972 research outputs found

    Multi-Fault Rapid Diagnosis for Wind Turbine Gearbox Using Sparse Bayesian Extreme Learning Machine

    Full text link
    ยฉ 2013 IEEE. In order to reduce operation and maintenance costs, reliability, and quick response capability of multi-fault intelligent diagnosis for the wind turbine system are becoming more important. This paper proposes a rapid data-driven fault diagnostic method, which integrates data pre-processing and machine learning techniques. In terms of data pre-processing, fault features are extracted by using the proposed modified Hilbert-Huang transforms (HHT) and correlation techniques. Then, time domain analysis is conducted to make the feature more concise. A dimension vector will then be constructed by including the intrinsic mode function energy, time domain statistical features, and the maximum value of the HHT marginal spectrum. On the other hand, as the architecture and the learning algorithm of pairwise-coupled sparse Bayesian extreme learning machine (PC-SBELM) are more concise and effective, it could identify the single- and simultaneous-fault more quickly and precisely when compared with traditional identification techniques such as pairwise-coupled probabilistic neural networks (PC-PNN) and pairwise-coupled relevance vector machine (PC-RVM). In this case study, PC-SBELM is applied to build a real-time multi-fault diagnostic system. To verify the effectiveness of the proposed fault diagnostic framework, it is carried out on a real wind turbine gearbox system. The evaluation results show that the proposed framework can detect multi-fault in wind turbine gearbox much faster and more accurately than traditional identification techniques

    Simultaneous-Fault Diagnosis of Automotive Engine Ignition Systems Using Prior Domain Knowledge and Relevance Vector Machine

    Get PDF
    Engine ignition patterns can be analyzed to identify the engine fault according to both the specific prior domain knowledge and the shape features of the patterns. One of the challenges in ignition system diagnosis is that more than one fault may appear at a time. This kind of problem refers to simultaneous-fault diagnosis. Another challenge is the acquisition of a large amount of costly simultaneous-fault ignition patterns for constructing the diagnostic system because the number of the training patterns depends on the combination of different single faults. The above problems could be resolved by the proposed framework combining feature extraction, probabilistic classification, and decision threshold optimization. With the proposed framework, the features of the single faults in a simultaneous-fault pattern are extracted and then detected using a new probabilistic classifier, namely, pairwise coupling relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is not necessary. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnoses and is superior to the existing approach

    Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier

    Get PDF
    A reliable fault diagnostic system for gas turbine generator system (GTGS), which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling

    The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient

    Full text link
    [EN] In this article a data driven approach for the classification of simultaneously occurring faults in an induction motor is presented. The problem is treated as a multi-label classification problem with each label corresponding to one specific fault. The faulty conditions examined, include the existence of a broken bar fault and the presence of mixed eccentricity with various degrees of static and dynamic eccentricity, while three "problem transformation" methods are tested and compared. For the feature extraction stage, the startup current is exploited using two well-known time-frequency (scale) transformations. This is the first time that a multi-label framework is used for the diagnosis of co-occurring fault conditions using information coming from the start-up current of induction motors. The efficiency of the proposed approach is validated using simulation data with promising results irrespective of the selected time-frequency transformation.This work was supported in part by the Spanish MINECO and FEDER program in the framework of the "Proyectos I + D del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia" under Grant DPI2014-52842-P and in part by the Horizon 2020 Framework program DISIRE under the Grant Agreement 636834.Georgoulas, G.; Climente Alarcรณn, V.; Antonino-Daviu, J.; Tsoumas, IP.; Stylios, CD.; Arkkio, A.; Nikolakopoulos, G. (2016). The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient. IEEE Transactions on Industrial Informatics. 13(2):625-634. https://doi.org/10.1109/TII.2016.2637169S62563413

    ๋งค๊ฐœ๋ถ„ํฌ๊ทผ์‚ฌ๋ฅผ ํ†ตํ•œ ๊ณต์ •์‹œ์Šคํ…œ ๊ณตํ•™์—์„œ์˜ ํ™•๋ฅ ๊ธฐ๊ณ„ํ•™์Šต ์ ‘๊ทผ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ์ด์ข…๋ฏผ.With the rapid development of measurement technology, higher quality and vast amounts of process data become available. Nevertheless, process data are โ€˜scarceโ€™ in many cases as they are sampled only at certain operating conditions while the dimensionality of the system is large. Furthermore, the process data are inherently stochastic due to the internal characteristics of the system or the measurement noises. For this reason, uncertainty is inevitable in process systems, and estimating it becomes a crucial part of engineering tasks as the prediction errors can lead to misguided decisions and cause severe casualties or economic losses. A popular approach to this is applying probabilistic inference techniques that can model the uncertainty in terms of probability. However, most of the existing probabilistic inference techniques are based on recursive sampling, which makes it difficult to use them for industrial applications that require processing a high-dimensional and massive amount of data. To address such an issue, this thesis proposes probabilistic machine learning approaches based on parametric distribution approximation, which can model the uncertainty of the system and circumvent the computational complexity as well. The proposed approach is applied for three major process engineering tasks: process monitoring, system modeling, and process design. First, a process monitoring framework is proposed that utilizes a probabilistic classifier for fault classification. To enhance the accuracy of the classifier and reduce the computational cost for its training, a feature extraction method called probabilistic manifold learning is developed and applied to the process data ahead of the fault classification. We demonstrate that this manifold approximation process not only reduces the dimensionality of the data but also casts the data into a clustered structure, making the classifier have a low dependency on the type and dimension of the data. By exploiting this property, non-metric information (e.g., fault labels) of the data is effectively incorporated and the diagnosis performance is drastically improved. Second, a probabilistic modeling approach based on Bayesian neural networks is proposed. The parameters of deep neural networks are transformed into Gaussian distributions and trained using variational inference. The redundancy of the parameter is autonomously inferred during the model training, and insignificant parameters are eliminated a posteriori. Through a verification study, we demonstrate that the proposed approach can not only produce high-fidelity models that describe the stochastic behaviors of the system but also produce the optimal model structure. Finally, a novel process design framework is proposed based on reinforcement learning. Unlike the conventional optimization methods that recursively evaluate the objective function to find an optimal value, the proposed method approximates the objective function surface by parametric probabilistic distributions. This allows learning the continuous action policy without introducing any cumbersome discretization process. Moreover, the probabilistic policy gives means for effective control of the exploration and exploitation rates according to the certainty information. We demonstrate that the proposed framework can learn process design heuristics during the solution process and use them to solve similar design problems.๊ณ„์ธก๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์–‘์งˆ์˜, ๊ทธ๋ฆฌ๊ณ  ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ์˜ ์ทจ๋“์ด ๊ฐ€๋Šฅํ•ด์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๊ฒฝ์šฐ ์‹œ์Šคํ…œ ์ฐจ์›์˜ ํฌ๊ธฐ์— ๋น„ํ•ด์„œ ์ผ๋ถ€ ์šด์ „์กฐ๊ฑด์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋งŒ์ด ์ทจ๋“๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” โ€˜ํฌ์†Œโ€™ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” ์‹œ์Šคํ…œ ๊ฑฐ๋™ ์ž์ฒด์™€ ๋”๋ถˆ์–ด ๊ณ„์ธก์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋…ธ์ด์ฆˆ๋กœ ์ธํ•œ ๋ณธ์งˆ์ ์ธ ํ™•๋ฅ ์  ๊ฑฐ๋™์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์Šคํ…œ์˜ ์˜ˆ์ธก๋ชจ๋ธ์€ ์˜ˆ์ธก ๊ฐ’์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ธฐ์ˆ ํ•˜๋Š” ๊ฒƒ์ด ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์˜ค์ง„์„ ์˜ˆ๋ฐฉํ•˜๊ณ  ์ž ์žฌ์  ์ธ๋ช… ํ”ผํ•ด์™€ ๊ฒฝ์ œ์  ์†์‹ค์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ๋ณดํŽธ์ ์ธ ์ ‘๊ทผ๋ฒ•์€ ํ™•๋ฅ ์ถ”์ •๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ •๋Ÿ‰ํ™” ํ•˜๋Š” ๊ฒƒ์ด๋‚˜, ํ˜„์กดํ•˜๋Š” ์ถ”์ •๊ธฐ๋ฒ•๋“ค์€ ์žฌ๊ท€์  ์ƒ˜ํ”Œ๋ง์— ์˜์กดํ•˜๋Š” ํŠน์„ฑ์ƒ ๊ณ ์ฐจ์›์ด๋ฉด์„œ๋„ ๋‹ค๋Ÿ‰์ธ ๊ณต์ •๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋งค๊ฐœ๋ถ„ํฌ๊ทผ์‚ฌ์— ๊ธฐ๋ฐ˜ํ•œ ํ™•๋ฅ ๊ธฐ๊ณ„ํ•™์Šต์„ ์ ์šฉํ•˜์—ฌ ์‹œ์Šคํ…œ์— ๋‚ด์žฌ๋œ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๋ฉด์„œ๋„ ๋™์‹œ์— ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ณต์ •์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์— ์žˆ์–ด ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ (Gaussian mixture model)์„ ๋ถ„๋ฅ˜์ž๋กœ ์‚ฌ์šฉํ•˜๋Š” ํ™•๋ฅ ์  ๊ฒฐํ•จ ๋ถ„๋ฅ˜ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ด๋•Œ ๋ถ„๋ฅ˜์ž์˜ ํ•™์Šต์—์„œ์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์›์œผ๋กœ ํˆฌ์˜์‹œํ‚ค๋Š”๋ฐ, ์ด๋ฅผ ์œ„ํ•œ ํ™•๋ฅ ์  ๋‹ค์–‘์ฒด ํ•™์Šต (probabilistic manifold learn-ing) ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์ฒด (manifold)๋ฅผ ๊ทผ์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ์‚ฌ์ด์˜ ์Œ๋ณ„ ์šฐ๋„ (pairwise likelihood)๋ฅผ ๋ณด์กดํ•˜๋Š” ํˆฌ์˜๋ฒ•์ด ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ์ข…๋ฅ˜์™€ ์ฐจ์›์— ์˜์กด๋„๊ฐ€ ๋‚ฎ์€ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์–ป์Œ๊ณผ ๋™์‹œ์— ๋ฐ์ดํ„ฐ ๋ ˆ์ด๋ธ”๊ณผ ๊ฐ™์€ ๋น„๊ฑฐ๋ฆฌ์  (non-metric) ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฐํ•จ ์ง„๋‹จ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋‘˜์งธ๋กœ, ๋ฒ ์ด์ง€์•ˆ ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง(Bayesian deep neural networks)์„ ์‚ฌ์šฉํ•œ ๊ณต์ •์˜ ํ™•๋ฅ ์  ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•๋ก ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ์‹ ๊ฒฝ๋ง์˜ ๊ฐ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ๊ฐ€์šฐ์Šค ๋ถ„ํฌ๋กœ ์น˜ํ™˜๋˜๋ฉฐ, ๋ณ€๋ถ„์ถ”๋ก  (variational inference)์„ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ํ›ˆ๋ จ์ด ์ง„ํ–‰๋œ๋‹ค. ํ›ˆ๋ จ์ด ๋๋‚œ ํ›„ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์œ ํšจ์„ฑ์„ ์ธก์ •ํ•˜์—ฌ ๋ถˆํ•„์š”ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์†Œ๊ฑฐํ•˜๋Š” ์‚ฌํ›„ ๋ชจ๋ธ ์••์ถ• ๋ฐฉ๋ฒ•์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ฐ˜๋„์ฒด ๊ณต์ •์— ๋Œ€ํ•œ ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋Š” ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๊ณต์ •์˜ ๋ณต์žกํ•œ ๊ฑฐ๋™์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋ง ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ์ตœ์  ๊ตฌ์กฐ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถ„ํฌํ˜• ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•œ ๊ฐ•ํ™”ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ™•๋ฅ ์  ๊ณต์ • ์„ค๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ตœ์ ์น˜๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ์žฌ๊ท€์ ์œผ๋กœ ๋ชฉ์  ํ•จ์ˆ˜ ๊ฐ’์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ์กด์˜ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ๊ณผ ๋‹ฌ๋ฆฌ, ๋ชฉ์  ํ•จ์ˆ˜ ๊ณก๋ฉด (objective function surface)์„ ๋งค๊ฐœํ™” ๋œ ํ™•๋ฅ ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด์‚ฐํ™” (discretization)๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์—ฐ์†์  ํ–‰๋™ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋ฉฐ, ํ™•์‹ค์„ฑ (certainty)์— ๊ธฐ๋ฐ˜ํ•œ ํƒ์ƒ‰ (exploration) ๋ฐ ํ™œ์šฉ (exploi-tation) ๋น„์œจ์˜ ์ œ์–ด๊ฐ€ ํšจ์œจ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ์‚ฌ๋ก€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๊ณต์ •์˜ ์„ค๊ณ„์— ๋Œ€ํ•œ ๊ฒฝํ—˜์ง€์‹ (heuristic)์„ ํ•™์Šตํ•˜๊ณ  ์œ ์‚ฌํ•œ ์„ค๊ณ„ ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ ์ด์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Outline of the thesis 5 Chapter 2 Backgrounds and preliminaries 9 2.1. Bayesian inference 9 2.2. Monte Carlo 10 2.3. Kullback-Leibler divergence 11 2.4. Variational inference 12 2.5. Riemannian manifold 13 2.6. Finite extended-pseudo-metric space 16 2.7. Reinforcement learning 16 2.8. Directed graph 19 Chapter 3 Process monitoring and fault classification with probabilistic manifold learning 20 3.1. Introduction 20 3.2. Methods 25 3.2.1. Uniform manifold approximation 27 3.2.2. Clusterization 28 3.2.3. Projection 31 3.2.4. Mapping of unknown data query 32 3.2.5. Inference 33 3.3. Verification study 38 3.3.1. Dataset description 38 3.3.2. Experimental setup 40 3.3.3. Process monitoring 43 3.3.4. Projection characteristics 47 3.3.5. Fault diagnosis 50 3.3.6. Computational Aspects 56 Chapter 4 Process system modeling with Bayesian neural networks 59 4.1. Introduction 59 4.2. Methods 63 4.2.1. Long Short-Term Memory (LSTM) 63 4.2.2. Bayesian LSTM (BLSTM) 66 4.3. Verification study 68 4.3.1. System description 68 4.3.2. Estimation of the plasma variables 71 4.3.3. Dataset description 72 4.3.4. Experimental setup 72 4.3.5. Weight regularization during training 78 4.3.6. Modeling complex behaviors of the system 80 4.3.7. Uncertainty quantification and model compression 85 Chapter 5 Process design based on reinforcement learning with distributional actor-critic networks 89 5.1. Introduction 89 5.2. Methods 93 5.2.1. Flowsheet hashing 93 5.2.2. Behavioral cloning 99 5.2.3. Neural Monte Carlo tree search (N-MCTS) 100 5.2.4. Distributional actor-critic networks (DACN) 105 5.2.5. Action masking 110 5.3. Verification study 110 5.3.1. System description 110 5.3.2. Experimental setup 111 5.3.3. Result and discussions 115 Chapter 6 Concluding remarks 120 6.1. Summary of the contributions 120 6.2. Future works 122 Appendix 125 A.1. Proof of Lemma 1 125 A.2. Performance indices for dimension reduction 127 A.3. Model equations for process units 130 Bibliography 132 ์ดˆ ๋ก 149๋ฐ•

    A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    Get PDF
    This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach

    A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building

    Get PDF
    Due to the increased awareness of issues ranging from green initiatives, sustainability, and occupant well-being, buildings are becoming smarter, but with smart requirements come increasing complexity and monitoring, ultimately carried out by humans. Building heating ventilation and air-conditioning (HVAC) units are one of the major units that consume large percentages of a buildingโ€™s energy, for example through their involvement in space heating and cooling, the greatest energy consumption in buildings. By monitoring such components effectively, the entire energy demand in buildings can be substantially decreased. Due to the complex nature of building management systems (BMS), many simultaneous anomalous behaviour warnings are not manageable in a timely manner; thus, many energy related problems are left unmanaged, which causes unnecessary energy wastage and deteriorates equipmentโ€™s lifespan. This study proposes a machine learning based multi-level automatic fault detection system (MLe-AFD) focusing on remote HVAC fan coil unit (FCU) behaviour analysis. The proposed method employs sequential two-stage clustering to identify the abnormal behaviour of FCU. The modelโ€™s performance is validated by implementing well-known statistical measures and further cross-validated via expert building engineering knowledge. The method was experimented on a commercial building based in central London, U.K., as a case study and allows remotely identifying three types of FCU faults appropriately and informing building management staff proactively when they occur; this way, the energy expenditure can be further optimized

    Expert System for Diagnosis of Motor Failures in Electronic Injection Vehicles

    Get PDF
    Today, cars are an indispensable element in the society, as well as the vehicle diagnosis of minor and serious mechanical failures. This process is carried out through two methods: (i) manually, inspecting possible common causes; and (ii) automatically, using a failure identification scanner. In both cases the assistance of a car expert is required. However, how could a common user briefly diagnose vehicle failures? The objective of this project has been to build an expert system module for vehicular diagnosis to help the common user, identifying automotive failures and the severity of the vehicle damage. It also helps to prevent major damages and possible accidents, as well as to achieve a technical and effective communication when the situation is being explained to the mechanical assistance which can be even by telephone. The module design was composed by four phases: (i) do background research about failure diagnosis, (ii) production rules; (iii) inference engine; and (iv) user interface. The results show that the expert system module is 71,43% effective, so that it helps the common user to identify electronic engine failures without the assistance of a professional in the area
    • โ€ฆ
    corecore