by the efficient Belief Propagation decoder [70]

with complexity O(m ln(m/δ)). Code degree d is defined as the number of original

packets that are combined into one coded packet. In LT codes, the distribution of

code degree is defined by Ideal Soliton distribution or Robust Soliton distribution.

The Ideal Soliton distribution is ρ(i), i.e., P{d = i}, where
∑m

i=1 ρ(i) = 1 and

ρ(i) = P{d = i} =

 1/m if i = 1

1/i(i− 1) if i = 2, . . . ,m.

Robust Soliton distribution is µ(i), where µ(i) = (ρ(i)+τ(i))/β and β =
∑m

i=1 ρ(i)+

τ(i). Let R = c · ln(m/δ)
√
m, and define τ(i) as follows,

τ(i) =

R/im if i = 1, . . . ,m/R− 1

R ln(R/δ)/m if i = m/R

0 if i = m/R + 1, . . . ,m.

2.3 LTCS: Design Rationale

2.3.1 Enabling Reliability and Availability

To ensure the data reliability in distributed storage systems, various data redun-

dancy techniques can be employed, such as replication, erasure codes, and network

14

Figure 2.1: Distributed storage systems based on replication.

coding. Replication as shown in Fig. 2.1 is the most straightforward way of adding

data redundancy where each of n storage servers stores a complete copy of the orig-

inal data. Data users can retrieve the original data by accessing any one of the

storage servers, and the corrupted server can be repaired by simply copying the

entire data from a healthy server.

Given the same level of redundancy, the optimal erasure codes based distributed

storage system as shown in Fig. 2.2 is more reliable by many orders of magnitude

than the replication-based system [116]. Data users can recover the entire m original

packets by retrieving the same number of encoded packets from any k-combination of

n servers, and therefore every server only needs to store m/k encoded packets which

is regarded as the property of optimal redundancy-reliability tradeoff. However, its

quadratic decoding complexity makes it very inefficient for data users to recover

data during data retrieval. Moreover, the communication cost to repair a failed

storage server is equal to the size of the entire original data in the optimal erasure

codes-based distributed storage system [43, 44]. For example, as a typical optimal

15

Figure 2.2: Distributed storage systems based on optimal erasure codes.

erasure codes, Reed-Solomon codes [79] usually need to reconstruct all the original

packets in order to generate a fragment of encoded packets. In other words, one has

to retrieve m encoded packets in order to generate only m/k encoded packets for

the corrupted server.

Network coding-based storage codes [43, 44, 78, 121] as shown in Fig. 2.3 reduce

the repair communication cost to the information theoretic minimum by combining

encoded packets in the healthy servers during the repair procedure, where only

m/k recoded packets are needed to generate the corrupted m/k encoded packets.

Each server needs to store 2m/(k+1) encoded packets, which is more than optimal

erasure codes, to guarantee that data users can retrieve m linearly independent

encoded packets from any k-combination of n servers. Besides, the network coding-

based storage codes have the similar inefficient decoding problem as optimal erasure

16

Figure 2.3: Distributed storage systems based on network coding.

codes due to the utilization of Gaussian elimination decoder.

To meet the efficient decoding requirement in the cloud data storage scenario

where the data owner outsources huge amount of data for sharing with data users,

our design is based on the near-optimal erasure codes, specifically LT codes, to

store low-complexity encoded packets over n distributed servers. The fast Belief

Propagation decoding for LT codes can be used during data retrieval in our LT

codes based secure cloud storage service (LTCS). Data users can efficiently recover

all the m of original packets from any m(1 + ϵ) encoded packets which can be

retrieved from any k-combination of n servers. To achieve so, every server needs to

store at least m(1+ε)/k encoded packets which is larger than the erasure codes but

smaller than the network coding based storage codes.

17

0 5 10 15 20 25 30
0

20

40

60

80

100

of repairs

D
at

a
av

ai
la

bi
lty

 (
%

)

Figure 2.4: Data availabity after functional repair as in LTNC.

2.3.2 Reducing Maintenance Cost

To prevent data dropout or corruption, the integrity of data stored in each server

needs to be periodically checked. In [37], the data owner raises a challenge for

every encoded packet to cloud servers. Taking into consideration the large number

of encoded packets with substantial data redundancy in cloud servers, the cost of

such private integrity check is somehow burdensome in terms of both computation

and communication for data owners. LTCS utilizes the public integrity verification

which enables the data owner to delegate the integrity check task to a third party

server. Once there is a server failing to pass the integrity check, the third party

server immediately reports it to the administrator of the cloud server who will then

activate the repair process.

The repair task in our LT codes based storage service is accomplished by gen-

erating the exactly same packets as those previously stored in corrupted storage

servers. Such repair method does not introduce any additional linear dependence

among newly generated packets and those packets stored in healthy storage servers,

and therefore maintains the data availability. Furthermore, we run the decoding

over the encoded packets before outsourcing to guarantee the reliable data retrieval

18

and recovery. Unlike the exact repair in our designed service, the functional repair

is the other category of data repair, where the repair procedure generates correct

encoded packets, but not the exactly same packets as those corrupted. Attempts to

apply functional repair in the LT codes based distributed storage should first solve

how to recode packets, because the random linear recoding in the functional repair

of network coding-based storage codes cannot satisfy the degree distribution in LT

codes. It seems that this problem can be solved by utilizing the recently proposed

LT network codes (LTNC) which provides efficient decoding at the cost of slightly

more communication in the single-source broadcasting scenario [33]. However, af-

ter several rounds of repair with same recoding operations regulated in LT network

codes, data users experience decoding failure with high probability, as illustrated

in Fig. 2.4, where data availability is the probability that data users could recover

original data from any k-combination of n storage servers. The major reason is

that recoding operations with the degree restriction in LT network codes introduce

inneglectable linear dependence among recoded packets and existing packets in LT

codes based storage service. Therefore, the functional repair is not suitable for LT

codes-based storage service.

2.3.3 Offline Data Owner

In the repair procedure, network coding-based storage systems with functional repair

generate new encoded packets to substitute corrupted data in the failed server. The

data owner needs to stay online for generating necessary tags for these new pack-

ets [37]. In LTCS, all newly generated packets for the corrupted storage server in

the repair procedure are exactly the same as old ones previously stored in the server,

which means their corresponding metadata are also same. Like the distributed stor-

age of data packets, these metadata can be stored in multiple servers and recovered

19

in case of repairing corrupted servers. The replication or erasure codes (like Reed-

Solomon codes) can be adopted to reliably backup these metadata. Hence, without

the burden of generating tags and checking integrity, the data owner can stay offline

immediately after outsourcing the data which makes LTCS more practical to be

deployed in the cloud paradigm.

2.4 LTCS: The Proposed Secure and Reliable Cloud

Storage Service

In this section, we present the LT codes-based secure and reliable cloud storage

service (LTCS), where n storage servers {Sl}1≤l≤n are utilized to provide the data

storage service for data owner and data users. Our data integrity technique is

partially adapted from the BLS signature in POR [87].

2.4.1 Setup

Let e : G× G → GT be a bilinear map, where g is the generator of G, with a BLS

hash function H : {0, 1}∗ → G. The data owner generates a random number η ← Zp

and s random numbers u1, . . . , us ← G. The secret key sk is {η}, and the public

key is pk = {u1, . . . , us, v}, where v ← gη.

2.4.2 Data Outsourcing

The data outsourcing is to pre-process data and distribute them to multiple cloud

servers. The fileM is first equally split into m original packets, M1, . . . ,Mm, with

the same size of |M|
m

bits. Following the Robust Soliton degree distribution in LT

codes, m original packets are combined by exclusive-or (XOR) operations to gen-

20

erate nα encoded packets, where α is the number of packets outsourced to each

storage server and set to m/k · (1+ ε). For protecting data confidentiality, sensitive

data could be encrypted before the encoding process. Existing data access control

mechanisms [129] can be employed to prevent the cloud server from prying into

outsourced data.

According to LT codes, all the m original packets can be recovered from any

m(1 + ε) of encoded packets with probability 1 − δ by on average O(m · ln(m/δ))

packet operations. However, the availability requirement specifies that data recov-

ery should be always successful by accessing any k of healthy storage servers. To

achieve this goal, the data owner checks the decodability of these encoded pack-

ets before outsourcing by executing the decoding algorithm. Specifically, all the

nα encoded packets are divided into n groups, each of which consists of α pack-

ets, {{Cli}1≤i≤α}1≤l≤n. The Belief Propagation decoding algorithm is then run on

every k-combination of n groups. If the decoding fails in any combination, the

data owner re-generates encoded packets and re-checks the decodability until every

k-combination can recover all the m original packets. Once the encoding config-

uration successfully passes the decodability detection, it can be reused for all the

storage services that specifies the same n and k.

For each encoded packet Cli, 1 ≤ l ≤ n, 1 ≤ i ≤ α, three kinds of auxiliary

data are attached, i.e., the coding vector, the retrieval tag, and verification tags.

The coding vector ∆li is a m-bit vector, where each bit represents whether the

corresponding original packet is combined into Cli or not. The retrieval tag ϕli,

computed by Eq. 2.1, is to verify the encoded packet Cli in data retrieval, and also

in data repair if necessary.

ϕli ← (H(l||i||Cli))
η ∈ G (2.1)

21

To generate the verification tag for the purpose of integrity check, each encoded

packet Cli is split into t segments, {Cli1, . . . , Clit}. Each segment Clij includes s

symbols in Zp : {Clij1, . . . , Clijs}. For each segment Clij, we generate a verification

tag σlij, 1 ≤ j ≤ t, in Eq. 2.2.

σlij ← (H(l||i||j) ·
s∏

ℓ=1

u
Clijℓ

ℓ)η ∈ G (2.2)

These data are outsourced to the l-th storage server in the form of

{l, {i, Cli,∆li, ϕli, {σlij}1≤j≤t}1≤i≤α, φl}, where φl is the coding tag to validate all the

previously coding vectors. The computation of φl is shown in Eq. 2.3.

φl ← (H(l||∆l1|| . . . ||∆lα))
η ∈ G (2.3)

2.4.3 Data Retrieval

Data users can recover original data by accessing any k of n cloud servers in the

data retrieval. The data user first retrieves all the coding vectors and the coding

tags stored in the selected k cloud servers, and performs the verification in Eq. 2.4.

If the verification operation on any coding tag fails, the data user sends reports to

the third party server and accesses one substitutive storage server.

e(φl, g)
?
= e(H(l||∆l1|| . . . ||∆lα), v) (2.4)

Once all the coding tags from k storage servers pass the validation, the data user

partially executes the Belief Propagation decoding algorithm only with coding vec-

tors, and records ids of coding vectors that are useful for the decoding. Meanwhile,

the data user retrieves those corresponding useful encoded packets and their re-

22

trieval tags from corresponding storage servers, and verifies the integrity of encoded

packets as shown in Eq. 2.5.

e(ϕli, g)
?
= e(H(l||i||Cli), v) (2.5)

All the original packets in M can be recovered by performing the same XOR

operations on encoded packets as those on coding vectors. Finally, the data user

can decrypt theM and get the plaintext data if the file is encrypted before encod-

ing. Note that if there exist some verification tags that fail in the integrity check

procedure, the data user also reports them to the third party server and retrieves

data from one substitutive storage server. When the third party server receives any

failure reports from data users about either coding tags or verification tags, it will

immediately challenge the corresponding server (details on challenge will be given

in the following section).

2.4.4 Integrity Check

To monitor the integrity of data stored in the storage servers, the third party server

periodically performs the integrity check over every storage server. The third party

server first randomly picks α+t numbers, a1, . . . , aα, b1, . . . , bt ← Zp, and then sends

them to every storage server. The l-th storage server will compute s integrated

symbols {µlℓ}1≤ℓ≤s and one integrated tag ςl in Eq. 2.6. Note that ai corresponds

to the i-th encoded packet in every storage server, and bj corresponds to the j-th

segment in each encoded packet.

µlℓ =
α∑

i=1

t∑
j=1

aibjClijℓ, ςl =
α∏

i=1

t∏
j=1

σ
aibj

lij (2.6)

23

Figure 2.5: LT codes-based cloud storage service (LTCS).

The third party server verifies these received integrated symbols {µlℓ}1≤ℓ≤s and

the integrated verification tag ςl, as shown in Eq. 2.7.

e(ςl, g)
?
= e(

α∏
i=1

t∏
j=1

H(l||i||j)aibj ·
s∏

ℓ=1

uµlℓ

ℓ , v) (2.7)

If the verification fails, the third party server reports it to the data center, and the

administrator of the storage server will reset the server software and start the data

repair procedure.

24

2.4.5 Data Repair

It is commonly believed that all existing coding constructions must access the orig-

inal data to generate coded packets, which means the communication cost of data

repair for erasure codes is equal to the size of the entire original data [43]. A

straightforward data repair method is therefore to recover all the original data pack-

ets whenever a storage server is corrupted. But such method will introduce much

cost of both computation and communication. In LTCS as illustrated in Fig. 2.5,

one repair server Sn+1 is deployed to efficiently repair corrupted storage servers. Al-

though other storage services based on optimal erasure codes or network coding can

also integrate the repair server, they still introduce more computational cost during

data retrieval (and storage cost for network coding-based service) than LTCS, which

will be validated in section 2.6.

To accommodate the repair server, the data owner outsources all the original

packets to the repair server Sn+1 during data outsourcing. Each original packet is

also attached by the verification tag which is generated in the same way as shown

in Eq. 2.2. Besides, all the auxiliary data of storage servers are stored in the repair

server as a backup. Similarly with the distributed data storage, the metadata in-

cluding verification tags for original packets need to be reliably stored in n storage

servers. Compared with the large size of encoded data, auxiliary data are quite small

such that we can employ the simple replication or erasure codes to add redundancy.

To deal with the failure on the l-th storage server, the repair server uses all the

corresponding coding vectors {∆li}1≤i≤α to generate encoded packets {Cli}1≤i≤α.

Specifically, Cli is generated by the XOR combination of |∆li| original packets, as

illustrated in Eq. 2.8, where jli1, . . . , jli|∆li| ← {1, . . . ,m} correspond to the nonzero

bits in the coding vector ∆li. The repair server sends to Sl all the encoded packets

25

Table 2.1: Performance complexity analysis of storage services based on different
redundancy techniques.

Network Coding Reed-Solomon LTCS
Server storage O((2n/(k + 1)) · |M|) O((1 + n/k) · |M|) O((1 + n(1 + ε)/k) · |M|)
Encoding comp. O(2nm2/(k + 1)) O(nm2/k) O((nm(1 + ε) lnm)/k)
Retrieval comm. O(|M|) O(|M|) O(|M|)
Retrieval comp. O(m2) O(m2) O(m lnm)
Repair comm. O(2T/(k + 1) · |M|) O(T (1/k + 1/n) · |M|) O(T ((1 + ε)/k + 1/n) · |M|)

with their tags in the form of {l, {i, Cli,∆li, ϕli, {σlij}1≤j≤t}1≤i≤α, φl}.

Cli = Mjli1 ⊕ . . .⊕Mjli|∆li|
(2.8)

The repaired server Sl authenticates received encoded packets {Cli}1≤i≤α and aux-

iliary tags as in the data retrieval and integrity check. If the authentication fails,

the repair server itself may be corrupted and need repair.

The third party server also challenges the repair server Sn+1 to check the in-

tegrity of original packets. Since there are m packets stored in Sn+1, instead of α

in storage servers, the third party server should generate m + t random numbers,

a1, . . . , am, b1, . . . , bt ← Zp. The integrated symbols {µ(n+1)ℓ}1≤ℓ≤s are then gen-

erated from the m original packets, µ(n+1)ℓ =
m∑
i=1

t∑
j=1

aibjC(n+1)ijℓ, where C(n+1)i =

Mi. There are similar changes in the generation of the integrated verification tag,

ςn+1 =
m∏
i=1

t∏
j=1

σ
aibj

(n+1)ij . The repair server is less likely to be corrupted than storage

servers, since it does not participate in the data retrieval service for data users. Even

when the repair server is found to be corrupted and needs repair, all the original

packets and auxiliary data can be recovered by performing data retrieval from any

d of healthy storage servers. Therefore, there is no single point of failure.

26

2.5 Security Analysis

2.5.1 Protection of Data Confidentiality and Integrity

For protecting data confidentiality, existing encryption techniques or data access

control schemes [129] can be utilized before the encoding process, which prevent the

cloud server from prying into outsourced data. With respect to the data integrity,

LTCS utilizes various cryptographic tags to resist the pollution attack during the

data repair and retrieval procedures. LTCS is also secure against the replay attack

which is presented in the network coding-based distributed storage system [37].

To lunch the replay attack, the adversary first corrupts some storage servers and

backups encoded packets stored in these servers. After several rounds of data repair,

the adversary corrupts the same storage servers as before, and then substitutes new

encoded packets with specific old packets. Since the verification tag only binds the

storage server id and the packet id, not the freshness of the packet, the substituted

old packets could pass the integrity verification. As a result, such substitution

makes encoded packets stored in specific k-combinations of n storage servers linearly

dependable, and the data recovery would fail when all other n − k storage servers

are corrupted. Actually, if the data repair mechanism is designed to generate new

packets which are different from the old packets stored in the same storage server,

any coding-based distributed storage system is somehow vulnerable to such kind

of attack. In other words, the functional repair itself has the possibility to break

the decodability. By contrast, LTCS employs the exact repair method where the

newly generated packets are the same as those previously stored packets. The replay

attack becomes invalid since there is no difference between old and new packets in the

same storage server. Furthermore, LTCS examines the data decodability from any

k-combination of storage servers before outsourcing, which guarantees that original

27

data could be recovered even when the adversary corrupts both the repair server

and at most n− k storage servers in one round.

2.5.2 Verification Correctness in Integrity Check

The verification correctness in Eq. 2.7 is proved in Eq. 2.9.

e(ςl, g) = e(

α∏
i=1

t∏
j=1

σ
aibj

lij , g)

= e(
α∏

i=1

t∏
j=1

(H(l||i||j)aibj ·
s∏

ℓ=1

u
aibjClijℓ

ℓ), g)η

= e(
α∏

i=1

t∏
j=1

H(l||i||j)aibj ·
s∏

ℓ=1

α∏
i=1

t∏
j=1

u
aibjClijℓ

ℓ , v)

= e(

α∏
i=1

t∏
j=1

H(l||i||j)aibj ·
s∏

ℓ=1

u

α∑
i=1

t∑
j=1

aibjClijℓ

ℓ , v)

= e(
α∏

i=1

t∏
j=1

H(l||i||j)aibj ·
s∏

ℓ=1

uµlℓ
ℓ , v). (2.9)

2.6 Performance Analysis

In this section, we demonstrate the performance of storage services based on differ-

ent redundancy techniques by both theoretical complexity analysis and experimental

evaluation. We set the same desired reliability level as network coding-based dis-

tributed storage system RDC-NC [37], where n = 12, k = 3. Other parameters

are set from the consideration of specific properties of network coding (NC), Reed-

Solomon codes (RS), and LT codes. For LTCS, m = 3072, α = m(1 + ε)/k, ds =

1, dr = k, β = α, δ = 1, c = 0.1, where ε ∼ O(ln2(m/δ)/
√
m) is the LT overhead

28

factor. ds and dr represent the number of cloud servers participating in the repair

of corrupted storage server and corrupted repair server, respectively. β represents

the number of packets retrieved from each participating server during repair. For

Reed-Solomon codes based storage system, m = 6 or 12, α = m/k, d = k, β = α; for

network coding based storage system, m = 6 or 12, α = 2m/(k+1), d = k, β = α/d.

The whole experiment system is implemented by C language on a Linux Server

with Intel Xeon Processor 2.93GHz. Besides, the performance of network coding

and Reed-Solomon codes is optimized by employing table lookup in the multiplica-

tion and division over GF (28), and we evaluate their performance with or without

repair server (rs), respectively. The performance complexity comparison among stor-

age services based on different redundancy techniques with repair server is shown

in Tab. 2.1, where T is the number of corrupted storage servers in one round,

0 ≤ T ≤ n− k.

2.6.1 Outsourcing

As described in section 2.4.2, the data owner detects the decodability in the en-

coding procedure to guarantee data availability. To check all k-combinations of n

groups, the data owner has to execute (nk) times of the Belief Propagation decoding

algorithm. For the efficiency purpose, this decoding process can be partially exe-

cuted where only coding vectors follow the decoding steps and data packets are not

involved. If there exists a combination that cannot recover all the original pack-

ets, the data owner will re-generate nα coding vectors according to LT codes and

re-detect them, where α is equal to m(1 + ε)/k. Once all the (nk) combinations

successfully pass the decodability detection, corresponding coding vectors can be

reused for all the storage services that specifies the same n and k. As illustrated in

Fig. 2.6(a), the larger ε makes the decodability detection more costly because of the

29

0.19 0.192 0.194 0.196 0.198 0.2
25

26

27

28

29

LT overhead factor ε

T
im

e
of

 d
ec

od
ab

ili
ty

 d
et

ec
tio

n
(s

)

(a) Time of detecting decodability

(b) Data storage cost

Figure 2.6: Outsourcing performance with different ε. n = 12, k = 3, m = 3072.

linear relation between ε and α, namely the number of coding vectors in each group.

Considering that the larger ε leads to more storage cost and repair communication

cost, the following evaluations are conducted by setting ε to the smallest one as

0.1904, which corresponds to α = 1219.

Once one set of nα coding vectors pass the decodability detection, encoding op-

erations are performed on real data packets via the XOR combination. Although

the number of encoded packets in LTCS, nα, is several hundreds times larger than

30

in other storage service based on network coding or Reed-Solomon codes, the com-

putational cost of encoding in LTCS is much less than the later, as illustrated in

Fig. 2.7 (a). The main reason for such big advantage is that the average degree

of encoded packets is O(ln(m/δ)) and O(m) in two services, respectively. Further-

more, the combination for encoding is the efficient XOR in LTCS while the linear

combination in network coding or Reed-Solomon codes involves the multiplication

operations with coefficients. The total number of encoded packets in Reed-Solomon

codes-based service is less than network coding-based one so the encoding procedure

introduces different computational cost in two services.

As for the data storage in LTCS, every storage server stores α encoded packets,

each of which has the size of |M|/m. And the repair server stores all the m original

packets with the same size. The total data storage in cloud servers is the sum of

all encoded packets in n storage servers and all original packets in the repair server,

which is O(nα · |M|/m + |M|), i.e., O([1 + n(1 + ε)/k] · |M|). Since LT codes is

a near-optimal erasure codes in terms of redundancy-reliability tradeoff, the data

storage cost in LTCS is larger than Reed-Solomon codes-based storage service which

introduces theoretical minimum storage cost as 4|M| in our evaluation setting. By

contrast, the total data storage in existing network coding-based storage service is

O(|M|[2n/(k+1)]) as illustrated in Fig. 2.6(b). If we integrate the repair server into

this service, the storage cost will be O(|M|[1 + 2n/(k + 1)]) which is much larger

than LTCS.

2.6.2 Data Retrieval

The availability in data retrieval is guaranteed by the decodability detection before

data outsourcing and the exact repair of corrupted data. Recall that the data

user first retrieves kα, i.e. m(1 + ε), of coding vectors from k storage servers, and

31

100 200 300 400 500
0

100

200

300

400

500

600

700

800

File size (MB)

E
nc

od
in

g
tim

e
(s

)

NC, m=12
RS, m=12
NC, m=6
RS, m=6
LTCS, m=3072

(a) Encoding

100 200 300 400 500
0

20

40

60

80

100

120

140

File size (MB)

D
ec

od
in

g
tim

e
(s

)

NC, m=12
RS, m=12
NC, m=6
RS, m=6
LTCS, m=3072

(b) Decoding

Figure 2.7: Encoding and decoding time for different size of file. n=12, k=3.

then only retrieve m of encoded packets that are useful for decoding. Therefore,

the communication cost during data retrieval in LTCS is the same O(|M|) as the

network coding-based storage system where any m of encoded packets are linearly

independent with high probability.

The computational complexity of Belief Propagation decoding in LTCS is O(m ·

ln(m/δ)) for the data user, where δ is set to 1. By contrast, the other storage

services based on network coding or Reed-Solomon codes usually use the costly

32

decoding algorithms with higher computational complexity, O(m2). Although the

total number of original packets, m, may be smaller in the other two storage services

than in LTCS, the decoding process for the data user in LTCS performs at least

two times faster than in the other two storage services, as illustrated in 2.7(b).

This efficient decoding process demonstrates that LTCS is more appropriate than

other redundancy-based storage services in the cloud storage paradigm, where data

retrieval is a routine task for data users.

2.6.3 Integrity Check

To check the integrity of data stored in a storage server, the third party server needs

to perform one integrated challenge in LTCS, which means only two bilinear maps

in Eq. 2.7 are executed in order to check α encoded packets. Network coding-based

service has to perform α times of challenges for each storage server where 2α bilinear

maps are executed to check α of encoded packets. Similarly, the communication

cost between the third party server and each storage server during one round of

Integrity Check in network coding-based service is almost α times more than that

in LTCS.

2.6.4 Data Repair

When the repair server is corrupted, LTCS first retrieve β encoded packets from

each of dr healthy storage servers to recover all the original packets. In such case,

the communication complexity from dr healthy storage servers to the repair server is

O(dr ·β ·|M|/m), i.e., O((1+ε)·|M|), where dr = k, β = α. If the repair server is not

corrupted or has been repaired, the data repair of storage servers in LTCS is simply

accomplished by the repair server generating β encoded packets for each corrupted

storage server, where ds = 1, β = α. Assume the number of corrupted storage

33

0 2 4 6 8 10
0

2

4

6

8

10

of corrupted storage servers

R
ep

ai
r

co
m

m
un

ic
at

io
n

co
st

 (
|M

|)

RS w/o rs
NC w/ rs
NC w/o rs
LTCS
RS w/ rs

Figure 2.8: Communication cost of repair. n=12, k=3.

servers in one round is T , 0 ≤ T ≤ n− k. The repair communication complexity in

such scenario is O(Tα · |M|/m), i.e., O(T (1 + ε)/k · |M|), where |M|/m is the size

of each encoded packet.

Assume the corruption probability of the repair server is the same as storage

servers, i.e., T/n. The total repair communication complexity is then calculated as

O(T (1+ ε)/k · |M|+T/n · |M|), i.e., O(T ((1+ ε)/k+1/n) · |M|). As illustrated in

Fig. 2.8, to repair different number of corrupted storage servers T , the communica-

tion cost in LTCS is only 15 percent more than Reed-Solomon codes-based service

integrated with repair server, but smaller than that in network coding-based service.

2.7 Related work

2.7.1 Network Coding-based Distributed Storage

As a new data transmitting technique, network coding is different with traditional

store-and-forward methods. Instead of simply forwarding previously received pack-

ets, network coding allows intermediate nodes to recode received packets before

34

forwarding. It has been proved that random linear network coding over a suffi-

ciently large finite field can achieve the multicast capacity [53, 82]. Since the data

repair problem in the distributed storage is claimed to be mapped to a multicasting

problem on the information flow graph [43], many network coding-based storage

codes [42–44, 46, 66, 78, 90, 101, 121–125] have been proposed to take advantage of

this property of capacity achievability. By recoding encoded packets in healthy

servers during the repair procedure, the repair communication cost is reduced to

the information theoretical minimum. The achievable region of functional repair

is characterized in [37], but a large part of the achievable region of exact repair

remains open [44]. Furthermore, since network coding utilizes Gaussian elimination

decoding algorithm, the data retrieval is more expensive than erasure codes-based

system [37]. Therefore, these designs are only suitable in “read-rarely” storage sce-

narios, and cannot be efficiently deployed in the cloud storage system where data

retrieval is a routine operation.

2.7.2 Remote Data Integrity Check

The remote data integrity check problem has been explored in many works [12,

13, 25, 26, 34, 41, 47, 57, 71, 74, 85, 89, 105, 107, 109–113]. However, existing works do

not have an efficient solution for the data repair problem or pay no attention to it.

Portions of the work studied in this chapter were presented as extended abstract at

the 31th IEEE Conference on Computer Communications (INFOCOM’12) [32].

Juels et al. [57] described a formal proof of retrievability (POR) model for en-

suring the remote data integrity. Their scheme combines spot-checking and error-

correcting code to ensure both possession and retrievability of files on archive service

systems. Shacham et al. [87] built on this model and constructed a random linear

function based homomorphic authenticator which enables unlimited number of chal-

35

lenges and requires less communication overhead due to its usage of relatively small

size of BLS signature. Bowers et al. [26] proposed an improved framework for POR

protocols that generalizes both Juels and Shachams work. Later in their subsequent

work, Bowers et al. [25] extended POR model to distributed systems. However,

all these schemes are focusing on static data. The effectiveness of their schemes

rests primarily on the preprocessing steps that the user conducts before outsourc-

ing the data file. Recently, Dodis et al. [45] gave theoretical studies on generalized

framework for different variants of existing POR work.

Ateniese et al. [12] defined the provable data possession (PDP) model for ensuring

possession of file on untrusted storages. Their scheme utilized public key based

homomorphic tags for auditing the data file. In their subsequent work, Ateniese et

al. [13] described a PDP scheme that uses only symmetric key based cryptography.

This method introduces lower overhead than their previous scheme and allows for

block updates, deletions and appends to the stored file. However, their scheme

focuses on single server scenario and does not provide data availability guarantee

against server failures, leaving both the distributed scenario and data error recovery

issue unexplored. Wang et al. [112] proposed to combine BLS based homomorphic

authenticator with Merkle Hash Tree to support fully data dynamics, while Erway

et al. [47] developed a skip list based scheme to enable provable data possession

with fully dynamics support. The incremental cryptography work done by Bellare

et al. [19] also provides a set of cryptographic building blocks such as hash, MAC,

and signature functions that may be employed for storage integrity verification while

supporting dynamic operations on data. However, this branch of work falls into the

traditional data integrity protection mechanism, where local copy of data has to be

maintained for the verification. It is not yet clear how the work can be adapted to

cloud storage scenario where users no longer have the data at local sites but still

36

need to ensure the storage correctness efficiently in the cloud.

In other related work, Curtmola et al. [41] aimed to ensure data possession

of multiple replicas across the distributed storage system. They extended the PDP

scheme to cover multiple replicas without encoding each replica separately, providing

guarantee that multiple copies of data are actually maintained. Lillibridge et al. [68]

presented a P2P backup scheme which can detect data loss from free-riding peers,

but does not ensure all data is unchanged. Filho et al. [49] proposed to verify data

integrity using RSA-based hash to demonstrate uncheatable data possession in peer-

to- peer file sharing networks. However, their proposal requires exponentiation over

the entire data file, which is clearly impractical for the server whenever the file is

large. Shah et al. [88, 89] proposed allowing a TPA to keep online storage honest

by first encrypting the data then sending a number of pre-computed symmetric-

keyed hashes over the encrypted data to the auditor. However, their scheme only

works for encrypted files, and auditors must maintain long-term state. Schwarz et

al. [85] proposed to ensure static file integrity across multiple distributed servers,

using erasure-coding and block-level file integrity checks. Very recently, Wang et

al. [107] gave a study on many existing solutions on remote data integrity checking,

and discussed their pros and cons under different design scenarios of secure cloud

storage services.

2.8 Conclusions

In this chapter, for the first time, we explore the problem of secure and reliable cloud

storage with the efficiency consideration of both data repair and data retrieval, and

design a LT codes-based cloud storage service (LTCS). To enable efficient decoding

for data users in the data retrieval procedure, we adopt a low complexity LT codes

37

for adding data redundancy in distributed cloud servers. Our proposed LTCS pro-

vides efficient data retrieval for data users by utilizing the fast Belief Propagation

decoding algorithm, and releases the data owner from the burden of being online by

enabling public data integrity check and employing exact repair. The performance

analysis and experimental results show that LTCS has a comparable storage and

communication cost, but a much faster data retrieval than the erasure codes-based

solutions. It introduces less storage cost, much faster data retrieval, and comparable

communication cost comparing to network coding-based storage services.

38

Chapter 3

Privacy-Preserving

Multi-Keyword Ranked Search

3.1 Introduction

Cloud computing is the long dreamed vision of computing as a utility, where cloud

customers can remotely store their data into the cloud so as to enjoy the on-demand

high quality applications and services from a shared pool of configurable computing

resources [31, 32, 103]. Its great flexibility and economic savings are motivating

both individuals and enterprises to outsource their local complex data management

system into the cloud. To protect data privacy and combat unsolicited accesses in

the cloud and beyond, sensitive data, e.g., emails, personal health records, photo

albums, tax documents, financial transactions, etc., may have to be encrypted by

data owners before outsourcing to the commercial public cloud [58]; this, however,

obsoletes the traditional data utilization service based on plaintext keyword search.

The trivial solution of downloading all the data and decrypting locally is clearly

impractical, due to the huge amount of bandwidth cost in cloud scale systems.

Moreover, aside from eliminating the local storage management, storing data into

the cloud serves no purpose unless they can be easily searched and utilized. Thus,

exploring privacy-preserving and effective search service over encrypted cloud data is

of paramount importance. Considering the potentially large number of on-demand

data users and huge amount of outsourced data documents in the cloud, this problem

is particularly challenging as it is extremely difficult to meet also the requirements

of performance, system usability and scalability.

On the one hand, to meet the effective data retrieval need, the large amount

of documents demand the cloud server to perform result relevance ranking, instead

of returning undifferentiated results. Such ranked search system enables data users

to find the most relevant information quickly, rather than burdensomely sorting

through every match in the content collection [96]. Ranked search can also ele-

gantly eliminate unnecessary network traffic by sending back only the most relevant

data, which is highly desirable in the “pay-as-you-use” cloud paradigm. For privacy

protection, such ranking operation, however, should not leak any keyword related

information. On the other hand, to improve the search result accuracy as well as to

enhance the user searching experience, it is also necessary for such ranking system

to support multiple keywords search, as single keyword search often yields far too

coarse results. As a common practice indicated by today’s web search engines (e.g.,

Google search), data users may tend to provide a set of keywords instead of only one

as the indicator of their search interest to retrieve the most relevant data. And each

keyword in the search request is able to help narrow down the search result further.

“Coordinate matching” [119], i.e., as many matches as possible, is an efficient sim-

ilarity measure among such multi-keyword semantics to refine the result relevance,

and has been widely used in the plaintext information retrieval (IR) community.

However, how to apply it in the encrypted cloud data search system remains a very

40

challenging task because of inherent security and privacy obstacles, including vari-

ous strict requirements like the data privacy, the index privacy, the keyword privacy,

and many others (see section 3.3.2).

In the literature, searchable encryption [7,18,22,23,35,40,51,65,86,98] is a helpful

technique that treats encrypted data as documents and allows a user to securely

search through a single keyword and retrieve documents of interest. However, direct

application of these approaches to the secure large scale cloud data utilization system

would not be necessarily suitable, as they are developed as crypto primitives and

cannot accommodate such high service-level requirements like system usability, user

searching experience, and easy information discovery. Although some recent designs

have been proposed to support Boolean keyword search [16, 24, 29, 52, 55, 59, 63, 67,

93] as an attempt to enrich the search flexibility, they are still not adequate to

provide users with acceptable result ranking functionality (see section 3.7). Our

early works [104,106] have been aware of this problem, and provide solutions to the

secure ranked search over encrypted data problem but only for queries consisting

of a single keyword. How to design an efficient encrypted data search mechanism

that supports multi-keyword semantics without privacy breaches still remains a

challenging open problem.

In this chapter, for the first time, we define and solve the problem of multi-

keyword ranked search over encrypted cloud data (MRSE) while preserving strict

system-wise privacy in the cloud computing paradigm. Among various multi-keyword

semantics, we choose the efficient similarity measure of “coordinate matching”, i.e.,

as many matches as possible, to capture the relevance of data documents to the

search query. Specifically, we use “inner product similarity” [119], i.e., the number

of query keywords appearing in a document, to quantitatively evaluate such similar-

ity measure of that document to the search query. During the index construction,

41

each document is associated with a binary vector as a subindex where each bit rep-

resents whether corresponding keyword is contained in the document. The search

query is also described as a binary vector where each bit means whether corre-

sponding keyword appears in this search request, so the similarity could be exactly

measured by the inner product of the query vector with the data vector. However,

directly outsourcing the data vector or the query vector will violate the index pri-

vacy or the search privacy. To meet the challenge of supporting such multi-keyword

semantic without privacy breaches, we propose a basic idea for the MRSE using se-

cure inner product computation, which is adapted from a secure k-nearest neighbor

(kNN) technique [120], and then give two significantly improved MRSE schemes

in a step-by-step manner to achieve various stringent privacy requirements in two

threat models with increased attack capabilities. Our contributions are summarized

as follows,

1. For the first time, we explore the problem of multi-keyword ranked search

over encrypted cloud data, and establish a set of strict privacy requirements

for such a secure cloud data utilization system.

2. We propose two MRSE schemes based on the similarity measure of “coordinate

matching” while meeting different privacy requirements in two different threat

models.

3. We investigate some further enhancements of our ranked search mechanism to

support more search semantics and dynamic data operations.

4. Thorough analysis investigating privacy and efficiency guarantees of the pro-

posed schemes is given, and experiments on the real-world dataset further

show the proposed schemes indeed introduce low overhead on computation

42

Figure 3.1: Architecture of the search over encrypted cloud data

and communication.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce

the system model, the threat model, our design goals, and the preliminary. Section

3.3 describes the MRSE framework and privacy requirements, followed by section

3.4, which describes the proposed schemes. Section 3.5 discusses supporting more

search semantics and dynamic operation. Section 3.6 presents simulation results.

We discuss related work on both single and Boolean keyword searchable encryption

in Section 3.7, and conclude the chapter in Section 3.8.

3.2 Problem Formulation

3.2.1 System Model

Considering a cloud data hosting service involving three different entities, as illus-

trated in Fig. 3.1: the data owner, the data user, and the cloud server. The data

owner has a collection of data documents F to be outsourced to the cloud server

in the encrypted form C. To enable the searching capability over C for effective

data utilization, the data owner, before outsourcing, will first build an encrypted

searchable index I from F , and then outsource both the index I and the encrypted

43

document collection C to the cloud server. To search the document collection for

t given keywords, an authorized user acquires a corresponding trapdoor T through

search control mechanisms, e.g., broadcast encryption [40]. Upon receiving T from a

data user, the cloud server is responsible to search the index I and return the corre-

sponding set of encrypted documents. To improve the document retrieval accuracy,

the search result should be ranked by the cloud server according to some ranking cri-

teria (e.g., coordinate matching, as will be introduced shortly). Moreover, to reduce

the communication cost, the data user may send an optional number k along with

the trapdoor T so that the cloud server only sends back top-k documents that are

most relevant to the search query. Finally, the access control mechanism [129] is em-

ployed to manage decryption capabilities given to users and the the data collection

can be updated in terms of inserting new documents, updating existing documents

and deleting existing documents.

3.2.2 Threat Model

The cloud server is considered as “honest-but-curious” in our model, which is con-

sistent with related works on cloud security [111,129]. Specifically, the cloud server

acts in an “honest” fashion and correctly follows the designated protocol specifi-

cation. However, it is “curious” to infer and analyze data (including index) in its

storage and message flows received during the protocol so as to learn additional

information. Based on what information the cloud server knows, we consider two

threat models with different attack capabilities as follows.

Known Ciphertext Model In this model, the cloud server is supposed to only

know encrypted dataset C and searchable index I, both of which are outsourced

from the data owner.

44

Known Background Model In this stronger model, the cloud server is supposed

to possess more knowledge than what can be accessed in the known ciphertext model.

Such information may include the correlation relationship of given search requests

(trapdoors), as well as the dataset related statistical information. As an instance

of possible attacks in this case, the cloud server could use the known trapdoor

information combined with document/keyword frequency [131] to deduce/identify

certain keywords in the query.

3.2.3 Design Goals

To enable ranked search for effective utilization of outsourced cloud data under the

aforementioned model, our system design should simultaneously achieve security

and performance guarantees as follows.

• Multi-keyword Ranked Search: To design search schemes which allow

multi-keyword query and provide result similarity ranking for effective data

retrieval, instead of returning undifferentiated results.

• Privacy-Preserving: To prevent the cloud server from learning additional

information from the dataset and the index, and to meet privacy requirements

specified in section 3.3.2.

• Efficiency: Above goals on functionality and privacy should be achieved with

low communication and computation overhead.

3.2.4 Notations

• F – the plaintext document collection, denoted as a set of m data documents

F = (F1, F2, . . . , Fm).

45

• C – the encrypted document collection stored in the cloud server, denoted as

C = (C1, C2, . . . , Cm).

• W – the dictionary, i.e., the keyword set consisting of n keyword, denoted as

W = (W1,W2, . . . ,Wn).

• I – the searchable index associated with C, denoted as (I1, I2, . . . , Im) where

each subindex Ii is built for Fi.

• W̃ – the subset of W , representing the keywords in a search request, denoted

as W̃ = (Wj1 ,Wj2 , . . . ,Wjt).

• TW̃ – the trapdoor for the search request W̃ .

• FW̃ – the ranked id list of all documents according to their relevance to W̃ .

3.2.5 Preliminary on Coordinate Matching

As a hybrid of conjunctive search and disjunctive search, “coordinate matching” [119]

is an intermediate similarity measure which uses the number of query keywords ap-

pearing in the document to quantify the relevance of that document to the query.

When users know the exact subset of the dataset to be retrieved, Boolean queries

perform well with the precise search requirement specified by the user. In cloud

computing, however, this is not the practical case, given the huge amount of out-

sourced data. Therefore, it is more flexible for users to specify a list of keywords

indicating their interest and retrieve the most relevant documents with a rank order.

46

3.3 Framework and Privacy Requirements for MRSE

In this section, we define the framework of multi-keyword ranked search over en-

crypted cloud data (MRSE) and establish various strict system-wise privacy require-

ments for such a secure cloud data utilization system.

3.3.1 MRSE Framework

For easy presentation, operations on the data documents are not shown in the

framework since the data owner could easily employ the traditional symmetric key

cryptography to encrypt and then outsource data. With focus on the index and

query, the MRSE system consists of four algorithms as follows.

• Setup(1ℓ) Taking a security parameter ℓ as input, the data owner outputs a

symmetric key as SK.

• BuildIndex(F , SK) Based on the dataset F , the data owner builds a searchable

index I which is encrypted by the symmetric key SK and then outsourced to

the cloud server. After the index construction, the document collection can be

independently encrypted and outsourced.

• Trapdoor(W̃) With t keywords of interest in W̃ as input, this algorithm gen-

erates a corresponding trapdoor TW̃ .

• Query(TW̃ , k, I) When the cloud server receives a query request as (TW̃ , k),

it performs the ranked search on the index I with the help of trapdoor TW̃ ,

and finally returns FW̃ , the ranked id list of top-k documents sorted by their

similarity with W̃ .

Neither the search control nor the access control is within the scope of this

dissertation. While the former is to regulate how authorized users acquire trapdoors,

47

the later is to manage users’ access to outsourced documents.

3.3.2 Privacy Requirements for MRSE

The representative privacy guarantee in the related literature, such as searchable

encryption, is that the server should learn nothing but search results. With this

general privacy description, we explore and establish a set of strict privacy require-

ments specifically for the MRSE framework.

As for the data privacy, the data owner can resort to the traditional symmetric

key cryptography to encrypt the data before outsourcing, and successfully prevent

the cloud server from prying into the outsourced data. With respect to the index pri-

vacy, if the cloud server deduces any association between keywords and encrypted

documents from index, it may learn the major subject of a document, even the

content of a short document [131]. Therefore, the searchable index should be con-

structed to prevent the cloud server from performing such kind of association attack.

While data and index privacy guarantees are demanded by default in the related

literature, various search privacy requirements involved in the query procedure are

more complex and difficult to tackle as follows.

Keyword Privacy As users usually prefer to keep their search from being exposed

to others like the cloud server, the most important concern is to hide what they are

searching, i.e., the keywords indicated by the corresponding trapdoor. Although the

trapdoor can be generated in a cryptographic way to protect the query keywords,

the cloud server could do some statistical analysis over the search result to make an

estimate. As a kind of statistical information, document frequency (i.e., the number

of documents containing the keyword) is sufficient to identify the keyword with high

probability [130]. When the cloud server knows some background information of the

48

dataset, this keyword specific information may be utilized to reverse-engineer the

keyword.

Trapdoor Unlinkability The trapdoor generation function should be a random-

ized one instead of being deterministic. In particular, the cloud server should not be

able to deduce the relationship of any given trapdoors, e.g., to determine whether

the two trapdoors are formed by the same search request. Otherwise, the deter-

ministic trapdoor generation would give the cloud server advantage to accumulate

frequencies of different search requests regarding different keyword(s), which may

further violate the aforementioned keyword privacy requirement. So the fundamen-

tal protection for trapdoor unlinkability is to introduce sufficient nondeterminacy

into the trapdoor generation procedure.

Access Pattern Within the ranked search, the access pattern is the sequence of

search results where every search result is a set of documents with rank order. Specif-

ically, the search result for the query keyword set W̃ is denoted as FW̃ , consisting

of the id list of all documents ranked by their relevance to W̃ . Then the access

pattern is denoted as (FW̃1
,FW̃2

, . . .) which are the results of sequential searches.

Although a few searchable encryption works, e.g., [29] has been proposed to utilize

private information retrieval (PIR) technique [56, 62, 75, 75, 114, 118], to hide the

access pattern, our proposed schemes are not designed to protect the access pattern

for the efficiency concerns. This is because any PIR based technique must “touch”

the whole dataset outsourced on the server which is inefficient in the large scale

cloud system.

49

3.4 Privacy-Preserving and Efficient MRSE

To efficiently achieve multi-keyword ranked search, we propose to employ “inner

product similarity” [119] to quantitatively evaluate the efficient similarity measure

“coordinate matching”. Specifically, Di is a binary data vector for document Fi

where each bit Di[j] ∈ {0, 1} represents the existence of the corresponding keyword

Wj in that document, and Q is a binary query vector indicating the keywords of

interest where each bit Q[j] ∈ {0, 1} represents the existence of the corresponding

keyword Wj in the query W̃ . The similarity score of document Fi to query W̃ is

therefore expressed as the inner product of their binary column vectors, i.e., Di ·Q.

For the purpose of ranking, the cloud server must be given the capability to compare

the similarity of different documents to the query. But, to preserve strict system-

wise privacy, data vector Di, query vector Q and their inner product Di ·Q should

not be exposed to the cloud server. In this section, we first propose a basic idea for

the MRSE using secure inner product computation, which is adapted from a secure

k-nearest neighbor (kNN) technique, and then show how to significantly improve it

to be privacy-preserving against different threat models in the MRSE framework in

a step-by-step manner.

3.4.1 Secure Inner Product Computation

3.4.1.1 Secure kNN Computation

In the secure k-nearest neighbor (kNN) scheme [120], Euclidean distance between a

data record pi and a query vector q is used to select k nearest database records. The

secret key is composed of one (d+1)-bit vector as S and two (d+1)×(d+1) invertible

matrices as {M1,M2}, where d is the number of fields for each record pi. First, every

data vector pi and query vector q are extended to (d+1)-dimension vectors as p⃗i and

50

q⃗, where the (d + 1)-th dimension is set to −0.5||p2i || and 1, respectively. Besides,

the query vector q⃗ is scaled by a random number r > 0 as (rq, r). Then, p⃗i is split

into two random vectors as {p⃗i′, p⃗i′′}, and q⃗ is also split into two random vectors as

{q⃗ ′, q⃗ ′′}. Note here that vector S functions as a splitting indicator. Namely, if the

j-th bit of S is 0, p⃗i
′[j] and p⃗i

′′[j] are set as the same as p⃗i[j], while q⃗ ′[j] and q⃗ ′′[j]

are set to two random numbers so that their sum is equal to q⃗[j]; if the j-th bit of S

is 1, the splitting process is similar except that p⃗i and q⃗ are switched. The split data

vector pair {p⃗i′, p⃗i′′} is encrypted as {pia, pib}, where pia = MT
1 p⃗i

′ and pib = MT
2 p⃗i

′′;

the split query vector pair {q⃗ ′, q⃗ ′′} is encrypted as {qa, qb}, where qa = M−1
1 q⃗ ′ and

qb = M−1
2 q⃗ ′′. In the query step, the product of data vector pair and query vector

pair, i.e., −0.5r(||pi||2 − 2pi · q), is serving as the indicator of Euclidean distance

(||pi||2 − 2pi · q + ||q||2) to select k nearest neighbors.

Security Analysis in Known Ciphertext Model Similarly with [120], let the

knowledge of the attacker be the encrypted data record and query vector. For any

data record pi, by definition, the attacker knows the encrypted values {pia, pib}.

If the attacker does not know the splitting configuration, he has to model as two

random (d+1)-dimensional vectors. The equations for solving the transformation

matrices areMT
1 p⃗i

′ = pia andMT
2 p⃗i

′′ = pib, whereM1 andM2 are two (d+1)×(d+1)

unknown matrices. There are 2(d+1) unknowns in pia and pib and 2(d+1)2 unknowns

in M1 and M2. Since there are only 2(d + 1) equations, which are less than the

number of unknowns, the attacker does not have sufficient information to solve for

the transformation matrices. Hence, we believe this kNN computation scheme is

secure in the known ciphertext model.

51

3.4.1.2 Secure Inner Product Computation

As the MRSE is using the inner product similarity instead of the Euclidean distance,

we need to do some modifications on the secure kNN computation scheme to fit the

MRSE framework. One way to do that is by eliminating the dimension extension,

the final result changes to be the inner product as rpi · q.

Efficiency Analysis While the encryption of either data record or query vector

involves two multiplications of a d × d matrix and a d-dimension vector with com-

plexity O(d2), the final inner product computation involves two multiplications of

two d-dimension vectors with complexity O(d).

Security Analysis In the known ciphertext model, the splitting vector S is un-

known, so p⃗i
′ and p⃗i

′′ are considered as two random d-dimensional vectors. To solve

the linear equations created by the encryption of data vectors, we have 2dm un-

knowns in m data vectors and 2d2 unknowns in {M1,M2}. Since we have only 2dm

equations, which are less than the number of unknowns, there is no sufficient in-

formation to solve either data vectors or {M1,M2}. Similarly, q⃗ ′ and q⃗ ′′ are also

considered as two random d-dimensional vectors. To solve the linear equations cre-

ated by the encryption of query vectors, we have 2d unknowns in two query vectors

and 2d2 unknowns in {M1,M2}. Since we have only 2d equations here, which are

less than the number of unknowns, there is no sufficient information to solve either

query vectors or {M1,M2}. Therefore, we believe that without prior knowledge of

secret key, neither data vector nor query vector, after such a series of processes

like splitting and multiplication, can be recovered by analyzing their corresponding

ciphertexts.

52

3.4.2 MRSE I: Privacy-Preserving Scheme in Known Ci-

phertext Model

The adapted secure inner product computation scheme is not good enough for our

MRSE design. The major reason is that the only randomness involved is the scale

factor r in the trapdoor generation, which does not provide sufficient nondetermi-

nacy in the overall scheme as required by the trapdoor unlinkability requirement as

well as the keyword privacy requirement. To provide a more advanced design for

the MRSE, we now provide our MRSE I scheme as follows.

3.4.2.1 MRSE I Scheme

In our more advanced design, instead of simply removing the extended dimension

in the query vector as we plan to do at the first glance, we preserve this dimension

extending operation but assign a new random number t to the extended dimension

in each query vector. Such a newly added randomness is expected to increase the

difficulty for the cloud server to learn the relationship among the received trap-

doors. In addition, as mentioned in the keyword privacy requirement, randomness

should also be carefully calibrated in the search result to obfuscate the document

frequency and diminish the chances for re-identification of keywords. Introducing

some randomness in the final similarity score is an effective way towards what we

expect here. More specifically, unlike the randomness involved in the query vector,

we insert a dummy keyword into each data vector and assign a random value to it.

Each individual vector Di is extended to (n+2)-dimension instead of (n+1), where

a random variable εi representing the dummy keyword is stored in the extended

dimension. The whole scheme to achieve ranked search with multiple keywords over

encrypted data is as follows.

53

• Setup The data owner randomly generates a (n + 2)-bit vector as S and two

(n + 2) × (n + 2) invertible matrices {M1,M2}. The secret key SK is in the

form of a 3-tuple as {S,M1,M2}.

• BuildIndex(F , SK) The data owner generates a binary data vector Di for every

document Fi, where each binary bit Di[j] represents whether the correspond-

ing keyword Wj appears in the document Fi. Subsequently, every plaintext

subindex D⃗i is generated by applying dimension extending and splitting pro-

cedures on Di. These procedures are similar with those in the secure kNN

computation except that the (n+1)-th entry in D⃗i is set to a random number

εi, and the (n+2)-th entry in D⃗i is set to 1 during the dimension extending. D⃗i

is therefore equal to (Di, εi, 1). Finally, the subindex Ii = {MT
1 D⃗i

′,MT
2 D⃗i

′′}

is built for every encrypted document Ci.

• Trapdoor(W̃) With t keywords of interest in W̃ as input, one binary vector Q

is generated where each bit Q[j] indicates whether Wj ∈ W̃ is true or false.

Q is first extended to n+ 1-dimension which is set to 1, and then scaled by a

random number r ̸= 0, and finally extended to a (n + 2)-dimension vector as

Q⃗ where the last dimension is set to another random number t. Q⃗ is therefore

equal to (rQ, r, t). After applying the same splitting and encrypting processes

as above, the trapdoor TW̃ is generated as {M−1
1 Q⃗′,M−1

2 Q⃗′′}.

• Query(TW̃ , k, I) With the trapdoor TW̃ , the cloud server computes the similar-

ity scores of each document Fi as in equation 3.1. WLOG, we assume r > 0.

After sorting all scores, the cloud server returns the top-k ranked id list FW̃ .

54

With t brought into the query vector and εi brought into each data vector, the

final similarity scores would be:

Ii · TW̃ = {MT
1 D⃗i

′,MT
2 D⃗i

′′} · {M−1
1 Q⃗′,M−1

2 Q⃗′′}

= D⃗i
′ · Q⃗ ′ + D⃗i

′′ · Q⃗ ′′

= D⃗i · Q⃗

= (Di, εi, 1) · (rQ, r, t)

= r(Di ·Q+ εi) + t. (3.1)

Note that in the original case, the final score is simply rDi ·Q, which preserves

the scale relationship for two queries on the same keywords. But such an issue is

no longer valid in our improved scheme due to the randomness of both t and εi,

which clearly demonstrates the effectiveness and improved security strength of our

MSRE I mechanism.

3.4.2.2 Analysis

We analyze this MRSE I scheme from three aspects of design goals described in

section 3.2.

Functionality and Efficiency Assume the number of query keywords appearing

in a document Fi is xi = Di · Q. From equation 3.1, the final similarity score

as yi = Ii · TW̃ = r(xi + εi) + t is a linear function of xi, where the coefficient

r is set as a positive random number. However, because the random factor εi is

introduced as a part of the similarity score, the final search result on the basis of

sorting similarity scores may not be as accurate as that in original scheme. For the

consideration of search accuracy, we can let εi follow a normal distribution N(µ, σ2),

where the standard deviation σ functions as a flexible trade-off parameter among

55

search accuracy and security. From the consideration of effectiveness, σ is expected

to be smaller so as to obtain high precision indicating the good purity of retrieved

documents. To quantitatively evaluate the search accuracy, we set a measure as

precision Pk to capture the fraction of returned top-k documents that are included

in the real top-k list. Detailed accuracy evaluation on the real-world dataset will be

given in section 3.6.

As for the efficiency, our inner product based MRSE scheme is an outstanding

approach from the performance perspective. In the steps like BuildIndex or Trapdoor,

the generation procedure of each subindex or trapdoor involves two multiplications

of a (n+2)× (n+2) matrix and a (n+2)-dimension vector with complexity O(n2).

In the Query, the final similarity score is computed through two multiplications of

two (n+ 2)-dimension vectors with complexity O(n).

Privacy As for the data privacy, traditional symmetric key encryption techniques

could be properly utilized here and is not within the scope of this dissertation.

The index privacy is well protected if the secret key SK is kept confidential

since such vector encryption method has been proved to be secure in the known

ciphertext model [120]. We add two more dimensions to the vectors compared to

the adapted secure inner product computation described in Section 3.4.1.2. In the

encryption of data vectors, the number of equations as 2(n + 2)m in MT
1 D⃗i

′ = I ′i

and MT
2 D⃗i

′′ = I ′′i is still less than the number of unknowns as the sum of 2(n+2)m

unknowns in m data vectors and 2(n+ 2)2 unknowns in {M1,M2}. As a result, the

attacker cannot solve the equations. Note that the addition of dimensions will only

increase the security of the scheme [120].

With the randomness introduced by the splitting process and the random num-

bers r, and t, our basic scheme can generate two totally different trapdoors for the

same query W̃ . This nondeterministic trapdoor generation can guarantee the trap-

56

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

Final similarity score

of

 d
oc

um
en

ts

(a) σ = 1

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

Final similarity score

of

 d
oc

um
en

ts

(b) σ = 0.5

Figure 3.2: Distribution of final similarity score with different standard deviations,
10k documents, 10 query keywords.

door unlinkability which is an unsolved privacy leakage problem in related symmetric

key based searchable encryption schemes because of the deterministic property of

trapdoor generation [40]. Moreover, with properly selected parameter σ for the ran-

dom factor εi, even the final score results can be obfuscated very well, preventing the

cloud server from learning the relationships of given trapdoors and the correspond-

ing keywords. Note that although σ is expected to be small from the effectiveness

point of view, the small one will introduce small obfuscation into the the final sim-

ilarity scores, which may weaken the protection of keyword privacy and trapdoor

57

unlinkability. As shown in Fig. 3.2, the distribution of the final similarity scores with

smaller σ will enable the cloud server to learn more statistical information about

the original similarity scores, and therefore σ should be set large enough from the

consideration of privacy.

3.4.3 MRSE II: Privacy-Preserving Scheme in Known Back-

ground Model

When the cloud server has knowledge of some background information on the out-

sourced dataset, e.g., the correlation relationship of two given trapdoors, certain

keyword privacy may not be guaranteed anymore by the MRSE I scheme. This

is possible in the known background model because the cloud server can use scale

analysis as follows to deduce the keyword specific information, e.g., document fre-

quency, which can be further combined with background information to identify the

keyword in a query at high probability. After presenting how the cloud server uses

scale analysis attack to break the keyword privacy, we propose a more advanced

MRSE scheme to be privacy-preserving in the known background model.

3.4.3.1 Scale Analysis Attack

Given two correlated trapdoors T1 and T2 for query keywords {K1, K2} and {K1, K2, K3}

respectively, there will be two special cases when searching on any three documents

as listed in Tab. 3.1 and Tab. 3.2. In any of these two cases, there exists a system

58

Table 3.1: K3 appears in every document
Doc Query for {K1, K2, K3} Query for {K1, K2}
1 x1 = 3, y1 = r(3 + ε1) + t x′

1 = 2, y′1 = r′(2 + ε1) + t′

2 x2 = 2, y2 = r(2 + ε2) + t x′
2 = 1, y′2 = r′(1 + ε2) + t′

3 x3 = 1, y3 = r(1 + ε3) + t x′
3 = 0, y′3 = r′(0 + ε3) + t′

of equations among final similarity scores yi for T1 and y′i for T2 as follows,

y1 − y2 = r(1 + ε1 − ε2);

y′1 − y′2 = r′(1 + ε1 − ε2);

y2 − y3 = r(1 + ε2 − ε3);

y′2 − y′3 = r′(1 + ε2 − ε3);

y1 − y3 = r(2 + ε1 − ε3);

y′1 − y′3 = r′(2 + ε1 − ε3).

(3.2)

To this end, although the exact value of xi is encrypted as yi, the cloud server could

deduce that whether all the three documents contain K3 or none of them contain

K3 through checking the following equivalence relationship among all final similarity

scores in two queries,

y1 − y2
y′1 − y′2

=
y2 − y3
y′2 − y′3

=
y1 − y3
y′1 − y′3

. (3.3)

By extending three documents to the whole dataset, the cloud server could further

deduce two possible values of document frequency of keyword K3. In the known

background model, the server can identify the keyword K3 by referring to the key-

word specific document frequency information about the dataset.

59

Table 3.2: K3 does not appear in either document
Doc Query for {K1, K2, K3} Query for {K1, K2}
1 x1 = 2, y1 = r(2 + ε1) + t x′

1 = 2, y′1 = r′(2 + ε1) + t′

2 x2 = 1, y2 = r(1 + ε2) + t x′
2 = 1, y′2 = r′(1 + ε2) + t′

3 x3 = 0, y3 = r(0 + ε3) + t x′
3 = 0, y′3 = r′(0 + ε3) + t′

3.4.3.2 MRSE II Scheme

The privacy leakage shown above is caused by the fixed value of random variable εi

in data vector Di. To eliminate such fixed property in any specific document, more

dummy keywords instead of only one should be inserted into every data vector Di.

All the vectors are extended to (n+U +1)-dimension instead of (n+2), where U is

the number of dummy keywords inserted. Improved details in the MRSE II scheme

is presented as follows.

• Setup(1n) The data owner randomly generates a (n + U + 1)-bit vector as S

and two (n+ U + 1)× (n+ U + 1) invertible matrices {M1,M2}.

• BuildIndex(F , SK) The (n + j + 1)-th entry in D⃗i where j ∈ [1, U] is set to a

random number ε(j) during the dimension extending.

• Trapdoor(W̃) By randomly selecting V out of U dummy keywords, the corre-

sponding entries in Q are set to 1.

• Query(TW̃ , k, I) The final similarity score computed by cloud server is equal

to r(xi +
∑

ε
(v)
i) + ti where the v-th dummy keyword is included in the V

selected ones.

3.4.3.3 Analysis

Assume the probability of two
∑

ε
(v)
i having the same value should be less than 1/2ω,

it then means there should be at least 2ω different values of
∑

ε
(v)
i for each data

60

vector. The number of different
∑

ε
(v)
i is not larger than (UV), which is maximized

when U
V

= 2. Besides, considering (UV) ≥ (U
V
)V = 2V , it is greater than 2ω when

U = 2ω and V = ω. So every data vector should include at least 2ω dummy entries,

and every query vector will randomly select half dummy entries. Here ω can be

considered as a system parameter for the tradeoff between efficiency and privacy.

With properly setting the value of ω, the MRSE II scheme is secure against scale

analysis attack, and provides various expected privacy guarantees within the known

ciphertext model or the known background model.

Moreover, every ε(j) is assumed to follow the same uniform distribution M(µ′ −

c, µ′ + c), where the mean is µ′ and the variance as σ′2 is c2/3. According to the

central limit theorem, the sum of ω independent random variables ε(j) follows the

Normal distribution, where the mean is ωµ′ and the variance is ωσ′2 = ωc2/3. To

make
∑

ε
(v)
i follow the Normal distribution N(µ, σ2) as above, the value of µ′ is set

as µ/ω and the value of c is set as
√

3
ω
σ so that ωµ′ = µ and ωσ′2 = σ2. With

such parameter setting, search accuracy is statistically the same as that in MRSE I

scheme.

3.5 Discussion

3.5.1 Supporting More Search Semantics

In the ranking principle “coordinate matching”, the presence of keyword in the

document or the query is shown as 1 in the data vector or the query vector. Actually,

there are more factors which could make impact on the search usability. For example,

when one keyword appears in most documents in the dataset, the importance of this

keyword in the query is less than other keywords which appears in less documents.

Similarly, if one document contains a query keyword in multiple locations, the user

61

may prefer this to the other document which contains the query keyword in only

one location. To capture these information in the search process, we use the TF

× IDF weighting rule within the vector space model to calculate the similarity,

where TF (or term frequency) is the number of times a given term or keyword

(we will use them interchangeably hereafter) appears within a file (to measure the

importance of the term within the particular file), and IDF (or inverse document

frequency) is obtained by dividing the number of files in the whole collection by

the number of files containing the term (to measure the overall importance of the

term within the whole collection). Among several hundred variations of the TF ×

IDF weighting scheme, no single combination of them outperforms any of the others

universally [134]. Thus, without loss of generality, we choose an example formula

that is commonly used and widely seen in the literature (see Chapter 4 in [96]) for

the relevance score calculation,

Score(Fi, Q) =
1

|Fi|
∑

Wj∈W̃

(1 + ln fi,j) · ln(1 +
m

fj
). (3.4)

Here fi,j denotes the TF of keyword Wj in file Fi; fj denotes the number of files

that contain keyword Wj which is called document frequency; m denotes the total

number of files in the collection; and |Fi| is the Euclidean length of file Fi, obtained

by

√
n∑

j=1

(1 + ln fi,j)2, functioning as the normalization factor.

In order to calculate the relevance score as shown in Eq. 3.4 on the server side, we

propose a new search mechanism MRSE I TF as follows which modify related data

structures in the previous scheme MRSE I. As for the dictionary W , the document

frequency fj is attached to every keyword Wj, which will be used in the generation

of query vector. In BuildIndex, for every keyword Wj appearing in the document

Fi, the corresponding entry Di[j] in the data vector Di is changed from a binary

62

value 1 to the normalized term frequency, i.e.,
1+ln fi,j

|Fi| . Similarly, the query vector

Q changes corresponding entries from 1 to ln(1 + m
fj
). Finally, the similarity score

is as follows,

Ii · TW̃ = r(Di ·Q+ εi) + t

= r(
∑
Wj∈Q

1 + ln fi,j
|Fi|

· ln(1 + m

fj
) + εi) + t

= r(Score(Fi, Q) + εi) + t. (3.5)

Therefore, the similarity of the document and the query in terms of the cosine of

the angle between the document vector and the query vector could be evaluated by

computing the inner product of subindex Ii and trapdoor TW̃ . Although this similar-

ity measurement introduces more computation cost during the index construction

and trapdoor generation, it captures more related information on the content of

documents and query which returns better results of users’ interest. As we will see

in section 3.6, the additional cost of this measurement in BuildIndex and Trapdoor

is relatively small compared to the whole cost. Besides, BuildIndex is a one-time

computation for the whole scheme.

Here, although some entries in Di have been changed from binary value 1 to

normalized term frequency, the scale analysis attack presented in section 3.4.2 still

partially works in the known background model. With similar setting in the previous

section, the first query contains two keywords as {K1, K2} while the second query

contains three keywords as {K1, K2, K3}. Given three documents as an example, the

first keyword K1 appears in two documents as F1 and F2, and the second keyword

K2 appears in document F1. Note that there are some difference between this attack

and previous one. If the third keyword K3 appears in each of these three documents

as shown in Tab. 3.1, such equivalence relationship as shown in in Eq. 3.3 does no

63

exist among these documents here. Here we only consider the case that the third

keyword K3 does not appear in any of these three documents. The final similarity

scores are shown as follows,

y1 = r(
1 + ln f1,1
|F1|

· ln(1 + m

f1
) +

1 + ln f1,2
|F1|

· ln(1 + m

f2
) + ε1) + t;

y2 = r(
1 + ln f2,1
|F2|

· ln(1 + m

f1
) + ε2) + t;

y3 = rε3 + t;

y′1 = r′(
1 + ln f1,1
|F1|

· ln(1 + m

f1
) +

1 + ln f1,2
|F1|

· ln(1 + m

f2
) + ε1) + t′;

y′2 = r′(
1 + ln f2,1
|F2|

· ln(1 + m

f1
) + ε2) + t′;

y′3 = r′ε3 + t′.

(3.6)

Recall that the scale analysis attack presented in section 3.4.2, it is caused by

the fixed value of random variable εi in each data vector Di which remains same

here. From Eq. 3.6, the cloud server can still deduce the equivalence relationship as

presented in Eq. 3.3. As a result, the document frequency could be exposed to cloud

server and further used to identify this keyword in the known background model.

To this end, we can employ the same solution as presented in MRSE II to build the

new mechanism as MRSE II TF where more dummy keywords instead of only one

are inserted into data vectors.

3.5.2 Supporting Data Dynamics

After the dataset is outsourced to the cloud server, it may be updated in addition to

being retrieved [109]. Along with the updating operation on data documents, sup-

porting the score dynamics in the searchable index is thus of practical importance.

While we consider three dynamic data operations as inserting new documents, modi-

64

fying existing documents and deleting existing documents, corresponding operations

on the searchable index includes generating new index, updating existing index and

deleting existing index. Since dynamic data operations also affect the document

frequency of corresponding keywords, we also need to update the dictionary W .

For the operation of inserting new documents in the dataset, there may be some

new keywords in new documents which need to be inserted in the dictionaryW . Re-

member that every subindex in our scheme has fixed dimension as same as the num-

ber of keywords in the old dictionary, so the straightforward solution is to retrieve

all the subindexes from the cloud server, and then decrypt, rebuild and encrypt

them before outsourcing to the cloud server. However, this approach introduces

much cost on computation and communication for both sides which is impractical

in the “pay-as-you-use” cloud paradigm. To reduce such great cost, we preserve

some blank entries in the dictionary and set corresponding entries in each data vec-

tor as 0. If the dictionary needs to index new keywords in the case of inserting new

documents, we just replace the blank entries in the dictionary by new keywords,

and generate subindexes for new documents based on the updated dictionary. The

other documents and their subindexes stored on the cloud server are not affected

and therefore remain the same as before. The number of preserved entries functions

as a tradeoff parameter to balance the storage cost and the system scalability.

When existing documents are modified, corresponding subindexes are also re-

trieved from the cloud server and then updated in terms of the term frequency

before outsourcing. If new keywords are introduced during the modification op-

eration, we utilize the same method which is proposed in the previous insertion

operation. As a special case of modification, the operation of deleting existing doc-

uments introduce less computation and communication cost since it only requires to

update the document frequency of all the keywords contained by these documents.

65

3.6 Performance Analysis

In this section, we demonstrate a thorough experimental evaluation of the proposed

technique on a real-world dataset: the Enron Email Dataset [39]. We randomly

select different number of emails to build dataset. The whole experiment system is

implemented by C language on a Linux Server with Intel Xeon Processor 2.93GHz.

The public utility routines by Numerical Recipes are employed to compute the

inverse of matrix. The performance of our technique is evaluated regarding the

efficiency of four proposed MRSE schemes, as well as the tradeoff between search

precision and privacy.

3.6.1 Precision and Privacy

As presented in Section 3.4, dummy keywords are inserted into each data vector and

some of them are selected in every query. Therefore, similarity scores of documents

will be not exactly accurate. In other words, when the cloud server returns top-k

documents based on similarity scores of data vectors to query vector, some of real

top-k relevant documents for the query may be excluded. This is because either their

original similarity scores are decreased or the similarity scores of some documents

out of the real top-k are increased, both of which are due to the impact of dummy

keywords inserted into data vectors. To evaluate the purity of the k documents

retrieved by user, we define a measure as precision Pk = k′/k where k′ is number of

real top-k documents that are returned by the cloud server. Fig. 3.3(a) shows that

the precision in MRSE scheme is evidently affected by the standard deviation σ of

the random variable ε. From the consideration of effectiveness, standard deviation

σ is expected to be smaller so as to obtain high precision indicating the good purity

of retrieved documents.

66

50 70 90 110 130 150
50

60

70

80

90

100

of retrieved documents

P
re

ci
si

on
 (

%
)

σ = 1
σ = 0.5

(a) Precision

50 70 90 110 130 150
0

10

20

30

40

50

of retrieved documents

R
an

k
P

riv
ac

y
(%

)

σ = 1
σ = 0.5

(b) Rank Privacy

Figure 3.3: With different choice of standard deviation σ for the random variable ε,
there exists tradeoff between (a) Precision, and (b) Rank Privacy.

However, user’s rank privacy may have been partially leaked to the cloud server

as a consequence of small σ. As described in section 3.3.2, the access pattern is

defined as the sequence of ranked search results. Although search results cannot

be protected (excluding costly PIR technique), we can still hide the rank order of

retrieved documents as much as possible. In order to evaluate this privacy guarantee,

we first define the rank perturbation as p̃i = |ri−r′i|/k, where ri is the rank number

of document Fi in the retrieved top-k documents and r′i is its rank number in the

real ranked documents. The overall rank privacy measure at point k is then defined

67

as the average of all the p̃i for every document i in the retrieved top-k documents,

denoted as P̃k =
∑

p̃i/k. Fig. 3.3(b) shows the rank privacy at different points with

two standard deviations σ = 1 and σ = 0.5 respectively.

From these two figures, we can see that small σ leads to higher precision of

search result but lower rank privacy guarantee, while large σ results in higher rank

privacy guarantee but lower precision. In other words, our scheme provides a balance

parameter for data users to satisfy their different requirements on precision and rank

privacy.

3.6.2 Efficiency

3.6.2.1 Index Construction

To build a searchable subindex Ii for each document Fi in the dataset F , the first

step is to map the keyword set extracted from the document Fi to a data vector Di,

followed by encrypting every data vector. The time cost of mapping or encrypting

depends directly on the dimensionality of data vector which is determined by the

size of the dictionary, i.e., the number of indexed keywords. And the time cost of

building the whole index is also related to the number of subindex which is equal

to the number of documents in the dataset. Fig. 3.4(a) shows that, given the same

dictionary where |W| = 4000, the time cost of building the whole index is nearly

linear with the size of dataset since the time cost of building each subindex is fixed.

Fig. 3.4(b) shows that the number of keywords indexed in the dictionary determines

the time cost of building a subindex. As presented in the section 3.4.1, the major

computation to generate a subindex in MRSE I includes the splitting process and

two multiplications of a (n + 2) × (n + 2) matrix and a (n + 2)-dimension vector

where n = |W|, both of which have direct relationship with the size of dictionary.

68

(a) For the different size of dataset with the same
dictionary, n = 4000

(b) For the same dataset with different size of
dictionary, m = 1000

Figure 3.4: Time cost of building index.

The dimensionality of matrices in MRSE II is (n + U + 1) × (n + U + 1) so that

its index construction time with complexity O(m(n + U)2) is bigger than that in

MRSE I with complexity O(mn2) as shown in both Fig. 3.4(a) and Fig. 3.4(b). As

presented in section 3.5.1, both MRSE I TF and MRSE II TF introduce more com-

putation during the index construction since we need to collect the term frequency

information for each keyword in every document and then perform the normaliza-

tion calculation. But, as shown in both figures, such additional computation in the

TF × IDF weighting rule is insignificant considering much more computation are

69

caused by the splitting process and matrix multiplication. Although the time of

building index is not a negligible overhead for the data owner, this is a one-time

operation before data outsourcing. Besides, Tab. 3.3 lists the storage overhead of

each subindex in two MRSE schemes within different sizes of dictionary. The size of

subindex with complexity O(n) is absolutely linear with the dimensionality of data

vector which is determined by the number of keywords in the dictionary. The sizes

of subindex are very close in the two MRSE schemes because of trivial differences

in the dimensionality of data vectors.

3.6.2.2 Trapdoor Generation

Fig. 3.5(a) shows that the time to generate a trapdoor is greatly affected by the

number of keywords in the dictionary. Like index construction, every trapdoor

generation incurs two multiplications of a matrix and a split query vector, where

the dimensionality of matrix or query vector is different in two proposed schemes

and becomes larger with the increasing size of dictionary. Fig. 3.5(b) demonstrates

the trapdoor generation cost in the MRSE II scheme with complexity O((n+ U)2)

is about 10 percentages larger than that in the MRSE I scheme with complexity

O(n2). The MRSE I TF and MRSE II TF have similar difference where the ad-

ditional logarithm computation accounts for very small proportion of the whole

trapdoor generation. Like the subindex generation, the difference of costs to gen-

erate trapdoors is majorally caused by the different dimensionality of vector and

matrices in the two MRSE schemes. More importantly, it shows that the number of

query keywords has little influence on the overhead of trapdoor generation, which is

a significant advantage over related works on multi-keyword searchable encryption.

70

(a) For the same query keywords within different
sizes of dictionary, t = 10

(b) For different numbers of query keywords
within the same dictionary, n = 4000

Figure 3.5: Time cost of generating trapdoor.

3.6.2.3 Query

Query execution in the cloud server consists of computing and ranking similarity

scores for all documents in the dataset. The computation of similarity scores for the

whole data collection is O(mn) in MRSE I and MRSE I TF, and the computation

increases to O(m(n + U)) in MRSE II and MRSE II TF. Fig. 3.6 shows the query

time is dominated by the number of documents in the dataset while the number of

keywords in the query has very slight impact on it like the cost of trapdoor generation

71

(a) For the same query keywords in different sizes
of dataset, t = 10

(b) For different numbers of query keywords in
the same dataset, m = 1000

Figure 3.6: Time cost of query.

above. The two schemes in the known ciphertext model as MRSE I and MRSE I TF

have very similar query speed since they have the same dimensionality which is the

major factor deciding the computation cost in the query. The query speed difference

between MRSE I and MRSE I TF or between MRSE II and MRSE II TF is also

caused by the dimensionality of data vector and query vector. With respect to the

communication cost in Query, the size of the trapdoor is the same as that of the

subindex listed in the Tab. 3.3, which keeps constant given the same dictionary,

72

Table 3.3: Size of subindex/trapdoor
Size of dictionary 4000 6000 8000 10000 12000
MRSE I (KB) 31.3 46.9 62.5 78.1 93.8
MRSE II (KB) 32.5 48.1 63.8 79.4 95.0

no matter how many keywords are contained in a query. While the computation

and communication cost in the query procedure is linear with the number of query

keywords in other multiple-keyword search schemes [24, 52], our proposed schemes

introduce nearly constant overhead while increasing the number of query keywords.

3.7 Related Work

3.7.1 Single Keyword Searchable Encryption

Traditional single keyword searchable encryption schemes [6,7,15,17,18,22,23,27,35,

40,51,65,98,104,106,115] usually build an encrypted searchable index such that its

content is hidden to the server unless it is given appropriate trapdoors generated via

secret key(s) [58]. It is first studied by Song et al. [98] in the symmetric key setting,

in which each word in the document is encrypted independently under a special

two-layered encryption construction. Thus, a searching overhead is linear to the

whole file collection length. Goh [51] developed a Bloom Filter based per-file index,

reducing the work load for each search request proportional to the number of files

in the collection. Chang et al. [35] also developed a similar per-file index scheme.

To further enhance search efficiency, Curtmola et al. [40] proposed a per-keyword

based approach, where a single encrypted hash table index is built for the entire file

collection, with each entry consisting of the trapdoor of a keyword and an encrypted

set of related file identifiers. Searchable encryption has also been considered in the

public-key setting. Boneh et al. [22] presented the first public-key based searchable

73

encryption scheme, with an analogous scenario to that of [98]. In their construction,

anyone with the public key can write to the data stored on the server but only

authorized users with the private key can search. Improved definitions are proposed

in [7]. Compared to symmetric searchable encryption, public key solutions are

usually very computationally expensive. Furthermore, the keyword privacy could

not be protected in the public key setting since server could encrypt any keyword

with public key and then use the received trapdoor to evaluate this ciphertext.

Besides, aiming at tolerance of both minor typos and format inconsistencies in

the user search input, fuzzy keyword search over encrypted cloud data has been

proposed by Li. et al.in [65] and further extended by Wang. et al. [108]. Note that

none of all these schemes support the ranked search problem which we are focusing

in this chapter. As an attempt to enrich query experience, our early works [104,106]

solve secure ranked keyword search which utilizes keyword frequency to rank results

instead of return undifferentiated results. However, it only supports single keyword

ranked search.

3.7.2 Boolean Keyword Searchable Encryption

To expand search functionalities, conjunctive keyword search [14,16,24,28,29,52,55,

76, 77, 80, 97] over encrypted data have been proposed. The trapdoor construction

in most of these schemes clearly indicates which keyword field will be searched in

a query, and therefore exposes information related to keyword privacy and search

pattern. These schemes incur large overhead caused by their fundamental primi-

tives, such as computation cost by bilinear map, e.g. [24], or communication cost by

secret sharing, e.g. [16]. As a more general search approach, predicate encryption

schemes [59, 63, 93, 95] are recently proposed to support both conjunctive and dis-

junctive keyword search capabilities, and even support inner product. Conjunctive

74

keyword search returns “all-or-nothing”, which means it only returns those docu-

ments in which all the keywords specified by the search query appear; disjunctive

keyword search returns undifferentiated results, which means it returns every doc-

ument that contains a subset of the specific keywords, even only one keyword of

interest. Note that, inner product queries in predicate encryption only predicates

whether two vectors are orthogonal or not, i.e., the inner product value is concealed

except when it equals zero. Without providing the capability to compare concealed

inner products, predicate encryption is not qualified for performing ranked search.

In short, none of existing Boolean keyword searchable encryption schemes support

multiple keywords ranked search over encrypted cloud data while preserving privacy

as we explore in this chapter. Furthermore, most of these schemes are built upon

the expensive evaluation of pairing operations on elliptic curves. Search query is

first converted into a polynomial before generating a trapdoor, and computation

complexity is polynomial on dt where t is the number of variables and d is the

maximum degree of the resulting polynomial in each variable [59]. Such inefficiency

disadvantage also limits their practical performance when deployed in the cloud.

Portions of the work studied in this chapter were presented as extended abstract at

the 30th IEEE Conference on Computer Communications (INFOCOM’11) [30]. In

this chapter we extend and improve more technical details as compared to [30].

3.7.3 Secure Top-K Retrieval from Database Community

In database community, [8, 21, 48, 102, 130] are the most related works to our pro-

posed search schemes. The idea of uniformly distributing posting elements using an

order-preserving cryptographic function was first discussed in [102]. However, the

order-preserving mapping function proposed in [102] does not support score dynam-

ics, i.e., any insertion and updates of the scores in the index will result in the posting

75

list completely rebuilt. [130] uses a different order-preserving mapping based on

pre-sampling and training of the relevance scores to be outsourced, which is not

as efficient as our proposed schemes. When scores following different distributions

need to be inserted, their score transformation function still needs to be rebuilt. On

the contrary, in our scheme the score dynamics can be gracefully handled. We note

that supporting score dynamics, which can save quite a lot of computation over-

head when file collection changes, is a significant advantage in our scheme. Most

important, all the works based on order-preserving mapping techniques do not well

support multi-keyword search. Since the order-preserving mapping is only designed

for every single keyword, the simple sum of encrypted scores does not preserve the

order of the sum of original scores. [48] does not take into consideration the term

frequency of keywords during the query which causes the low search quality.

3.7.4 Other Related Techniques

Allowing range queries over encrypted data has been studied in both public key

setting [24, 94], where advanced privacy preserving schemes were proposed to allow

more sophisticated multi-attribute search over encrypted files. Though these two

schemes provide provably strong security, they do not support the ordered result

listing on the server side. Thus, they can not be effectively utilized in our settings

since the user still does not know which retrieved files would be the most relevant.

Related research on range queries in symmetric key setting [9, 10] do not provide

provable security guarantee.

76

3.8 Conclusion

In this chapter, for the first time we define and solve the problem of multi-keyword

ranked search over encrypted cloud data, and establish a variety of privacy require-

ments. Among various multi-keyword semantics, we choose the efficient similarity

measure of “coordinate matching”, i.e., as many matches as possible, to effectively

capture the relevance of outsourced documents to the query keywords, and use “inner

product similarity” to quantitatively evaluate such similarity measure. For meeting

the challenge of supporting multi-keyword semantic without privacy breaches, we

propose a basic idea of MRSE using secure inner product computation. Then we

give two improved MRSE schemes to achieve various stringent privacy requirements

in two different threat models. We also investigate some further enhancements of our

ranked search mechanism, including supporting more search semantics, i.e., TF ×

IDF, and dynamic data operations. Thorough analysis investigating privacy and ef-

ficiency guarantees of proposed schemes is given, and experiments on the real-world

dataset show our proposed schemes introduce low overhead on both computation

and communication.

77

Chapter 4

Privacy-Preserving Query over

Encrypted Graph-Structured Data

4.1 Introduction

In the increasingly prevalent cloud computing, datacenters play a fundamental role

as the major cloud infrastructure providers [11], such as Amazon, Google, and Mi-

crosoft. Datacenters provide the utility computing service to software providers who

further provide the application service to end users through Internet. The later ser-

vice has long been called “Software as a Service (SaaS)”, and the former service has

recently been called “Infrastructure as a Service (IaaS)”, where the software service

provider is also referred to as cloud service provider. To take advantage of computing

and storage resources provided by cloud infrastructure providers, data owners out-

source more and more data to the datacenters [58] through cloud service providers,

e.g., the online storage service provider, which are not fully trusted by data owners.

As a general data structure to describe the relation between entities, the graph has

been increasingly used to model complicated structures and schemaless data, such

78

as the personal social network (the social graph), the relational database, XML doc-

uments and chemical compounds studied by research labs [38, 91, 92, 128, 132, 133].

Images in the personal album can also be modeled as the attributed relational graph

(ARG) [20]. For the protection of users’ privacy, these sensitive data have to be en-

crypted before outsourcing to the cloud. Moreover, some data are supposed to be

shared among trusted partners. For example, the album owner may share family

party photos with only authorized users including family members and friends. For

another example, the lab director and members are given the authorization to access

the entire lab data. In both cases, authorized users are usually planning to retrieve

some portion of data they are interested rather than the entire dataset, mostly be-

cause of the “pay-for-use” billing rule in the cloud computing paradigm. Considering

the large amount of data centralized in the datacenter, it is a very challenging task

to effectively utilize the graph-structured data after encryption.

With the conventional graph data utilization method, we first take the query

graph as an input, and then perform the graph containment query: given a query

graph as Q and a collection of data graphs as G = (G1, G2, . . . , Gm), find all the

supergraphs of Q in G, denoted as GQ. The straightforward solution is to check

whether Q is subgraph isomorphic to every Gi in G or not. However, checking sub-

graph isomorphism is NP-complete, and therefore it is infeasible to employ such

costly solution. To efficiently solve the graph containment query problem, there

have been a lot of proposed techniques [38, 91, 92, 128, 132, 133], most of which fol-

low the principle of “filtering-and-verification”. In the filtering phase, a pre-built

feature-based index is utilized to prune as many data graphs from the dataset as

possible and output the candidate supergraph set. Every feature in the index is a

fragment of a data graph, e.g., the subgraph. In the verification phase, each candi-

date supergraph is verified by checking subgraph isomorphism. Since the candidate

79

supergraph set is much smaller than the entire dataset, such approach involves less

subgraph isomorphism checking, and therefore is significantly more efficient than the

straightforward solution. However, when data graphs are stored in the encrypted

form in the cloud, the encryption excludes the filtering method which is based on the

plaintext index. Recently, Chase and Kamara proposed structured encryption [36]

to handle private access to parts of a large graph in encrypted form; yet only simple

operations such as neighbor queries are supported.

In the most related literature, the searchable encryption [22,30,40,64,65,106] is

a helpful technique that treats encrypted data as documents and allows a user to

securely search over it through specifying single keyword or multiple keywords with

Boolean relations. However, the direct application of these approaches to deploy

the secure large scale cloud data utilization system would not be necessarily suit-

able. The keyword-based search provides much less semantics than the graph-based

query since the graph could characterize more complicated relations than Boolean

relation. More importantly, these searchable encryption schemes are developed as

crypto primitives and cannot accommodate such high service-level requirements like

system usability, user query experience, and easy information discovery in mind.

Therefore, how to design an efficient encrypted query mechanism which supports

graph semantics without privacy breaches still remains a challenging open problem.

In this chapter, for the first time, we define and solve the problem of privacy-

preserving graph query in cloud computing (PPGQ). To reduce the times of checking

subgraph isomorphism, we adopt the efficient principle of “filtering-and-verification”

to prune as many negative data graphs as possible before verification. A feature-

based index is firstly built to provide feature-related information about every en-

crypted data graph. Then, we choose the efficient inner product as the pruning tool

to carry out the filtering procedure. To achieve this functionality in index construc-

80

tion, each data graph is associated with a binary vector as a subindex where each bit

represents whether the corresponding feature is subgraph isomorphic to this data

graph or not. The query graph is also described as a binary vector where each bit

means whether the corresponding feature is contained in this query graph or not.

The inner product of the query vector and the data vector could exactly measure the

number of query features contained in the data graph, which is used to filter negative

data graphs that do not contain the query graph. However, directly outsourcing the

data vector or the query vector will violate the index privacy or the query privacy.

To meet the challenge of supporting graph semantics without privacy breaches, we

propose a secure inner product computation mechanism, which is adapted from a

secure k-nearest neighbor (kNN) technique [120], and then show our improvements

on it to achieve various privacy requirements under the known-background threat

model. Our contributions are summarized as follows,

1) For the first time, we explore the problem of query over encrypted graph-structured

data in cloud computing, and establish a set of strict privacy requirements for such

a secure cloud data utilization system to become a reality.

2) Our proposed scheme follows the principle of “filtering-and-verification” for ef-

ficiency consideration, and thorough analysis investigating privacy and efficiency

guarantees of the proposed scheme is given.

3) The evaluation, which is performed with the widely-used AIDS antiviral screen

dataset on the Amazon EC2 cloud infrastructure, further shows our proposed scheme

introduces low computation and communication overhead.

The remainder of this chapter is organized as follows. In Section 4.2, we intro-

duce the system model, the threat model and our design goals. Section 4.3 gives

preliminaries, and section 4.4 describes the framework and privacy requirements

in PPGQ, followed by section 4.5, which gives our proposed scheme. Section 4.6

81

Figure 4.1: Architecture of graph query over encrypted cloud data

presents evaluation results. We discuss related work on both keyword searchable

encryption and graph containment query in Section 4.7, and conclude the chapter

in Section 4.8.

4.2 Problem Formulation

4.2.1 The System Model

Considering a cloud data storage service, involving four different entities: the data

owner, the data user, the storage service provider/cloud service provider, and the

datacenter/cloud infrastructure provider. To take advantage of the utility comput-

ing services provided by the datacenter, e.g., computing and storage resources, the

storage service provider deploys its storage service on top of the utility computing

in datacenter and delivers the service to end users (including data owners and data

users) through Internet. In our system model, neither cloud service provider nor

cloud infrastructure provider is fully trusted by data owners or data users, so they

are treated as an integrated entity, named the cloud server, as shown in Fig. 4.1.

The data owner has a graph-structured dataset G to be outsourced to the cloud

server in the encrypted form G̃. To enable the query capability over G̃ for effective

data utilization, the data owner will build an encrypted searchable index I from G

82

before data outsourcing, and then both the index I and the encrypted graph dataset

G̃ are outsourced to the cloud server. For every query graph Q, an authorized user

acquires a corresponding trapdoor TQ through the search control mechanism, e.g.,

broadcast encryption [40], and then sends it to the cloud server. Upon receiving TQ

from data users, the cloud server is responsible to perform query over the encrypted

index I and return the encrypted candidate supergraphs. Finally, data users decrypt

the candidate supergraphs through the access control mechanism, and verify each

candidate by checking subgraph isomorphism.

4.2.2 The Known Background Threat Model

The cloud server is considered as “honest-but-curious” in our model, which is con-

sistent with most related works on searchable encryption [30, 129]. Specifically, the

cloud server acts in an “honest” fashion and correctly follows the designated pro-

tocol specification. However, it is “curious” to infer and analyze the data and the

index in its storage and interactions during the protocol so as to learn additional

information. The encrypted data G̃ and searchable index I can be easily obtained

by the cloud server, because both of them are outsourced and stored on the cloud

server. In addition to these encrypted information, the cloud server is supposed to

know some backgrounds on the dataset, such as its subject and related statistical

information. As a possible attack similar to that in [130], the cloud server could

utilize the feature frequency to identify features contained in the query graph.

4.2.3 Design Goals

To enable the graph query for the effective utilization of outsourced cloud data under

the aforementioned model, our design should simultaneously achieve security and

performance guarantees.

83

• Effectiveness: To design a graph query scheme that introduces few false

positives in the candidate supergraph set.

• Privacy: To prevent the cloud server from learning additional information

over outsourced data and index in query interactions, and to meet privacy

requirements specified in section 4.4.3.

• Efficiency: Above goals on effectiveness and privacy should be achieved with

low communication and computation overhead.

4.2.4 Notations

• G – the graph-structured dataset, denoted as a collection of m data graphs

G = (G1, G2, . . . , Gm).

• G̃ – the encrypted graph-structured dataset outsourced into the cloud, denoted

as G̃ = (G̃1, G̃2, . . . , G̃m).

• id(Gi) – the identifier of the data graph Gi that can help uniquely locate the

graph.

• F – the feature set mined from the graph dataset, denoted asF = (F1, F2, . . . , Fn).

• D – the frequent feature dictionary, denoted asD = {LF1 ,LF2 , . . . ,LFn}, where

LFj
is the unique canonical label of Fj;

• I – the searchable index associated with G̃, denoted as (I1, I2, . . . , Im), where

each subindex Ii is built from Gi.

• Q – the query graph from the data user.

• FQ – the subset of F , consisting of frequent features contained in Q, denoted

as FQ = {Fj|Fj ⊆ Q,Fj ∈ F}.

84

• G{Q} – the subset of G, consisting of exact supergraphs of the graph Q, denoted

as G{Q} = {id(Gi)|Q ⊆ Gi, Gi ∈ G}.

• GFQ
– the subset of G, consisting of candidate supergraphs of the graph Q,

denoted as GFQ
= ∩G{Fj}, where Fj ∈ FQ.

• TQ – the trapdoor for the query graph Q.

4.3 Preliminaries

4.3.1 Graph Query

A labeled, undirected, and connected graph is a five-tuple as {V,E,ΣV ,ΣE, L},

where V is the vertex set, E ⊆ V × V is the edge set, and L is a labeling function:

V → ΣV and E → ΣE. We use the number of vertices |V (G)| to represent the size

of the graph G.

Subgraph Isomorphism Given two graphs G = {V,E,ΣV ,ΣE, L} and G′ =

{V ′, E ′,ΣV ,ΣE, L
′}, G is subgraph isomorphic to G′ if there is an injection f :

V → V ′ such that

1. ∀ v ∈ V, L(v) = L′(f(v)).

2. ∀ (u, v) ∈ E, (f(u), f(v)) ∈ E ′.

3. ∀ (u, v) ∈ E,L(u, v) = L′(f(u), f(v)).

Graph Containment Query If G is subgraph isomorphic to G′, we call G is a

subgraph of G′ or G′ is a supergraph of G, denoted as G ⊆ G′. Such relation is also

referred to as G is contained by G′ or G′ contains G. Given a graph dataset G =

(G1, G2, . . . , Gm) and a query graph Q, a graph containment query problem is to find

all the supergraphs ofQ from the dataset G, denoted as G{Q} = {id(Gi)|Q ⊆ Gi, Gi ∈

G} where id(Gi) is the identifier of the graph Gi. The number of supergraphs of Q,

85

i.e., |G{Q}|, is called the support, or the frequency of Q.

Considering the large size of the graph dataset, it is impractical to solve the

graph containment query problem by sequentially checking whether Q is subgraph

isomorphic to each graph in G or not, because checking subgraph isomorphism has

been proved to be NP-complete [50]. To reduce the times of checking subgraph

isomorphism, most graph query works [38, 91, 92, 128, 132, 133] follow the principle

of “filtering-and-verification”.

Filtering-and-Verification In the filtering phase, a feature-based index for the

dataset G is utilized to prune most negative data graphs that does not contain the

query graph Q, and then produce the candidate supergraph set. In the verification

phase, the subgraph isomorphism is checked between the query graph and every

candidate supergraph to output the exact supergraph set G{Q}.

The feature-based index is pre-built from the entire graph dataset, where each

feature Fj is a substructure of a data graph in the dataset, such as subpath [92],

subtree [91, 132, 133] and subsubgraph [38, 128]. Let F = (F1, F2, . . . , Fn) represent

the feature set. The supergraph set of every feature Fj, denoted as G{Fj}, is stored

in the index. Let FQ = {Fj|Fj ⊆ Q,Fj ∈ F} denote the query feature set consisting

of features contained in the query graph. Then, the candidate supergraphs of the

query graph G can be obtained by the intersection operation as GFQ
= ∩G{Fk},

where Fk ∈ FQ. The false positive ratio is then defined as
|GFQ

|
|G{Q}|

Frequent and Discriminative Substructure It is infeasible and unnecessary to

index every possible substructure of all the graphs in a large dataset, and therefore

only frequent and discriminative substructures are indexed to reduce the index size.

A feature Fj is frequent if its support, or frequency is large enough, i.e., |G{Fj}| ≥ σ,

where σ is called the minimum support. A feature Fj is discriminative if it can

provide more pruning power than its subgraph feature set, i.e.,
|∩kG{Fk}|
|G{Fj}|

≥ γ, where

86

Fk ⊆ Fj and γ is called the discriminative threshold.

4.3.2 Secure Euclidean Distance Computation

In order to compute the inner product in a privacy-preserving method, we will adapt

the secure Euclidean distance computation in the secure k-nearest neighbor (kNN)

scheme [120]. In this scheme, the Euclidean distance between a database record pi

and a query vector q is used to select k nearest database records. The secret key is

composed of one (d+1)-bit vector as S and two (d+1)× (d+1) invertible matrices

as {M1,M2}, where d is the number of fields for each record pi. First, every data

vector pi and the query vector q are extended to (d + 1)-dimensional vectors as p⃗i

and q⃗, where the (d+1)-th dimension is set to −0.5||p2i || and 1, respectively. Besides,

the query vector q⃗ is scaled by a random number r > 0 as (rq, r). Then, p⃗i is split

into two random vectors as {p⃗i′, p⃗i′′}, and q⃗ is also split into two random vectors

as {q⃗ ′, q⃗ ′′}. Note here that vector S functions as a splitting indicator. Namely,

if the j-th bit of S is 0, p⃗i
′[j] and p⃗i

′′[j] are set as the same as p⃗i[j], while q⃗ ′[j]

and q⃗ ′′[j] are set to two random numbers so that their sum is equal to q⃗[j]; if the

j-th bit of S is 1, the splitting process is similar except that p⃗i and q⃗ are switched.

The split data vector pair {p⃗i′, p⃗i′′} is encrypted as {MT
1 p⃗i

′,MT
2 p⃗i

′′}, and the split

query vector pair {q⃗ ′, q⃗ ′′} is encrypted as {M−1
1 q⃗ ′,M−1

2 q⃗ ′′}. In the query step, the

product of the data vector pair and the query vector pair, i.e., −0.5r(||pi||2−2pi ·q),

is serving as the indicator of the Euclidean distance (||pi||2− 2pi · q+ ||q||2) to select

k nearest neighbors. Without prior knowledge of the secret key, neither the data

vector nor the query vector, after such a series of processes, can be recovered by

analyzing their corresponding ciphertexts. The security analysis in [120] shows

that this computation technique is secure against known-plaintext attack, which is

roughly equal in security to a d-bit symmetric key. Therefore, d should be no less

87

than 80 to make the search space sufficiently large.

4.4 PPGQ: The Framework and Privacy

In this section, we define the framework of query over encrypted graph-structured

data in cloud computing and establish various strict system-wise privacy require-

ments for such a secure cloud data utilization system.

4.4.1 The Framework

Our proposed framework focuses on how the query works with the help of index

which is outsourced to the cloud server. We do not illustrate how the data itself is

encrypted, outsourced or accessed, as this is a complementary and orthogonal issue

and has been studied elsewhere [129]. The framework of PPGQ is illustrated as

follows.

• FSCon(G, σ) Takes the graph dataset G and the minimum support σ as inputs,

outputs a frequent feature set F .

• KeyGen(ξ) Takes a secret ξ as input and outputs a symmetric key K.

• BuildIndex(G,K) Takes the graph dataset G and the symmetric key K as inputs,

output a searchable index I.

• TDGen(Q,K) Takes the query graph Q and the symmetric key K as inputs,

outputs a corresponding trapdoor TQ.

• Query(TQ, I) Takes the trapdoor TQ and the searchable index I as inputs, re-

turns GFQ
, i.e., the candidate supergraphs of query graph Q.

88

The first three algorithms, i.e., FSCon, BuildIndex, and BuildIndex, are run by the

data owner as pre-processes. The query algorithm is run on the cloud server as a part

of the cloud data storage service. According to various search control mechanisms,

the trapdoor generation algorithm TDGen may be run by either the data owner

or the data user. Besides, depending on some specific application scenarios, while

search requests on confidential documents may be allowed for all users, the access

to document contents may be forbidden for those low-priority data users. Note that

neither search control or access control are within the scope of this dissertation.

4.4.2 Choosing Frequent Features

To build a feature-based index, there are three choices of features, i.e., subpath, sub-

tree and subgraph, which can be extracted from the graph dataset. According to

the feature comparison in [133], with the same minimum support, either subtree-

based or subgraph-based feature set is larger than subpath-based one, especially

when the feature size is between 5 and 20. To be consistent with the size of graph

which is |V (G)|, the size of feature is measured by its number of vertices |V (Fi)|.

As for the cloud server, the larger feature set will demand more index storage, and

also incur larger computation cost during the query process. However, the pruning

power of the subgraph-based index performs the best among all the three choices,

which leads to the lowest false positive ratio and the smallest candidate supergraph

set.From the perspective of the data user, the size of the candidate supergraph set

has a direct and important impact on the communication and computation cost.

Compared with the powerful cloud server, data users may access the cloud server

through portable devices, e.g., mobile phones and netbooks, which have limited ca-

pability of communication and computation to retrieve the candidate supergraph set

and check subgraph isomorphism. To this end, the subgraph-based index is more

89

appropriate than the other two choices for our PPGQ framework that is designed for

the efficient graph-structured data utilization in cloud computing. To generate the

frequent feature set, there have been a lot of frequent subgraph mining algorithms

over the large graph dataset, such as gSpan [127], and Gaston [72]. For the index-

ing purpose, every frequent subgraph should be represented as a unique canonical

label which can be accomplished by existing graph sequentialization techniques, like

CAM [54] and DFS [127]. Besides, the shrinking process on the frequent feature

set is not adopted in our framework since it will weaken the pruning power of index.

As the subgraph is chosen as the feature to build index in our framework, we do

not distinguish between frequent feature and frequent subgraph in the rest of this

chapter.

4.4.3 Privacy Requirements

As described in the framework, data privacy is to prevent the cloud server from

prying into outsourced data, and can be well protected by existing access control

mechanism [129]. In related works on privacy-preserving query, like searchable en-

cryption [40], representative privacy requirement is that the server should learn

nothing but query results. With this general privacy statement, we explore and es-

tablish a set of stringent privacy requirements specifically for the PPGQ framework.

While data privacy guarantees are demanded by default in the related literature,

various query privacy requirements involved in the query procedure are more com-

plex and difficult to tackle as follows.

4.4.3.1 Index Privacy

With respect to the index privacy, if the cloud server deduces any association be-

tween frequent features and encrypted dataset from outsourced index, it may learn

90

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Feature rank (sorted by its support)

F
ea

tu
re

 s
up

po
rt

Figure 4.2: Distribution of Feature Support

the major structure of a graph, or even the entire topology of a small graph. There-

fore, searchable index should be constructed in such a way that prevents the cloud

server from performing such kind of association attack.

4.4.3.2 Feature Privacy

Data users usually prefer to keep their query from being exposed to others like the

cloud server, and the most important concern is to hide what they are querying, i.e.,

the features indicated by the corresponding trapdoor. Although trapdoor can be

generated in a cryptographic way to protect the query features, the cloud server may

do some statistical analysis over the search results to make an estimate. Especially,

the feature support (i.e., the number of data graphs containing the feature), a kind

of statistical information, is sufficient to identify the feature with high probability.

When the cloud server knows some background information of the dataset, this

feature-specific information can be utilized to reverse-engineer the feature. As pre-

sented in Fig. 4.2, the distribution of feature support in the AIDS antiviral screen

dataset [5] provides enough information to identify most frequent features in the

dataset. Such problem is similar with the keyword privacy issue in [131], where

91

document frequency (the number of documents containing the keyword) is used as

a statistical information to reverse-engineer the keyword.

4.4.3.3 Trapdoor Unlinkability

The trapdoor generation function should be a randomized one instead of being

deterministic. In particular, the cloud server should not be able to deduce the re-

lationship of any given trapdoors, e.g., to determine whether the two trapdoors

are formed by the same search request or not. Otherwise, the deterministic trap-

door generation would give the cloud server advantage to accumulate frequencies

of different search requests regarding different features, which may further violate

the aforementioned feature privacy requirement. So the fundamental protection for

trapdoor unlinkability is to introduce sufficient nondeterminacy into the trapdoor

generation procedure.

4.4.3.4 Access Pattern

Access pattern is the sequence of query results where each query result is GFQ
,

including the id list of candidate supergraphs of the query graph. Then the access

pattern is denoted as (GFQ1
,GFQ1

, . . .) which are the results of sequential queries.

In related literature, although a few schemes (e.g., [23, 29]) have been proposed

to utilize private information retrieval (PIR) technique [56] to hide access pattern,

our proposed schemes are not designed to protect access pattern for the efficiency

concerns. This is because any PIR-based technique must “touch” the whole dataset

outsourced on the server which is inefficient in the large scale cloud system. To this

end, the query result of any single feature Fj, which is part of access pattern, cannot

be hidden from the cloud server. Such query result G{Fj} will directly expose the

support of the feature, and break the feature privacy as discussed above. Therefore,

92

we do not consider the single-feature query in our proposed schemes.

4.5 PPGQ: The Proposed Scheme and Analysis

In order to accomplish the filtering purpose in the graph query procedure, the data

graph Gi is selected as a candidate supergraph of the query graph Q if and only if

Gi contains all the frequent features in Q. Let λi represent the number of query

features contained in the data graph Gi. For every candidate supergraph Gi, its

corresponding λi should be equal to the size of the query feature set FQ, i.e., λi =

|FQ|. To obtain the candidate supergraph set, we propose to employ the efficient

inner product computation for pruning negative data graphs Gj that do not contain

the query graph, i.e., λj < FQ. Specifically, every data graph Gi is formalized as a

bit vector gi where each bit gi[j] is determined by checking whether Gi contains the

frequent feature Fj or not. If Fj ⊆ Gi, gi[j] is set as 1; otherwise, it is set as 0. The

query graph Q is formalized as a bit vector q where each bit q[j] also represents the

existence of the frequent feature Fj in the query feature set FQ. Then, λi can be

acquired via computing the inner product of the data vector gi and the query vector

q, i.e., gi · q. To preserve the strict system-wise privacy, the data vector gi and the

query vector q should not be exposed to the cloud server. In this section, we first

design a secure inner product computation mechanism, which is adapted from the

secure Euclidean distance computation technique, and then show how to improve it

to be privacy-preserving under the known-background threat model.

93

Table 4.1: Analysis on inner products in two correlated queries
G FQ FQ′ = FQ

∪
{Fk} yi

′/yi λ′ − λ

Gi yi = rλi λi
′ = λi + 1, yi

′ = r′λi
′ λi+1

λi
· r′

r
1

Gj yj = rλj λj
′ = λj, yj

′ = r′λj
′ r′

r
0

4.5.1 Privacy Concerns on Secure Inner Product Computa-

tion

Since the inner product of the data vector and the query vector is preferred to select

candidate supergraphs of the query graph, the secure Euclidean distance compu-

tation technique in the secure kNN scheme [120] cannot be directly utilized here.

As shown in Section 3.4.1, by eliminating the extended dimension which is related

to the Euclidean distance, the final inner product result changes to be r(gi · q).

Since the new result r(gi · q) can serve as an indicator of the original inner prod-

uct gi · q, it seems that an efficient and secure inner product computation scheme

can be appropriately achieved. However, the cloud server may break the feature

privacy via analyzing final inner products and figuring out some feature-specific sta-

tistical information, e.g., the support of feature. With the background knowledge

of the outsourced graph dataset, which can be obtained by the cloud server under

the known-background model, such feature-specific information could be further

utilized to identify what feature is included in the query at high probability. We

first demonstrate how such statistical analysis attack could break feature privacy as

follows.

Whenever there exist two query graphs which have inclusion relationship, the

cloud server could explore the relationship among final inner products in two queries.

Assume that TQ and TQ′ be trapdoors for two query graphs Q and Q′, and their

corresponding query feature sets have the inclusion relation as FQ ⊂ FQ′ . Especially,

when the differential feature subset contains only one feature, i.e., |FQ′′| = 1 where

94

FQ′′ = FQ′\FQ, the cloud server can deduce an estimate of the support of the

differential feature and further identify this feature with the background knowledge

of the graph dataset. As listed in Tab. 4.1, the second query feature set FQ′ includes

one more feature as Fk than the first one FQ. The cloud server evaluates the

expression yi
′/yi, which is equal to (λi

′/λi)(r
′/r) for every graphGi, and then obtains

a large number of different values. However, these values could be distinguished into

two categories. If the graph Gi does not contain the feature Fk, i.e., λi
′ = λi, its

corresponding expression evaluation yi
′/yi is equal to r′/r; otherwise, it is larger

than r′/r and can be easily detected because of its special ratio as λi+1
λi

. Therefore,

the minimum values over the whole dataset indicate that corresponding data graphs

do not contain the feature Fk, and other graphs with larger values contain it. In

addition, by checking whether the expression yi is equal to 0 or not, the special

case where the data graph Gi contains neither feature in FQ can be recognized by

the cloud server. In such case, the existence of feature Fk in Gi can be determined

by checking whether the expression yi
′ is equal to 0 or not. To this end, the total

number of data graphs containing this feature, i.e., |G{Fk}|, is uncovered. Under the

known-background threat model, the cloud server could break the feature privacy

with both the support of single feature and the distribution of all the supports as

illustrated in Fig. 4.2.

4.5.2 The Proposed Privacy-Preserving Graph Query Scheme

The statistical analysis attack shown above works when the final inner product yi is

a multiple of λi, i.e., the number of query features contained in the data graph Gi.

To this end, we should break such scale relationship to make the previous statistical

analysis attack infeasible. Our proposed design is to convert both the data vector

and the query vector from the bit structure to more sophisticated structures. Specif-

95

Figure 4.3: Build subindex for each data graph

Figure 4.4: Generate trapdoor for query graph

ically, if the frequent feature Fj is contained in the data graph Gi, the corresponding

element gi[j] in the data vector gi is set as ρ[j] instead of 1 where ρ is a n-dimensional

vector; otherwise, gi[j] is set as X[i][j] where X is a n× n matrix and X[i][j] is a ran-

96

dom number less than ρ[j]. Correspondingly, if Fj is contained in the query graph

Q, q[j] is set as a positive random number rj instead of 1; otherwise, q[j] is set as 0.

In addition, to hide the original inner product, we resume the dimension extending

operation where the gi[n+1] is set as 1 and the q[n+1] is set as a random number t. As

a result of these modifications, the final inner product of the data vector and the

query vector, i.e., gi · q+ t, should be equal to ρ · q+ t for any candidate supergraph.

Note that, the vector ρ is constant as a part of the secret key, but t and rj in q are

randomly generated for each query. Our proposed privacy-preserving graph query

scheme is designed as follows with details in Fig. 4.10.

• FSCon(G, σ) The data owner utilizes existing frequent subgraph mining algo-

rithms to generate the frequent subgraph set F , and then creates the frequent

feature dictionary D and the feature-based inverted index Iinv.

• KeyGen(KS, n) With the master key KS, the data owner generates the secret

keyK, consisting of the splitting indicator S, two invertible matrices {M1,M2},

and the vector ρ.

• BuildIndex(G,F ,K) For each data graphGi, this algorithm creates the subindex

Ii as shown in Fig. 4.3. The data owner first creates a vector gi with length

n, in which the value of gi[j] is determined by whether graph Gi contains the

corresponding feature Fj or not (steps 1 and 2). Subsequently, the data vector

gi is processed by applying the dimension extending where the (n+ 1)-th en-

try in g⃗i is set to 1 (step 3) and further adopting the splitting and encrypting

procedures in the secure Euclidean Distance computation scheme (steps 4 and

5). Finally, a subindex Ii = {(M−1
1)T g⃗i

′, (M−1
2)T g⃗i

′′} is created for every data

graph Gi and associated with the encrypted data graph G̃i for outsourcing to

the cloud server .

97

• TDGen(Q) With the query graph Q as input from the data user, this algorithm

outputs the trapdoor TQ as shown in Fig. 4.4. The query feature set FQ is

first generated through checking which features in F are also contained in Q

(steps 1 and 2). An n-dimensional vector q is created by assigning a positive

random number rj to the element q[j] if Fj ∈ FQ; otherwise, q[j] = 0 (step 3).

This initial query vector q is then extended to an (n + 1)-dimensional vector

as q⃗ = (q, t), where t is a non-zero random number (step 4). After adopt-

ing the splitting and encrypting processes in the secure Euclidean distance

computation technique (steps 5 and 6), the trapdoor TQ for the query graph

Q is generated as {M1q⃗
′,M2q⃗

′′,
∑

ρ[j]q[j] + t}, where the third element is the

expected final inner product of the query vector and the data vector for every

candidate supergraph.

• Query(I, TQ) With the trapdoor TQ, the cloud server computes the inner prod-

uct of {TQ[1], TQ[2]} with every subindex Ii for data graph Gi, and returns graph

id list GFQ
where each graph has an inner product as exactly same as TQ[3].

The data user can further do the graph verification to remove false positives

from GFQ
, and finally get the exact result as G{Q}.

4.5.3 The Analysis

Analysis of this proposed scheme follows three aspects of design goals described in

Section 4.2.3.

4.5.3.1 Effectiveness

Assume Q consists of ℓ query features, i.e., ℓ = |FQ|. For any supergraph Gi of

the query graph Q, it includes all the ℓ features in FQ which is extracted from Q.

98

Therefore, all the ℓ corresponding elements in the data vector are equal to those in

the ρ, respectively, i.e., gi[jk] = ρ[jk], where 1 ≤ k ≤ ℓ. Besides, each corresponding

element in the query vector as qi[jk] is set as rjk , and all other elements is set as 0.

The final inner product gi ·q+ t for any supergraph Gi is then equal to
∑

ρ[jk]rjk + t,

which is also the result of ρ · q + t. The later one ρ · q + t has been included in the

trapdoor and serves as an indicator to select candidate supergraphs. It means that

our scheme does not introduce any false negative into the result GFQ
, as every exact

supergraph in G{Q} will produce the same inner product as ρ · q + t with the query

vector. But false positive supergraphs may be introduced into GFQ
by those data

graphs that do not contain the query graph Q but contain all the features in FQ.

4.5.3.2 Efficiency

As far as the data user is concerned, the query response is well presented because

the final inner product for every data graph can be efficiently computed by the

cloud server via two multiplications of (n+1)-dimensional vectors. The whole inner

product computation during query is O(mn). Although some costly computations

are involved in FSCon and BuildIndex, such as graph sequentialization, they are

unavoidable for building a graph index. And more importantly, they are executed

for only one time during the whole scheme. Apart from these computations, the

encryption of the data vector or the query vector only needs two multiplications of

a (n+ 1)× (n+ 1) matrix and a (n+ 1)-dimensional vector with complexity O(n2)

in BuildIndex or TDGen, respectively. Besides, to avoid the high computation cost

of inverting two high-dimension matrices in TDGen, every query vector is encrypted

by the two matrices M1 and M2 themselves, instead of their inverses of M1 and M2

utilized in the secure Euclidean distance computation. Correspondingly, the costly

inverting operation is transferred to the one-time index construction procedure.

99

4.5.3.3 Privacy

With the randomness introduced by the splitting process and the random numbers

rj and t, our scheme can generate two totally different trapdoors for the same query

graph Q. This nondeterministic property of the trapdoor generation can guarantee

the trapdoor unlinkability.

Recall that the data vector encryption with matrices has been proved to be

secure against known-plaintext attack in [120], the index privacy is protected unless

the secret key K is disclosed. The number of equations as 2(n+1)m in (M−1
1)T g⃗i

′ =

Ii[1] and (M−1
2)T g⃗i

′′ = Ii[2] is still less than the number of unknowns as the sum

of 2(n + 1)m unknowns in m data vectors and 2(n + 1)2 unknowns in {M1,M2}.

Therefore, the attacker cannot solve the equations.

As mentioned above, in the secure inner product computation technique, the

primary reason why the statistical analysis attack works is that the final inner

product yi has the scale relationship with λi. And this scale relationship exists just

because yi is a multiple of the original inner product gi · q which is equal to λi. Our

proposed scheme introduces randomness in both gi and q to break the equivalence

relationship between gi · q and λi. As a consequence, the value of gi · q does not

completely depend on λi. In the case where data graph Gi contain fewer query

features than data graph Gj, it is still possible that gi · q ≥ gj · q. Moreover, the

extended dimension t is utilized to break the direct scale relationship between yi

and gi · q, which further eliminates the indirect scale relationship between yi and

λi. So the cloud server cannot deduce the special ratio as λi+1
λi

which is used to

detect the inclusion relationship between two query feature sets as discussed in

the previous section 4.5.1. Without disclosing such inclusion relationship, the cloud

server cannot compute the support of a single feature. In other words, the statistical

analysis cannot break the feature privacy, and all the expected privacy requirements

100

in section 4.4.3 are being met by the proposed scheme.

4.6 Experimental Evaluations

In this section, we demonstrate a thorough experimental evaluation of the proposed

scheme on the AIDS antiviral screen dataset [5] that is widely used in graph query

related works [38, 91, 128, 132, 133]. It contains 42, 390 compounds with totally 62

distinct vertex labels. The 5 datasets in our experiment, as same as in [128], are

G2000, G4000, G6000, G8000, and G10000, where GN contains N graphs randomly chosen

from the AIDS dataset. We also adopt the same 6 sets of query graphs Q4, Q8, Q12,

Q16, Q20 and Q24, where Qi contains i query graphs with i edges. Default dataset

and query graphs are set as G4000 andQ4 in our experiment, respectively. gSpan [127]

is used as the frequent subgraph mining algorithm in our scheme. The maximum

size of frequent subgraph maxL is set to 11, and the minimum support σ for feature

Fj is defined as follows, σ = 1 if |V (Fj)| < 5; otherwise, σ =
√

|V (Fj)|
maxL

·minsup · |G|,

where the default minsup is set to 10% and |G| is the size of dataset. Graph

boosting toolbox [81] is utilized to implement gSpan algorithm and check subgraph

isomorphism, and the public utility routines by Numerical Recipes are employed to

compute the inverse of matrix. The query performance in our scheme is evaluated

on the Amazon Elastic Compute Cloud (EC2) in which we deploy the basic 64-

bit Linux Amazon Machine Image (AMI) with 4 CPU cores (2 × 1.2GHz); the

performance of other procedures in our scheme, such as index construction and

trapdoor generation related to data owners or data users, is evaluated on a 2.8GHz

CPU with Redhat Linux. The compared schemes are gIndex [128] and TreePi [132],

and their performance data are provided in [132] which are also run on a 2.8GHz

CPU with RedHat Linux.

101

2000 4000 6000 8000 10000
2000

3000

4000

5000

6000

of graphs in the dataset

F
re

qu
en

t f
ea

tu
re

 s
et

 s
iz

e

PPGQ−8%
PPGQ−9%
PPGQ−10%
PPGQ−11%
gIndex−10%
TreePi−10%

(a) Frequent feature set size

2000 4000 6000 8000 10000
1

1.2

1.4

1.6

1.8

2

of graphs in the dataset

F
al

se
 p

os
iti

ve
 r

at
io

PPGQ−8%
PPGQ−9%
PPGQ−10%
PPGQ−11%

(b) False positive ratio

Figure 4.5: Relation between minimum support and other parameters.

4.6.1 False Positive and Index Construction

The minimum support determines the threshold for a subgraph of being an indexed

feature. Specifically, the large value of minimum support means that only very

frequent subgraphs in the dataset could be treated as valid in the filtering procedure.

However, such high requirement will reduce the number of features included in the

index whose pruning power would be directly affected. With the decreasing number

of indexed features, the query graph can only be represented by less number of

query features, and therefore more and more data graphs, which does not contain

102

2000 4000 6000 8000 10000
0

50

100

150

200

250

of graphs in the dataset

In
de

x
si

ze
(M

B
)

PPGQ−8%
PPGQ−9%
PPGQ−10%
PPGQ−11%

(a) Storage cost of index

2000 4000 6000 8000 10000
0

200

400

600

800

1000

of graphs in the dataset

In
de

x
co

ns
tr

uc
tio

n
tim

e
(s

)

PPGQ
gIndex
TreePi

(b) Time of index construction

Figure 4.6: Index construction cost.

the query graph Q but contain all the graphs in the smaller size query feature set

FQ, are included in the candidate supergraph set GFQ
. As demonstrated in Fig. 4.5

where four different minimum supports through adjusting minsup from 8% to 11%

are examined, the false positive ratio defined as
|GFQ

|
|G{Q}|

raises in accordance with

the minsup. Although the minimum support should be set as small as possible to

prune as many data graphs as possible, the larger one will introduce more storage

cost of index due to the larger size of frequent feature set as shown in Fig. 4.6(a).

Moreover, as shown in Fig. 4.5(a), the size of the frequent feature set increases

in a lower speed when the dataset is larger than 600, while the minimum support

103

2000 4000 6000 8000 10000
8

10

12

14

16

18

20

22

of graphs in the dataset

T
ra

pd
oo

r
si

ze
 (

K
B

)

Figure 4.7: Trapdoor size in different dataset

σ =
√

|V (Fj)|
maxL

·minsup · |G| increases linearly with the size of dataset. As a result,

there will be increasing false positives in the candidate supergraph set, which is

validated in Fig. 4.5(b).

As shown in Fig. 4.5(a), our frequent feature set is larger than that in the other

two related works since our scheme does not adopt the shrinking process on the

frequent set by choosing discriminative subgraphs. Besides, the false positive ra-

tio in our scheme is almost same as that in gSpan and a little larger than the

scheme Tree+△ [132], through the performance data provided in [132]. As shown in

Fig. 4.6(b), because our index construction involves the encryption process on data

vectors, the time cost here is about four times larger than that in other schemes

which only deal with plaintext index. Note that this construction is only a one-time

procedure in the whole scheme.

4.6.2 Trapdoor Generation and Query

Like index construction, every trapdoor generation incurs two multiplications of

a matrix and a split query vector, whose dimensionality becomes larger with the

increasing number of documents in dataset. As demonstrated in Fig. 4.8(a), the

104

2000 4000 6000 8000 10000
1

2

3

4

5

6

7

8

of graphs in the dataset
T

ra
pd

oo
r

ge
ne

ra
tio

n
tim

e
(s

)

(a) Different dataset with same query size as 4

0 5 10 15 20 25

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

of edges in the query graph

T
ra

pd
oo

r
ge

ne
ra

tio
n

tim
e

(s
)

(b) Different query size with same dataset size as
4000

Figure 4.8: Trapdoor generation time.

time to generate a trapdoor is linear with the number of data graphs in the dataset.

Fig. 4.8(b) demonstrates the trapdoor generation cost is almost linear with the size

of query graph, which is defined as the number of edges in the query graph. Such

linearity is caused by the fact that the major costly operation mapping query graph

to vector is roughly determined by query size since all the query features should be

mapped.

In the query process in our scheme design, the cloud server executes the filtering

process by computing the inner product of trapdoor and each encrypted data vector.

105

2000 4000 6000 8000 10000
0

2

4

6

8

of graphs in the dataset
Q

ue
ry

 e
xe

cu
tio

n
tim

e
on

 s
er

ve
r

(s
)

(a) Different dataset with same query size as 4

0 5 10 15 20 25
2.6

2.65

2.7

2.75

2.8

2.85

of edges in the query graph

Q
ue

ry
 e

xe
cu

tio
n

tim
e

on
 s

er
ve

r
(s

)

(b) Different query size with same dataset size as
4000

Figure 4.9: Query execution time on server.

Fig. 4.9 shows that the query time is almost linear with the number of data graphs

in the dataset. Although the query time in our scheme is much larger than that in

gSpan, whose query time is around 100 milliseconds presented in [38], our scheme

is performing query on the encrypted index. With respect to the communication

cost in the query procedure, the size of trapdoor is the same as that of subindex for

single data graph. As shown in Fig. 4.7, the size of trapdoor keeps constant in the

same dataset, no matter how many features are contained in a query graph.

106

4.7 Related Work

4.7.1 Graph Containment Query

To reduce the computation cost caused by checking subgraph isomorphism, most

research on plaintext graph containment query problem follows the “filtering-and-

verification” framework [38, 91, 92, 128, 132, 133] to decrease the size of candidate

supergraph set. Feature-based index has been increasingly explored by choosing

different substructures as features. Shasha et al. [92] designed a path-based in-

dex approach. However, paths carry few structural information and therefore have

limited filtering power. Yan et al. [128] proposed gIndex to build index from fre-

quent and discriminative subgraphs which can carry more structure characteristics.

Zhang et al. [132] utilized frequent and discriminative subtrees instead of subgraphs

to build the index. Recently, Chase and Kamara proposed structured encryption [36]

to handle private access to parts of a large graph in encrypted form; yet only simple

operations such as neighbor queries are supported. Portions of the work studied in

this chapter were presented as extended abstract at the 31th International Confer-

ence on Distributed Computing Systems (ICDCS’11) [31].

4.7.2 Keyword-based Searchable Encryption

Traditional single keyword searchable encryption schemes [22, 40, 65, 106] usually

build an encrypted searchable index such that its content is hidden to the server

unless it is given appropriate trapdoors generated via secret key(s) [58]. To en-

rich search semantics, conjunctive keyword search [24] over encrypted data have

been proposed. These schemes incur large overhead caused by their fundamental

primitives, such as computation cost by bilinear map [24].As a more general search

approach, predicate encryption schemes [63] are recently proposed to support both

107

conjunctive and disjunctive search. However, none of existing boolean keyword

searchable encryption schemes support graph semantics as we propose to explore in

this chapter.

4.8 Conclusion

In this chapter, for the first time, we define and solve the problem of query over

encrypted graph-structured cloud data, and establish a variety of privacy require-

ments. For the efficiency consideration, we adopt the principle of “filtering-and-

verification” to prune as many negative data graphs as possible before verification,

where a feature-based index is pre-built to provide feature-related information for

every encrypted data graph. Then, we choose the inner product as the pruning tool

to carry out the filtering procedure efficiently. To meet the challenge of supporting

graph semantics, we propose a secure inner product computation technique, and then

improve it to achieve various privacy requirements under the known-background

threat model. Thorough analysis investigating privacy and efficiency of our scheme

is given, and the evaluation further shows our scheme introduces low overhead on

computation and communication.

108

FSCon(G, σ)
1. Mine frequent feature set F = {F1, F2, . . . , Fn} from graph dataset G with the minimum

support threshold σ;
i) For each frequent feature Fj, where 1 ≤ j ≤ n, generate its supergraph id set G{Fj};

2. Create the frequent feature dictionary D = {LF1 ,LF2 , . . . ,LFn}, where LFj
is the unique

canonical label of Fj;
3. Build the feature-based inverted index Iinv = {G{F1},G{F2}, . . . ,G{Fn}}.

KeyGen(KS, n)
1. Create an (n+ 1)-bit vector S, two (n+ 1)× (n+ 1) invertible matrices M1,M2,

and an n-dimensional vector ρ;

i) {S,M1,M2, ρ}
R←− KS;

2. Output the secret key K = {S,M1,M2, ρ}.
BuildIndex(Iinv,K)
1. Create a n× n matrix X, where X[i][j] is a random number less than K[4][j];
2. For each graph Gi, where 1 ≤ i ≤ m, create a n-dimensional data vector gi;

i) If id(Gi) ∈ Iinv[j], set gi[j] = K[4][j]; otherwise, set gi[j] = X[i][j];
3. Extend every gi to (n+ 1)-dimensional g⃗i;

i) For 1 ≤ j ≤ n, set g⃗i[j] = gi[j]; Set g⃗i[n+1] = 1;
4. According to the splitting indicator K[1], split every g⃗i to two vectors g⃗i

′ and g⃗i
′′;

i) For 1 ≤ j ≤ n+ 1, if K[1][j] = 0, set both g⃗i
′
[j] and g⃗i

′′
[j] as g⃗i[j];

otherwise, set g⃗i
′
[j] and g⃗i

′′
[j] as two random numbers such that g⃗i

′
[j] + g⃗i

′′
[j] = g⃗i[j];

5. Encrypt these two vectors by inverses of the two matrices, and combine them as the
subindex Ii for Gi;
i) Ii = {((K[2])

−1)T g⃗i
′, ((K[3])

−1)T g⃗i
′′};

6. Output the encrypted index I = {I1, I2, · · · , Im}.
TDGen(Q,D,K)
1. Initialize the query feature set: FQ = ∅;
2. For each frequent feature D[j], 1 ≤ j ≤ n: if D[j] ⊆ Q, FQ = FQ

∪
{D[j]};

3. Create a n-dimensional query vector q for the input query graph Q;
i) Generate n positive random numbers as r1, r2, . . . , rn;
ii) For 1 ≤ j ≤ n, if D[j] ∈ FQ, set q[j] = rj; otherwise, set q[j] = 0;

4. Extend q to (n+ 1)-dimensional q⃗, and generate a random number t;
i) For 1 ≤ j ≤ n, set q⃗[j] = q[j]; Set q⃗[n+1] = t;

5. According to the splitting indicator K[1], split q⃗ to two vectors as q⃗′ and q⃗′′;
i) For 1 ≤ j ≤ n+ 1, if K[1][j] = 1, set both q⃗′[j] and q⃗′′[j] as q⃗[j];

otherwise, set q⃗′[j] and q⃗′′[j] as two random numbers such that q⃗′[j] + q⃗′′[j] = q⃗[j];
6. Encrypt these two vectors by the two invertible matrices as {(K[2])

T q⃗′, (K[3])
T q⃗′′};

7. Output the trapdoor TQ for query graph Q;
i) TQ = {(K[2])

T q⃗′, (K[3])
T q⃗′′,

∑
K[4][j]q[j] + t};

Query(I, TQ)
1. Initialize the query result: GFQ

= ∅;
2. For each subindex I[i], 1 ≤ i ≤ m:

i) Compute inner product as Ii[1] · TQ[1] + Ii[2] · TQ[2];
ii) If the inner product is equal to TQ[3], set GFQ

= GFQ

∪
{id(Gi)};

3. Output the query result GFQ
.

Figure 4.10: Privacy-Preserving Graph Query Scheme

109

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we investigated and addressed the fundamental problem of

secure and reliable data outsourcing in Cloud Computing. We summarize our results

as follows.

In Chapter 2, we address the problem of secure and reliable cloud storage with

efficiency consideration of both data repair and data retrieval. By utilizing a near-

optimal erasure codes, specifically LT codes, our designed storage service has faster

decoding during data retrieval than existing solutions. To minimize the data repair

complexity, we employ the exact repair method to efficiently recover the exact form

of any corrupted data. Such a design also reduces the data owner’s cost during

data repair since no verification tag needs to be generated (old verification tags

can be recovered as data recovery). Our proposed cloud storage service provides a

better overall efficiency of data retrieval and repair than existing counterparts. It

also greatly reduces cost and completely releases the data owner from the burden

of being online by enabling public integrity check and exact repair.

110

In Chapter 3, we address the problem of privacy-preserving multi-keyword ranked

search over encrypted data in cloud computing. We establish a set of strict privacy

requirements for such a secure cloud data utilization system. Among various multi-

keyword semantics, we choose the efficient similarity measure of “coordinate match-

ing”, i.e., as many matches as possible, to capture the relevance of data documents

to the search query. We further use “inner product similarity” to quantitatively

evaluate such similarity measure. We first propose a basic idea for ranked keyword

search based on secure inner product computation, and then give two significantly

improved schemes to achieve various stringent privacy requirements in two differ-

ent threat models. We also investigate some further enhancements of our ranked

search mechanism, including supporting more search semantics, i.e., TF × IDF, and

dynamic data operations.

In Chapter 4, we address the problem of privacy-preserving query over en-

crypted graph-structured data in cloud computing. Our work utilizes the princi-

ple of “filtering-and-verification”. We pre-build a feature-based index to provide

feature-related information about each encrypted data graph, and then choose the

efficient inner product as the pruning tool to carry out the filtering procedure. To

meet the challenge of supporting graph query without privacy breaches, we pro-

pose a secure inner product computation technique, and then improve it to achieve

various privacy requirements under the known-background threat model.

5.2 Future Work

We identify a few challenging issues for future work on secure and reliable data

outsourcing in cloud computing as follows.

As presented in our proposed cloud data storage service, the availability in data

111

retrieval is guaranteed by the decodability detection before data outsourcing and the

exact repair of corrupted data. Once the encoding configuration successfully passes

the decodability detection, it can be reused for all the storage services that specifies

the same reliability level in terms of n and k. However, such detection computation

still takes nonnegligible cost when every cloud user may have its own expected

reliability requirement. We plan to investigate more efficient decodability detection

algorithm which will make such cloud storage solution more practical. Besides, in

cloud computing, the outsourced data might not only be accessed but also updated

by the data owners, e.g., through block modification, deletion and insertion, etc.

Hence, we also plan to investigate supporting dynamic data operations which can

be of vital importance to the practical application of data outsourcing services.

In our proposed data utilization solutions as presented in chapter 3 and chapter 4,

the query computation cost in the server side is linear with the number of documents

in the dataset. Currently data owners outsource more and more data into cloud

servers, so it is of practical use to make the query faster. To address this problem,

we plan to explore more efficient search algorithm based on tree structures [73, 83].

We further plan to investigate new security and privacy problems in the untrusted

cloud server model. In practice, cloud servers may sometimes behave beyond the

known background model. This can happen either because cloud server intentionally

wants to do so for saving cost when handling large number of search requests, or

there may be software bugs, or internal/external attacks. Thus, enabling a search

result authentication mechanism that can detect such unexpected behaviors of cloud

server is also of practical interest and worth further investigation. Our early work

has been aware of this problem, and provided a solution to authenticating ranked

search result [104], but only for single keyword search.

112

Bibliography

[1] http://www.dropbox.com/.

[2] Blog service hosted by google crashes review.
http://hostwisely.com/blog/blog-service-hosted-by-google-crashes/.

[3] Microsoft cloud data breach heralds things to come.
http://www.techworld.com.au/article/372111/.

[4] Summary of the amazon ec2 and amazon rds service disruption in the us east
region. http://aws.amazon.com/message/65648/.

[5] Aids antiviral screen dataset, 1999. http://dtp.nci.nih.gov/docs/aids/aids_data.html.

[6] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,
Tanja Lange, John Malone-lee, Gregory Neven, Pascal Paillier, and Haixia Shi.
Searchable encryption revisited: Consistency properties, relation to anony-
mous ibe, and extensions. In CRYPTO 2005, pages 205–222. Springer-Verlag,
2005.

[7] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,
Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia
Shi. Searchable encryption revisited: Consistency properties, relation to
anonymous ibe, and extensions. J. Cryptol., 21(3):350–391, 2008.

[8] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
preserving encryption for numeric data. In Proceedings of SIGMOD ’04, pages
563–574, 2004.

[9] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. New security
models and provably-secure schemes for basic query support in outsourced
databases.

[10] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. Provably-
secure schemes for basic query support in outsourced databases. In DBSec’07:
Proceedings of the 21st Annual IFIP WG 11.3 Working Conference on Data
and Applications Security. Springer-Verlag, 2007.

113

[11] Michael Armbrust, Armando Fox, and et al. Above the clouds: A berkeley
view of cloud computing. Technical Report UCB-EECS-2009-28, University
of California, Berkeley.

[12] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kiss-
ner, Zachary Peterson, and Dawn Song. Provable data possession at untrusted
stores. In Proceedings of CCS, New York, NY, USA, 2007. ACM.

[13] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik.
Scalable and efficient provable data possession. In Proceedings of the 4th in-
ternational conference on Security and privacy in communication netowrks,
SecureComm ’08, pages 9:1–9:10, New York, NY, USA, 2008. ACM.

[14] Joonsang Baek, Reihaneh Safiavi-naini, and Willy Susilo. Public key encryp-
tion with keyword search revisited. In Cryptology ePrint Archive, Report
2005/151, 2005.

[15] Joonsang Baek, Reihaneh Safiavi-naini, and Willy Susilo. Public key encryp-
tion with keyword search revisited. In Computational Science and Its Appli-
cationsCICCSA 2008, 2008.

[16] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive key-
word searches over encrypted data. In Proc. of ICICS, 2005.

[17] Feng Bao, Robert Deng, Xuhua Ding, and Yanjiang Yang. Private query on
encrypted data in multi-user settings. In Proc. of ISPEC, 2008.

[18] Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and
efficiently searchable encryption. In Proc. of CRYPTO, 2007.

[19] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptog-
raphy: The case of hashing and signing. In Proceedings of the 14th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO
’94, pages 216–233, London, UK, UK, 1994. Springer-Verlag.

[20] S. Berreti, A.D. Bimbo, and E. Vicario. Efficient matching and indexing of
graph models in content-based retrieval. IEEE Trans. Pattern Analysis and
Machine Intelligence, 2001.

[21] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving sym-
metric encryption. In Proceedings of Eurocrypt’09, volume 5479 of LNCS.
Springer, 2009.

[22] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
Public key encryption with keyword search. In Proc. of EUROCRYPT, 2004.

114

[23] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III.
Public key encryption that allows pir queries. In Proc. of CRYPTO, 2007.

[24] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Proc. of TCC, pages 535–554, 2007.

[25] Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability and
integrity layer for cloud storage. In Proc. of CCS, 2009.

[26] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory
and implementation. In Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, pages 43–54, New York, NY, USA, 2009. ACM.

[27] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based en-
cryption (without random oracles). In Proc. of CRYPTO. LNCS, vol. 4117.
Springer,Heidelberg, 2006.

[28] R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching
in encrypted data. In Secure Data Management, 2004.

[29] Richard Brinkman. Searching in encrypted data. In University of Twente,
PhD thesis, 2007.

[30] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. In Proc. of INFOCOM,
2011.

[31] Ning Cao, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou. Privacy-
preserving query over encrypted graph-structured data in cloud computing. In
Distributed Computing Systems (ICDCS), 2011 31st International Conference
on, pages 393 –402, june 2011.

[32] Ning Cao, Shucheng Yu, Zhenyu Yang, Wenjing Lou, and Y.T. Hou. Lt
codes-based secure and reliable cloud storage service. In INFOCOM, 2012
Proceedings IEEE, pages 693 –701, march 2012.

[33] Mary-Luc Champel, Kevin Huguenin, Anne-Marie Kermarrec, and Nicolas Le
Scouarnec. Lt network codes. Proc. of ICDCS, pages 536–546, 2010.

[34] Ee-Chien Chang and Jia Xu. Remote integrity check with dishonest stor-
age server. In Sushil Jajodia and Javier Lopez, editors, Computer Security
- ESORICS 2008, volume 5283 of Lecture Notes in Computer Science, pages
223–237. Springer Berlin / Heidelberg, 2008.

[35] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In Proc. of ACNS, 2005.

115

[36] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
Proc. of ASIACRYPT, 2010.

[37] Bo Chen, Reza Curtmola, Giuseppe Ateniese, and Randal Burns. Remote
data checking for network coding-based distributed storage systems. In Proc.
of CCSW ’10, 2010.

[38] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query
processing on graph databases. In Proc. of SIGMOD, 2007.

[39] W. W. Cohen. Enron email dataset. http://www.cs.cmu.edu/~enron/.

[40] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient constructions.
In Proc. of ACM CCS, 2006.

[41] Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. Mr-pdp:
Multiple-replica provable data possession. In Proc. of ICDCS, 2008.

[42] A. G. Dimakis D. Cullina and T. Ho. Searching for minimum storage regener-
ating codes. In IN ALLERTON CONFERENCE ON CONTROL, COMPUT-
ING, AND COMMUNICATION, 2009.

[43] A.G. Dimakis, P.B. Godfrey, Yunnan Wu, M.J. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. ITIT, 2010.

[44] A.G. Dimakis, K. Ramchandran, Yunnan Wu, and Changho Suh. A survey
on network codes for distributed storage. Proceedings of the IEEE, 99(3):476
–489, march 2011.

[45] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability
via hardness amplification. In Proceedings of the 6th Theory of Cryptogra-
phy Conference on Theory of Cryptography, TCC ’09, pages 109–127, Berlin,
Heidelberg, 2009. Springer-Verlag.

[46] A. Duminuco and E. Biersack. A practical study of regenerating codes for
peer-to-peer backup systems. In Proc. of ICDCS, June 2009.

[47] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto
Tamassia. Dynamic provable data possession. In Proceedings of the 16th
ACM conference on Computer and communications security, CCS ’09, pages
213–222, New York, NY, USA, 2009. ACM.

[48] Daniel Fabbri, Arnab Nandi, Kristen Lefevre, and H. V. Jagadish. Pri-
vatepond: Outsourced management of web corpuses, 2009.

[49] Dcio Luiz Gazzoni Filho and Paulo Srgio Licciardi Messeder Barreto. Demon-
strating data possession and uncheatable data transfer. Technical report, 2006.

116

[50] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to
the theory of np-completeness. Freeman, New York, NY, USA, 1990.

[51] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, 2003.
http://eprint.iacr.org/2003/216.

[52] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over
encrypted data. In Proc. of ACNS, pages 31–45, 2004.

[53] T. Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, Jun Shi, and B. Leong.
A random linear network coding approach to multicast. ITIT, 2006.

[54] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in
the presence of isomorphism. In Proc. of ICDM, 2003.

[55] Y.H. Hwang and P.J. Lee. Public key encryption with conjunctive keyword
search and its extension to a multi-user system. In Pairing, 2007.

[56] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptogra-
phy from anonymity. In Proc. of FOCS, pages 239–248, 2006.

[57] Ari Juels and Burton S. Kaliski, Jr. Pors: proofs of retrievability for large
files. In Pro. of CCS, pages 584–597, New York, NY, USA, 2007. ACM.

[58] S. Kamara and K. Lauter. Cryptographic cloud storage. In RLCPS, 2010.

[59] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. In Proc. of
EUROCRYPT, 2008.

[60] Ranjita Bhagwan Kiran, Kiran Tati, Yu chung Cheng, Stefan Savage, and
Geoffrey M. Voelker. Total recall: System support for automated availability
management. In Proc. of NSDI, 2004.

[61] John Kubiatowicz, David Bindel, Yan Chen, and et al. OceanStore: an archi-
tecture for global-scale persistent storage. In ASPLOS, New York, NY, USA,
2000. ACM.

[62] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS ’97: Proceedings of
the 38th Annual Symposium on Foundations of Computer Science, page 364,
Washington, DC, USA, 1997. IEEE Computer Society.

[63] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption
and (hierarchical) inner product encryption. In Proc. of EUROCRYPT, 2010.

117

[64] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. En-
abling efficient fuzzy keyword search over encrypted data in cloud computing.
Cryptology ePrint Archive, 2009. http://eprint.iacr.org/2009/593.

[65] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy
keyword search over encrypted data in cloud computing. In Proc. of IEEE
INFOCOM’10 Mini-Conference, San Diego, CA, USA, March 2010.

[66] Jun Li, Shuang Yang, Xin Wang, Xiangyang Xue, and Baochun Li. Tree-
structured data regeneration in distributed storage systems with regenerating
codes. In Proc. of IWQoS, July 2009.

[67] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized private key-
word search over encrypted data in cloud computing. In Distributed Com-
puting Systems (ICDCS), 2011 31st International Conference on, pages 383
–392, june 2011.

[68] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and Michael
Isard. A cooperative internet backup scheme. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATEC ’03, pages 3–3,
Berkeley, CA, USA, 2003. USENIX Association.

[69] M. Luby. Lt codes. In Proc. of FoCS, pages 271–280, 2002.

[70] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Effi-
cient erasure correcting codes. ITIT, (2):569–584, 2001.

[71] M. Naor and G.N. Rothblum. The complexity of online memory checking.
In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE
Symposium on, pages 573 – 582, oct. 2005.

[72] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make
a difference. In Proc. of SIGKDD, 2004.

[73] M. Ondreicka and J. Pokorny. Extending fagins algorithm for more users based
on multidimensional b-tree. In Paolo Atzeni, Albertas Caplinskas, and Hannu
Jaakkola, editors, Advances in Databases and Information Systems, volume
5207 of Lecture Notes in Computer Science, pages 199–214. 2008.

[74] Alina Oprea, Michael K. Reiter, and Ke Yang. Space-efficient block storage
integrity. In In Proc. of NDSS 05, 2005.

[75] Rafail Ostrovsky and William E. Skeith. Private searching on streaming data.
Journal of Cryptology, 20(4):397–430, October 2007.

[76] D. Park, J. Cha, and P. Lee. Searchable keyword-based encryption. In Cryp-
tology ePrint Archive, Report 2005/367, 2005.

118

[77] D.J. Park, K. Kim, and P.J. Lee. Public key encryption with conjunctive field
keyword search. In WISA, 2004.

[78] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran. Exact regen-
erating codes for distributed storage. In Proc. Allerton Conf. Control Comput.
Commun., pages 337–350, 2009.

[79] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal
of the SIAM, 1960.

[80] Eun-Kyung Ryu and Tsuyoshi Takagi. Efficient conjunctive keyword-
searchable encryption. Advanced Information Networking and Applications
Workshops, International Conference on, 2007.

[81] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. Gboost: A
mathematical programming approach to graph classification and regression.
In Machine Learning, 2008.

[82] Peter Sanders, Sebastian Egner, and Ludo Tolhuizen. Polynomial time al-
gorithms for network information flow. In Proc. of SPAA, pages 286–294,
2003.

[83] Peter Scheuermann and Mohamed Ouksel. Multidimensional b-trees for asso-
ciative searching in database systems. Information Systems, 7(2):123 – 137,
1982.

[84] Mathew J. Schwartz. 6 worst data breaches of 2011, 2011.
http://www.informationweek.com/news/security/attacks/232301079.

[85] T.S.J. Schwarz and E.L. Miller. Store, forget, and check: Using algebraic
signatures to check remotely administered storage. In Distributed Computing
Systems, 2006. ICDCS 2006. 26th IEEE International Conference on, page 12,
2006.

[86] Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. Towards an
information theoretic analysis of searchable encryption. In Proceedings of the
10th International Conference on Information and Communications Security,
ICICS ’08, pages 345–360, Berlin, Heidelberg, 2008. Springer-Verlag.

[87] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Pro-
ceedings of Asiacrypt, 2008.

[88] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram Swaminathan. Audit-
ing to keep online storage services honest. In Proceedings of the 11th USENIX
workshop on Hot topics in operating systems, HOTOS’07, pages 11:1–11:6,
Berkeley, CA, USA, 2007. USENIX Association.

119

[89] Mehul A. Shah, Ram Swaminathan, and Mary Baker. Privacy-preserving audit
and extraction of digital contents, cryptology eprint archive, report 2008/186,
2008.

[90] N.B. Shah, K.V. Rashmi, P.V. Kumar, and K. Ramchandran. Explicit codes
minimizing repair bandwidth for distributed storage. In Information Theory
Workshop (ITW), 2010 IEEE, pages 1 –5, jan. 2010.

[91] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. In Proc. of VLDB, 2008.

[92] D. Shasha, J.T-L Wang, and R. Giugno. Algorithmics and applications of tree
and graph searching. In Proc. of PODS, 2002.

[93] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption
systems. In Proc. of TCC, 2009.

[94] E. Shi, J. Bethencourt, T.-H.H. Chan, Dawn Song, and A. Perrig. Multi-
dimensional range query over encrypted data. In Security and Privacy, 2007.
SP ’07. IEEE Symposium on, pages 350 –364, may 2007.

[95] Elaine Shi. Evaluating predicates over encrypted data. In CMU-CS-08-166,
PhD thesis, 2008.

[96] A. Singhal. Modern information retrieval: A brief overview. IEEE Data
Engineering Bulletin, 24(4):35–43, 2001.

[97] Radu Sion and Bogdan Carbunar. Conjunctive keyword search on encrypted
data with completeness and computational privacy. In Cryptology ePrint
Archive, Report 2005/172, 2005.

[98] Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Proc. of S&P, 2000.

[99] Aaron Souppouris. Linkedin investigating reports that
6.46 million hashed passwords have leaked online, 2012.
http://www.theverge.com/2012/6/6/3067523/linkedin-password-leak-online.

[100] Darlene Storm. Epsilon breach: hack of the century?, 2011.
http://blogs.computerworld.com/18079/epsilon_breach_hack_of_the_century.

[101] C. Suh and K. Ramchandran. Exact regeneration codes for distributed storage
repair using interference alignment. In Proc. IEEE Int. Symp. Inf. Theory,
2010.

120

[102] Ashwin Swaminathan, Yinian Mao, Guan-Ming Su, Hongmei Gou, Avinash L.
Varna, Shan He, Min Wu, and Douglas W. Oard. Confidentiality-preserving
rank-ordered search. In Proceedings of the 2007 ACM workshop on Storage
security and survivability, StorageSS ’07, pages 7–12, New York, NY, USA,
2007. ACM.

[103] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. ACM SIGCOMM Comput.
Commun. Rev., 39(1):50–55, 2009.

[104] C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and efficient ranked
keyword search over outsourced cloud data. Parallel and Distributed Systems,
IEEE Transactions on, PP(99):1, 2012.

[105] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving pub-
lic auditing for secure cloud storage. Computers, IEEE Transactions on,
PP(99):1, 2011.

[106] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked
keyword search over encrypted cloud data. In Proc. of ICDCS, 2010.

[107] Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Toward publicly auditable
secure cloud data storage services. Network, IEEE, 24(4):19 –24, july-august
2010.

[108] Cong Wang, Kui Ren, Shucheng Yu, and K.M.R. Urs. Achieving usable and
privacy-assured similarity search over outsourced cloud data. In INFOCOM,
2012 Proceedings IEEE, pages 451 –459, march 2012.

[109] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure
and dependable storage services in cloud computing. Services Computing,
IEEE Transactions on, 5(2):220 –232, april-june 2012.

[110] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Ensuring data storage
security in cloud computing. In Proc. of IWQoS, 2009.

[111] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving
public auditing for data storage security in cloud computing. In INFOCOM,
2010 Proceedings IEEE, pages 1 –9, march 2010.

[112] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public
verifiability and data dynamics for storage security in cloud computing. In
Michael Backes and Peng Ning, editors, Computer Security – ESORICS 2009,
volume 5789 of Lecture Notes in Computer Science, pages 355–370. Springer
Berlin / Heidelberg, 2009.

121

[113] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling pub-
lic auditability and data dynamics for storage security in cloud computing.
Parallel and Distributed Systems, IEEE Transactions on, 22(5):847 –859, may
2011.

[114] Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private infor-
mation retrieval using trusted hardware. In In ESORICS 2006, September
2006. LNCS, page 4189.

[115] Brent Waters, D Balfanz, G Durfee, and D.K. Smetters. Building an encrypted
and searchable audit log. In Proc. of NDSS, 2004.

[116] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs. replica-
tion: A quantitative comparison. In IPTPS, 2002.

[117] Zack Whittaker. Amazon web services suffers partial outage.
http://www.zdnet.com/blog/btl/amazon-web-services-suffers-partial-outage/79981.

[118] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of
mud: practical access pattern privacy and correctness on untrusted storage.
In Proceedings of the 15th ACM conference on Computer and communications
security, CCS ’08, pages 139–148, New York, NY, USA, 2008. ACM.

[119] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gigabytes:
Compressing and indexing documents and images. Morgan Kaufmann Pub-
lishing, San Francisco, May 1999.

[120] W. K. Wong, David W. Cheung, Ben Kao, and Nikos Mamoulis. Secure knn
computation on encrypted databases. In Proc. of SIGMOD, 2009.

[121] Y. Wu. A construction of systematic mds codes with minimum repair band-
width. In IEEE Trans. Inf. Theory, 2009.

[122] Yunnan Wu. Existence and construction of capacity-achieving network codes
for distributed storage. In Information Theory, 2009. ISIT 2009. IEEE Inter-
national Symposium on, pages 1150–1154, 28 2009-july 3 2009.

[123] Yunnan Wu. Existence and construction of capacity-achieving network codes
for distributed storage. JSAC, 28(2):277 –288, 2010.

[124] Yunnan Wu and A.G. Dimakis. Reducing repair traffic for erasure coding-
based storage via interference alignment. In Information Theory, 2009. ISIT
2009. IEEE International Symposium on, pages 2276 –2280, 28 2009-july 3
2009.

[125] Yunnan Wu, Ros Dimakis, and Kannan Ramchandran. Deterministic regen-
erating codes for distributed storage. In IN ALLERTON CONFERENCE ON
CONTROL, COMPUTING, AND COMMUNICATION, 2007.

122

[126] Huaxia Xia and Andrew A. Chien. Robustore: a distributed storage architec-
ture with robust and high performance. In Proc. of Supercomputing, 2007.

[127] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
Proc. of ICDM, 2002.

[128] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structurebased
approach. In Proc. of SIGMOD, 2004.

[129] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-
grained data access control in cloud computing. In Proc. of INFOCOM, 2010.

[130] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski. Zerber+r: Top-k retrieval
from a confidential index. In Proc. of EDBT, 2009.

[131] Sergej Zerr, Elena Demidova, Daniel Olmedilla, Wolfgang Nejdl, Marianne
Winslett, and Soumyadeb Mitra. Zerber: r-confidential indexing for dis-
tributed documents. In Proc. of EDBT, pages 287–298, 2008.

[132] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method. In
Proc. of ICDE, 2007.

[133] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta >= graph. In
Proc. of VLDB, 2007.

[134] Justin Zobel and Alistair Moffat. Exploring the similarity space. SIGIR
FORUM, 32:18–34, 1998.

123

	Worcester Polytechnic Institute
	Digital WPI
	2012-07-31

	Secure and Reliable Data Outsourcing in Cloud Computing
	Ning Cao
	Repository Citation

	tmp.1530275769.pdf.Pv9ey

