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Engine ignition patterns can be analyzed to identify the engine fault according to both the specific prior domain knowledge and
the shape features of the patterns. One of the challenges in ignition system diagnosis is that more than one fault may appear at a
time. This kind of problem refers to simultaneous-fault diagnosis. Another challenge is the acquisition of a large amount of costly
simultaneous-fault ignition patterns for constructing the diagnostic system because the number of the training patterns depends
on the combination of different single faults. The above problems could be resolved by the proposed framework combining feature
extraction, probabilistic classification, and decision threshold optimization. With the proposed framework, the features of the
single faults in a simultaneous-fault pattern are extracted and then detected using a new probabilistic classifier, namely, pairwise
coupling relevance vector machine, which is trained with single-fault patterns only.Therefore, the training dataset of simultaneous-
fault patterns is not necessary. Experimental results show that the proposed framework performs well for both single-fault and
simultaneous-fault diagnoses and is superior to the existing approach.

1. Introduction

1.1. Background of Engine Ignition Patterns. Although auto-
motive engine ignition systems vary in construction, they
are similar in basic operation. All of them have a primary
circuit that causes a spark in the secondary circuit, which is
then delivered to the correct spark plug at the proper time.
The conditions inside the ignition system and the cylinder
also affect the ignition pattern in the secondary circuit.
Consequently, the ignition patterns reflect the conditions
within the ignition system and help pinpoint their faults [1],
such as wide or narrow spark-plug gaps and open spark-plug
cables. After capturing the ignition pattern, the automotive
mechanic compares the features of the captured pattern with
samples from handbooks for diagnosis [2, 3]. This procedure
is called ignition system diagnosis. However, there are several
challenges for the automotive mechanic which are as follows.

(1) The engine ignition pattern is time dependent. Dif-
ferent engine models produce the ignition patterns
of various amplitude and duration for the same kind
of fault. Even for the same engine, it may produce
slightly different shapes of ignition patterns for each
engine cycle due to engine speed fluctuation and
various testing conditions.Therefore, there is no exact
scale and duration for sample patterns in the hand-
books. Hence, the traditional diagnosis merely relies
on prior domain knowledge and the engineer’s expe-
rience.

(2) Practically, the engine ignition-system diagnosis is
a simultaneous-fault problem, but many handbooks
only provide single-fault patterns for reference. To
determine simultaneous faults, the engineer can
only extract and analyze some specific features of
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single-fault patterns from a simultaneous-fault pat-
tern, such as frequency, firing voltage, and burn time,
and make a decision about the presence of simultan-
eous faults according to their experience and knowl-
edge.

(3) As suggested in the existing literature [1–3], the igni-
tion-systemdiagnosis based on the shape features and
the prior domain knowledge of the ignition pattern
cannot conclude a definite answer. It is because many
possible faults may occur individually or simultane-
ously. The handbooks do not provide the rank of the
probability of each possible fault. Therefore, to find
out a fault based on ignition patterns, many trials for
disassembling and assembling of engine parts are
often necessary unless the engineer has very rich
experience.

To tackle these challenges, an effective feature extraction
method for engine ignition patterns is required, which com-
bines domain knowledge (DK), time-frequency decomposi-
tion, and dimensional reduction techniques. Moreover, an
advanced probabilistic classifier is necessary to provide the
rank of each possible fault and reliable diagnostic results. In
recent years, some intelligent diagnostic methods based on
pattern recognition have been developed for multiclass fault
diagnosis (i.e., single-fault diagnosis because only a single
fault is identified) of mechanical systems [4–9]. Generally,
these methods include two steps: feature extraction and
classification.

1.2. Feature Extraction Methods. Feature extraction is very
important because the in-depth andhidden features of single-
fault patterns can be detected through frequency subband
decomposition. Referring to the existing literature, many
classical feature extraction techniques were applied to fault
diagnosis; the most typical one is the fast Fourier transform
(FFT) [10–13]. However, its main drawback is the unsuit-
ability for nonstationary patterns. Wavelet packet transform
(WPT) [1, 4, 14–19] is another popular time frequency local-
ization analysismethod that received awidespread utilization
in the past decade. By means of multiscale analysis, WPT can
be successfully applied to nonstationary patterns, based on
subband coding and a systematic decomposition of a pattern
into its subband levels for pattern analysis.Therefore,WPT is
employed in this research for feature extraction.

Nevertheless, one drawback for WPT is that the size of
the extracted features is larger or equal to that of its original
pattern. If the original pattern is of a high dimension, there
is a large amount of extracted features that may incur two
issues: (1) the high complexity of the trained classifiers
because of the huge amount of inputs; (2) there may be many
redundant and unimportant extracted features so that noise
can be induced. Both of the issues can degrade the classifier
performance. Therefore, compensating the drawback by em-
ploying dimensional reduction technique such as principal
component analysis (PCA) [20–22] is suggested. In this re-
search, PCA is selected as the dimensional reduction tech-
nique for a simple illustration purpose. More advance tech-
niques could be considered in the future. Compared to other

dimensional reduction techniques, PCA has three advan-
tages: (1) it has no hyperparameter; (2) PCA eliminates the
interaction of variables because the principal components are
independent of each other; (3) the principal components are
sorted by their information weights, so some unimportant
principal components can be further reduced. Then, the
feature extraction approach of WPT+PCA can transform an
original ignition pattern into a reduced dimensional feature
vector while retaining most of the information content.

1.3. Classification Methods. For classification, a fault can be
considered as a label, no matter whether it is a single fault or
simultaneous fault. To date, there are only a few researches
on simultaneous-fault diagnosis. The typical classification
method for simultaneous-fault diagnosis is to build a number
of classifiers according to the combination of all possible
faults; this method is called monolabel classification [23].
However, it is practically difficult to obtain the training data
of all possible combinations particularly for ignition pat-
terns. Normally, the number of combination of all faults in an
engineering problem is very large that affects the diagnostic
accuracy because the complexity of the classifiers will also
be immensely increased. Moreover, if a new single fault is
added in the future, the number of required training simul-
taneous-fault patterns grows significantly. To overcome this
drawback, Yélamos et al. [23] proposed a binarization strat-
egy using support vector machine (SVM) and applied to
simultaneous-fault diagnosis of a simulated chemical process
based on time-independent data, in which the labels of the
single faults or simultaneous faults were processed as binary
vectors, that is, 0 or 1 only. For each label, a binary classifier
was constructed using SVM with one-versus-all splitting
strategy. Given an unknown pattern, the classifier would out-
put a vector of binary results (0 or 1). From this approach, only
single-fault patterns are used for training the classifiers while
simultaneous-fault patterns are not necessary. The experi-
mental results showed that the overall accuracy of their
binarization approach is almost the same as that of the
traditional monolabel approach. This kind of binarization
approach sounds good but still suffers from several draw-
backs: (1) the approach assumes that informative features are
obvious and available that is not always the case for time-
dependent signal patterns, so this approach cannot be suit-
able for ignition patterns; (2) the one-versus-all strategy
ignores the pairwise correlation between the labels and hence
the classification accuracy is mostly degenerated; (3) the
approach only considers the presence of a fault, if its corre-
sponding output is close to the classification margin which
lacks confidence of correct classification, that is, the degree
of belief of faults.

From the practical point of view, a proper classifier has
to offer the probabilities of all possible faults. Then the user
can at least trace the other possible faults according to the
rank of their probabilities when the predicted fault(s) from
the classifier is incorrect in the problem.Therefore, it is better
to employ probabilistic classifier for simultaneous-fault diag-
nosis. The probabilistic structure is also suitable for the fault
with uncertainty such as engine ignition-system diagnosis.
Typically, probabilistic neural network (PNN) [24, 25] was
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employed as a probabilistic classifier. It was shown in [24] that
the performance of PNN is superior to SVM based method
for multilabel classification. However, the main drawback of
PNN lies in the limited number of inputs because the com-
plexity of the network and the training time are heavily
related to the number of inputs. Recently, Widodo et al. [6]
proposed to apply an advanced classifier, namely, relevance
vector machine (RVM) to fault diagnosis of low speed bear-
ings. They showed that RVM is superior to SVM in terms of
diagnostic accuracy. Besides, RVMcan also handle regression
problem [26]. RVM is a statistical learning method proposed
by Tipping [27], which trains a probabilistic classifier with
sparser model using Bayesian framework. RVM can be
extended to multiclass version using one-versus-all (1vA)
strategy.However, this strategywas verified to produce a large
region of indecision [28, 29]. In view of this drawback, this
research is the first in the literature to incorporate pair-
wise coupling, that is, one-versus-one (1v1) strategy, into
RVM, namely pairwise coupled relevance vector machine
(PCRVM). As PCRVM considers the correlation between
every pair of fault labels, a more accurate estimate of label
probabilities for simultaneous-fault signals can be achieved.

1.4. DecisionThreshold Optimization. If a probabilistic classi-
fication is applied to fault detection, the predicted fault is usu-
ally inferred as the one with the largest probability. The other
alternative approach is that the probabilistic classifier ranks
all the possible faults according to their probabilities and lets
the engineer make a decision. These inference approaches
work fine with single-fault detection but fail to determine
which faults occur simultaneously in the simultaneous-fault
problem. It is because the engineer cannot identify the num-
ber of simultaneous faults based on the output probability of
each label. For instance, an output probability vector for five
labels is given as [0.21,0.5,0.69,0.01,0.6]. In this example, it is
difficult for the engineer to judge whether the simultaneous
faults are labels 2, 3, and 5. To identify the number of
simultaneous faults, a decision threshold must be introduced
and thus a new step of decision threshold optimization is
proposed in the current framework other than feature extrac-
tion and probabilistic classification.

1.5. Research Objectives and the Proposed Framework. Cur-
rently, very little research examines whether the features of
single-fault ignition patterns can be reflected in the ignition
patterns of some simultaneous faults. If it is feasible, some
rational (not all) simultaneous faults are likely to be identified
based on the prior domain knowledge and the features of
single-fault ignition patterns. In other words, the features
about the single faults in a simultaneous-fault pattern could
be detected and then classified using the probabilistic clas-
sifier trained with the single-fault patterns only. Under this
concept, the simultaneous-fault patterns are not necessary for
training the classifiers. Once a new single fault is added in the
future, the diagnostic system can be easily extended because
the issue of combinatory single faults has been eliminated. To
verify the feasibility and determine the best feature extraction
method, this research proposes to extract the important

knowledge-specific, time-domain, and frequency-domain
features of the single-fault patterns using the combination
of WPT+PCA, FFT, and DK. Then the pairwise coupled
probabilistic classifier is trained using a training dataset of
these extracted single-fault features in order to identify simul-
taneous faults for reasonable unseen patterns. Therefore, a
feasibility study on this idea for simultaneous-fault diagnosis
is an important contribution of this research. Another impor-
tant contribution of the research is the reduction of required
training patterns for simultaneous-fault diagnosis.

This paper is organized as follows. The proposed frame-
work and the related techniques are described in Section 2.
In Section 3, the experimental setup is presented, followed
by the results and a comparison with latest approach [23] in
Section 4 and discussion in Section 5. Finally, a conclusion is
given in Section 6.

2. Proposed Framework and
Related Techniques

The proposed diagnosis framework (Figure 1) includes three
steps: feature extraction, classification, and threshold opti-
mization. The framework is general so that different feature
extraction, probabilistic classification, and threshold opti-
mization techniques could be adopted. In this paper, FFT,
WPT, and PCA are examined in the step of feature extraction
and their detailed descriptions can be, respectively, found
in [22, 30, 31]. In addition, these techniques are combined,
respectively, with time-related domain knowledge (DK) for a
comprehensive comparison.

2.1. Formulation of the Proposed Framework. Given a sample
dataset D = {(x

𝑖
, l
𝑖
)} of (single-fault or simultaneous-fault)

patterns, 𝑖 = 1 to 𝑁
𝐷
, x
𝑖
∈ R𝑛 and l

𝑖
= [𝑙
𝑖1
, 𝑙
𝑖2
, . . . , 𝑙
𝑖𝑑
] is a

vector of labels of the corresponding single-fault pattern of
x
𝑖
and 𝑑 is the number of single faults. Here there may be

more than one fault in l
𝑖
so that ∑𝑑

𝑔=1
𝑙
𝑖𝑔

≥ 1, 𝑙
𝑖𝑔

∈ {0, 1} for
𝑔 = 1 to 𝑑. In Figure 1, the sample dataset is divided into three
groups: training dataset, validation dataset, and test dataset
where training dataset only involves single-fault patterns.

After applying feature extraction techniques to the pat-
terns {x

𝑖
}, a set of feature vectors F = {(f

𝑖
, l
𝑖
)} is produced.

A training dataset of single-fault patterns only (no simultan-
eous-fault patterns are necessary) is selected to train a multi-
label classifier 𝑓class by using probabilistic classification algo-
rithm.Then 𝑓class takes an unknown feature vector f as input
and outputs a probability vector 𝜌 = [𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑑
] where 𝑑

is the number of the single-fault labels. Here 𝜌
𝑗
= 𝑃(𝑙
𝑗
| f) ∈

[0, 1] denotes the probability that f belongs to the 𝑗th label
for 𝑗 = 1 to 𝑑. Since every 𝜌

𝑗
is an independent probability,

Σ𝜌
𝑗
is not necessarily equal to one. At this stage, the diagnos-

tic system can provide the probability vector 𝜌 to the user as
a quantitative measure for reference and further use. After-
wards, the multilabel decision vector y = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑑
] is

constructed from 𝜌 using (1):

𝑦
𝑗
= 𝜀 (𝜌

𝑗
) = {

1, if 𝜌
𝑗
≥ 𝜀,

0, otherwise,
for 𝑗 = 1 to 𝑑, (1)
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Figure 1: Proposed framework of the simultaneous engine ignition-fault diagnosis system and its evaluation.

where 𝜀 ∈ (0, 1) is a user-defined decision threshold and 𝑦
𝑗

indicates that f belongs to the 𝑗th label or not (Figure 2).
For example, if 𝜀 = 0.5 and 𝜌 = 𝑓class(f) = [0.72, 0.42, 0.82,

0.28, 0.86], then y = 𝜀(𝜌) = [1, 0, 1, 0, 1]. Therefore, f is diag-
nosed as a simultaneous-fault (1, 3, 5). Notice that y = [0, 0, 0,

0, 0] indicates that no fault has been found, and hence the
unseen instance f is diagnosed as a normal pattern.

2.2. Extraction of Prior Domain Knowledge Features for Igni-
tion Patterns. When an engine starts firing, its secondary coil
produces a rapid high voltage to cause spark plug to produce
spark. This high voltage is called the firing voltage. Then the
spark voltage decreases until zero. The spark voltage repre-
sents the voltage required to maintain spark for the duration
of the spark line. The duration is called the burn time. After
the burn time, the energy in the ignition coil nearly exhausts,
and the residual energy forms slight oscillation in the ignition
coil. The entire procedure is shown in Figure 3. Using the
ignition pattern to diagnose the engine fault is a common
diagnostic method for automotive engineers. With reference
to some handbooks [2, 3], the following prior domain knowl-
edge for a pattern can be observed for engine fault diagnosis
(Figure 3):

(1) firing voltage (𝐹
1
);

(2) burn time (𝐹
2
);

(3) average spark voltage (𝐹
3
).

In this study, all patterns start from the firing voltage (𝐹
1
)

which is at the first sampling point:

𝐹
1
= 𝑥
1
, (2)

where 𝑥
1
is the voltage of the first sampling point. Ideally, the

burn time (𝐹
2
) starts from the spark voltage and ends at the

position where the spark voltage falls to zero. However, in
practice, the voltage could slightly oscillate after the burn time
so that exact zero value may not be reached. In this study,
when the voltage falls to 0.1% of the firing voltage, it is con-
sidered as zero and the burn time ends. The feature 𝐹

2
can be

obtained as illustrated in Figure 4, where 𝑎 indicates the end

0

1

 

𝑦

𝜌𝜀

Figure 2: Decision function based on threshold 𝜀.

point of burn time, and 𝐿
𝑃
is the length of patterns. With the

index 𝑎 and time step 𝑞, the average spark voltage of the spark
line (𝐹

3
) can be calculated as follows:

𝐹
3
=

1

𝑎

𝑎

∑

𝑞=1

𝑥
𝑞
. (3)

2.3. Feature Extraction Using WPT and PCA and Combined
Feature Vector. WPT is a generalization of wavelet decompo-
sition that offers a richer signal analysis [31]. It is well known
that WPT can extract time-frequency features of a signal
pattern. Given a set of patterns X = {x

𝑖
}, 𝑖 = 1 to 𝑁

𝐷
, WPT

transforms an ignition pattern x
𝑖
∈ 𝑅

𝑠 into a set of 2𝐽 coeffi-
cient packets 𝑣

𝑖,𝑏
∈ 𝑅

𝑚, and 𝑚 is the ceiling function of 𝑠/2𝐽

at level 𝐽 (𝑏 = 1 to 2

𝐽
). Then, these packets 𝑣

𝑖,𝑏
are concaten-

ated as v
𝑖
= [𝑣
𝑖,1
, 𝑣
𝑖,2
, 𝑣
𝑖,3
, . . . , 𝑣

𝑖,2
𝐽] as the extracted features

of the pattern x
𝑖
. It is believed that the in-depth and hidden

features of the single fault patterns can be detected through
the coefficient packets v

𝑖
after WPT decomposition. WPT is

applied to every x
𝑖
to form a set of features V = {v

𝑖
}, 𝑖 = 1 to

𝑁
𝐷
.
Usually, the dimension of v

𝑖
is large and a certain amount

of the featuresmay be redundant.Therefore, PCA is employed
for dimension reduction of v while retaining its important
information. The details of PCA can be found in [22]. After
applying PCA to V, a set of eigen vectors h

𝑗
and eigen values

𝑒
𝑗
are returned, which represent the transformation vectors
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and the importance of the transformed dimensions, where
𝑗 = 1 to 𝑝, 𝑒

1
≥ 𝑒
2

≥ ⋅ ⋅ ⋅ ≥ 𝑒
𝑝

≥ 0. The 𝑘 (𝑘 < 𝑝) most
important dimensions are selected based on the criterion of
∑

k
𝑗=1

𝑒



𝑗
≤ 0.99, that is, a 1% of information loss is allowed,

where 𝑒



𝑗
= 𝑒
𝑗
/∑

𝑝

𝑗=1
𝑒
𝑗
is a normalized eigen value. Knowing

the value of 𝑘, the corresponding transformation matrixH =

[h
1
h
2
⋅ ⋅ ⋅ h
𝑘
] is then formed. So F = H𝑇V is the reduced

feature dataset. For any unseen ignition pattern x in the
future, its feature vector can be obtained by f = H𝑇v, where
v = WPT(x). By combining the prior domain knowledge,
the final feature vector as the classifier inputs is given in the
following:

f = [f, 𝐹
1
, 𝐹
2
, 𝐹
3
] . (4)

2.4. Relevance Vector Machine. Relevance vector machine
[27] is a statistical learning method utilizing Bayesian learn-
ing framework and popular kernel methods. In fault diagno-
sis, RVM is designed to predict the posterior probability of the
binary class membership (i.e., either positive or negative) for
an unseen input f, given a set of training data (F, t) = {f

𝑛
, 𝑡
𝑛
},

𝑛 = 1 to 𝑁, 𝑡
𝑛
∈ {0, 1}, and 𝑁 is the number of training data.

It follows the statistical convention and generalizes the linear
model by applying the logistic sigmoid function 𝜎(𝑧(f)) =

1/(1+exp(−𝑧(f))) to the predicted decision 𝑧(f) and adopting
the Bernoulli distribution for 𝑃(t | F). The likelihood of the
data is written as follows [27]:

𝑃 (t | F,w) =

𝑁

∏

𝑛=1

𝜎 {𝑧(f
𝑛
;w)

𝑡𝑛
} [1 − 𝜎 {𝑧 (f

𝑛
;w)}]

1−𝑡𝑛

where 𝑧 (f;w) =

𝑁

∑

𝑖=1

𝑤
𝑖
𝐾(f, f

𝑖
) + 𝑤
0
,

(5)
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where w = (𝑤
0
, 𝑤
2
, . . . , 𝑤

𝑁
)

𝑇 are the adjustable parameters,
and a radial basis function (RBF) is typically chosen for𝐾(⋅).

The current objective is to find the optimal weight vector
w in (5) for the given dataset F, which is equivalent to find
w so as to maximize the probability 𝑃(w | t, F,𝛼) ∝ 𝑃(t |

F,w) 𝑃(w | 𝛼), with 𝛼 = [𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑁
] a vector of 𝑁 + 1

hyperparameters. However, it is impossible to determine
the weights analytically. Hence, closed-form expressions for
either the marginal likelihood 𝑃(w | 𝛼) or equivalently the
weight posterior 𝑃(w | t, F,𝛼) are denied.Thus, the following
approximation procedure is chosen [32], which is based on
Laplace’s method.

(a) For the current fixed values of 𝛼, the most probable
weights wMP are found, which is the location of the
posterior mode. Since 𝑃(w | t, F,𝛼) ∝ 𝑃(t | F,w
𝑃(w | 𝛼), this step is equivalent to the followingmaxi-
mization:

wMP

= argmax
w

log𝑃 (w | tF,𝛼)

= argmax
w

log {𝑃 (t | F,w) 𝑃 (w | 𝛼)}

= argmax
w

{

𝑁

∑

𝑛=1

[𝑡
𝑛
log 𝑠
𝑛

+ (1 − 𝑡
𝑛
) (1 − log 𝑠

𝑛
)]

−

1

2

w𝑇Aw}

with 𝑠
𝑛
= 𝜎 {z (f

𝑛
;w)} ,

A = diag (𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑁
) .

(6)

(b) Laplace’s method is simply a Gaussian approximation
to the log-posterior around the mode of the weights
wMP. Equation (6) is differentiated twice to give

∇w∇w log𝑃(w | t, F,𝛼)






wMP

= − (Φ
𝑇BΦ + A) , (7)

where B = diag(𝛽
1
, . . . , 𝛽

𝑁
) is a diagonal matrix with

𝛽
𝑛
= 𝜎{𝑧(f

𝑛
;w)}[1−𝜎{𝑧(f

𝑛
;w)}], andΦ is a𝑁×(𝑁+1)

design matrix with Φ
𝑛𝑚

= 𝐾(f
𝑛
, f
𝑚−1

) and Φ
𝑛0

= 1,
𝑛 = 1 to 𝑁, and 𝑚 = 1 to 𝑁 + 1. By inverting (7),
the covariance matrix Σ = −(∇w∇w log𝑃(w | t, F,
𝛼)|wMP

)

−1
= (Φ
𝑇BΦ + A)

−1 can be obtained.
(c) The hyperparameters 𝛼 are updated using an iterative

reestimation equation. Firstly, randomly guess 𝛼i and
calculate 𝛾

𝑖
= 1 − 𝛼

𝑖
Σ
𝑖𝑖
, where Σ

𝑖𝑖
is the 𝑖th diagonal

element of the covariance matrix Σ. Then reestimate
𝛼i as follows:

𝛼

new
𝑖

=

𝛾
𝑖

u2
𝑖

, (8)

where u = wMP = ΣΦ
𝑇Bt. Set 𝛼

𝑖
← 𝛼

new
𝑖

and reesti-
mate 𝛾

𝑖
and 𝛼

new
𝑖

again until convergence. Then w =

wMP is estimated so that the classification model
𝑧(f;w) = ∑

𝑁

𝑖=1
𝑤
𝑖
𝐾(f, f
𝑖
) + 𝑤
0
is obtained.

2.5. Pairwise Coupled RVM. The traditional RVM formula-
tion is designed only for binary classification; that is, the out-
put is either positive (+1) or negative (−1). In order to resolve
the current simultaneous-fault problem, multiclass strategies
of one-versus-all (1vA) and one-versus-one (1v1, or specif-
ically named as pairwise coupling) [28] can be employed.
Traditionally 1vA strategy constructs a group of classifiers
𝑓class = [𝐶

1
, . . . , 𝐶

𝑑
] in a 𝑑-label classification problem. For

any unknown input f, the classification vector y = [𝑦
1
, 𝑦
2
,

. . . , 𝑦
𝑑
], where 𝑦

𝑖
= 1 if 𝐶

𝑖
(f) = +1 or 𝑦

𝑖
= 0 if 𝐶

𝑖
(f) = −1.

The 1vA strategy is simple and easy to implement. However,
it generally gives a poor result [29, 33, 34] since 1vA does not
consider the pairwise correlation and hence induces a much
larger indecisive region than 1v1 as shown in Figure 5.

On the other hand, pairwise coupling (1v1) also constructs
a group of classifiers 𝑓class = [𝐶

1
, . . . , 𝐶

𝑑
] in a 𝑑-label classi-

fication problem. However, each 𝐶
𝑖
= [𝐶
𝑖1
, . . . , 𝐶

𝑖𝑗
, . . . , 𝐶

𝑖𝑑
]

is composed of a set of 𝑑 − 1 different pairwise classifiers 𝐶
𝑖𝑗
,

𝑖 ̸= 𝑗. Since 𝐶
𝑖𝑗
and 𝐶

𝑗𝑖
are complementary, there are totally

𝑑(𝑑 − 1)/2 pairwise classifiers in 𝑓class (Figure 6(b)).
In this study, each 𝐶

𝑖𝑗
can be an RVM classifier which

estimates the pairwise probability that an unknown instance
f belongs to the 𝑖th label against the 𝑗th label, that is, 𝐶

𝑖𝑗
(f) =

𝑃(𝑙
𝑖
| f, 𝑙
𝑖
or 𝑙
𝑗
).There are several methods for pairwise coupl-

ing strategy [28], which are, however, suitable for multiclass
diagnosis only because of the constraint Σ𝜌

𝑖
= 1. Note that

the nature of simultaneous-fault diagnosis is that Σ𝜌
𝑖
is not

necessarily equal to 1. Therefore, the following simple pair-
wise coupling strategy for simultaneous-fault diagnosis is
proposed.

Every 𝐶
𝑖𝑗
is trained only by the training data with the 𝑖th

and 𝑗th labels. Let 𝜌
𝑖𝑗

= 𝐶
𝑖𝑗
(f) = 𝑃(𝑙

𝑖
| f, 𝑙
𝑖
or 𝑙
𝑗
) be the

pairwise probability of the 𝑖th label against the 𝑗th label for
an unknown instance f, where𝐶

𝑖𝑗
(f) is estimated using RVM.

Then, 𝜌
𝑖
is calculated as

𝜌
𝑖
= 𝐶
𝑖 (
f) =

∑

𝑑

𝑗=1:𝑗 ̸= 𝑖
𝑛
𝑖𝑗
𝐶
𝑖𝑗 (

f)

∑

𝑑

𝑗=1:𝑗 ̸= 𝑖
𝑛
𝑖𝑗

=

∑

𝑑

𝑗=1:𝑗 ̸= 𝑖
𝑛
𝑖𝑗
𝜌
𝑖𝑗

∑

𝑑

𝑗=1:𝑗 ̸= 𝑖
𝑛
𝑖𝑗

,

(9)

where 𝑛
𝑖𝑗
is the number of training data with the 𝑖th and 𝑗th

labels. Hence, the probability 𝜌
𝑖
can be more accurately

estimated from 𝜌
𝑖𝑗

= 𝐶
𝑖𝑗
(f) because the pairwise correlation

between the labels are taken into account. With the above
pairwise coupling strategy, PCRVM can more accurately
estimate the probability vector 𝜌 and hence generate a higher
classification accuracy for simultaneous-fault diagnosis.

2.6. Decision Threshold Optimization and 𝐹-Measure.
PCRVM can only provide the probability vector
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Figure 5: Indecisive regions (shaded area) using 1vA (a) and pairwise coupling (1v1) (b) [29].
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Figure 6: Architecture of 1vA classifier (a) and 1v1 classifier (b).

𝜌 = [𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑑
] of the single-fault labels but the desired

result is the classification vector y = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑑
] = [𝜀(𝜌

1
),

𝜀(𝜌
2
), . . . , 𝜀(𝜌

𝑑
)]. It is obvious that the value of decision

threshold 𝜀 will greatly affect the classification accuracy. For
a situation without any prior information, the best estimate
of 𝜀 may be simply set to 0.5, that is, the presence of a fault is
considered if its probability is at least 0.5. However, the value
of 𝜀 should be optimized according to the classification
accuracy. In other words, the value 𝜀 should be chosen to
produce the highest classification accuracy over a validation
dataset.

Besides, the traditional evaluation of classification accu-
racy only considers exact matching of the predicted label
vector y against the true label vector l. This evaluation is

however not suitable for simultaneous-fault diagnosis where
partial matching is preferred. Therefore, a common evalua-
tion called 𝐹-measure is employed.

𝐹-measure [35] is commonly used as performance eval-
uation for information retrieval systems where a document
may belong to a single or multiple tags simultaneously. This
is very similar to the current application that contains a mix-
ture of single-fault and simultaneous-fault patterns. With 𝐹-
measure, the evaluation of single-fault and simultaneous-
fault test patterns can be appropriately done at one time. To
define 𝐹-measure 𝐹me, two concepts of precision (𝜋) and
recall (𝜏) are used so that

𝐹
𝑚

=

2𝜋𝜏

𝜋 + 𝜏

, (10)
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where𝜋 and 𝜏 are originally designed for single-fault patterns
only but can be extended to handle simultaneous-fault pat-
terns. For𝑁

𝑇
single-fault and simultaneous-fault test data,

𝜋 =

∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
𝑦

𝑗

𝑖
l𝑗
𝑖

∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
𝑦

𝑗

𝑖

, 𝜏 =

∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
𝑦

𝑗

𝑖
l𝑗
𝑖

∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
l𝑗
𝑖

, (11)

where 𝑦

𝑗

𝑖
and 𝑙

𝑗

𝑖
are, respectively, the 𝑖th predicted label and

the 𝑖th true label in the 𝑗th test data, 𝑦𝑗
𝑖
and 𝑙

𝑗

𝑖
∈ {0, 1}. Sub-

stituting (11) into (10), the final𝐹-measure equation is given in
(12).The larger the𝐹-measure value, the higher the diagnostic
accuracy is

𝐹
𝑚

=

2 × ∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
𝑦

𝑗

𝑖
𝑙

𝑗

𝑖

∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
𝑦

𝑗

𝑖
+ ∑

𝑑

𝑖=1
∑

𝑁𝑇

𝑗=1
𝑙

𝑗

𝑖

∈ [0, 1] . (12)

With 𝐹-measure, the value 𝜀 can be optimized using typical
direct search techniques such asGenetic Algorithms (GA) and
Particle Swarm Optimization (PSO) [36].

2.7. Principle of Detection of Single Faults and Simultaneous
Faults. After an unknown instance f is passed to the above
system, a probability vector 𝜌 is produced. If f is caused by a
single fault (e.g., the 𝑗th fault), f contains only the symptoms
of the 𝑗th fault.Then, in 𝜌, the corresponding probability 𝜌

𝑗
≥

𝜀

∗ so that𝑦
𝑗
= 1 in the decision vector ywhile all other𝑦

𝑘
= 0,

𝑘 ̸= 𝑗. In other words, ∑𝑦
𝑗

= 1 and hence a single fault is
detected.

For the case that f is caused by two simultaneous faults
(e.g., the 𝑗th and 𝑘th faults), f is constituted by the symptoms
of the 𝑗th and 𝑘th faults.These symptomsmay be overlapping
or interdistorted. In the current diagnostic system, probabili-
ties are employed to give the similarity of𝑓 against the 𝑗th and
𝑘th faults by𝐶

𝑗
and𝐶

𝑘
, respectively. If their symptoms are not

highly overlapping or interdistorted, there is a high chance
that the corresponding probabilities 𝜌

𝑗
, 𝜌
𝑘

≥ 𝜀

∗. Under this
circumstance, 𝑦

𝑗
= 1 and 𝑦

𝑘
= 1, making ∑𝑦

𝑗
≥ 1 so that a

simultaneous fault can be detected.Themechanism is similar
for three or more simultaneous faults. By combining these
cases, the proposed system can diagnose both single fault and
simultaneous faults using classifiers trained with single faults
only.

2.8. Summary of Proposed Framework and Techniques. The
previous framework and techniques are summarized in
Algorithm 1. Figure 7(a) shows the workflow of using DK and
WPT+PCA as feature extraction. Every dataset for training,
validation and test requires going through the step of feature
extraction. Figure 7(b) shows the construction of the classifier
𝑓class. The classifier has the architecture of pairwise coupling
as depicted in Figure 6(b). Then the classifier is passed to an
optimizer to search for the optimal decision threshold based
on a validation set 𝑉𝐴𝐿𝐼𝐷 𝐹 and 𝐹-measure 𝐹me as shown
in Figure 7(c), where 𝑓class outputs the probability vector
𝜌 = [𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑑
] for each case in 𝑉𝐴𝐿𝐼𝐷 𝐹. To optimize

the threshold, the 𝐹-measure 𝐹me over 𝑉𝐴𝐿𝐼𝐷 𝐹 can be

evaluated as the fitness value. Since the direct search tech-
nique is easily stuck by local minima, it is necessary to run𝑀

different times of the optimization step in Figure 7(c) to avoid
this issue. For testing and running, the step in Figure 7(d) is
very similar to Figure 7(c) except the optimal threshold 𝜀opt
that has been determined. The choice of parameters of the
feature extraction, classification, and direct search techniques
are discussed in Section 4.

3. Experimental Setup

To verify the effectiveness of the proposed methodology, an
experiment was set up for sample data acquisition and eval-
uation tests. The details of the experimental setup and prepa-
ration of datasets are presented in the following subsections.

3.1. Data Sampling. In total, a set of single faults and simul-
taneous faults were imitated and selected as demonstration
examples. There are 10 kinds of single faults as described in
Tables 1 and 4 kinds of simultaneous faults as described in
Table 2. However, there is an issue that the simultaneous-fault
patterns are not caused by a random combination of single
faults but some reasonable combinations (e.g., it is impossible
to have wide spark-plug gap and narrow spark-plug gap
at the same time). Moreover, the experimental data show that
a simultaneous-fault ignition pattern is caused by a combina-
tion of at most three single faults. Beyond these constraints,
the ignition patterns cannot be captured due to engine stall.
Some sample ignition patterns of these single faults and
reasonable simultaneous faults are shown in Figures 8 and 9,
respectively.

In this study, five well-known inline 4-cylinder electronic
ignition engines, namely, HONDA B18C, HONDA D15B,
HONDA K20A, TOYOTA 2NZ-FE, and MITSUBISHI 4G15,
were employed as the experimental platforms, and a com-
puter-linked automotive scope meter was used (Figure 10)
to capture raw ignition patterns. Different models of engines
were used for training in order to enhance the generalization
of the classifier. To capture ignition patterns, the sampling
frequency of the scopemeter was set to a high rate of 100 kHz,
that is, 100,000 sampling points per second. Under the soft-
ware provided by the scope meter, ignition patterns were
recorded in a PC and converted into a file of excel format for
processing and analysis.

For each case (single fault or simultaneous faults inTables 1
and 2) in every test engine, sixteen ignition patterns (four
patterns for each cylinder) were captured over two different
engine testing conditions according to the standard proce-
dure in [3] (1200 rpm and 2000 rpm). As the pattern obtained
in each cylinder per engine cycle is somewhat unrepeatable,
four patterns per cylinder are required.The reason for causing
unrepeatable patterns is that a constant engine speed is diffi-
cult to hold during sampling. Furthermore, each cylinder has
its own manufacturing error, different inlet and exhaust flow
characteristics, and so forth. Finally there were 1600 ignition
patterns of single faults (i.e., 10 labels × 4 patterns × 4
cylinders × 2 testing conditions × 5 engines) and 800 ignition
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Figure 7: Workflow of feature extraction, decision threshold optimization, diagnostic system training, and testing.

Table 1: Sample single faults of engine trouble reflected by ignition
patterns.

Case number Symptom or possible cause
1 Retarded ignition timing
2 High resistance in secondary circuit
3 Partially broken spark-plug cable
4 Defective spark plug
5 Narrow spark-plug gap
6 Misfire due to extremely lean mixture
7 Carbon fouled in spark plug
8 Engine knock
9 Rich mixture
10 Wide spark-plug gap

patterns of simultaneous faults (i.e., 5 labels × 4 patterns × 4
cylinders × 2 testing conditions × 5 engines).

3.2. Data Normalization. As the number of sampling points
of every captured pattern is not exactly the samedue to engine

Table 2: Sample possible simultaneous faults of engine trouble
reflected by ignition patterns.

Case number Symptom or possible cause

1 High resistance in secondary circuit and misfire
due to extremely lean mixture

2 Narrow spark-plug gap and carbon fouled in
spark plug

3 Partially broken spark-plug cable and wide spark-
plug gap

4 High resistance in secondary circuit cable and
narrow spark-plug gap and rich mixture

5 Partially broken spark-plug cable and engine
knock and wide spark-plug gap

speed fluctuation and various testing conditions, all patterns
were normalized within the same range in order to match
the number of inputs of the classifier. Normalization of the
ignition patterns was done in terms of duration. In this study,
the number of sampling points for every pattern was less than
17,000. For the sake of conservation, a standard number of
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Given a training dataset TRAIN F of single-fault patterns only, a validation dataset VALID F and a test dataset TEST F of single-
fault and simultaneous-fault patterns (all datasets have been preprocessed by the combination of DK and WPT and PCA, as
presented in Figure 7(a)):

(i) Train the probabilistic classifier 𝑓class
𝑓class includes 𝑑(𝑑 − 1)/2 pairwise classifiers 𝐶

𝑖𝑗
as shown in Figure 6(b).

(ii) ∀f ∈ VALID F, prepare the probability vector 𝜌
Calculate 𝑓class (f) = 𝜌 = [𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑑
] (Figure 7(c)).

(iii) For k = 1 to𝑀// Run a direct search technique, such as GA or PSO,M times
Produce an initial population 𝜖 for the decision threshold 𝜀

(a) ∀𝜀 ∈ 𝜖, find the classification vector y(f) = y = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑑
]= [𝜀(𝜌

1
), 𝜀(𝜌
2
), . . . , 𝜀(𝜌

𝑑
)] according to (1).

(b) Calculate the 𝐹-measure 𝐹me with y(f) and l(f) using (12), that is, find 𝐹me over VALID F,
where l(f) = [𝑙

1
, 𝑙
2
, . . . , 𝑙

𝑑
] is the true classification vector for input f provided from VALID F.

(c) Produce next generation of 𝜀
Until convergence or matching stopping criteria, return the best solution 𝜀 as the 𝜀

𝑘
.

(iv) Among all 𝜀
𝑘
, k = 1 toM, choose the one producing the highest F-measure 𝐹me as the optimal decision threshold 𝜀opt.

(v) Return the trained probabilistic classifier 𝑓class and the optimized decision threshold 𝜀opt as the main components of the
intelligent diagnostic system.

(vi) The performance of 𝑓class and 𝜀opt can be evaluated with TEST F and 𝐹me as illustrated in Figure 7(d).

Algorithm 1: Algorithm of the proposed framework for simultaneous-fault diagnosis of time-dependent ignition patterns.

Table 3: Evaluation of different combinations of techniques.

F-measure over TEST with Classification technique
𝜀 = 0.5 PNN RVM PCRVM
Feature extraction

None 0.73214 0.75063 0.80442
DK 0.73581 0.76023 0.81202
FFT 0.78362 0.78162 0.82162
WPT + PCA
(Haar, level 𝐽 = 9) 0.78221 0.79171 0.82178

DK + FFT 0.78333 0.80162 0.82242
DK +WPT + PCA
(Haar, level 𝐽 = 9) 0.78548 0.81245 0.84225

Table 4: GA operators and parameters.

Number of generation 1000
Population size 50
Selection method Standard proportional selection
Crossover method Simple crossover with probability = 80%

Mutation method
Hybrid static Gaussian and uniform
mutation with probability = 40% and
standard deviation = 0.2

sampling points for all patterns was set to 18,000 in order not
to lose any exceptional information. To standardize the dura-
tion of all patterns, steady-state values can be appended to the
rear part of the patterns if necessary. Normally, the steady-
state value for the ignition pattern is equal to zero (0V). For
those patterns having fewer than 18,000 data points, zeros can
be appended. Therefore, the durations of all sample patterns
were normalized before feature extraction usingWPT+PCA.

3.3. Allocation of Datasets. In order to test the diagnostic
performance for both single faults and simultaneous faults,

about 3/4 of the single-fault patterns were taken as training
data 𝑇𝑅𝐴𝐼𝑁. There were 1/16 of the single-fault patterns
and 1/5 simultaneous-fault patterns in the validation dataset
𝑉𝐴𝐿𝐼𝐷, while the remaining 3/16 of the single-fault patterns
and 4/5 simultaneous-fault patterns were used as test dataset
𝑇𝐸𝑆𝑇.

4. Experimental Results

To select the best combination of the techniques for feature
extraction, classification, and threshold optimization, many
experiments based on the sample dataset were conducted.
The sample dataset was separated into 3 groups: 𝑇𝑅𝐴𝐼𝑁 for
training the classifier, 𝑉𝐴𝐿𝐼𝐷 for the threshold optimization
and selection of direct search techniques, and𝑇𝐸𝑆𝑇 for evalu-
ating the performance of different combinations of the feature
extraction, classification, and threshold optimization tech-
niques.Theperformance evaluation over𝑇𝐸𝑆𝑇 is based on𝐹-
measure that can evaluate single-fault and simultaneous-fault
patterns at one time according to partial matching criterion.
All experiments were carried out under a PC with Core i5 @
3.20GHz and 4GB RAM. All the proposed techniques men-
tioned were implemented using Matlab R2008a.

4.1. Results of Various Combinations of Feature Extraction and
Classification Techniques. The reasonable combinations of
DK, FFT, and WPT+PCA for feature extraction were tested
as shown in Table 3 along with the corresponding evaluation.
The classification techniques used in the experiment include
PNN, RVM, and PCRVM. PNN [24] was selected for com-
parison because it is a traditional probabilistic classification
using radial basis (Gaussian) kernel. The input dimension 𝑠

of the classifiers for evaluation is subject to the feature extrac-
tion technique. In terms of WPT, PCA, and DK, WPT trans-
forms the original patterns of 18000 points into different
packets at level 𝐽. The value of 𝐽 can be determined using
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Figure 8: Continued.
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Figure 8: Sample ignition patterns and their corresponding single engine faults.

entropy information. A built-in function bestlev (meaning
best level) is available in Matlab wavelet toolbox for this pur-
pose. After carrying outmany experiments using the function
bestlev, 𝐽 was tested to be 9 for the sample dataset of ignition
patterns. In this study, the common mother wavelet, Haar
wavelet, was selected for the purposes of illustration and
comparison of different feature extraction techniques. For
better performance, different types of mother wavelets could
be evaluated in the future. After PCA, the most 22 important
dimensions were selected as described in Section 2.3. There-
fore, the size of 𝑠 is equal to 22 plus the three domain features,
that is, 25 totally. For FFT and DK, the sizes of 𝑠 are equal to
18000 and 3 features, respectively.

In the construction of the intelligent engine diagnostic
systems with different techniques for comparison, each fea-
ture extraction technique was firstly employed to preprocess
the training dataset 𝑇𝑅𝐴𝐼𝑁, and then different classification
techniques were applied.The performance of every combina-
tion was evaluated over 𝑇𝐸𝑆𝑇 using 𝐹-measure. In order to
reflect the effectiveness of the feature extraction, the classifi-
cation techniques under 𝑇𝑅𝐴𝐼𝑁 without any preprocessing
were also examined. Therefore, there were totally 18 combi-
nations of feature extraction and classification techniques as
shown in Table 3.

For classification techniques of PNN, RVM, and PCRVM,
several simple settings are necessary. PNN requires a hyper-
parameter called smoothing factor or spread, which is equiv-
alent to the width of the Gaussian kernel within PNN. If the
value of spread is set too high, the trained classifiermay easily
overfit the training patterns and hence a lower generalization.
In the case study, the value of spread for PNN was simply
set to be 0.2 according to rule of thumb [37]. The RVM and
PCRVM employ different classification strategies (1vA versus
1v1) but they share the same set of hyperparameters, namely,
type of kernel functions and the corresponding kernel param-
eters. For illustration purpose, Gaussian was selected as the
kernel function 𝐾(⋅) and its kernel width was set to be 1.0
in order to calculate the design matrix Φ in (7). The exper-
imental results of various combinations of feature extraction
and classification techniques are shown in Table 3. In order to
evaluate the𝐹-measures under different combinations of pre-
processing and classifications, the decision threshold was

simply set to 0.5 for a simple and fair comparison in this
phase.

4.2. Results with Threshold Optimization. Genetic Algorithms
(GA) are themost classical direct search technique, whilePar-
ticle Swarm Optimization (PSO) is another popular choice.
Both of them were tested for the optimization of the decision
threshold and they share the same objective function. Since
the 𝐹-measure 𝐹me ∈ (0, 1), the objective function of optimi-
zation can be simply set as follows:

min (1 − 𝐹me) . (13)

The higher the 𝐹me, the better the optimization result will be.
The optimization procedure follows the proposed algorithm
in Algorithm 1, where the number of runs𝑀was set to be 20.
Tables 4 and 5 show the detail settings of the GA and PSO
operators and parameters, respectively, according to the lit-
erature [36]. Therefore, among 20 runs of the proposed algo-
rithm for every combination of feature extraction and clas-
sification techniques under GA and PSO optimization, the
optimized threshold 𝜀opt and its corresponding 𝐹me value of
different combinations of techniques are shown in Tables 6
and 7, respectively.

4.3. Individual Result of Single- and Simultaneous-Fault Diag-
nosis. The objective of this research is to train a probabilistic
classifier using single-fault patterns and then predict both
single and simultaneous faults. However, it is unclear whether
the performance of the trained probabilistic classifier on
simultaneous faults in Section 4.2 is correct or not because the
classification results of different combinations of techniques
were all evaluated over the whole test dataset 𝑇𝐸𝑆𝑇, which
contains single-fault and simultaneous-fault patterns. To bet-
ter illustrate the performance of the proposed method, 𝑇𝐸𝑆𝑇
was further separated into two groups, one for purely single-
faults 𝑇𝐸𝑆𝑇

1
, and another for purely simultaneous-faults

𝑇𝐸𝑆𝑇
𝑠
. All evaluation tests were done using the combina-

tion of DK+WPT+PCA as feature extraction and the PSO-
optimized threshold of 0.7147 because Tables 6 and 7 show
that this combination produces the best 𝐹-measure. The 𝐹-
measures of purely single faults and purely simultaneous
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Figure 9: Sample ignition patterns and their corresponding simultaneous engine faults.
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Figure 10: Collection of ignition patterns from a test engine using a
computer-linked automotive scope meter.

Table 5: PSO operators and parameters.

Number of generation 1000
Population size 50
𝑤
𝑐

0.9
𝑐
1

2
𝑐
2

2

faults are shown in Tables 8 and 9, respectively, which were
calculated using (12) with the related faults. For example, for
Fault 1, 𝐹me is evaluated on the test cases of Fault 1 only. For
simultaneous faults of the combination (5, 7), after prediction
there is a classification vector y = [𝑦

1
, . . . , 𝑦

10
], and a true

vector l = [𝑙
1
, . . . , 𝑙
10
], then 𝑦

5
and 𝑦

7
with the true values 𝑙

5

and 𝑙
7
from the test cases are employed to compute the two

separate 𝐹me values for detail analysis.

4.4. Results Comparison with the Latest Technique. To further
verify the effectiveness of the presented framework, the
existing binarization approach using SVM [23] was applied
to the ignition system diagnosis for comparison. The bina-
rization approach builds classifiers directly based on raw
ignition patterns, so there is no feature extraction step. In
this approach, a number of binary classifiers 𝐵𝑓

𝑗
(⋅) were

constructed, respectively, using support vector machines
(SVM) with one-versus-all splitting strategy where 𝑗 = 1

to 𝑑, 𝑑 is the number of single faults again. A decision
vector y = [𝜃(𝐵𝑓

1
(x)) ⋅ ⋅ ⋅ 𝜃(𝐵𝑓

𝑑
(x))] can be obtained for an

unknown pattern x, where 𝐵𝑓
𝑗
(x) ∈ 𝑅 is the raw output value

of the 𝑗th SVM classifier, and 𝜃(𝐵𝑓
𝑗
(x)) = 1 if 𝐵𝑓

𝑗
(x) ≥ 0

and 𝜃(𝐵𝑓
𝑗
(x)) = 0 Otherwise. From this framework, only

single-fault patterns were used for training the binary classi-
fiers while simultaneous-fault patterns are also not necessary.
Since there is no probabilistic output but only a binary deci-
sion vector is generated in the binarization approach, no deci-
sion threshold optimization is necessary in this experiment.
The results using the binarization approach is shown in
Table 10.

5. Discussion of Results

5.1. Effect of Feature Extraction and Pairwise Probabilistic
Classification. The experimental results presented in Sec-
tion 4 are discussed in this section. Table 3 illustrates that the
step of feature extraction is effective. DK is the time-related
features of an ignition pattern but only improves the over-
all classification accuracy about 1% as compared with the
methods without any feature extraction, while FFT and
WPT+PCA give about 4.4% and 4.8% improvement, respec-
tively. When combining both time-related and frequency-
related features by DK andWPT+PCA, the overall classifica-
tion accuracy is about 7% higher than that without any
feature extraction. Table 3 also indicates that nomatter which
classification technique is employed, the integration of DK
andWPT+PCA as feature extraction gives the best accuracy.
In addition, the three classification techniques are compared
by using 𝐹-measure as well. Both PNN and RVM employ
1vA strategy for probabilistic classification. In other words,
only 𝑑 binary classifiers were constructed for 𝑑 labels so that
there are large indecision regions between pairs of classes.
Therefore, when a test case lies on these regions, PNN and
RVM mostly fail to classify the faults correctly. However,
PCRVM employs 1v1 strategy, which minimizes those inde-
cision regions. Table 3 verifies the effectiveness of the 1v1
strategy because PCRVM outperforms the other two classi-
fication techniques. This situation is almost the same as the
tests with optimized decision threshold as shown in Tables 6
and 7.Therefore, the proposed PCRVM is a very effective and
promising classification technique.

5.2. Effect of DecisionThresholdOptimization. Tables 3, 6, and
7 illustrate that the GA and PSO can improve the overall
accuracy by 3.48% and 3.5% as compared with the fixed
decision threshold of 0.5, but these two techniques give nearly
the same threshold and𝐹me.The reason is that the experiment
was run for 20 times for both the GA and PSO, and then the
pair of results with the highest 𝐹me was returned. However,
it is found that the standard deviations of the 20 results for
the GA and PSO are 1.02E-3 and 3.23E-4, respectively. For
the GA, the standard deviation is larger than PSO in this
case study. This result indicates that PSO is more stable than
the GA and theoretically requires a fewer number of runs to
obtain a suboptimal result than the GA. This is because PSO
is somehow insensitive to the initial values, whereas the GA
is initialized with random start points within the search space
and the search result is very sensitive to the initial values [36].
Consequently, PSO is recommended for this application.

5.3. Diagnosis of Simultaneous Faults. Table 8 reveals that the
trained classifiers using PNN, RVM, and PCRVM perform
well because the test cases contain single-fault patterns only.
Due to the advantage of pairwise coupling, PCRVMperforms
the best among the three classification techniques.

For the test cases of simultaneous-fault patterns, there are
only five reasonable combinations of simultaneous faults
because not every combination is possible. Since a simultan-
eous-fault pattern is caused by different single faults, some
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Table 6: Evaluation of different combinations of techniques using GA-optimized threshold.

F-measure over VALID
with GA-optimized 𝜀opt

Classification technique
PNN RVM PCRVM

𝜀opt 𝐹me 𝜀opt 𝐹me 𝜀opt 𝐹me

Feature Extraction
None 0.6875 0.76114 0.6757 0.79604 0.7005 0.81244
DK 0.7193 0.79819 0.6813 0.80325 0.7167 0.83023
FFT 0.6791 0.79236 0.7401 0.82129 0.7353 0.82621
WPT + PCA
(Haar, level 𝐽 = 9) 0.6998 0.79125 0.7161 0.83118 0.7234 0.85816

DK + FFT 0.7245 0.79123 0.6755 0.82212 0.7291 0.85414
DK +WPT + PCA
(Haar, level 𝐽 = 9) 0.7313 0.81431 0.7023 0.84524 0.7124 0.87113

∗

The experiment was run for 20 times, and the best 𝜀opt and 𝐹me were returned.

Table 7: Evaluation of different combinations of techniques using PSO-optimized threshold.

F-measure over VALID
with PSO-optimized 𝜀opt

Classification technique
PNN RVM PCRVM

𝜀opt 𝐹me 𝜀opt 𝐹me 𝜀opt 𝐹me

Feature extraction
None 0.6934 0.7711 0.6877 0.78014 0.6993 0.80563
DK 0.6983 0.77132 0.6919 0.80532 0.7154 0.83011
FFT 0.6916 0.78932 0.6997 0.81829 0.7278 0.82622
WPT + PCA
(Haar, level 𝐽 = 9) 0.7024 0.79451 0.7068 0.82788 0.7177 0.87112

DK + FFT 0.7161 0.78398 0.6949 0.83129 0.7269 0.84941
DK +WPT + PCA
(Haar, level 𝐽 = 9) 0.7116 0.82561 0.7114 0.85445 0.7147 0.88911

∗

The experiment was run for 20 times and the best 𝜀opt and 𝐹me were returned.

Table 8: Single-fault diagnosis under 𝐹-measure (with DK+WPT+
PCA, 𝜀opt = 0.7147).

Test dataset 𝑇𝐸𝑆𝑇
1

(single faults) PNN RVM PCRVM

Fault 1 0.9185 0.9342 0.9781
Fault 2 0.9094 0.9118 0.9224
Fault 3 0.9773 0.9357 0.9911
Fault 4 0.9087 0.9272 0.9287
Fault 5 0.9368 0.9458 0.9489
Fault 6 0.8902 0.9010 0.9020
Fault 7 0.9722 0.9812 0.9923
Fault 8 0.9453 0.9477 0.9513
Fault 9 0.9042 0.9126 0.9242
Fault 10 0.9035 0.9133 0.9454

of the time-related and frequency-related features may be
distorted or even vanished. Therefore, the feature extraction
using DK and WPT+PCA cannot work very well and hence
the values of 𝐹me in Table 9 drop a little bit as compared with
the values in Table 8, but they can still provide an accuracy

ranging from 0.49 to 0.8. Once again, PCRVM outperforms
the other classified techniques because of pairwise coupling
strategy. Within the simultaneous-fault diagnosis, the most
misclassified fault is Fault 10, because the ignition pattern
of Fault 10 is almost distorted by Fault 3. Nevertheless, the
experimental results can still verify the following:

(1) the proposed framework can alleviate the problem
of exponential growth of training dataset for simul-
taneous-fault ignition patterns by training the proba-
bilistic classifier using single-fault patterns only. This
evidence can be found in Tables 8 and 9 that the
single-fault patterns can be almost correctly classified,
while the overall classification accuracy for simultan-
eous-fault ignition patterns is still satisfactory;

(2) the feature extraction techniques of DK combined
with WPT+PCA can effectively capture the time-
related and frequency-related features from single-
fault and simultaneous-fault ignition patterns;

(3) the features of single-fault ignition patterns can really
be detected in some feasible simultaneous-fault igni-
tion patterns; this feasibility will create a new research
direction for automotive engine diagnosis;
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Table 9: Simultaneous fault diagnosis under 𝐹-measure with classifiers trained with single faults (with DK +WPT + PCA and 𝜀opt = 0.7147).

Test dataset 𝑇𝐸𝑆𝑇
𝑠

(simultaneous faults only) Classification technique Fault 2 Fault 3 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 Fault 10

Faults (2, 6)
PNN 0.6917 — — 0.6848 — — — —
RVM 0.7128 — — 0.7067 — — — —

PCRVM 0.7435 — — 0.7392 — — — —

Faults (5, 7)
PNN — — 0.7321 — 0.7054 — — —
RVM — — 0.7522 — 0.7214 — — —

PCRVM — — 0.7926 — 0.7557 — — —

Faults (3, 10)
PNN — 0.8003 — — — — — 0.4854
RVM — 0.7943 — — — — — 0.6159

PCRVM — 0.7844 — — — — — 0.6995

Faults (2, 5, 9)
PNN 0.7434 — 0.7457 — — — 0.6809 —
RVM 0.7123 — 0.7359 — — — 0.7256 —

PCRVM 0.7847 — 0.7858 — — — 0.7704 —

Faults (3, 8, 10)
PNN — 0.6842 — — — 0.7118 — 0.6803
RVM — 0.6724 — — — 0.7319 — 0.6931

PCRVM — 0.7349 — — — 0.7828 — 0.6993
—: Indicates that the probability is lower than 𝜀opt and hence ignored.

Table 10: Evaluation results of the binarization approach and the proposed framework for fault diagnosis.

Binarization Proposed framework
Feature Extraction None WPT + PCA + DK WPT + PCA + DK
Classification SVM SVM PCRVM
threshold None None PSO-optimized threshold = 0.7147
𝐹-measure over 𝑇𝐸𝑆𝑇

Overall cases 0.4518 0.6792 0.8891
Single fault cases 0.4500 0.7404 0.9567
Simultaneous fault cases 0.4528 0.6455 0.7714

(4) RVM is more robust than PNN for probabilistic
classification;

(5) the pairwise coupling (1v1) strategy can improve the
accuracy for common probabilistic classification
techniques.

5.4. Comparison with the Latest Approach. Table 10 reveals
that the binarization approach works badly on ignition pat-
tern classification. In other words, the binarization method
does not work for engine ignition-system diagnosis. In addi-
tion, after feature extraction, the performance of the bina-
rization can be generally raised about 50% as well. Therefore,
the effectiveness of feature extraction is verified under all
frameworks and techniques tested in this paper. It is highly
believed that this feature extraction can also work well in
many other practical applications.

6. Conclusions

One of the challenges in ignition system diagnosis is that
more than one single fault may appear at a time. Another
challenge is the acquisition of large amount of costly

simultaneous-fault ignition patterns for constructing the
diagnostic system because the number of the training pat-
terns depends on the combination of different single faults.
In this paper, simultaneous-fault diagnosis for automotive
engine ignition patterns was studied and a new framework
combining feature extraction, probabilistic classification, and
decision threshold optimization based on a fair multilabel
assessment, 𝐹-measure, has successfully been developed.
With the proposed diagnosis framework, the acquisition of
large amount of simultaneous-fault patterns can be avoided.

In this study, the combination of feature extraction tech-
niques of DK, FFT, and WPT+PCA have been tried along
with the classification techniques of PNN,RVM, andPCRVM
to tackle the simultaneous-fault diagnosis. The experimental
results reveal that PCRVM combined with WPT+PCA and
DK performs the best for both single-fault and simultaneous-
fault diagnoses. Its average accuracy for single-fault diagnosis
is about 0.95 while the average accuracy for simultaneous
faults is only about 0.76. It implies that the feature extraction
technique based on DK and WPT+PCA for simultaneous-
fault detectionmay not be perfect. Alternative approach, such
as the integration of feature extraction, classification, and
multiexpert reasoning, could be studied in the future.
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This study also shows that the decision threshold for iden-
tifying the number of simultaneous faults can be optimized
over 𝐹-measure using direct search techniques, such as GA
and PSO. Both the GA and PSO generate almost the same
decision threshold but PSO requires less computational time
and is more stable because of its lower standard deviation
in multiple runs. Moreover, PSO has fewer operators and
hence fewer adjustable parameters that can further reduce the
user burden. Overall speaking, PSO should be the first
choice of the threshold optimization technique in the current
application.

To further verify the effectiveness of the proposed frame-
work, the latest method, binarization method using SVM,
was also employed to diagnose the simultaneous faults. The
results show that the diagnosis accuracy of the binarization
method is worse than that of the proposed framework.
Therefore, the proposed framework is very suitable for
engine ignition-system fault diagnosis. Since the proposed
framework for simultaneous-fault diagnosis is general, it can
be adapted to other similar applications. Finally, the original
contributions of the research are summarized as follows.

(1) The research is a first attempt at integrating DK+
WPT+PCA, PCRVM, and direct search techniques
into a general framework for simultaneous-fault diag-
nosis of automotive ignition systems.

(2) The proposed diagnostic system is the first in the liter-
ature that can be trained with single-fault signal pat-
terns (i.e., single-fault time-dependent patterns) only,
while it can diagnose simultaneous-fault signal pat-
terns too.

(3) This paper is also the first in the literature that reports
that the features of single-fault ignition patterns can
be detected in some feasible simultaneous-fault igni-
tion patterns.This fact is an important contribution to
automotive engine diagnosis.

(4) The integration of the pairwise coupling (1v1) strategy
into RVM is original, and the 1v1 strategy can really
improve the classification accuracy of RVM.

Notation

A: Diagonal matrix of hyperparamters
𝑎: End point of burning time
Β: Diagonal matrix in RVM
𝐵𝑓
𝑗
(⋅): 𝑗th binary classifier

𝐶
𝑖
: 𝑖th probabilistic classifier

𝐶
𝑖
(f): Probability of f belonging to the 𝑖th label

𝐶
𝑖𝑗
: Pairwise classifier

𝐶
𝑖𝑗
(f): Pairwise probability of f belonging to the 𝑖th

label against the 𝑗th label
𝑐
1
: Cognitive parameter of PSO

𝑐
2
: Social parameter of PSO

𝐷: Sample dataset
𝑑: Number of labels (faults)
𝑒
𝑗
: 𝑗th eigen value

𝑒



𝑗
: 𝑗th normalized eigen value

F: Set of feature vectors

F: Set of feature vectors created by WPT and
PCA

𝐹
1
: Firing voltage

𝐹
2
: Burn time

𝐹
3
: Average spark voltage of spark line

𝐹me: 𝐹-measure
f: Feature vector
f: Feature vector created by WPT and PCA
f
ℎ
: ℎth feature vector

𝑓class: Probabilistic classifier
H: PCA transformation matrix
h
𝑗
: 𝑗th eigen vector

𝐽: Decomposition level of WPT
𝐾(⋅): Kernel function in RVM
𝐿
𝑃
: Length of ignition pattern (i.e., number of

data point in ignition pattern)
l: True label vector
l
𝑖
: 𝑖th true label vector

𝑙
𝑖
: 𝑖th label in l

𝑙
𝑖𝑔
: 𝑔th label in l

𝑖

𝑙

𝑗

𝑖
: 𝑖th label in the 𝑗th test data

𝑁: Number of training data
𝑁
𝐷
: Number of cases in sample dataset

𝑁
𝑇
: Number of test data

𝑛
𝑖𝑗
: Number of training data with the 𝑖th and 𝑗th

labels
𝑃(𝑙
𝑗
| f): Probability of f belonging to 𝑙

𝑗

𝑃(⋅): Probability
𝑠: Input dimension of classifier to be evaluated
t: Set of faulty labels in training dataset
𝑡
𝑛
: Faulty label of the 𝑛th training case

𝑇𝐸𝑆𝑇: Original test dataset
𝑇𝐸𝑆𝑇

1
: Single-fault cases in test dataset

𝑇𝐸𝑆𝑇
𝑠
: Simultaneous-fault cases in test dataset

𝑇𝐸𝑆𝑇 𝐹: Test dataset after feature extraction
𝑇𝑅𝐴𝐼𝑁: Original training dataset
𝑇𝑅𝐴𝐼𝑁 𝐹: Training dataset after feature extraction
V: Set of coefficient vectors
𝑉𝐴𝐿𝐼𝐷: Original validation dataset
𝑉𝐴𝐿𝐼𝐷 𝐹: Validation dataset after feature extraction
v: Coefficient vector
w: Optimal vector in RVM
𝑤
𝑛
: 𝑛th optimal parameter in RVM

wMP: Most probable weight vector in RVM
𝑤
𝑐
: Inertial weight of PSO

WPT(⋅): Wavelet packet transform function
X: Set of ignition pattern vectors
x: Unseen ignition pattern
𝑥
𝑖
: 𝑖th data point in x

y: Predicted label vector
𝑦
𝑖
: 𝑖th predicted label

𝑦

𝑗

𝑖
: 𝑖th predicted label in the jth test data

𝑧(f): Predicted decision
𝛼: Hyperparameter vector of RVM
𝛼
𝑛
: 𝑛th hyperparameter of RVM

𝜀: Decision threshold
𝜀
𝑘
: 𝑘th tentative threshold produced in

optimization process
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𝜀opt: Optimized threshold
𝜃(⋅): Decision function of binarization approach
𝜋: Precision
𝜌: Probability vector
𝜌
𝑖
: Probability of the 𝑖th label

𝜌
𝑖𝑗
: Pairwise probability of the 𝑖th label against

the 𝑗th label
Σ: Covariance matrix in RVM
Σ
𝑖𝑖
: 𝑖th diagonal element of covariance matrix Σ

𝜎(⋅): Logistic sigmoid function
𝜏: Recall
𝜖: Initial population
Φ: Design matrix in RVM.
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