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Abstract 
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With the rapid development of measurement technology, higher qual-

ity and vast amounts of process data become available. Nevertheless, 

process data are ‘scarce’ in many cases as they are sampled only at cer-

tain operating conditions while the dimensionality of the system is large. 

Furthermore, the process data are inherently stochastic due to the internal 

characteristics of the system or the measurement noises. For this reason, 

uncertainty is inevitable in process systems, and estimating it becomes a 

crucial part in engineering tasks as the prediction errors can lead to mis-

guided decisions and cause severe casualties or economic losses. A pop-

ular approach to this is applying probabilistic inference techniques that 

can model the uncertainty in terms of a probability. However, most of the 

existing probabilistic inference techniques are based on recursive 
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sampling, which makes it difficult to use them for industrial applications 

that require processing a high-dimensional and massive amount of data. 

To address such an issue, this thesis proposes probabilistic machine 

learning approaches based on parametric distribution approximation, 

which can model the uncertainty of the system and circumvent the com-

putational complexity as well. The proposed approach is applied for 

three major process engineering tasks: process monitoring, system mod-

eling, and process design. 

First, a process monitoring framework is proposed that utilizes a prob-

abilistic classifier for fault classification. To enhance the accuracy of the 

classifier and reduce the computational cost for its training, a feature ex-

traction method called probabilistic manifold learning is developed and 

applied to the process data ahead of the fault classification. We demon-

strate that this manifold approximation process not only reduces the di-

mensionality of the data but also casts the data into a clustered structure, 

making the classifier have a low dependency on the type and dimension 

of the data. By exploiting this property, non-metric information (e.g., 

fault labels) of the data is effectively incorporated and the diagnosis per-

formance is drastically improved. 

Second, a probabilistic modeling approach based on Bayesian neural 

networks is proposed. The parameters of deep neural networks are trans-

formed into Gaussian distributions and trained using variational infer-

ence. The redundancy of the parameter is autonomously inferred during 

the model training, and insignificant parameters are eliminated a poste-

riori. Through a verification study, we demonstrate that the proposed 
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approach can not only produce high-fidelity models that describe the sto-

chastic behaviors of the system but also produce the optimal model struc-

ture. 

Finally, a novel process design framework is proposed based on rein-

forcement learning. Unlike the conventional optimization methods that 

recursively evaluate the objective function to find an optimal value, the 

proposed method approximates the objective function surface by para-

metric probabilistic distributions. This allows learning the continuous ac-

tion policy without introducing any cumbersome discretization process. 

Moreover, the probabilistic policy gives means for effective control of 

the exploration and exploitation rates according to the certainty infor-

mation. We demonstrate that the proposed framework can learn process 

design heuristics during the solution process and use them to solve sim-

ilar design problems. 

 

Keywords: Probabilistic machine learning, parametric distribution ap-

proximation, uncertainty quantification, probabilistic manifold learning, 

Bayesian neural networks, Bayesian inference, reinforcement learning, 

distributional networks. 

Student Number: 2015-21060 
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Chapter 1 

 

Introduction 

 

1.1. Motivation 

Data classification, model prediction, and finding optimal solutions 

constitute the three principal components of the process system engineer-

ing tasks. For instance, model predictive control, process optimization, 

and process design, in essence, seek to find optimal solutions with pre-

diction models; they only differ in optimization targets. For another in-

stance, we can notice that process diagnosis tasks are simply data classi-

fication tasks where dimensionality reduction models are employed to 

predict the systems’ behaviors in their intrinsic dimensions. As such tasks 

are based on models constructed from the process data, it is a natural 

corollary that the amount of information a model can draw from the data 

has significance to its performance on executing the given tasks. 

One of such information is uncertainty, which can be divided into two 

different kinds: aleatoric uncertainty from the stochastic process and ep-

istemic uncertainty due to insufficient data [1]. Owing to the 
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development of measurement technology, higher quality and large 

amounts of process data are now available and the aleatoric uncertainty 

has become less concerning. However, epistemic uncertainty caused by 

data scarcity is unavoidable because the process systems normally oper-

ate around some specific operating conditions while they have high di-

mensionality – which is often referred to as the curse of dimensionality. 

Considering that erroneous predictions can lead to misguided decisions 

which can cause severe casualties or economic losses in process systems, 

it is of utmost important to derive high-fidelity models that are able to 

describe and quantify the uncertainty. To concretize the discussion, such 

concerns will now be specifically dealt with some important issues found 

in the process monitoring, process modeling, and process design tasks. 

In the process monitoring, particularly when fault classification tasks 

are given, uncertainty is on the data class (e.g., normal or fault) of a que-

ried data point. A possible solution to model such uncertainty is to train 

a parametric classifier (such as GMM [2]) with available training data 

and evaluate the posterior probability of the queried point to each data 

class. In this case, typically a few important features of the data are ex-

tracted ahead of the classification as the classifiers usually show high 

computational complexity to the data dimension. Statistical projection 

methods based on PCA [3]–[5] and FDA [6], [7] have been widely used 

for this purpose. However, these methods solely focus on preserving the 

variance of the data, and do not preserve the structure of its original man-

ifold. As we will see later, this often leads to losing original data distri-

bution in the input space and incurs misclassification (see Box 1 in 
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Figure 1.1 Uncertainties found in process systems engineering tasks. 
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Figure 1.1), especially when the data of two different classes are in prox-

imity. Therefore, a feature extraction method that can capture the original 

data distribution becomes an indispensable element for achieving high 

process monitoring performance. 

In terms of system modeling, the model predictions (see Box 2 in Fig-

ure 1.1), or equivalently the estimates on the model parameters, always 

entail the uncertainty. To obtain a probabilistic model, which can de-

scribe the stochastic nature of the system and quantify the uncertainty, 

one can employ probabilistic inference techniques such as Markov chain 

Monte Carlo (MCMC) [8]. However, such techniques usually involve 

recursive sampling, and this makes it difficult to use them for industrial 

applications that require processing a large number of data samples and 

model parameters [9]. Furthermore, advanced modeling techniques, such 

as surrogate modeling based on neural networks [10], [11] and system 

identification methods based on model library [12], [13], require the es-

timation of a myriad number of parameters. In order to address such an 

issue, a computationally efficient probabilistic modeling approach needs 

to be devised. 

Finally, for process design problems, we are uncertain about the ob-

jective function values at unevaluated points, whereas it is obvious that 

estimates for those values can facilitate the searching process. Note that 

the conventional optimization approaches such as mathematical pro-

gramming [14], [15] and metaheuristics [16], [17] query the next guess 

based on the latest evaluation point and do not exploit the full evaluation 

record. This seems somewhat inefficient considering that the objective 
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function surfaces often show simple patterns and we can suppose that the 

unevaluated points would have similar values to those of the evaluated 

points nearby. This implies that the objective function surfaces can be 

efficiently ‘encoded’ with some parametric distributions [18], [19]. A 

similar approach can be found in Bayesian optimization [20], except that 

it is nonparametric and not scalable to the data size. 

Summarizing our discussions so far, we can elicit that the uncertainty 

found in process system engineering can be efficiently modeled by ap-

proximating the target objects with some parametric distributions, where 

the target can be varied from process data and model parameters to ob-

jective function values. This constitutes the main theme of this thesis, 

and we will demonstrate that it can effectively address some major issues 

found in the three process engineering tasks. 

1.2. Outline of the thesis 

The remainder of this thesis is organized as follows. Chapter 2 pro-

vides the backgrounds on the probabilistic inference and the preliminar-

ies required to follow the next chapters.  

In Chapter 3, a feature extraction method, called probabilistic mani-

fold learning, is developed for probabilistic fault classification and pro-

cess monitoring. The proposed method approximates a data manifold 

prior to the projection by setting the distance on the manifold with the 

pairwise likelihoods between the data points (see Box 1 in Figure 1.2). 

This allows simultaneous utilization of limited labeled data and abundant 

unlabeled data within a unified scheme. Moreover, through calibrating 
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the data distribution during the manifold approximation, it produces 

nearly data-independent projection results. It leads to superior monitor-

ing and fault classification performance compared to the conventional 

dimensionality reduction methods. 

In Chapter 4, a process modeling methodology based on Bayesian 

deep neural networks is proposed. The proposed method represents the 

parameters of the neural networks by Gaussian distributions and learns 

the distribution of the data. The optimal model structure and parameters 

are obtained through a posteriori elimination of the parameters with 

lower importance (see Box 2 in Figure 1.2). Through an experimental 

study conducted on a semiconductor manufacturing process, it is demon-

strated that the proposed method can not only learn the complex and sto-

chastic behavior of the processes but also is able to derive an optimal 

architecture of the neural network model. 

In Chapter 5, a reinforcement learning-based process design frame-

work is proposed with distributional actor-critic network. Unlike the con-

ventional approach, which only employs recursive evaluation of objec-

tive function values to find the optimal solution, the proposed approach 

approximates the objective function surface with distributional deep neu-

ral networks (see Box 3 in Figure 1.2). This enables using behavioral 

cloning [21] with Monte Carlo tree search [22] and promotes stable 

learning of continuous policy. We demonstrate that the process design 

heuristics can be learned during the solution process, and we can use 

them to solve similar design problems. 

Finally, Chapter 6 summarizes the contributions made by the thesis 
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and discusses their limitations and possible directions for further work. 
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Figure 1.2 Outline of the proposed methods. 
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Chapter 2 

 

Backgrounds and preliminaries 

 

2.1. Bayesian inference 

In the Bayesian inference framework, any task involving learning 

from data is given with some prior knowledge, based on which the model 

is updated to incorporate the information from the data. More precisely, 

we encode our initial belief as probabilities for different possible in-

stances of some variables or parameters 𝜃, and represent it as a prior 

𝑝(𝜃). Given observed data 𝒟, we can also describe how likely different 

values of 𝜃 are to have given rise to that data using a likelihood function 

𝑝(𝒟|𝜃). These can then be combined using Bayes’ rule to derive a pos-

terior 𝑝(𝜃|𝒟), which represents our updated belief on 𝜃. 

𝑝(𝜃|𝒟) =
𝑝(𝒟|𝜃)𝑝(𝜃)

∫ 𝑝(𝒟|𝜃)𝑝(𝜃)𝑑𝜃
=

𝑝(𝒟|𝜃)𝑝(𝜃)

𝑝(𝒟)
 (2.1) 

The denominator 𝑝(𝒟) here is a normalization constant known as the 
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marginal likelihood and ensures that 𝑝(𝜃|𝒟) is a valid probability distri-

bution. Therefore, we can think of Bayes’ rule into a much simpler form, 

where the posterior being proportional to the prior times the likelihood.  

A key feature of Bayes’ rule is that it can be used in a recursive fashion 

where the posterior from one task becomes the prior, when the model is 

updated with more data, that is, 

𝑝(𝜃|𝒟ଵ, 𝒟ଶ) =
𝑝(𝒟ଶ|𝜃, 𝒟ଵ)𝑝(𝜃|𝒟ଵ)

𝑝(𝒟ଶ|𝒟ଵ)
=

𝑝(𝒟ଶ|𝜃, 𝒟ଵ)𝑝(𝒟ଵ|𝜃)𝑝(𝜃)

𝑝(𝒟ଶ|𝒟ଵ)𝑝(𝒟ଵ)
 (2.2) 

and this represents the core of the Bayesian framework: the model learns 

the system by updating its beliefs with the observations. If the newly 

acquired observations are against the prior experiences, it will not make 

drastic changes to the underlying belief. It will only change its view if 

multiple corroborating observations are obtained. Once a strong belief 

about the system has been developed from consecutive learning, we can 

take substantial confidence to change our mind, even if the learned belief 

seems highly illogical. 

2.2. Monte Carlo 

Monte Carlo is an approximation method that can numerically esti-

mate probability distributions through random sampling. The most com-

mon use of Monte Carlo is to estimate the expectations of the distribu-

tions, which is often referred to as Monte Carlo integration.  

Consider the problem of calculating the expectation of some function 
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𝑓(𝜃)  under the distribution 𝜃~𝜋(𝜃)  (that is usually 𝑝(𝜃|𝒟)  for the 

Bayesian inference case), which is given as 

𝐼 ≔ 𝔼గ(ఏ)[𝑓(𝜃)] = න 𝑓(𝜃)𝜋(𝜃)𝑑𝜃 (2.3) 

We can approximate 𝐼 using the Monte Carlo estimator 𝐼ெ஼  where 

𝐼 ≅ 𝐼ெ஼ ≔
1

𝑁
෍ 𝑓൫𝜃෠௡൯

ே

௡ୀଵ

 (2.4) 

and 𝜃෠௡~𝜋(𝜃). The 𝐼ெ஼  is an unbiased estimator for 𝐼, that is, we have 

𝔼[𝐼ெ஼] = 𝔼 ൥
1

𝑁
෍ 𝑓൫𝜃෠௡൯

ே

௡ୀଵ

൩ =
1

𝑁
෍ 𝔼ൣ൫𝜃෠௡൯൧

ே

௡ୀଵ

= 𝐼 (2.5) 

This indicates that Monte Carlo does not introduce any systematic error 

(i.e., bias) into the approximation. We can get the true value of 𝐼 if the 

estimation is repeated with a large number 𝑁 [23].  

2.3. Kullback-Leibler divergence 

The Kullback-Leibler (KL) divergence [24], also known as relative 

entropy, is a measure of the similarity between two probability density 

functions 𝑃(𝑥) and 𝑄(𝑥), given as below. 

KL(𝑃‖𝑄) ≔ න 𝑃(𝑥) log ቆ
𝑃(𝑥)

𝑄(𝑥)
ቇ 𝑑𝑥 (2.6) 

For a discrete variable 𝑥, KL divergence is computed as 

KL(𝑃‖𝑄) ≔ 𝔼௫~௉(௫) ቈlog ቆ
𝑃(𝑥)

𝑄(𝑥)
ቇ቉ = ෍ 𝑃(𝑥) log ቆ

𝑃(𝑥)

𝑄(𝑥)
ቇ

௫

 (2.7) 

A few important properties of KL divergence are: 



 

12 

 it is not symmetric, that is, KL(𝑃‖𝑄) ≠ KL(𝑄‖𝑃), and thus, it is 

not a distance metric; 

 it can take on values in [0, ∞], and particularly, if 𝑃 and 𝑄 are the 

exact same distribution, then KL(𝑃‖𝑄) = KL(𝑄‖𝑃) = 0. In other 

words, if KL(𝑃‖𝑄) = 0, then 𝑃 ≡ 𝑄; 

 for the KL divergence to be finite, the support of P needs to be 

contained in the support of 𝑄. If a point 𝑥 exists with 𝑄(𝑥) = 0 

but 𝑃(𝑥) > 0, then KL(𝑃‖𝑄) = ∞. 

 

The KL divergence can be rewritten as  

KL(𝑃‖𝑄) = ෍ 𝑃(𝑥) log ቆ
𝑃(𝑥)

𝑄(𝑥)
ቇ

௫

 

= ෍ 𝑃(𝑥) log 𝑃(𝑥)

௫

− ෍ 𝑃(𝑥) log 𝑄(𝑥)

௫

 

= −𝐻(𝑃) + 𝐻(𝑃, 𝑄) 

(2.8) 

where 𝐻(𝑃)  is the entropy of 𝑃  and 𝐻(𝑃, 𝑄)  is the cross-entropy be-

tween 𝑃  and 𝑄 . In Bayesian inference, 𝑃(𝑥)  is regarded as some true 

distribution to be estimated and 𝑄(𝑥) is an approximate distribution. In 

this case, the entropy term is given as a constant, and the cross-entropy 

minimization is given equivalent to the KL divergence minimization.  

2.4. Variational inference 

In variation inference (VI) [25], [26], the posterior distribution of the 

parameters 𝜃 for the data 𝒟, 𝑃(𝜃|𝒟), is approximated by a variational 

posterior distribution 𝑄(𝜃|Φ), which is a model described by variational 
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parameters Φ (see Figure 2.1). Variational inference seeks the optimal 

Φ by minimizing reverse KL divergence between the posterior distribu-

tion and the approximated posterior distribution. 

KL(𝑄||𝑃) = 𝔼ఏ~ொൣlog൫𝑄(𝜃|Φ)/𝑃(𝜃|𝒟)൯൧ (2.9) 

For a loss function ℒ(𝒟, Φ) = KL൫𝑄(𝜃|Φ)||𝑃(𝜃|𝒟)൯, the optimal es-

timate of Φ is given by 

Φ୚୍ = argmin
஍

KL൫𝑄(𝜃|Φ)||𝑃(𝜃|𝒟)൯ 

= argmin
஍

ቂKL൫𝑄(𝜃|Φ)||𝑃(𝜃)൯ − 𝔼ொ൫𝜃หΦ൯[𝑃(𝒟|𝜃)] + log 𝑃(𝒟)ቃ 
(2.10) 

and removing Φ-independent term yields an effective loss function 

ℒா(𝒟, Φ) = KL൫𝑄(𝜃|Φ)||𝑃(𝜃)൯ − 𝔼ொ൫𝜃หΦ൯[𝑃(𝒟|𝜃)] (2.11) 

which is often referred as the variational free energy [27] or evidence 

lower bound (ELBO) [28]. Note that the effective loss function is a lower 

bound on the marginal log-likelihood log 𝑃(𝑥), and it is given by the sum 

of the prior dependent part that serves as a regularizer and the data-de-

pendent part given by the likelihood cost. 

2.5. Riemannian manifold 

A Riemannian manifold is an 𝑛 -dimensional differentiable smooth 

manifold ℳ equipped with a positive-definite inner product 𝑔௣ on the 

tangent space 𝑇௣ℳ  for each point 𝑝 ∈ ℳ . Here, ℳ  is a topological 

space wherein the local space near each point can be approximated as  
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Figure 2.1. Graphical illustration of the variational inference. 
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Euclidean space. The process data 𝑋 = {𝑥௜}௜ୀଵ
ே  in ℝ௡ can be regarded as 

being sampled from a Riemannian manifold (ℳ, 𝑔) by some injective 

maps 𝜑௡: ℳ ↪ ℝ௡.  

By assuming that the metric 𝑔 on ℳ is locally constant, the shortest 

path, or geodesic distance, between the data points on the local ℳ is de-

rived by the following Lemma 1 [29]. 

 

Lemma 1. Let (ℳ, 𝑔) be a Riemannian manifold embedded in an am-

bient ℝ௡, and let 𝑥 ∈ ℳ be a point. Suppose that 𝑔 is locally constant in 

an open neighborhood 𝑈 of 𝑥 such that 𝑔 is a constant diagonal matrix 

in ℝ௡ . Let 𝐵  be a ball in ℝ௡  centered at 𝑥 , whose volume is 
గ೙/మ

௰(௡/ଶାଵ)
 

with respect to 𝑔. The geodesic distance from 𝑥 to a point 𝑦 ∈ 𝐵 is given 

by 𝑑ℳ(𝑥, 𝑦) =
ଵ

௥
𝑑ℝ೙(𝑥, 𝑦), where 𝑟 is the radius of 𝐵 and 𝑑ℝ೙(𝑥, 𝑦) is 

the distance from 𝑥 to 𝑦 in ℝ௡. 

 

See Appendix A.1 for a proof of Lemma 1. According to Lemma 1, if 

the given dataset is uniformly distributed on ℳ, any ball of fixed volume 

in ℳ  should contain the same number of data points. Conversely, let 

𝐵௞(𝑥௜) be the ball in ℝ௡ around the data point 𝑥௜ that contains its 𝑘 near-

est neighbors .  Then for any data point 𝑥௜ , the neighborhood on ℳ , 

𝜑௡
ିଵ൫𝐵௞(𝑥௜)൯, should have the same volume. That is, the distances from 

𝑥௜ to its 𝑘 nearest neighbors on ℳ can be measured approximately by 

ଵ

௥೔
𝑑ℝ೙ ቀ𝑥௜ , 𝑥௜ೕ

ቁ  for 1 ≤ 𝑗 ≤ 𝑘  if 𝑟௜ = 𝑑ℝ೙൫𝑥௜ , 𝑥௜ೖ
൯  where 𝑥௜ೖ

  is the kth 
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nearest neighbor of a given point 𝑥௜. 

2.6. Finite extended-pseudo-metric space 

A finite extended-pseudo-metric space (FEPMS) is defined as a metric 

space (𝑋, 𝑑)  where 𝑋  is a set with finite elements, and the function 

𝑑: 𝑋 × 𝑋 → ℝஹ଴ ∪ {∞} is a metric on 𝑋 such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the 

following hold: 

1. 𝑑(𝑥, 𝑦) ≥ 0, and 𝑥 = 𝑦 implies 𝑑(𝑥, 𝑦) = 0 

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) or 𝑑(𝑥, 𝑧) = ∞ 

2.7. Reinforcement learning 

Reinforcement learning (RL) is a subfield of machine learning that 

aims at training an agent, which is a learner and a decision-maker, to 

optimally behave in the system outside the agent, called environment. 

Once the agent applies an action to the environment, the status of the 

environment, referred to as a state, is changed and the environment feed-

backs a numerical value, reward, to the agent (see Figure 2.2). The agent 

and environment repeatedly interact with each other for a sequence of 

discrete time steps, and the discounted sum of the rewards obtained dur-

ing which is defined as a return. The goal of reinforcement learning can 

be described as to find an optimal policy function that maps the actions 

to given states [30]. 

More specifically, given a time step 𝑡 = 0,1, … , 𝑇, the agent receives  
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Figure 2.2 Schematic of reinforcement learning. 
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some representation of the environment’s state 𝑠௧ ∈ 𝒮, where 𝒮 is the set 

of possible states, and selects an action 𝑎௧ ∈ 𝒜(𝑠௧), where 𝒜(𝑠௧) is the 

set of valid actions in state 𝑠௧. One time-step later, as a consequence of 

applying the action, the environment transits into a new state 𝑠௧ାଵ and 

the agent receives a reward 𝑟௧ାଵ ∈ ℛ: 𝒮 × 𝒜 → ℝ. Given a bounded ac-

tion sequence with maximal step 𝑇 and a trajectory of state/action pairs 

𝜏 = {(𝑠௧, 𝑎௧)}௧ୀ଴
் , return 𝑅௧ for 0 ≤ 𝑡 ≤ 𝑇 − 1 is defined as 

𝑅௧ = 𝑟௧ାଵ + 𝛾 𝑟௧ାଶ +  ⋯ = ෍ 𝛾௞ 𝑟௧ା௞ାଵ

௧ା௞ାଵஸ்

௞ୀ଴

 (2.12) 

where 𝛾 ∈ [0,1) is discount factor.  

The policy function is given as either a deterministic policy 𝑎 = 𝜋(𝑠) 

or a stochastic policy 𝜋(𝑎|𝑠) = ℙ[𝑎௧ = 𝑎|𝑠௧ = 𝑠]. As our interest is in 

developing a probabilistically behaving agent, we will use the word pol-

icy hereafter to denote the stochastic policy.  

As the states or actions are uncountable in many cases, it is often hard 

to derive the exact solution of 𝜋∗  with iterative refinement methods 

based on value iteration or policy iteration. In this case, we can approxi-

mate the optimal policy using parameterized functions such as neural 

networks, i.e., we can set 𝜋ఏ∗(𝑎|𝑠) ≅ 𝜋∗(𝑎|𝑠) and find 𝜃∗ by training.  

With the same terminology, a deterministic Markov decision process 

(DMDP) is defined by a tuple < 𝒮, 𝒜, ℛ, 𝛾 >. In DMDP, taking a given 

action 𝑎 for a given state 𝑠 always results in the same next state 𝑠ᇱ. In 

other words, choosing an action 𝑎 is equivalent to choosing the reachable 

state 𝑠ᇱ.  



 

19 

2.8. Directed graph 

A directed graph is a pair (𝑉, 𝐸), where 𝑉 is a finite non-empty set of 

vertices and 𝐸 is a set of ordered pairs of distinct edges. For 𝑒 ∈ 𝛦 where 

𝑒: 𝑣 → 𝑤 and 𝑣, 𝑤 ∈ 𝑉, we respectively call 𝑣 and 𝑤 tail and head. All 

the vertices and edges in a graph can be uniquely indexed using ordered 

numbers. That is, for an indexing function 𝐼 , 𝐼(𝑣) ∈ {1,2, … , |𝑉|}  and 

𝐼(𝑒) ∈ {1,2, … , |𝐸|}  for 𝑣 ∈ 𝑉  and 𝑒 ∈ 𝐸 , where |𝑉|  and |𝐸|  represent 

the number of vertices and edges, respectively. 
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Chapter 3 

 

Process monitoring and fault classification 

with probabilistic manifold learning1 

 

3.1. Introduction 

As modern industrial processes have become more complex and pro-

cess safety and high-quality products are demanded as prerequisites, ef-

fective monitoring of chemical processes is receiving considerably in-

creasing attention. Providing human-readable information is of great im-

portance for pragmatic diagnostic systems because it enables plant oper-

ators and maintenance workforces to be better informed of the process 

status. Such information also provides rationales for the diagnosis results, 

which facilitates making better decisions in taking remedial actions to 

 
1 This chapter is an adapted version of D. Park, J. Na, and J. M. Lee, “Clus-
tered Manifold Approximation and Projection for Semi-supervised Fault Di-
agnosis and Process Monitoring,” Ind. Eng. Chem. Res., vol. 60, no. 26, pp. 
9521–9531, Jul. 2021. and D. Park and J. M. Lee, “Robust Probabilistic Man-
ifold Learning for Fault Diagnosis and Process Monitoring,” Comput. Chem. 
Eng., In preparation. 
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bring the plant back to its normal state. The process records usually in-

clude the information that indicates the operating conditions they have 

been sampled from, and these a priori information, or labels, can be in-

corporated to enhance the diagnosis performance [31]–[34]. However, 

labeling is costly and requires considerable expertise in many cases, and 

only a few labeled data are likely to be available. 

Faced with this situation, many semi-supervised methods have re-

cently been introduced that can utilize both labeled data and unlabeled 

data for training the models. Some of those are based on deep ladder 

networks [35], deep generative models [36], and multitask learning [37], 

which share a functional structure where a feature extractor and a classi-

fier are serially connected. They utilize labeled data by imposing discri-

minant objectives to the classifier, thereby achieve superior performance 

such as low classification error or faster training speed compared to some 

competing methods. However, for the process monitoring tasks, they 

may be restrictively used or require subsidiary dimensional reduction 

processes because they only yield high-dimensional features. Further-

more, as their feature extractors are only trained subordinate to the clas-

sifier’s learning process, only discriminative patterns (e.g., clusters) are 

likely to be produced without reflection of the transient behavior of the 

process. 

In contrast, traditional statistical monitoring techniques, such as prin-

cipal component analysis (PCA) and Fisher discriminant analysis (FDA), 

can distill visually informative features of the process data with a few 

principal dimensions. As their feature spaces are linearly projected space 
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of the input space, the process statuses, such as the degree of deviation 

from normal operating conditions, can be visually tracked based on the 

extracted features [38]. Therefore, they can provide interpretable 

grounds for the diagnosis results that are conducted based on the features. 

For this reason, several studies have been conducted to extend the exist-

ing PCA and FDA algorithms to be compatible with semi-supervised 

fault classification tasks [39], [40]. One common approach they take is 

to formulate an objective function weighted with separate goals for un-

labeled data and labeled data. In this case, the visual characteristics of 

the extracted features can be controlled by the weight values. 

Despite the appealing benefits and successful applications, the statis-

tical process monitoring methods suffer from several drawbacks. First, it 

is difficult to comprehend the direct effects of providing additional label 

information and they can only be inferred by the projection results. Thus, 

choosing the weights usually requires a repetitive tuning procedure. Sec-

ond, as they are linear methods, whose coordinates are given to maxi-

mally explain the variances of a given data set, a few data samples having 

wider distributions are likely to dominate the projection. This often in-

curs the problem of overlapping clusters (e.g. the normal samples and 

nearby incipient fault samples overlap in the feature space) [41], espe-

cially when multiple faults need to be taken into account. Such a problem 

not only hampers the discrimination by the human eye in monitoring the 

process but also deteriorates the discrimination performance of the clas-

sifiers that conduct fault classification based on the extracted features. 

The problem is alleviated in FDA because it promotes cluster separation 
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by maximizing the between-class variance. However, the local patterns 

(e.g., time trajectories) of the original data are liable to be lost after fea-

ture extraction because FDA minimizes the variances within classes at 

the same time. Moreover, they are known to be ineffective when the data 

manifold has nonlinear curvatures, which can often be found in industrial 

data. Although some kernel variants [42]–[44] are introduced that em-

ploy nonlinear kernel mappings in order to “unfold” such nonlinear data 

prior to the projection, the improvement is not always guaranteed, as is 

shown in the following verification study. Furthermore, designing kernel 

function generally requires careful inspection of data and an additional 

costly optimization procedure [45]. 

In order to address the issues mentioned above, we propose a manifold 

approximation-based feature extraction method, named probabilistic 

manifold learning (PML) and clustered manifold approximation and pro-

jection (CMAP). These two methods employ a probabilistic manifold 

approximation process before the projection. During this process, they 

draw the metric and non-metric attributes of the data and translates them 

into one common measure, which can be viewed as likelihood, thereby 

utilizes the labeled and unlabeled data simultaneously. The projection 

target of those methods is the clustered data manifold, not the raw data, 

and this prevents the aforementioned overcrowding problem. The non-

linear structures of the dataset are extracted by topology-preserving pro-

jection without costly nonlinear kernel mapping. The effectiveness of the 

proposed methods is demonstrated by the application to complex chem-

ical process data, and the results are compared with those obtained from  
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five competing methods.  

The remainder of this chapter is organized as follows. Section 3.2 de-

tails the proposed methods and fault diagnosis framework. A verification 

study is performed in Section 3.3.  

3.2. Methods 

PML and CMAP is developed based on the framework of the Uniform 

Manifold Approximation and Projection (UMAP) in [29]. The core of 

UMAP is to approximate a manifold where the data points are uniformly 

distributed and to project its simplicial structure into low-dimensional 

space with minimal loss in structural properties. In this study, we con-

sider the simplest case (1-simplices only), where the problem is reduced 

to the projection of pairwise distances. In this case, we can exploit the 

available labels to re-evaluate the distances between points. Motivated 

by this, in PML and CMAP, it is further assumed that the data manifold 

forms clusters by their labels. Specifically, a uniform data manifold is 

first approximated and repulsive displacement between the data points is 

applied according to their label interactions. Note that we adopt the al-

gorithms of UMAP without modification, to examine the gain from in-

corporating partially labeled data in the process monitoring and fault di-

agnosis tasks. Instead, we provide concise descriptions for the uniform 

manifold approximation and projection algorithms of their simplest case 

in 3.2.1. and 3.2.3. For more details, one can refer to the original paper. 
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Figure 3.2 Visual interpretation of local FEPMS. 
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3.2.1. Uniform manifold approximation 

For a given dataset 𝑋 = {𝑥௜}௜ୀଵ
ே   with 𝑥௜ ∈ ℝ௡ , a local FEPMS 

൫𝑋௜ , 𝑑௫೔
൯ , which has properties described in Section 2.6, is defined at 

each data point 𝑥௜. Here, 𝑋௜ is a set containing 𝑘 nearest neighbors of 𝑥௜ 

and the metric 𝑑௫೔
 is given by 

 𝑑௫೔
൫𝑥௜ , 𝑥௝൯ = max൫0,   ൫𝑑ℝ೙൫𝑥௜ , 𝑥௝൯ − 𝜌௜൯/𝜎௜൯ (3.1) 

for 𝑥௝ ∈ 𝑋௜ where 𝜎௜ and 𝜌௜ are specified to satisfy the following equa-

tions. 

 𝜌௜ = min
௝

൛𝑑ℝ೙൫𝑥௜ , 𝑥௝൯ห𝑑ℝ೙൫𝑥௜ , 𝑥௝൯ > 0ൟ (3.2) 

 logଶ(𝑘) = ෍ exp ቀ−𝑑௫೔
൫𝑥௜ , 𝑥௝൯ቁ

௝

 (3.3) 

where 𝑑ℝ೙൫𝑥௜ , 𝑥௝൯ denotes the Euclidean distance between the points 𝑥௜ 

and 𝑥௝, 𝜌௜ is the distance to the nearest neighbor, and 𝜎௜ is a scaler. Figure 

3.2 illustrates the local FEPMS in the input space. 

The parameter 𝜌௜ ensures that 𝑥௜ is locally connected to at least one of 

its nearest neighbors (i.e., the distance between them is 0) so that no point 

in 𝑋 is isolated. Assuming the local FEPMS forms a uniform manifold, 

the scaler 𝜎௜ corresponds to the 𝑟 in Section 2.5, and the distance 𝑑௫೔
 is 

the modified geodesic distance on the manifold. A simple experiment il-

lustrated in Figure 3.3 demonstrates that defining local FEPMS makes 

the distances between the data points uniformly distributed regardless of 

the type and dimensionality of the datasets. The penicillin and yeast 
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fermentation process datasets can be found in [46] and [47]. 

For 𝑥௜ , 𝑥௝ ∈ 𝑋, the distance measured from 𝑥௜ to 𝑥௝ will be, in general, 

different from that from 𝑥௝  to 𝑥௜  as each data point defines its own 

FEPMS with different 𝜎௜. To merge these incompatible local views, each 

of the local FEPMS is first translated into a fuzzy set (𝑋෠௜ , 𝜇௝|௜) where 

𝑋෠௜ = ൛൫𝑥௜ , 𝑥௝൯ൟ  and 𝜇௝|௜: 𝑋෠௜ → [0, 1]  is a membership function that 

measures the likelihood between two points represented by the metric 

attributes of the data. 

 𝜇௝|௜ = ቊ 
exp ቀ−𝑑௫೔

൫𝑥௜ , 𝑥௝൯ቁ , if 𝑥௝ ∈ 𝑋௜

0, otherwise
 (3.4) 

Then, a fuzzy union operation (probabilistic sum) is applied across the 

local fuzzy sets. The membership function values defined on 𝑋෠ = ⋃ 𝑋෠௜௜  

are given as 

 𝜇௜௝
𝒰 = 𝜇௝|௜ + 𝜇௜|௝  − 𝜇௝|௜ ⋅ 𝜇௜|௝ (3.5) 

Note that the resulting membership function values are symmetric. 

The fuzzy set ൫𝑋෠, 𝜇௜௝
𝒰൯ descreibes the overall structure of the uniformly 

approximated manifold. 

3.2.2. Clusterization 

Let the labels of the point 𝑥௜ by 𝑦௜ ∈ {−1, 0, 1, 2. . . }, where 𝑦௜ = −1, 

𝑦௜ = 0, and 𝑦௜ = 1, 2, … denote normal, unlabeled, and fault samples, re-

spectively. We define a membership function for each element ൫𝑥௜ , 𝑥௝൯ ∈ 
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𝑋෠ that measures the likelihood induced by their labels by 

 𝜇௜௝
ℒ = ቐ 

exp(−𝑑௨) , if 𝑦௜ ≠ 𝑦௝  and 𝑦௜ + 𝑦௝ < 0

exp(−𝑑௩) , if 𝑦௜ ≠ 𝑦௝  and 𝑦௜ ⋅ 𝑦௝ ≠ 0

1, otherwise

 (3.6) 

where 𝑑௨, 𝑑௩ > 0 are hyperparameters that can be interpreted as virtual 

distance between the samples. Note that we let the unlabeled samples 

have less affinity with the normal samples than the fault samples. This is 

to treat those “indistinguishable” samples more like fault samples from 

a conservative point of view. 

The clusterization operation is equivalent to intersecting two fuzzy 

sets, having membership function values of 𝜇௜௝
𝒰  and 𝜇௜௝

ℒ  . In this study, 

probabilistic product is employed – that is dual to the probabilistic sum. 

 𝜇௜௝ = 𝜇௜௝
𝒰 ⋅ 𝜇௜௝

ℒ  (3.7) 

The resulting membership function values describe the overall affinity 

between two points. The distance between the two points 𝑥௜ and 𝑥௝ on 

the clustered data manifold ℳ, which embeds all the metric and non-

metric (label) information, can be approximated by 

 𝑑ℳ൫𝑥௜ , 𝑥௝൯ = − log 𝜇௜௝ (3.8) 

The effect of the clusterization can be viewed as the repulsion between 

the labeled points (see Figure 3.1b). As the projection in Section 3.2.3 is 

performed to preserve all the pairwise distances, clusterization not only 

disgregates the data points manipulated by the repulsion operation (𝜇௜௝
ℒ <

1) but also migrates unmanipulated neighboring points (𝜇௜௝
ℒ = 1). 
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3.2.3. Projection 

By letting 𝑍 = {𝑧௜}௜ୀଵ
ே  with 𝑧௜ ∈ ℝ௠ be the projection of 𝑋, the corre-

sponding fuzzy set 𝑍መ = ൛൫𝑧௜ , 𝑧௝൯ห 𝑧௜ , 𝑧௝ ∈ 𝑍ൟ  and membership function 

𝜈௜௝: 𝑍መ → [0, 1] can also be defined. In this case, the manifold for 𝑍  is 

ℝ௠ itself and its metric 𝑑 is directly defined by the Euclidean distance 

on ℝ௠. To facilitate the upcoming optimization procedure, 𝜈௜௝ is given 

by a smooth differentiable function. 

 𝜈௜௝ = ൫1 + 𝑎𝛿௜௝
ଶ௕൯

ିଵ
 (3.9) 

where 𝛿௜௝ = ฮ𝑧௜ − 𝑧௝ฮ
ଶ
 and 𝑎 and 𝑏 are hyperparameters that determine 

the dispersion of the layout. 

The goal of the projection is to find the layout of 𝑍 that minimizes the 

difference between 𝜇௜௝ and 𝑣௜௝. To this end, a loss function is defined by 

binary cross-entropy between 𝑋෠ and 𝑍መ . 

 𝐻൫𝑋෠, 𝑍መ൯ = ෍ ቈ𝜇௜௝ log ቆ
𝜇௜௝

𝜈௜௝
ቇ + ൫1 − 𝜇௜௝൯ log ቆ

1 − 𝜇௜௝

1 − 𝜈௜௝
ቇ቉

௜ஷ௝

 (3.10) 

The minimization of the loss function forces nearby (distant) points 

on the manifold to be placed nearby (distant) in the reduced space. 𝑍 is 

first initialized through spectral embedding [48] and optimized by itera-

tive stochastic gradient descent procedure. Dropping constant terms and 

taking partial derivatives with respect to 𝑧௜, the gradient of the loss func-

tion is given by 
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𝛿𝐻

𝛿𝑧௜
= ෍ ൥𝜇௜௝ ⋅

2𝑎𝑏𝛿௜௝
ଶ(௕ିଵ)

1 + 𝑎𝛿௜௝
ଶ௕ + ൫1 − 𝜇௜௝൯

௜ஷ௝

⋅
−2𝑏

൫𝜖 + 𝛿௜௝
ଶ ൯൫1 + 𝑎𝛿௜௝

ଶ௕൯
൩ ൫𝑧௜ − 𝑧௝൯ 

(3.11) 

where 𝜀 = 10ିଷ is added to prevent division by zero.  

The optimization process has been simplified and accelerated in two 

ways. In CMAP, we utilize edge sampling [49] and negative sampling 

[50] techniques on Equation (3.11) as in UMAP. For PML, we construct 

a deep Autoencoder [51] with a reconstruction loss. Given the encoder 

and decoder networks Enc(𝑥) and Dec(𝑧) respectively, the reconstruc-

tion loss is formulated as 

 ℒ୰ୣୡ୭୬ = ෍ ቀ𝑥௜ − Dec൫Enc(𝑥௜)൯ቁ
ଶ

௜

 (3.12) 

The loss functions for PML and CMAP are given as 

 ℒ୔୑୐ = 𝐻 + ℒ୰ୣୡ୭୬ (3.13) 

 ℒେ୑୅୔ = 𝐻 (3.14) 

respectively.  

3.2.4. Mapping of unknown data query  

The low-dimensional layout 𝑍ᇱ = {𝑧௜
ᇱ}௜ୀଵ

ெ   for unlabeled data query 

𝑋ᇱ = {𝑥௜
ᇱ}௜ୀଵ

ெ  is determined by the regression based on 𝑘-nearest neigh-

bors. For each query point 𝑥௜
ᇱ ∈ 𝑋ᇱ, its 𝑘 nearest neighbors, denoted by 

𝑋௜
ᇱ , are drawn from 𝑋 . The referential points for 𝑧௜

ᇱ ∈ 𝑍ᇱ  are given by 
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𝑍௜
ᇱ = 𝜋(𝑋௜

ᇱ), where 𝜋:  𝑋 → 𝑍 is the map yielded from the projection in 

3.2.3. Then for 𝑥௝
ᇱ ∈ 𝑋௜

ᇱ and 𝑧௝
ᇱ ∈ 𝑍௜

ᇱ, following local membership func-

tions are defined. 

 𝜇௜௝
ᇱ = exp ቀ−𝑑௫೔

൫𝑥௜
ᇱ, 𝑥௝

ᇱ൯ቁ (3.15) 

 𝜈௜௝
ᇱ = ቀ1 + 𝑎൫𝛿௜௝

ᇱ ൯
ଶ௕

ቁ
ିଵ

 (3.16) 

where 𝛿௜௝
ᇱ = ฮ𝑧௜

ᇱ − 𝑧௝
ᇱฮ

ଶ
. The optimal layout of 𝑍ᇱ is determined by min-

imizing cross-entropy between 𝜇௜௝
ᇱ   and 𝜈௜௝

ᇱ   following the optimization 

procedure in 3.2.3. 

3.2.5. Inference 

To demonstrate that the faults can be visually discriminated in the 

DML’s feature space, we employ the Gaussian mixture model (GMM), 

an unsupervised classifier whose classification performance is highly de-

pendent on the distribution of the data. Note that the input data for the 

classifier are the extracted features, as illustrated in Figure 3.1. 

The GMM is a superposition of Gaussian components whose proba-

bility density function is given by the weighted sum of Gaussian density 

functions. 

 𝑝൫𝑧|𝜇̂, Σ෠൯ = ෍ 𝜋௖𝒩൫𝑧ห𝜇̂௖ , Σ෠௖൯

஼

௖ୀଵ

 (3.17) 

where 𝑧  is a data point in the feature space ℝ௠ , 𝐶  is the number of 

Gaussian components, and 𝜋௖ is the prior probability of selecting the 𝑐th 

Gaussian component. 
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Each Gaussian density 𝒩൫𝑧ห𝜇̂௖ , Σ෠௖൯ measures the probability of sam-

ple 𝑧 conditioned on 𝑐, with its own mean 𝜇̂௖ ∈ ℝ௠ and covariance Σ෠௖ ∈

ℝ௠×௠. Once trained, the GMM allows inference on unknown data que-

ries. The posterior probability of the 𝑐th component is given as 

 𝑝(𝑐|𝑧) =
𝑝(𝑐)𝑝(𝑧|𝑐)

∑ 𝑝(𝑖)𝑝(𝑧|𝑖)௜
=

𝜋௖𝒩൫𝑧ห𝜇̂௖ , Σ෠௖൯

∑ 𝜋௖𝒩൫𝑧ห𝜇̂௜ , Σ෠௜൯௜

 (3.18) 

Another frequently used classification measure is the Mahalanobis 

distance [27], which is a unitless and scale-invariant measure of the dis-

tance between a point and a distribution. The squared Mahalanobis dis-

tance 𝑑ெ from the point 𝑧 to the 𝑐th Gaussian component is defined as 

 𝑑ெ
ଶ (𝑧|𝑧 ∈ 𝑐) = (𝑧 − 𝜇̂௖)்Σ෠௖

ିଵ(𝑧 − 𝜇̂௖) ~ 𝜒௠
ଶ  (3.19) 

where 𝜒௠
ଶ  is the Chi-square distribution with 𝑚 degrees of freedom. The 

confidence bound can then be defined in terms of the Mahalanobis dis-

tance to each Gaussian component that follows the 𝜒௠
ଶ  distribution. The 

confidence bound of 100𝛼% (0 < 𝛼 < 1) defines a region that encom-

passes 100𝛼% of the given data as the sample size tends to infinity. 

 𝑑ெ,ఈ = 𝐹ିଵ(𝛼|𝑚) = {𝑧: 𝐹(𝑧|𝑚) = 𝛼} (3.20) 

where 𝐹(𝑧|𝑚) = ∫
௧(೘షమ)/మ௘ష೟/మ

ଶ೘/మ ௰(௠/ଶ)

௭

଴
𝑑𝑡 is the cumulative distribution func-

tion of the Chi-square distribution. 

Note that the parameters of the Gaussian components are only tuned 

to describe the entire distribution of the data. Thus, we can expect high 

classification performance only if each Gaussian component can exclu- 
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Table 3.1 Fault scenarios used in dataset generation. 

Name Process Disturbances Type 
Fault 1 A/C feed ratio, B composition constant (stream 4) Step 
Fault 2 B composition, A/C ratio constant (stream 4) Step 
Fault 6 A feed loss (stream 1) Step 
Fault 7 C header pressure loss (stream 4) Step 
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Table 3.2 Simulation configuration used in training and test dataset generation. 

Dataset 
type 

Operation 
scenario 

Sampling 
period 

# of sampled 
points 

per simulation 

Random seeds 
used 

Training 

Normal 19 – 24 h 

500 

[1, …, 10] 
Fault 1 

24 – 29 h 

[11, …, 20] 
Fault 2 [21, …, 30] 
Fault 6 [31, …, 40] 
Fault 7 [41, …, 50] 

Test 

Normal 

19 – 29 h 1000 

[51, …, 60] 
Fault 1 [61, …, 70] 
Fault 2 [71, …, 80] 
Fault 6 [81, …, 90] 
Fault 7 [91, …, 100] 
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sively capture the distribution of each class. Such a case holds if the input 

data are clustered by their labels and the number of components is given 

by the number of data classes. In this study, we satisfy the second condi-

tion so that the classification performance solely depends on the cluster-

ization degree of the features. 

3.3. Verification study 

3.3.1. Dataset description 

Tennessee Eastman process (TEP) produces two products and one by-

product from four reactants, and consists of five major operation units: 

reactor, partial condenser, vapor/liquid separator, product stripper, and 

recycle compressor. The schematic of the process is illustrated in Figure 

3.4. We ran the process by operation mode 1 with a closed-loop control 

system [52], [53]. 

A total of 53 process variables, composed of 12 manipulated variables 

and 41 measured variables, were sampled every 0.01 h. Four process 

fault scenarios listed in Table 3.1 were used to generate the datasets [54], 

[55]. We ran the process a complete 72 h, where the process was initially 

run for the first 24 h under normal operating conditions and then for 48 

h with faults. The training and test datasets were constructed as stated 

in Table 3.2. The distribution of the data is represented in Figure 3.5. To 

take account of the stochastic behavior of actual plants, we applied small 

random variations to the reaction kinetics coefficients during the simula-

tion. We used different random seeds for each simulation and repeated  
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Figure 3.5 Distribution of the data in the input space (left), and their trajectories over 
time (right). 
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simulations 10 times for each operation scenario to assess the reliability 

of the results. Each feature of the datasets was scaled to [0, 1] with min-

max normalization. All the points are labeled while the first 10% of the 

fault samples are unlabeled. This is because the time when the fault oc-

curred is unknown, and it is often hard to distinguish such incipient fault 

samples from those of normal or fault in practice. 

3.3.2. Experimental setup 

To highlight the effectiveness of PML and CMAP, we compared those 

to UMAP and seven methods described in Table 3.3. For unsupervised 

methods, the dataset is provided without labels, whereas, for supervised 

methods, the dataset is provided by labeling the unlabeled points. 

The reduction dimension has been set to 𝑛 = 2. For PML, CMAP, and 

UMAP, 𝑘 = 50 , 𝑑௨ = 2 , 𝑑௩ = 5 , 𝑎 = 1.58 , and 𝑏 = 0.9  were used. 

The number of epochs for the iterative optimization in the projection was 

set to 500, which was enough number for the layout to converge in our 

experiments. The autoencoder architecture used in PML is illustrated in 

Figure 3.6. For KPCA and KFDA, the Gaussian kernel, which has been 

reported to be suitable for nonlinear process monitoring [56], was used 

for a kernel function. The kernel coefficient is given a priori by the op-

timal value [45] derived for TEP.  

To encourage each Gaussian component to capture the distribution of 

data corresponding to each operating condition, we initialize each 𝜇̂௖ as 

the average coordinate value of each operating condition data in the  
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Table 3.3 Dimension reduction methods used in the benchmark. 

Abbrevi-
ation 

Full name Type Mapping 
Training 
method 

PML 
Probabilistic 

manifold learning 

Manifold 
Approxi- 
mation 

Nonlinear 

Semi- 
supervised 

CMAP 
Clustered manifold 

approximation 
and projection 

UMAP 
Uniform manifold 

approximation 
and projection [29] 

Unsupervised 
PTSNE 

Parametric t-distributed 
stochastic neighbor 

embedding [57] 
Graph 

embedding LLE 
Locally linear 

embedding [58] 

ISOMAP 
Isometric feature 

mapping [59] 

CVAE 
Conditional  
variational 

autoencoder [60] 
Feature 
learning 

Nonlinear 

Semi- 
supervised 

VAE 
Variational 

autoencoder [61] Unsupervised 

AE Autoencoder [51] 

KFDA 
Kernel Fisher 
discriminant 
analysis [62] 

Statistical 
projection 

Nonlinear 

Supervised 

FDA 
Fisher discriminant 

analysis [6] 
Linear 

KPCA 
Kernel principal 

component analysis [63] 
Nonlinear 

Unsupervised 

PCA 
Principal component 

analysis [3], [4] 
Linear 
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Figure 3.6 Autoencoder architecture used for parametric methods. 
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feature space. The covariance matrix 𝛴෠௖ is initialized with the identity 

matrix of size 𝑚, and the number of iterations is set to 1000, which was 

a sufficient number for the GMM to converge in all the experiments con-

ducted in this study. To ensure that the estimated covariance matrices are 

positive definite, we regularized the covariance matrices to have at least 

a small value 𝜖 = 2 × 10ିଶ ⋅ tr(Σ)/𝑚, where Σ is the covariance matrix 

of the data in the feature space. The parameters of the GMM are found 

by the expectation-maximization (EM) algorithm [2]. 

3.3.3. Process monitoring 

Figure 3.7 shows the projection results of the training dataset for the 

methods compared. Note that Fault 6 has the widest distribution in the 

input space (see Figure 3.5) and it dominates the projection direction of 

PCA and FDA-based methods. This is because these methods find a low-

dimensional representation that maximizes the variance of data (PCA) or 

the distances between the classes with their respective mean values 

(FDA). Hence, the normal and Fault 2 data samples, which lie in close 

proximity to each other in the input space, are overlapped in the feature 

space, making it hard to distinguish them. Note also that using nonlinear 

kernel mapping does not improve the results. In contrast, the extracted 

features clearly separated by clusters in PML and CMAP, providing high 

resolution for monitoring the processes. As similar results can also be 

found in UMAP, we can deduce that data such characteristic is largely 

attributed to the uniform manifold approximation and topology-preserv- 
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Figure 3.7 Time trajectories (from dark to light) of the training dataset in 
the feature space. 
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ing projection operations.  

In terms of effectiveness in utilizing label information, the proposed 

methods are found to excel the conventional FDA or KFDA-based meth-

ods. The projection results of FDA and KFDA are confined to preserving 

the points that are located far away or very close. This is because, aside 

from the fact that they are linear methods, their objectives – maximize 

the ratio of between-class variance to within-class variance – can only 

either shrink or set apart the points. This results in losing the mid-scaled 

distances that involve the data trajectories. In the proposed methods, the 

label information is exploited in advance of the projection process and 

only by imposing repulsions on “calibrated” points – note that all the 

local distances were rendered to the range [0, 5] in the uniform manifold 

approximation process in advance of clusterization (see Figure 3.3c and 

Figure 3.3d). This enables controlling two competing objectives in label 

utilization, which are to preserve the features of the metric data such as 

data trajectory and to induce discriminative features using non-metric 

information (labels). For example, giving large values on 𝑑௨ and 𝑑௩ can 

foster clustering, resulting in a higher separation degree between the 

clusters. The values can be appropriately chosen by a user within the 

range [0, 5]. 

By comparing the feature space of CMAP with UMAP (see Figure 

3.8), we can notice that clusterization operation is effective for preserv-

ing the trajectories and partitioning the feature space with respect to the 

clusters. Such property is a crucial aspect for visually discerning faults 

in the feature space and tracing their progress. A direct measure to 
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Figure 3.8 Trajectories of Fault 2 and Fault 6 occurrence scenarios in the 
feature spaces. The colored region represents the class that gives the maxi-
mum posterior probability. 
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analyze such difference is to compare their projection targets (i.e., the 

data distributions on their manifolds). However, as the manifolds are 

only described by the pairwise local distances, we can infer such, as a 

workaround, by inspecting the changes in pairwise distances. Figure 3.9 

shows the distribution of the pairwise distances in the input space and 

their adjustment made in each method. We can notice that especially 

larger separation is made for closely located data points (having dis-

tances of 0.5 – 1.5) in CMAP. Therefore, we can infer that the clusteri-

zation operation is an effective measure for disgregating this “over-

crowded” region. 

3.3.4. Projection characteristics 

The projection characteristics of the proposed methods can be mined 

further with the pairwise distance plot. Here, the Pearson correlation co-

efficient (PCC) values represent the preservation degree of the (metric) 

data structure. We can notice that PCA projects nearby (faraway) points 

in the input space to nearby (faraway) points into the feature space and 

this leads to a larger PCC value. The “ascending” trend in PCA can also 

be found in PML and CMAP, which indicates that they preserve the 

global structure of the data. The diverging trajectories of Fault 1 and 

Fault 6 are shown in PML and CMAP in proper orientations (see Figure 

3.5 and Figure 3.7). This implies that the global behaviors of the data, 

such as the deviation degree from the normal operating condition, are 

trackable in the feature spaces of the proposed methods. Note that this 
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Figure 3.9 Preservation of pairwise distances in the embeddings. The last 
row represents the distribution of the pairwise distances in the input 
space. The Pearson correlation coefficient value for the pairwise dis-
tances between the input space and feature space is denoted by 𝑟. 
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Table 3.4 Evaluation metric values. The bold entries denote the best and sec-
ond most scored. 

 DI DBI SE LCMC 
Range [0, ∞) [0, 1] [0, ∞] [0, 1] 
Best ∞ 0 0 1 
PML 0.17 1.07 37.0 0.29 

CMAP 0.39 1.12 91.0 0.29 
UMAP 0.29 1.15 37.5 0.28 

PTSNE 4.6 × 10ିଷ 20 381 0.2 
LLE 8.1 × 10ିଵ଺ 1.9 × 10ଵଶ 0.99 0.13 

ISOMAP 1.8 × 10ିଵଵ 8.3 × 10଼ 2.3 0.21 

CVAE 2.5 × 10ିଷ 220 0.80 0.08 
VAE 3.8 × 10ିଷ 259 0.92 0.14 
AE 1.25 1.9 0.92 0.11 

KFDA 5.7 × 10ିଵ଺ 1.3 × 10ଵଶ 143 0.06 
FDA 5.3 × 10ିଵଷ 3.5 × 10ଽ 3.5 × 10ସ 0.04 

KPCA 2.0 × 10ି଺ 8.2 × 10ଷ 0.55 0.20 
PCA 1.9 × 10ି଺ 9.0 × 10ଷ 0.23 0.20 
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trend is not found in UMAP and all the distances are adjusted to have 

almost the same length (see Figure 3.9). 

To quantify the visualization performance in the process monitoring 

tasks, we introduced four evaluation metrics. We used Dunn index (DI) 

and Davies-Bouldin index (DBI) [64] to evaluate how well the data clus-

ters were separated, and Sammon’s error (SE) and the local continuity 

meta-criterion  (LCMC) [65] to measure how well the structures of the 

data have been preserved during the feature extraction. whereas LCMC 

measures the preservation degree of the local structures only. See Perfor-

mance Indices in the Supporting Information to refer to their equations. 

The evaluation results are summarized in Table 3.4. It is shown that 

CMAP performs the best in all the visualization properties of interest, 

except structure preservation (SE), and PML ranked second in overall 

performance. From the large whiskers (large deformation) in the pair-

wise distance plot (see Figure 3.9), we can infer that its small SE value 

has been incurred from the recast made in the manifold approximation. 

Compared to UMAP, CMAP has a larger SE value, implying that clus-

terization inhibits data structure preservation. But at the same time, it is 

found that this improves all the other visualization properties, including 

local structure preservation. 

3.3.5. Fault diagnosis 

We conduct two fault diagnosis tasks in this study: fault detection and 

fault classification. In fault detection tasks, the process is diagnosed as  



 

51 

 

F
ig

u
re

 3
.1

0 
Pr

oc
es

s 
m

on
ito

ri
ng

 r
es

ul
ts

 o
n 

fa
ul

t d
et

ec
tio

n 
ta

sk
s.

 T
he

 y
-a

xi
s 

is
 r

ep
re

se
nt

ed
 in

 th
e 

lo
ga

ri
th

m
ic

 s
ca

le
.  



 

52 

 

F
ig

u
re

 3
.1

1 
D

et
ec

ti
on

 e
rr

or
 r

at
es

 a
nd

 th
e 

tim
e 

ta
ke

n 
to

 d
et

ec
t a

 f
au

lt
 a

ft
er

 it
s 

oc
cu

rr
en

ce
. 



 

53 

deviating from normal operating conditions when the Mahalanobis dis-

tance from a queried data point to the normal operation cluster is larger 

than the confidence bound in (3.20). The threshold for the fault alarm is 

set by the 99% confidence bound of the normal operation data. Two types 

of errors are taken into account: false alarm, where a process under nor-

mal operation is diagnosed as a fault, and missing alarm, where a process 

under faulty operation is diagnosed as normal. The error rate is defined 

as the number of misdiagnosed points divided by the number of total data 

points.  

Figure 3.10 and Figure 3.11 summarize the fault detection results on 

the test dataset. Considering both the error rate and detection time, we 

can notice that CMAP shows the most robust online monitoring perfor-

mance and superior detection performance. However, CMAP shows a 

relatively larger false alarm rate compared to UMAP. This is because its 

mapping amplifies the deviation from the normal operating condition; a 

small deviation from the normal operating condition is mapped far away 

from the normal region in the feature space. Since the detection tasks 

have been performed based on the distance to the normal cluster, CMAP 

is bound to have more chance to occur false alarms. But conversely, it 

has a lower chance to miss the faults. 

In fault classification tasks, the process status is identified with the 

class for which the GMM gives the maximum posterior probability Fig-

ure 3.12 and Figure 3.13 summarize the fault classification results on the 

test dataset. CMAP shows the lowest misclassification rates and time de-

lay in classifying the faults, especially for the hard-to-classify faults:  
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Figure 3.12 Process monitoring and fault classification results for Fault 
6 occurrence scenario. 
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Fault 1 and Fault 2. See Figure 3.8 that the clusterization characteristics 

of CMAP in feature extraction facilitates GMM’s training process. 

CMAP has less data dependency as it recasts data to a particular shape 

(clustered manifold) first (see Figure 3.3) and sets it as its projection tar-

get. From a functional point of view, this manifold approximation pro-

cess can be viewed as a nonlinear mapping in conventional monitoring 

techniques. In contrast, applying kernel function – one popular approach 

to handle nonlinear data – is shown to have only a random effect on the 

diagnosis performance of the classifier. See Figure 3.7 that the dataset 

has not been linearized in KFDA and KPCA after the projection. 

Note that we use posterior probability in fault classification tasks to di-

agnose the process and, unlike the fault detection case, CMAP yieldsro-

bust performance in classifying normal operating conditions (no false 

alarms). It suggests that better diagnostic results can be attained by using 

tailored classifiers and classification approaches. 

3.3.6. Computational Aspects 

To assess the computational aspects of the proposed methods for 

online implementation, we evaluated their CPU runtimes with different 

data sizes and compared with the other methods. The benchmark was 

performed in Python 3.8 with a 4.3GHz Intel i9-7900X CPU, NVIDIA 

GeForce GTX 1080Ti GPU, and 64 GB RAM. Only a single CPU core 

was utilized, and the time limit was set by 50 min. The results are sum-

marized in Figure 3.14. 
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Figure 3.14 CPU time cost for (a) training and (b) test datasets and the 
speed-up ratio in PML against CMAP.  
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From an implementation point of view, a model desired is one that can  

process a large quantity of data during the training phase. In this case, 

the time cost required to train the model can be ignored. In terms of scala-

bility to data size, the proposed methods are shown to work when 72,900 

data points are fetched (see Figure 3.14a). Note that kernel-based con-

ventional nonlinear methods, namely KFDA and KPCA, suffer an out-

of-memory error in this case. This is because they construct a kernel ma-

trix, which costs space complexity 𝑂(𝑁ଶ), whereas the manifold approx-

imation-based methods handle the nonlinearity of data via sparse dis-

tance matrices, which cost less space complexity. It is observed that 

CMAP and UMAP show linear time complexity of 𝑂(𝑁ଵ.଴ଶ), and PML 

costs a bit more computation time. This is promising because conven-

tional statistical projection methods have time complexities of 𝑂(𝑁ଷ) 

and have been reported to be impractical to use with large amounts of 

data [29]. 

Contrary to the training phase, in the test phase, the time cost to exe-

cute projection becomes a major concern. The number of data to be pro-

jected in each time step can be assumed to be relatively small. Figure 

3.14b illustrates that the strategy of learning the mapping between the 

input and feature spaces in PML can effectively reduce the time cost in 

the order of magnitudes compared to CMAP.  
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Chapter 4 

 

Process system modeling with Bayesian neural 

networks2 

 

4.1. Introduction 

The trends in microelectronics manufacturing have been toward ex-

treme miniaturization of device geometries and higher transistor density. 

Plasma etching is one of the key processes in semiconductor manufac-

turing using for fabricating finer patterns. In the plasma etching, the pro-

cess first applies electric power to the electrodes in a vacuum reactor, 

disassociating the etchant gas into electrodes, ions, photons, and radicals. 

Electromagnetic fields are then applied, transferring kinetic energy to the 

charged particles toward the wafer, and the wafer surface is etched via 

physicochemical reactions [66], [67].  

 
2 This chapter is an adapted version of D. Park, S. Ryu, G.-H. Kim, and J. M. 
Lee, “Sparse Bayesian Long Short-Term Memory Networks for Computation-
ally Efficient Modeling of Stochastic Plasma Etch Processes,” Comput. Chem. 
Eng., In preparation. 
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The main goal of the process is to achieve a desired etch profile that 

is described by the performance metrics including etch rate, uniformity, 

selectivity, and anisotropy. As the etch profile is resulted from the time 

accumulation of the plasma condition [68]–[70], many studies have re-

cently been exerted on monitoring [71], [72] and controlling the etching 

process [73]–[76] in real-time. 

In control system design and verification, the most crucial component 

is the accuracy of the system model because the predictions obtained 

from the model are used in deriving optimal control actions [77], [78]. 

Followings are the most crucial characteristics considered for modeling 

the plasma etch processes: 

 Nonlinearity occurred from the physicochemical reactions of the 

plasma, 

 Hybrid dynamics occurred from discrete control logics of the etch-

ing equipment, 

 Process drifts incurred from deposition/desorption of chemical 

species to the reactor wall [79]–[81], 

 Time delay from the control loop, and 

 Stochastic behaviors (e.g., noise) of the system. 

 

There have been a number of studies to simulate these system charac-

teristics by formulating physical equations and conducting computation-

ally intensive numerical simulations [82]. Some of these works have suc-

ceeded in estimating the distribution of chemical species in the reactor 

and deriving the strategies to enhance etch profile [83], as well as have 
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investigated the effect of the wall condition on the etch profile [84]. 

However, most of them are based on a large number of simplifying as-

sumptions due to the lack of understanding of the inherent physicochem-

ical reactions and the numerical complexity. This can incur a large dis-

crepancy between model predictions and actual measurement, limiting 

their use in control applications [85]. 

An applicable solution to the aforementioned problem is using the sur-

rogate models, which are mathematically simpler and empirically map 

the input-output relationships of the system or computationally intensive 

model [86]. For the plasma etch process, state-space representation [87], 

response surface model [88], and the first-order-plus-time-delay 

(FOPTD) model [73], [85], [89] have been employed. Among those, the 

FOPTD model has been the most popular choice for practical use owing 

to its mathematical simplicity and interpretability. However, the FOPTD 

model is inherently limited because it can only describe the local re-

sponse of the system with linear approximation and requires auxiliary 

measures such as gain scheduling to use it as a global model [90]. Fur-

thermore, the multivariable interactions cannot be taken into account in 

the FOPTD model, that is, if it is under the conditions where such inter-

actions severely affect the system, it requires a separate procedure of de-

signing interaction decouplers [91]. 

As an alternative measure, the techniques that utilize artificial neural 

networks have been employed to model the process. Some studies have 

demonstrated its effectiveness in modeling the deterministic characteris-

tics of the etch process, as well as the interactions between multiple input 
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and output variables of the process without prior knowledge of the sys-

tem dynamics [92]–[95]. Nevertheless, these studies have not taken into 

account the stochastic behaviors of the process, and the strategy to derive 

the optimal structure of the model has not yet been suggested.  

Modeling the stochastic process behavior and quantifying the uncer-

tainty of the model prediction is crucial for the control system design and 

verification because such model enables deriving robust control param-

eters by considering possible stochastic system behaviors. Yielding a 

lightweight model is of importance for practical use because neural net-

work architectures are typically comprised of a myriad number of 

weights (i.e., high memory complexity), which may constrain its use on 

industrial sites. 

We develop Bayesian long short-term memory (LSTM) based on 

LSTM, which is known to be effective in modeling the nonlinear dynam-

ical processes [96]. A preliminary work has been presented in [97]. In 

Bayesian LSTM, each weight of the LSTM is expressed as a Gaussian 

distribution, and the distributional parameters are trained to maximize 

the posterior probability to the dataset. After then, structural optimization 

was executed by eliminating redundant weights (i.e., weights having 

larger standard deviations). In a case study, the resulting sparse Bayesian 

LSTM is found to preserve prediction accuracy even after eliminating 

insignificant 90% weights of the Bayesian LSTM.  

The remainder of this chapter is organized as follows. Section 4.2 de-

scribes the proposed method. A verification study is performed in Section 

4.3.  
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4.2. Methods 

4.2.1. Long Short-Term Memory (LSTM) 

The LSTM [98] is a type of recurrent neural network [99] that is de-

signed to model temporal sequences and their long-range dependencies 

more accurately than conventional recurrent neural networks. Such prop-

erty is attained by allowing the network to learn when to forget and up-

date the hidden states given new information. We used an LSTM archi-

tecture described in [100], whose schematic is illustrated in Figure 4.1. 

By given the system input 𝑢௧ ∈ ℝ௡ and the system output 𝑦௧ ∈ ℝ௠, the 

updates for LSTM unit 𝑡 are formulated as 

𝑖௧ = sigmoid(𝑊௨→௜𝑢௧ + 𝑊௬→௜ℎ௧ିଵ + 𝑏௜) (4.1) 

𝑓௧ = sigmoid(𝑊௨→௙𝑢௧ + 𝑊௬→௙ℎ௧ିଵ + 𝑏௙) (4.2) 

𝑜௧ = sigmoid(𝑊௨→௢𝑢௧ + 𝑊௬→௢ℎ௧ିଵ + 𝑏௢) (4.3) 

𝑔௧ = tanh(𝑊௨→௖𝑢௧ + 𝑊௬→௖ℎ௧ିଵ + 𝑏௖) (4.4) 

𝑥௧ = 𝑓௧ ⊙ 𝑥௧ିଵ + 𝑖௧ ⊙ 𝑔௧ (4.5) 

ℎ௧ = 𝑜௧ ⊙ tanh(𝑥௧) (4.6) 

where sigmoid(𝑥) = (1 + 𝑒ି௫)ିଵ ∈ [0, 1] , tanh(𝑥) = (𝑒௫ − 𝑒ି௫)/

(𝑒௫ + 𝑒ି௫) ∈ [−1, 1], and 𝑎 ⊙ 𝑏 denotes the element-wise products of 

vectors 𝑎 and 𝑏; 𝑖௧, 𝑓௧, 𝑜௧, 𝑔௧ are respectively the return values at input 

gate, forget gate, and output gate; 𝑊௜→௝ and 𝑏௝ denote the weights from 

the gate 𝑖 to the gate 𝑗; 𝑥௧ and ℎ௧ are long-term and short-term memory 

states. 

The system output is given by a fully connected layer: 
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Figure 4.1. Schematic of the LSTM network used in this study. 
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𝑦 = 𝑊௢ℎ + 𝑏௢ (4.7) 

where 𝑦 = {𝑦௧}௧ୀଵ
் , ℎ = {ℎ௧}௧ୀଵ

் , 𝑇 is the number of LSTM units or win-

dowsize, and 𝑊௙௖  and 𝑏௙௖  are the weights of fully connected layer. 

An LSTM can be viewed as a parametric model that assigns condi-

tional probability 𝑃(𝒟|𝜃)  of some dataset 𝒟 = (𝑢௜ , 𝑦௜)௜ୀଵ
ே   conditioned 

on the network weights 𝜃 = {𝜃௜}௜ୀଵ
ெ   where 𝑁  is the number of sample 

points and 𝑀 is the number of weights. If we assume that the sample 

points are drawn independently from a joint distribution 𝑃(𝑢, 𝑦), the op-

timal weights can be found by maximum likelihood estimation (MLE): 

𝜃୑୐୉ = argmax
ఏ

log𝑃(𝒟|𝜃) = argmax
ఏ

෍ log𝑃(𝑦௜|𝑢௜ , 𝜃)

ே

௜ୀଵ

 (4.8) 

If we assume Gaussian observation noise on the prediction, i.e., 𝑦 =

𝑓ఏ(𝑢) + 𝜖  where 𝑓ௐ  denotes LSTM and 𝜖 ~ 𝒩(0, 𝜎ଶ) , the maximum 

likelihood estimate can be found from the prediction error minimization 

with mean squared error. 

𝜃୑୐୉ = argmax
ఏ

෍ log𝑃(𝑦௜|𝑢௜ , 𝜃)

ே

௜ୀଵ

 

= argmax
ఏ

෍ log ൥
1

√2𝜋𝜎ଶ
exp ൭−

൫𝑦௜ − 𝑓ఏ(𝑢௜)൯
ଶ

2𝜎ଶ
൱൩

ே

௜ୀଵ

 

= argmax
ఏ

൥−
𝑁

2
log 2𝜋𝜎ଶ − ෍

൫𝑦௜ − 𝑓ఏ(𝑢௜)൯
ଶ

2𝜎ଶ

ே

௜ୀଵ

൩ 

= argmin
ఏ

෍൫𝑦௜ − 𝑓ఏ(𝑢௜)൯
ଶ

ே

௜ୀଵ

 

(4.9) 
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4.2.2. Bayesian LSTM (BLSTM) 

Unlike conventional LSTM that finds a point estimate of 𝜃, Bayesian 

LSTM seeks the posterior distribution of the weights to the training data, 

𝑝(𝜃|𝒟), using the variational inference described in Section 2.2. Given 

a loss function ℒ(𝒟, Φ) = KL൫𝑄(𝜃|Φ)||𝑃(𝜃|𝒟)൯, the optimal estimate 

of Φ is given as 

Φ୚୍ = argmin
஍

ቂKL൫𝑄(𝜃|Φ)||𝑃(𝜃)൯ − 𝔼ொ൫𝜃หΦ൯[𝑃(𝒟|𝜃)] + log 𝑃(𝒟)ቃ (4.10) 

The optimal Φ can be found using stochastic gradient descent on the 

loss function in Equation (4.10), where the gradient on variational pa-

rameter is given as 

∂

∂Φ
ℒ(𝒟, Φ) =

∂

∂Φ
𝔼ఏ~ொ൫𝜃หΦ൯[log 𝑄(𝜃|Φ) − log 𝑃(𝜃) − log 𝑃(𝒟|𝜃)] (4.11) 

However, a gradient estimator for ∇஍𝔼ொ൫𝜃หΦ൯[log 𝑃(𝒟|𝜃)] is known 

to exhibits high variance and hinder the training process [61]. To circum-

vent the posed problem, reparameterization trick [101] is used, where 𝜃 

is factorized using differentiable posterior distribution. First, 𝑄(𝜃|Φ) is 

chosen to be a Gaussian with diagonal covariance. For each weight com-

ponent 𝜃௜, the mean 𝜃௜
ఓ and standard deviation 𝜃௜

ఙ are defined, where the 

weight is sampled by 𝜃௜ = 𝜃௜
ఓ

+ 𝜃௜
ఙ ⋅ 𝜀௜ with 𝜀௜~𝒩(0, 1). Here, to en-

sure non-negative 𝜎௜, we further factorized 𝜃௜
ఙ = log൫1 + exp൫𝜃௜

ఘ
൯൯. We 

define variational parameters as Φ = ൛𝜃௜
ఓ

, 𝜃௜
ఘ

ൟ
௜ୀଵ

ெ
 . Since 𝜀 = {𝜀௜}௜ୀଵ

ெ   is 

independent to Φ, Equation (4.11) can be rewritten as  



 

67 

∂

∂Φ
ℒ(𝒟, Φ) =

∂

∂Φ
𝔼ఌ~𝒩(଴,ூ)[log 𝑄(𝜃|Φ) − log 𝑃(𝜃) − log 𝑃(𝒟|𝜃)] 

= 𝔼ఌ~𝒩(଴,ூ) ൤
∂

∂Φ
{log 𝑄(𝜃|Φ) − log 𝑃(𝜃) − log 𝑃(𝒟|𝜃)}൨ 

≈
∂

∂Φ
෍ൣlog 𝑄൫𝜃(௞)หΦ൯ − log 𝑃൫𝜃(௞)൯ − log 𝑃൫𝒟ห𝜃(௞)൯൧

௄

௞ୀଵ

 

(4.12) 

where 𝐾 is the number of the random samples and 𝜃(௞) is the 𝑘th Monte 

Carlo sample drawn from the variational posterior distribution 𝑄(𝜃|Φ). 

Let ℒሚ(𝜃, Φ) = ∑ ൣlog 𝑄൫𝜃(௞)หΦ൯ − log 𝑃൫𝜃(௞)൯ − log 𝑃൫𝒟ห𝜃(௞)൯൧௄
௞ୀଵ  

for given data 𝒟, then the gradient for each distributional parameter 𝜃 =

{𝜃௜}௜ୀଵ
ெ  in Φ can be found as 

∂

∂Φ
ℒ(𝒟, Φ) =

∂ℒሚ(𝜃, Φ)

∂𝜃

∂𝜃

∂Φ
+

∂ℒሚ(𝜃, Φ)

∂Φ
 (4.13) 

and the training can be performed by using the usual backpropagation 

process. 

For minibatch training, the gradient is given as 

∂

∂Φ
ℒ(𝒟, Φ) = ෍ ቈ

∂

∂Φ
ฬ
௝

ℒ൫𝒟௝ , Φ൯቉

஻

௝ୀଵ

 

∂

∂Φ
ฬ
௝

ℒ൫𝒟௝ , Φ൯ =
∂

∂Φ
෍ൣ൫log 𝑄൫𝜃(௞)หΦ൯ − log 𝑃൫𝜃(௞)൯൯/𝐵

௄

௞ୀଵ

− log 𝑃൫𝒟ห𝜃(௞)൯൧ 

(4.14) 

where 𝐵 is the number of mini-batches per epoch. Algorithm 1 summa-

rizes the optimization process during the minibatch training. 

After training the network with a training dataset, we can expect that 
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the weights are separated into Gaussian distributions having different pa-

rameters. In such case, the redundancy of a weight 𝜃 can be measured by 

the following signal-to-noise ratio (SNR) 

𝜃ௌேோ = ฬ
𝜃ఓ

𝜃ఙ
ฬ (4.15) 

and removing the weights having small SNR yields a sparse Bayesian 

LSTM. 

4.3. Verification study 

4.3.1. System description 

Figure 4.2 describes the schematic of a plasma etching reactor em-

ployed in this paper. A capacitively coupled plasma reactor equipped 

with a 300 mm Si wafer was used. The reactor was powered by a 60 MHz 

radio frequency (RF) generator. The generator was applied to the bottom 

electrode and the bottom electrode was grounded. The gap between top 

and bottom electrodes was 25mm and the area ratio between the top 

showerhead and the bottom electrode was 1.33. The pressure of the 

chamber was controlled by manipulating the throttle valve position of 

the vacuum pump. Two optical emission spectrometers (AvaSpec-

ULS2048L, Avantes) were used in estimating the plasma variables, 

where low wavelength range (255 – 523 nm) and high wavelength range 

(492 – 1030 nm) were measured with 0.2 nm spectral resolution. 
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Algorithm 1  Optimization procedure for a minibatch training in 
Bayesian LSTM 
Input 𝜃:  Weights of the LSTM network 
Parameter 𝐵:  number of minibatches 

𝐾:  number of random samples 
𝛼:  learning rate 

1: for 𝑘 = 1,2, … , 𝐾 
2: Sample 𝜀(௞)~𝒩(0, 𝐼) 
3: 𝜃(௞) = 𝜃ఓ + log(1 + exp(𝜃ఘ)) ∘ 𝜀(௞) 
4: 

ℒሚ(𝜃, Φ) = ෍ൣ൫log 𝑄൫𝜃(௞)หΦ൯ − log 𝑃൫𝜃(௞)൯൯/𝐵

௄

௞ୀଵ

− log 𝑃൫𝒟ห𝜃(௞)൯൧ 
5: 

Δఓ =
∂ℒሚ(𝜃, 𝜇)

∂𝜃
+

ℒሚ(𝜃, 𝜇)

𝜕𝜇
 

6: 
Δఘ =

∂ℒሚ(𝑊, 𝜌)

∂𝜃
+

ℒሚ(𝜃, 𝜌)

𝜕𝜌
 

7: 𝜇 ←  𝜇 − 𝛼Δఓ 
8: 𝜌 ←  𝜌 − 𝛼Δఘ 
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4.3.2. Estimation of the plasma variables 

The operating conditions specified above form weakly-ionized plasma 

inside the chamber [102], where the electron excitation rate is equal to 

the spontaneous photo decay process [103]. At this condition, the light 

emission intensity from an 𝑖௧௛ state to 𝑗௧௛ state is given by 

𝜙௜௝ = 𝑛଴𝑛௘ න 𝜎௜௝(𝜀)(2𝜀/𝑚)ଵ/ଶ 𝑓(𝜀)𝑑𝜀
ஶ

ா೔ೕ
౪౞

 (4.16) 

where 𝑛଴ is the number density of ground state atoms, 𝑛௘ is the electron 

density, 𝐸௜௝
୲୦ is the excitation threshold energy from level 𝑖 to level 𝑘, 𝜎௜௝ 

is the excitation cross section, 𝜀 is the electron energy, 𝑚 is the electron 

mass, and 𝑓(𝜀) is the electron energy distribution function (EEDF) [104]. 

Here, 𝑓(𝜀) is given by one-parameter Maxwellian distribution charac-

terized by an electron temperature, 𝑇௘, 

𝑓(𝜀, 𝑇௘) =
2√𝜀

√𝜋(𝑘𝑇௘)ଷ/ଶ
exp ൬−

𝜀

𝑘𝑇௘
൰ (4.17) 

where 𝑘 is the Boltzmann constant. 

The electron temperature can be measured using line-ratio method 

[105]. The ratio of two emission lines from different excited states is 

given as 

Φ(𝑖 → 𝑗, 𝑘 → 𝑙) ≡
𝜙௜௝

𝜙௞௟
=

∫ 𝜎௜௝(𝜀) ⋅ exp ቀ−
𝜀

𝑘𝑇௘
ቁ 𝜀 𝑑𝜀

ஶ

ா೔ೕ
౪౞

∫ 𝜎௞௟(𝜀) ⋅ exp ቀ−
𝜀

𝑘𝑇௘
ቁ 𝜀 𝑑𝜀

ஶ

ாೖ೗
౪౞

 (4.18) 

where 750.4 nm (Ar, 2pଵ → 1sଶ) and 425.9 nm (Ar, 3pଵ → 1sଶ) lines 

were used. 

The electron density was estimated via a linear correlation between 
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the emission intensity of the wavelength at 750.4 nm and the measure-

ment from a Langmuir probe [103]. 

4.3.3. Dataset description 

Table 4.1 describes the input and output variables of the system. The 

manipulated variables were the setpoints for internal regulators in Figure 

4.2. We generated data by applying bounded random fluctuations on the 

setpoints for RF power, Ar flow rate, and O2 flow rate with different 

changing intervals (see Figure 4.3 and Table 4.2). A total of 5995 data 

points were obtained from running the process for 300s with 50ms sam-

pling rate. The first 70% samples were used training dataset and the re-

maining 30 % samples were used for test dataset. We employed window-

marching sampling for each dataset to recast the dataset into an LSTM-

compatible form. 

4.3.4. Experimental setup 

Based on an assumption that the delayed output is available when 

making a prediction, we augmented the input data with 1-step delayed 

output data. The input and output data were normalized into Gaussian 

distribution with zero mean and identity covariance matrices prior to the 

model training. 

The initial values for memory states, i.e., 𝑥଴ and ℎ଴, were given by 

zeros. For both LSTM and BLSTM, we used parameter settings de-

scribed in Table 4.3.  Both the initial distributions of the weights and the 
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Table 4.2 Operation ranges and change intervals applied. 

 Unit Min Nominal Max 
Change 

interval [s] 
Note 

Pressure 
setpoint 

mTorr ‒ 30 ‒ ‒ 
Fixed during 
the operation 

RF power 
setpoint 

W 200 350 500 5  

Ar flow rate 
setpoint 

sccm 300 400 500 12.5  

O2 flow rate 
setpoint 

sccm 10 30 50 17.5  
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Table 4.3 Parameter values used in LSTM and BLSTM. 

Parameter Value 

LSTM 
Architecture 

Dimension of the long-term memory states (𝑥) 
50 

Dimension of the short-term memory states (ℎ) 
Number of LSTM units 20 

Training 

Number of random samples (𝐾) 10 
Number of samples per mini-batch 1000 
Number of mini-batches per epoch (𝐵) 5 
Maximum epoch number 500 
Learning rate 0.01 
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likelihood distributions are given by the Gaussian distributions with zero 

mean and unit covariance matrices multiplied by 0.1. The termination 

criterion for the training was given as 

|ℒ௞ାଵ − ℒ௞| ≤ 10ି଺ ⋅ |1 + ℒ௞| (4.19) 

where 𝑘 is the epoch number. In BLSTM, Gaussian distributions with 

zero mean and identity covariance matrices were used for the prior and 

likelihood function, and the variational inference was applied only to the 

LSTM units (not to the fully connected layer).  

To benchmark the prediction accuracy of the proposed method, the 

FOPTD model [106] and fully connected neural networks (FC) were 

used. The FOPTD model is formulated as 

𝜏 ⋅
𝑑𝑦(𝑡)

𝑑𝑡
= −𝑦(𝑡) + 𝐾 ⋅ 𝑢(𝑡 − 𝜏ௗ) (4.20) 

where 𝐾 is the process gain, 𝜏 is the time constant, and 𝜏ௗ is the time de-

lay, respectively. The FC model is given as (4.7), except for the hyper-

bolic tangent activation function is applied to the outputs. 

Since FC, LSTM, and BLSTM work in a time-marching window man-

ner, multiple predictions are possible at a time point. Considering the 

practical situations of how prediction is made, the value obtained from 

the terminal unit was used and the other prediction values were disre-

garded. 

To benchmark the a posteriori regularization proposed in 4.2.2, L1 

and dropout-based regularization were respectively employed on LSTM. 

The loss function of the L1-regularized LSTM was given as 
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𝜃୑୐୉ = argmin
ఏ

቎෍൫𝑦௜ − 𝑓ఏ(𝑢௜)൯
ଶ

ே

௜ୀଵ

+ ෍ห𝜃௝ห

ெ

௝ୀଵ

቏ (4.21)

The compression rate was choosen as 10 (removing 90% of the 

weights). For instance, in dropout-based LSTM, the dropout rate was 

choosen as 0.9. 

4.3.5. Weight regularization during training 

Figure 4.4 illustrates the loss function values of the LSTM and 

BLSTM and their weight distributions during the training. Posterior loss, 

prior loss, and likelihood loss denote  ∑ ൣlog 𝑄൫𝜃(௞)หΦ൯ /𝐵 ൧௄
௞ୀଵ  , 

∑ ൣ− log 𝑃൫𝜃(௞)൯ /𝐵൧௄
௞ୀଵ , and ∑ ൣ− log 𝑃൫𝒟ห𝜃(௞)൯൧௄

௞ୀଵ  in Equation (4.14), 

respectively. Both networks show robust convergence and are shown to 

primarily minimize the likelihood loss. As the training progresses, the 

parameter distribution gradually deviates from the prior distribution, and 

the prior loss gradually increases. The posterior loss in BLSTM 

fluctuates over epochs, where the inverse pattern can be found in mean 

values of 𝑊ఘ, denoted in 𝑊ഥ ఘ. As 𝑊ഥ ఘ accounts for the stiffness of the 

overall parameter distributions in BLSTM, the trajectory of the posterior 

loss can be viewed as a measure of the overall flatness of the parameter 

distributions in the BLSTM. 

We can observe that the SNRs of the weights, 𝜃ௌேோ , spread out as 

optimization proceeds in BLSTM, which signifies that the BLSTM can 

regularize the weights during the training. The training of the weights is 

found to be faster in BLSTM than LSTM, where the maximum absolute 
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values of the weights at 100 epochs were max(|𝑊|, |𝑏|) = (1.0, 0.8) for 

LSTM and max(|𝑊ఓ|, |𝑏ఓ|) = (2.8, 1.4) for BLSTM. 

4.3.6. Modeling complex behaviors of the system 

Figure 4.5 shows fitting results of the FOPTD, FC, LSTM, and 

BLSTM to the training dataset, as well as their predictions on the test 

dataset. FC, LSTM, BLSTM models show high prediction accuracy, 

whereas the FOPTD model exhibits large model-plant-mismatch error. 

Note that the FOPTD model primarily describes the relationship between 

the RF power setpoint (MV1) and electron density (OV1) (see Table 4.4), 

and the combinatorial effects of the input variables to the system are not 

taken into account. This implies that the conditions where the large error 

occurred in the FOPTD predictions are the conditions where the 

interactions other than MV1-OV1 have not been correctly modeled or 

those where the combinatorial effects significantly affect the system. In 

other words, the results are shreds of evidence that the proposed method 

can effectively model such complex system characteristics. 

In terms of the structure of the neural networks, Figure 4.6 

demonstrates that the LSTM architecture is more suitable in modeling 

the nonlinearity and dynamical behaviors of the system, compared to the 

fully connected neural networks. From Figure 4.7, we can further 

ascertain that the proposed Bayesian LSTM architecture better models 

the stochastic characteristics of the process such as noise. No significant 

difference has been found in the results of Bayesian LSTM and sparse 
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Bayesian  

 

 

Figure 4.5 Fitting and prediction results of the (a) FOPTD, (b) FC, (c) LSTM, and 
(d) BLSTM models on training and test datasets. 
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Table 4.4 Estimated FOPTD model parameter values. 

 
RF power 
setpoint 

Ar flow rate 
setpoint 

O2 flow rate 
setpoint 

Electron 
density 

𝐾 0.93 −8.3 × 10ିଷ -0.13 
𝜏 0.22 1.7 × 10ିସ 6.2 × 10ିଷ 

𝜏ௗ 0.26 2.2 0.35 

Electron 
temperature 

𝐾 0.92 −0.18 × 10ିଶ -0.13 
𝜏 0.21 9.4 × 10ି଺ 2.2 × 10ିଷ 

𝜏ௗ 0.27 0.74 0.35 
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LSTM models. Note that the noisy predictions in FC and LSTM have 

been originated from the noises in the system input data and the random 

initialization of the weights. 

4.3.7. Uncertainty quantification and model 
compression 

As we trained the BLSTM with the distributional data acquired from 

each operating condition, the model can learn the uncertainty inherent in 

the process data from the training variational parameters. As a result, 

even if the same input has been applied, it produces different outputs 

with respect to the random seeds employed, and these outputs reflect the 

stochastic behaviors of the process. Figure 4.8 shows the posterior 

predictive distribution of BLSTM to the datasets. Note that larger 

uncertainty is observed for the test dataset than the training dataset, 

especially when the system input changes drastically. As such conditions 

are where only a small number of samples are accessible, the results 

manifest that the model can capture the uncertainty from the process data. 

In BLSTM, variational parameters are regularized by priors having a 

standard normal distribution during the training, and hereby relatively 

redundant weights are identified as described in Section 3.1. This enables 

eliminating relatively redundant weights by computing the SNR of each 

weight according to Equation (4.15). From the histograms of weight 

SNRs in Figure 4.9, we can notice that most of the weights are 

insignificant and only a small fraction of the weights is valid in 

prediction, where the prediction accuracy has not decreased at all even 
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after removing 90% 
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weights. Note that such selective pruning of the weights also enables 

avoiding a time-consuming process of determining the optimal number 

of weights in designing neural network models because the procedure is 

executed a posteriori. This a posteriori regularization is shown to be 

highly effective in obtaining an optimal model structure compared to 

conventional L1-norm or dropout-based regularization.   



 

89 

  
 

 

Chapter 5 

 

Process design based on reinforcement learning 

with distributional actor-critic networks3 

 

5.1. Introduction 

Recently, discussions have been made on the machine inference-based 

autonomous chemical compound synthesis and process design [107], 

[108] in the aim of meeting the rapid changes in market demands, such 

as diversified products and customized drug manufacturing. The process 

design problems can be described as finding an optimal layout called 

flowsheet and the specifications of the units for given raw materials, tar-

get products, and the requirements specified. A design objective is usu-

ally given with the maximization of the profit obtained from process op-

eration. 

 
3 This chapter is an adapted version of D. Park and J. M. Lee, “Autonomous 
Process Design based on Behavioral Cloning between Distributional Actor-
Critic Networks and Monte Carlo Tree Search,” Comput. Chem. Eng., In 
Preparation. 
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Two process design approaches, namely decomposition method [109] 

and optimization [15], [110], have been widely used for this purpose. In 

the decomposition method, a chemical process is designed through a se-

quential and hierarchical decisions based on the design heuristics. The 

resulting flowsheet, often referred to as base case design, is then modi-

fied by performing case studies in a way to yield a better process design. 

The decomposition method can quickly locate a feasible solution from 

exploiting design expertise, but it cannot guarantee its optimality as the 

interactions between the design steps of the different hierarchies are not 

taken into account. 

In contrast, the optimization-based method first postulates a process 

layout, so-called superstructure, that includes a set of alternatives of pro-

cess designs encoded by integer variables. The given process design 

problem is then solved using optimization techniques such as mathemat-

ical programming or metaheuristic methods. As the sequential decisions 

are simultaneously considered in the optimization framework, the recip-

rocal interactions can be taken into account. Because of this, optimiza-

tion-based methods have been established as state-of-the-art methods for 

process design tasks. That said, as the superstructure construction heav-

ily relies on design expertise, there is possibility to miss the counter-in-

tuitive but still relevant process designs. Particularly for using mathe-

matical programming with commercial solvers, there exists a fatal short-

coming that the interim solutions cannot be obtained until the solver con-

verges. That is, unless the solver converged to a solution, the user cannot 

even obtain suboptimal solutions. 
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A possible solution to avoid potential bias from search space re-

strictions and obtain interim solutions is employing ab initio approach 

[111], which does not construct a superstructure but instead sequentially 

manipulates unit operations (e.g., addition, removal, …) from a blank 

flowsheet. 

Nevertheless, all the aforementioned methods are solution searching 

techniques that can only find problem-specific solutions. Contrary to this, 

RL-based process design approach [30] can provide means to perform 

solution learning. That is, the agent can learn the design heuristics during 

performing designing tasks and utilize it to solve similar design tasks. 

Nevertheless, relevant studies so far have only demonstrated the applica-

bility of RL to the process design tasks, confined to some simplest design 

problems [112], [113]. 

This study first proposes a learnable process design framework based 

on RL. To this end, the process design problem is first formulated in the 

RL syntax. By following the terminology and definitions described in 

Section 2.7, we define the state as a process flowsheet, the reward as a 

profit obtained from the process operation, and the action as a selection 

of unit type and its specification. We define implementing action as link-

ing a unit to one of the product stream existing in the flowsheet. The 

schematic of the proposed framework is illustrated in Figure 5.1. The 

design process is given as a DMDP described in Section 2.7 

The key feature of the framework is behavioral cloning [21], where a 

solution finder and a learner work in collaboration to find and learn the 

optimal policy (see Figure 5.1). To be more specific, the learner guides  
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the solution finder for an efficient solution process, and the data obtained 

from the solution processes are used to train the learner. As the training 

data are made up of suboptimal solutions rather than random experiences, 

efficient learning is facilitated. 

For the learner, distributional actor-critic networks (DACN) were de-

veloped to consider the hybrid action spaces. For solution finder, Neural 

Monte Carlo tree search (N-MCTS) algorithm, which is known to stabi-

lize the training process with delayed rewards [114], was utilized. In or-

der to employ the neural networks, a flowsheet hashing algorithm that 

can convert graphical process flowsheets into numeric tensors was de-

veloped. 

The remainder of this chapter is organized as follows. Section 5.2 

describes the proposed framework in detail. A verification study is per-

formed in Section 5.3.  

5.2. Methods 

5.2.1. Flowsheet hashing 

The essence of the flowsheet hashing algorithm is to convert a given 

process flowsheet 𝐺 ∈ 𝒢 to a DACN-compatible tensor 𝑇 ∈ 𝒯 where 𝒢 

and 𝒯 represent the possible set of flowsheet and tensors, respectively., 

the images of the two different process flowsheets should differ. In this 

case, the mapping from the process flowsheets to the numeric tensors 

should be given be injective. As the process flowsheets can be repre-

sented by directed graphs, where the nodes and edges respectively  
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Table 5.1 Example of defining the invariant numbers for unit type. 

Type 
Invariant  
number 

Type 
Invariant  
number 

FEED 1 SPLT 6 
PRDT 2 CSTR 7 
NULL 3 PFR 8 
LINK 4 DSTL1 9 
MIX 5 DSTL2 10 

 

  



 

95 

Algorithm 2  Rank evaluation 
Input 𝐺: graphical representation of the given process  

𝑣௜: i
th node in the graph 𝐺 

Parameter 𝑛: maximum number for the iteration 
Function 𝑇:  return the unit type number  

𝐷: return the in-degree in the transitive closure of the 
graph 

𝑃: return the port number of the input streams with 
respect to their parent node 

𝐶: return the centrality 
𝑂: return ordinal orders for the given number array, 

e.g., [4,2,1,3,4] = 𝑂([5,2,1,3,5]) 
𝑆: return the 2-digit encoding for the given number 

array, e.g., 010302 = 𝑆([1, 3, 2])  and 011203 =
𝑆([1, 12, 3]) 

𝐿: count the number of elements in the given array 
𝑁: count the number of the nodes in the graph 
𝑈: return the unique elements of the given array 
𝐾: return the kth prime number for given number k 
𝑝: return the parental nodes 
𝑠: return the successor nodes 
Π: return the product of the elements 

Output 𝑅 = [𝑟௜]௜ୀଵ
ே(ீ): array of the ranks 

1: 𝑡௜ = 𝑇(𝑣௜) 
2: 𝑑௜ = 𝐷(𝑣௜) 
3: for 𝑖 = 1, 2, … , 𝑁(𝐺) 
4: if 𝑡௜ == 1  # unit type is FEED 
5: 𝑎௜ = 𝑛௜  
6: else 
7: 𝑎௜ = ∑ 𝑃(𝑣௜)  
8: end if 
9: 𝑐௜ = 𝐶(𝑣௜)  

10: end for 
11: [𝑐௜̅]௜ୀଵ

ே = 𝑂([𝑐௜]௜ୀଵ
ே )  

12: 𝐼௜ = 𝑆([𝑡௜ , 𝑑௜ , 𝑎௜ , 𝑐௜̅])  # invariant number for 𝑣௜  
13: 𝑟̅௜ = 𝑂(𝐼௜)  
14: 𝑛 = 0  
15: while 𝐿(𝑟̅௜) ≠ 𝐿൫𝑈(𝑟̅௜)൯  # tie breaking 
16: 𝑟̂௜ = 𝐾(𝑟̅௜)  
17: for 𝑖 = 1, 2, … , 𝑁(𝐺) 
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18: if 𝐿൫𝑝(𝑣௜)൯ 
19: 𝑟௜

௣
= 1  

20: else 
21: 𝑟௜

௣
= 𝑟̂௣(௩೔)  

22: end if 
23: if 𝐿൫𝑠(𝑣௜)൯ 
24: 𝑟௜

௦ = 1  
25: else 
26: 𝑟௜

௦ = 𝑟̂௦(௩೔)  
27: end if 
28: 𝑟̃௜ = 𝑟̂௜ ⋅ Π൫𝑟௜

௣
൯ ⋅ Π(𝑟௜

௦)  
29: end for 
30: 𝑟௜ = 𝑂(𝑟̃௜)  # rank for 𝑣௜  
31: if 𝑟௜ == 𝑟̅௜ for ∀𝑖 = 1,2, … 𝑁(𝐺) or 𝑛 > 𝑛 
32: break 
33: else 
34: 𝑟̅௜ = 𝑟௜  
35: 𝑛 = 𝑛 + 1  
36: end if 
37: end while 
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Algorithm 3  Flowsheet hashing 
Input 𝐺: graphical representation of the given process  

𝑉: array for the nodes in the graph 𝐺 
Parameter |𝑇|: number of possible node types 

𝑊(𝐿): width(length) of the 3D tensor 
𝐻஼: number of embedding layers for configurations 
𝐻ௌ: number of embedding layers for specifications 
𝐹: maximum flow rates 
𝐹: minimum flow rates 

Function zeros: return the tensor filled with zeros 
by given dimensions 

𝑟𝑎𝑛𝑘: return the array of the ranks using Algorithm 2 
𝑠𝑜𝑟𝑡(⋅, 𝑖𝑑𝑥): return the array sorted with the index 𝑖𝑑𝑥 
𝑠𝑜𝑟𝑡𝑖𝑑𝑥: return the indices for sorting 
𝑁: count the number of the nodes in the graph 
𝑀: count the number of the edges in the graph 
𝑇:  return the unit type number  
𝐸:  return True if a node specification is given; 

otherwise, return False 
𝑠: return the maximum specification value 
𝑠: return the minimum specification value 
𝑃: return the port number  
𝑃ூ:  return the maximum inlet port number  
𝑃ை:  return the maximum outlet port number 
ℎ: return the index of the head node  
𝑡:  return the index of the tail node 
𝐹: return the flow rates 

Output 𝑆: tensor representation of the process  
1: 𝑆 = 𝑧𝑒𝑟𝑜𝑠(𝑊, 𝐿, 𝐻஼ + 𝐻ௌ)  
2: 𝑅 = 𝑟𝑎𝑛𝑘(𝐺)  
3: 𝑖𝑑𝑥 = 𝑠𝑜𝑟𝑡𝑖𝑑𝑥(𝑅)  
4: 𝑉 = 𝑠𝑜𝑟𝑡(𝑉, 𝑖𝑑𝑥)  
5: for 𝑖 = 1, 2, … , 𝑁(𝐺) 
6: 𝑣௜ = 𝑉[𝑖]  
7: 𝑡௜ = 𝑇(𝑣௜)/|𝑇|  
8: if 𝐸(𝑣௜) 
9: 𝑠̂௜ = ቀ𝑠௜ − 𝑠(𝑡௜)ቁ / ቀ𝑠(𝑡௜) − 𝑠(𝑡௜)ቁ    

10: else 
11: 𝑠̂௜ = 0  
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12: end if 
13: end for 
14: 𝑆[1: 𝑁(𝐺), 1: 𝑁(𝐺), 1: 𝐻஼] = 𝑡௜  
15: 𝑆[1: 𝑁(𝐺), 1: 𝑁(𝐺), 𝐻஼ + 1: 𝐻஼ + 𝐻ௌ] = 𝑠̂௜  
16: for 𝑗 = 1, 2, … , 𝑀(𝐺) 
17: 𝑆[𝑡(𝑗), ℎ(𝑗), 1] = 𝑃൫𝑡(𝑗)൯/𝑃ை൫𝑡(𝑗)൯ 
18: 𝑆[𝑡(𝑗), ℎ(𝑗), 2] = 𝑃൫ℎ(𝑗)൯/𝑃ூ൫ℎ(𝑗)൯  
19: 𝑆[𝑡(𝑗), ℎ(𝑗), 3: 𝐻஼ + 𝐻ௌ] = ൫𝐹(𝑗) − 𝐹൯/൫𝐹 − 𝐹൯     
20: end for 
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represent process units and streams, we will first follow the terminology 

presented in Section 2.8 and describe the algorithm in terms of the graph 

theory. 

An equivalent way to ensure the injective mapping is to uniquely de-

termine the orders or ranks of the nodes in the graph [115]. To this end, 

we first define the invariant numbers for possible unit types as in Table 

5.1 so that the number indicating unit type 𝑡௜ can be assigned to each 

node 𝑣௜ . A name identifier 𝑛௜  is attached in the increasing order, i.e., 

FEED-01, FEED-02, to distinguish the units with the same type. We also 

assign the invariant numbers to indicate the inlet/outlet ports of the units. 

For a distillation tower with no side streams, for example, the port invar-

iant numbers can be assigned as input(1), top(1), bottom(2). Finally, the 

centrality 𝑐௜ is defined for each node following equation.  

𝑐௜ = ൬
𝐴௜

𝑁 − 1
൰

ଶ 1

𝐵௜
 (5.1) 

where 𝐴௜ is the number of reachable nodes from 𝑣௜, 𝐵௜ is the sum of the 

distances from 𝑣௜ to all reachable nodes, and 𝑁 is the number of nodes 

in the graph. The rank 𝑟௜ ∈ {1,2, … , |𝑉|} is then evaluated for each node 

𝑣௜ following Algorithm 2. The evaluated ranks provide canonical num-

bering of the nodes and allow the injective hashing of the flowsheets. 

The complete flowsheet hashing algorithm is described in Algorithm 3. 

5.2.2. Behavioral cloning 

The training of the agent is proceeded by a modified version of the 
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behavioral cloning algorithm used in AlphaZero [116]. Specifically, for 

a given state 𝑠, the N-MCTS outputs the estimates for the return, 𝑣(𝑠), 

and optimal policy function value, 𝜋(𝑎|𝑠) . The neural networks are 

trained by reducing the following loss function 

ℒ = ൫𝑣(𝑠) − 𝑣ఏ(𝑠)൯
ଶ

− 𝜋(𝑎|𝑠) ⋅ log൫𝜋ఏ(𝑎|𝑠)൯ + 𝑐‖𝜃‖ (5.2) 

where 𝑣ఏ(𝑠) and 𝜋ఏ(𝑎|𝑠) are approximate functions given by the neural 

networks. Note that the loss function forces the neural networks to clone 

the behavior of the N-MCTS. As the agent has hybrid action space – ac-

tion is given as a combinatorial selection of discrete unit type and con-

tinuous unit specifications – the policy samples produced by the tree 

search are given as Figure 5.2. 

5.2.3. Neural Monte Carlo tree search (N-MCTS) 

Starting from an empty tree, N-MCTS repeatedly performs the selec-

tion, expansion, rollout, and backpropagation phases to find a better ac-

tion. Specifically, a modified version of the PUCT algorithm used in Al-

phaZero was utilized. In N-MCTS, every action node in the tree stores 

statistics {𝑁(𝑠, 𝑎), 𝑊(𝑠, 𝑎), 𝑄(𝑠, 𝑎)}  where 𝑁(𝑠, 𝑎)  is the visitation 

count, 𝑊(𝑠, 𝑎) is the cumulative return over all rollouts through (𝑠, 𝑎), 

and  

𝑄(𝑠, 𝑎) =
𝑊(𝑠, 𝑎)

𝑁(𝑠, 𝑎)
=

1

𝑁(𝑠, 𝑎)
෍ 𝑣ఏ(𝑠ᇱ)

௦ᇲ|௦,௔→௦ᇲ
 (5.3) 

is the estimate for action-value where 𝑣ఏ(𝑠ᇱ)  denotes the estimated  
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Figure 5.2 Schematic of MCTS policy. 
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return at 𝑠ᇱ given by the neural networks. The graphical description of 

the algorithm is given in Figure 5.3. The N-MCTS algorithm iterates the 

following four phases: 

1. Selection   In selection phase, the agent descents the tree from the 

root node according to: 

𝑎 = argmax
௔

൥𝑄(𝑠, 𝑎) + 𝑐௣௨௖௧ ∙ 𝜋ఏ(𝑎|𝑠) ∙
ඥ𝑁(𝑠)

𝑁(𝑠, 𝑎) + 1
൩ (5.4) 

where 𝑁(𝑠) = ∑ 𝑁(𝑠, 𝑎)௔  is the total number of visits to state 𝑠, 

𝑐௣௨௖௧ ∈ ℝା is a constant for scaling the amount the exploration/ex-

ploitation. The selection is performed until either a terminal state 

is reached or an action that have not been tried before is selected. 

2. Expansion and Estimate   The agent then expands the tree by 

appending a new leaf state 𝑠௅ and the value 𝑣(𝑠௅) is approximated 

by the neural network. 

3. Backup   The results in the tree nodes are recursively backed-up. 

Let the forward searching trace as {𝑠଴, 𝑎଴, … , 𝑠௅ିଵ, 𝑎௅ିଵ, 𝑠௅}. For 

each state-action edge (𝑠௜ , 𝑎௜)  where 𝐿 > 𝑖 ≥ 0 , the agent recur-

sively estimates the state-action value as 

𝑅(𝑠௜ , 𝑎௜) = 𝑟(𝑠௜ , 𝑎௜) + 𝛾𝑅(𝑠௜ାଵ, 𝑎௜ାଵ) (5.5) 

where 𝑅(𝑠௅ , 𝑎௅) ≔ 𝑅(𝑠௅). The cumulative return 𝑊(𝑠௜ , 𝑎௜) is in-

cremented with the new estimate 𝑅(𝑠௜ , 𝑎௜) and the visitation count 

𝑁(𝑠௜ , 𝑎௜) is increased by 1. Lastly, state-action value is updated by 

𝑄(𝑠௜ , 𝑎௜) = 𝑊(𝑠௜ , 𝑎௜)/𝑁(𝑠௜ , 𝑎௜) . This backup process is applied 
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backward along the trace until we reach the root node 𝑠଴. 

 

The searching procedure is repeated until the iteration reaches pre-de-

fined tree search budget 𝑁௧௥௘௘. After finishing the tree search, it returns 

a root action set 𝐴଴ = ൛𝑎଴,଴, 𝑎଴,ଵ, … , 𝑎଴,௡ൟ with associated counts 𝑁଴ =

൛𝑁൫𝑠଴, 𝑎଴,଴൯, 𝑁൫𝑠଴, 𝑎଴,ଵ൯, … , 𝑁൫𝑠଴, 𝑎଴,௠൯ൟ  where 𝑚  denotes the number 

of child actions implemented at the root node 𝑠଴. The agent selects the 

action for the implementation to the environment, 𝑎∗ , following the 

probability distribution based on the visitation counts at the root node 𝑠଴, 

that is,  

𝑎∗~𝜋(𝑎|𝑠଴) (5.6) 

where 𝜋(𝑎|𝑠଴) =
ே(௦బ,௔)

ே(௦బ)
  and 𝑁(𝑠଴) = ∑ 𝑁(𝑠଴, 𝑎௜ )௔೔∈஺బ

 . We can store 

the subtree that belongs to the picked action 𝑎∗ for the MCTS at the next 

time step. Therefore, 𝑁(𝑠଴) can be larger than 𝑁௧௥௘௘.  

As we cannot enumerate all the actions in the continuous domain, we 

utilize progressive widening [22] that confines the possible number of 

child actions at state 𝑠, 𝑚(𝑠), by a function of the total number of visit 

to that state 𝑛(𝑠). This facilitates exploiting actions with larger visitation 

counts (which indicate producing better returns) to get more child actions 

for consideration. Specifically, we employed the progressive widening 

method described in [117], which is given as 

𝑚(𝑠) = 𝑐௣௪ ⋅ 𝑁(𝑠)఑ (5.7) 

where constants 𝑐௣௪ ∈ ℝା  and 𝜅 ∈ (0,1) . To prevent excessive 
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exploitation and facilitate exploration, the expansion counts for each 

node is restricted by 𝐸௡௢ௗ௘.  

5.2.4. Distributional actor-critic networks (DACN) 

DACN are composed of two functional layers called actor and critic 

that respectively approximates the policy and value functions. We em-

ploy Siamese architecture, where the two functional layers share the fea-

ture extraction layers. The schematic diagram of DACN is described in 

Figure 5.4.  

For the value function estimator, a fully connected layer can simply be 

used. For the policy function estimator, however, a special measure is 

required to compute the loss function (5.2) with the data obtained from 

tree search (see Figure 5.2). Note that 𝜋(𝑎|𝑠) ⋅ log൫𝜋ఏ(𝑎|𝑠)൯ can be cal-

culated only when the value 𝜋ఏ(𝑎|𝑠) is accessible, and the neural net-

work layers can only output a fixed tensor. For unit type, the number of 

slots for 𝑎 can be configured in advance so a soft-max layer can be used 

to compute 𝜋ఏ(𝑎|𝑠). However, for unit specifications having continuous 

domain, 𝑎 is uncountable and 𝜋ఏ(𝑎|𝑠) is generally inaccessible. A naïve 

solution to this is to discretize the action space [18], but it is known to be 

highly dependent on the quality of the grid [19].  

To address this problem, we can approximate the continuous policy 

with parameterized distribution functions (see Distributional layer in 

Figure 5.5a). In practice, the action space is constrained by physical  
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Figure 5.5 (a) Schematic of DAN and its interactions with MCTS. (b) Illus-
tration of probability density of beta distribution. 
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restrictions (e.g., agitator speed of a reactor), and thereby we can choose 

probability distributions with bounded supports. One of such is Beta dis-

tribution given as 

𝑝(𝑥| 𝛽ଵ,  𝛽ଶ) =
Γ(𝛽ଵ + 𝛽ଶ)

Γ(𝛽ଵ)Γ(𝛽ଶ)
𝑥ఉభିଵ(1 − 𝑥)ఉమିଵ (5.8) 

where 𝑥 ∈ [0,1]  and 𝛽ଵ , 𝛽ଶ  are hyperparameters that determine the 

shape of the distribution. Figure 5.5b illustrates the effect of the hyperpa-

rameter values.  

The underlying rationale for using Beta distribution approximation is 

that the optimal policy at given state 𝑠 would be given as a Dirac function, 

where its shape can be approximated by the Beta distribution with high 

𝛽ଵ and 𝛽ଶ values. Moreover, the Beta distribution has finite support so it 

does not suffer from the boundary effect that is known to slow down the 

training progress [19]. The distribution approximation is also numeri-

cally differentiable [118], so we can use simply perform backpropagation 

to train the network, which enables rapid training. 

Unlike the conventional approach that uses deterministic layers and 

additive stochastic processes (e.g., Ornstein-Uhlenbeck process [119]) to 

perturb the action in promoting exploration [120], [121], the resulting 

policy function, named distributional actor networks (DAN), is inher-

ently stochastic and perform random exploration probabilistically. Fur-

thermore, the exploitation/exploration rate can be autonomously con-

trolled over the training. That is, we can initialize 𝛽ଵ = 1 and 𝛽ଶ = 1 to 

promote exploration in the earlier stage of the learning process. As the 

training progresses, the beta values are increased and the greedy actions  
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Algorithm 4  Action masking 
Input 𝐺: graphical representation of the given process  

𝑎: action candidate 
Function 𝑁: count the number of the nodes in the graph 

𝑇: return the unit type number 
𝑃: count the number of PRDT nodes in the graph 
𝐹: count the number of FEED nodes in the graph 
𝐿: count the number of NULL nodes in the graph 

Output 𝑉: flag indicating validity of the action 

1: if 𝑁(𝐺) == 0 and 𝑇(𝑎) ≠ 1  # only FEED action allowed 
2: 𝑉 = 0 
3: elseif 𝑃(𝐺) == 0 
4: 𝑉 = 0  
5: elseif 𝐹(𝐺) ≠ 0 and 𝑇(𝑎) == 1  # FEED already exists 
6: 𝑉 = 0  
7: elseif 𝑇(𝑎) == 4  and 𝐿(𝐺) == 0  # LINK selected 
8: 𝑉 = 0                                               but NULL does  
9: end if                                                   not exist 
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are encouraged (see Figure 5.5b). 

5.2.5. Action masking 

To avoid repeatedly sampling invalid actions and promote rapid sim-

ulation, action masking [122] technique is employed as described in Al-

gorithm 4. 

5.3. Verification study 

5.3.1. System description 

The algorithm is demonstrated with a reactor-separator-recycle system 

synthesis problem, Case 4 of benzene chlorination process in [123]. The 

chemical reactions of this liquid-phase process are given as: 

C଺H଺ (A) + Clଶ

௞భ
→ C଺HହCl (B) + HCl 

C଺HହCl + Clଶ

௞మ
→ C଺HସClଶ (C) + HCl 

(5.9) 

where 𝑘ଵ = 0.412/ℎ  and 𝑘ଶ = 0.05/ℎ  are the kinetic constants. The 

hydrochloric acid produced is eliminated at the reaction level output by 

a stripping operation whose cost is not taken into account. In the separa-

tion level, unreacted A is separated and recycled toward the reactor net-

work, valuable product B, of which the demand is assumed to be 50 

kmol/h, and a side product C. The volatility ranking of these components 

is given as 𝛼஺ > 𝛼஻ > 𝛼஼, and the possible separation tasks are defined 

as A/BC, AB/C, B/C, and A/B. 
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5.3.2. Experimental setup 

To reduce the complexity of the task, we only considered two types of 

separation, namely DSTL1 (A/BC) and DSTL2 (AB/C) in the following 

case studies. Refer to A.3 for the model equations of the process units. 

The minimum and maximum possible operation conditions are specified 

as Table 5.2. Stopping the designing process is considered by defining 

additional action. As a result, a total of 11 environmental objects is de-

fined in this study.  

When applying MIX unit, we do not merge two PRDT nodes but in-

stead create a NULL node and attached it to the input of MIX unit. The 

NULL node here is virtual node and prepared to consider possible recy-

cle operation. The action RECY links a PRDT to a NULL.  

The CAPEX and OPEX of the process units are given as in Table 5.3, 

and the reward is defined as the profit of the process given as  

Profit = 720(𝑆 − 𝑃) − Cost 
where 

Sales (𝑆) = 92.67 ෍ 𝐹௜,஻

௜ୀ୔ୖୈ୘

 

Purchase (𝑃) = 47.86 ෍ 𝐹௜,஺

௜ୀ୊୉୉

 

Cost = ෍
CAPEX௜

2.5
+ 0.52 ⋅ OPEX௜

௜ୀ୙୒୍୘ 

 

(5.10) 

The hyperparameters for training, reward, MCTS, and DACN are 

given as in Table 5.4, and Wegstein method [124] is used to simulate the 

processes with process loops. 

A total of four case studies have been conducted as below: 
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Table 5.2 Specifications for process units and streams. 

Type Specification Unit Min Default Max 
FEED Flowrate of A kmor/hr 50 75 100 

PRDT - - - - - 

NULL - - - - - 

LINK Target NULL - 0 0 1 

MIX - - - - - 

SPLT Split ratio - 0.05 0.5 0.5 

CSTR Reactor volume mଷ 0.01 25 50 

PFR Reactor volume mଷ 0.01 25 50 

DSTL1 - - - - - 

DSTL2 - - - - - 

𝐹஺ 

Flow rates kmor/hr 0 0 10 𝐹஻ 

𝐹஼ 
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Table 5.4 Hyperparameter settings. 

Type Parameter Value 

Search space 
Number of episodes 40,000 

Number of actions for each episode 9 

State 

𝑛 100 
𝐿 20 

𝐻஼ 2 
𝐻ௌ 3 

Reward 
𝛾 0.99 

𝑟 for penalty −10ସ 

MCTS 

𝑁௧௥௘௘ 100 
𝐸௡௢ௗ௘ 10 
𝑐௣௨௖௧ 10଼ 
𝑐௣௪ 3 

𝜅 1.2 

DACN 
Hidden nodes per residual layer 10 
Number of the residual layers 19 

scalerఉ 1000 
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 Case 1:  

solve the base case problem. 

 Case 2 (transferability test 1):  

CAPEX of CSTR = 25,794 + 7,000V 

 Case 3 (transferability test 2): 

CAPEX of CSTR = 8,000 + 10,000V 

 Case 4 (hyperparameter sensitivity test):  

𝑐௣௨௖௧ = 10଺ 

5.3.3. Result and discussions 

Figure 5.6 describes the results obtained from Case 1. Note that the 

proposed method yields an almost identical process design to the ground 

truth stated in the reference. As intended, we can observe that the agent 

initially selects all the actions with almost the same probability and be-

comes to choose the optimal action (e.g., MIX at 𝑠ଵ) exclusively as train-

ing progresses. Table 5.5 details the policy of DACN at episode 33230 

where the selectivity represents the ‘sharpness’ of the policy distribution. 

We can find a few notable observations as below: 

 The DACN selects FEED action with a high probability at the in-

itial state, presumably due to action masking. 

 The second most optimal action for 𝑠ଵ is found to be CSTR. This 

is plausible as we can speculate that the suboptimal solutions 

could be non-loop processes. 

 At 𝑠ଶ,  𝑠ଷ , and 𝑠ସ , the DACN selects DIST1 with the second-
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highest probability and the selectivity to CSTR is getting lowered. 

This indicates that the suboptimal solutions may include early ter-

mination of the design process without the implementation of 

CSTRs. 

 At 𝑠଺, the DACN has low selectivity on DSTL2, which reflects 

the redundancy of selecting DSTL2 and LINK at 𝑠଺. 

 At 𝑠଻, the DACN selects STOP with a probability comparable to 

choosing LINK. This indicates that the suboptimal solutions may 

include non-loop processes. 

 

Figure 5.7 shows the profit trajectories for the case studies. The result 

of Case 2 demonstrates that the proposed methodology can locate a high 

return solution faster at the early stages of solving a similar process de-

sign problem to that encountered in the training process. Such transfera-

bility seems also valid at the early stages in Case 3 but becomes to lose 

its property as the learning progresses. The results reveal that transfera-

bility is not always guaranteed, especially if the given problem is signif-

icantly different from the problem used in the training. 
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Figure 5.6 (a) Optimal solution obtained and (b) its ground truth. (c) The action 
policies for 𝑠ଵ at episode 1 and 33230. The policies were calculated by normalizing 
1,000 samples obtained from DACN.  
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Chapter 6 

 

Concluding remarks 

 

6.1. Summary of the contributions 

In this thesis, probabilistic machine learning methods have been de-

veloped to model and quantify the uncertainty that arises from the scar-

city of the process data. The underlying theme was to approximate the 

target distribution via parameterized distributions and circumvent the 

computational complexity that occurred in probabilistic inference. 

In Chapter 3, we proposed a process monitoring methodology using 

PML. The process data was assumed to be realized from a Riemannian 

manifold where data are clustered with respect to their classes. This man-

ifold was approximated from measuring the pairwise likelihoods of the 

data points and projected into low-dimensional space by preserving the 

likelihoods. To be specific, a uniform manifold was first approximated 

with the metric attributes of the data and the local distances between the 

data points were calibrated. Then the non-metric attributes were utilized 

by imposing lower likelihood among those points. This postulated 
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clustered manifold and induced the data to be clustered in the feature 

space. In this way, those hard-to-distinguish fault points were able to be 

efficiently discriminated after projection, which drastically improved the 

monitoring performance. We have also shown that it has much more flex-

ibility in tracing and controlling the resultant effect from incorporating 

prior information of the data (i.e., data labels), compared to the conven-

tional statistical projection methods that have been popular choices in 

practice. 

In Chapter 4, a probabilistic modeling approach using Bayesian deep 

neural networks was proposed, and its performance has been demon-

strated by the application to the plasma etch process. Assuming that the 

parameters of the neural networks have a Gaussian distribution, a sto-

chastic model was derived by learning the distribution of the data. After 

training the model, the optimal model structure and parameters were ob-

tained by a posteriori elimination of the parameters having lower im-

portance. The resulting sparse Bayesian networks were found to preserve 

the prediction accuracy with respect to the full Bayesian networks even 

though we eliminate 90% of the weights. We have shown that it is not 

only possible to simultaneously learn the complex behavior and stochas-

tic characteristics of the processes, but also to obtain an optimal model 

structure. Note that the resulting architecture is differentiable, that is, the 

Jacobian and Hessian matrices of the system model can also be easily 

obtained by automatic differentiation. These suggest that the proposed 

methodology can be utilized for designing model-based control systems. 

In Chapter 5, a reinforcement learning-based process design 
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framework was proposed with distributional actor-critic network. Unlike 

the conventional approach, which only employs recursive objective 

function evaluation to find the optimal solution, the proposed approach 

approximates the objective function spaces with distributional deep neu-

ral networks. We demonstrated that the process design heuristics can be 

learned and transferred to solve similar design problems, rather than 

simply finding a solution as conventional approaches have done.  

6.2. Future works 

The directions for the future work can be made as follows: 

 The PML proposed in Chapter 3 was devised to obtain the same 

low-dimensional representation as CMAP, while gaining compu-

tational efficiency by mapping the input and latent spaces using 

neural networks. However, as the results reveal, PML had diffi-

culty in discriminating hard-to-distinguish two different class data. 

Note that the only difference between the algorithms between 

PML and CMAP was that CMAP utilizes pointwise optimization 

based on nearest neighbors while PML performs transformative 

mapping using neural networks. Therefore, we can infer that the 

performance degradation found in PML is stemmed from using 

neural architecture, which is well known to suffer from the high 

dependency on initial values and convergence to local optimum. 

A possible solution could be introducing automated machine 

learning techniques [125] to find out the optimal neural architec-

ture and a hyperparameter set that are tailored to the given dataset. 
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In PML, we utilized the autoencoder networks and derived an in-

verse mapping from the latent space to the input space, which can 

generate synthetic data through simple sampling. Therefore, if 

there is an imbalance in the amount of data among the classes, we 

can utilize it to oversample the minor data classes and improve the 

diagnostic performance. Note that the proposed methods are based 

on that the local distances between the data points are calibrated 

to be within the range of [0, 5] by the uniform manifold approxi-

mation. As we have only demonstrated such property empirically 

through various datasets, theoretical prove should be made. 

 Even though the probabilistic modeling technique presented in 

Chapter 4 provides uncertainty measures for the predictions, we 

can still raise fundamental questions on its robustness to the ex-

trapolation. A possible solution for this may be using a first-prin-

ciples model and applying the same modeling techniques – repa-

rameterization and variational inference – to the model parameters. 

Some studies have already shown that the variational inference on 

physical parameters also works for the dynamical systems de-

scribed by ordinary differential equations [126]. In this case, we 

can further anticipate that the proposed model compression tech-

nique can be used in discovering the governing equations of the 

system. To be specific, we can first construct a model library [127], 

which is composed of possible candidates of physicochemical 

terms, and then perform a posteriori model compression to elim-

inate redundant terms. Contrary to the existing approach that 
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employs LASSO (L1 regularization) [128] for the model com-

pression, the suggested approach could be able to produce sto-

chastic models and attain better accuracy (see Figure 4.9). 

 The reinforcement learning-based process design approach pre-

sented in Chapter 5 are having limitations as much as the de-

scribed potential benefits. First, it was observed that it suffers 

from the instability and hyperparameter sensitivity during the 

training, which are well known problems of reinforcement learn-

ing. Even though many solution approaches such as recovering 

[129] and averaging [130] are proposed, the issue has not solved 

yet and being the biggest drawback against the conventional math-

ematical programming approach. Second, the generalization of 

the problem-dependent process constraints and that of the state 

representation for varying number of process units (number of ac-

tions) have not been developed. Promising solution strategies for 

these may be employing reward shaping [131] and hierarchical 

graph convolutions [132], respectively. Finally, note that the pro-

posed method based on policy approximation using distributed 

neural networks. That is, if a large number of actions should be 

taken into account, distribution flattening occurs, and it can slow 

down the learning process. Introducing hierarchically structured 

policy networks [133] could be a fundamental solution to this 

problem, but a more promising approach would be directly incor-

porating the domain knowledge into the agent [109].  
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Appendix 

A.1. Proof of Lemma 1 

Let 𝑥ଵ, …, 𝑥௡ be the coordinate system for the ambient space. A ball 

𝐵 in ℳ under Riemannian metric 𝑔 has volume given by 

න ඥdet(𝑔)
஻

𝑑𝑥ଵ … 𝑑𝑥௡ = ඥdet(𝑔)
𝜋௡/ଶ𝑟௡

Γ(𝑛/2 + 1)
  (A.1) 

If we fix the volume of the ball to be 
గ೙/మ௥೙

୻(௡/ଶାଵ)
, we arrive at the require-

ment that  

det(𝑔) =
1

𝑟ଶ௡
  (A.2) 

and since 𝑔 is assumed to be diagonal matrix, we can solve for 𝑔 as 

𝑔௜௝ = ൝
1

𝑟ଶ
  if 𝑖 = 𝑗        

0    otherwise

  (A.3) 

The geodesic distance on ℳ  under 𝑔  from 𝑝  to 𝑞  where 𝑝, 𝑞 ∈ 𝐵  is 

defined as  

inf
௖∈஼

න ට𝑔൫𝑐̇(𝑡), 𝑐̇(𝑡)൯𝑑𝑡
௕

௔

   (A.4) 

where 𝐶  is the class of smooth curves 𝑐  on ℳ  such that 𝑐(𝑎) = 𝑝  and 

𝑐(𝑏) = 𝑞, and 𝑐̇ denotes the first derivative of 𝑐 on ℳ. Given that 𝑔 is 

as defined in (A.3), we can derive that this can be simplified to 
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1

𝑟
inf
௖∈஼

න ඥ⟨𝑐̇(𝑡), 𝑐̇(𝑡)⟩𝑑𝑡
௕

௔

=
1

𝑟
inf
௖∈஼

න ⟨‖𝑐̇(𝑡), 𝑐̇(𝑡)‖⟩𝑑𝑡
௕

௔

 

=
1

𝑟
𝑑ℝ೙(𝑝, 𝑞)  

(A.5) 

■  
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A.2. Performance indices for dimension reduction 

A total of four performance indices [65], [134], [135] were used to 

evaluate the clustering degree and data structure preservation. To meas-

ure the clustering degree, we introduced two clustering performance 

measures; the Dunn index (DI) and Davies-Bouldin index (DBI). These 

were originally designed to evaluate the performance of clustering algo-

rithms, where the labeling is assessed based on the distances between 

given data points. Conversely, we used them to evaluate how well the 

data points were clustered in a situation where data labels are known a 

priori. We used Sammon’s error (SE) and the local continuity meta-cri-

terion (LCMC) to measure how well the global and local structures of 

the dataset in the input space were preserved in the feature space. 

 

Dunn Index (DI) 

For given clusters {𝐶௞}ଵஸ௞ஸ௄ DI is defined as follows: 

 DI =
𝑚𝑖𝑛
௜ஷ௝

𝛥(𝐶௜ , 𝐶௝)

𝑚𝑎𝑥
ଵஸ௞ஸ௄

𝛿(𝐶௞)
 (A.6) 

where 𝛥(𝐶௜ , 𝐶௝)  is the distance between clusters 𝐶௜  and 𝐶௝ , and 𝛿(𝐶௞) 

represents the size or diameter of a cluster 𝐶௞ that can be defined in many 

different ways. We defined 𝛥(𝐶௞)  as the maximum distance between 

points in the cluster 𝑘: 

 𝛿(𝐶௞) = max
௫೔,௫ೕ∈஼ೖ

𝑑൫𝑥௜ , 𝑥௝൯ (A.7) 

As shown in (A.6), DI measures whether the clusters are compact and 

well separated, and a larger DI value indicates better clustering.[136] 
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Davies-Bouldin index (DBI) 

DBI measures the average separability by considering every pair of 

clusters, and a smaller DBI value indicates better clustering. 

 DBI =
1

𝐾
෍ 𝑚𝑎𝑥

௝ஷ௜
ቆ

𝛿(𝐶௜) + δ൫𝐶௝൯

𝛥൫𝐶௜ , 𝐶௝൯
ቇ

௄

௜ୀଵ

 (A.8) 

where 𝐶௜, 𝛥(𝐶௜), and 𝛿(𝐶௜ , 𝐶௝) are defined the same as in DI. 

 

Sammon’s error (SE) 

SE, which is also referred to as Sammon’s stress, measures the degree 

of preservation of the global structure using the distances between data 

points in the observation and latent spaces.[137] 

 SE =
1

∑ ∑ 𝑑௜௝
௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ

෍ ෍
൫𝑑௜௝ − 𝑑௜௝

∗ ൯
ଶ

𝑑௜௝

௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ

 (A.9) 

where 𝑑௜௝ = 𝑑ℝ೙  ൫𝑥௜ , 𝑥௝൯, 𝑑௜௝
∗ = 𝑑ℝ೘൫𝑧௜ , 𝑧௝൯, and an SE value of 0 indi-

cates a perfect reduction. 

 

Local continuity meta-criterion (LCMC) 

LCMC measures the degree of preservation of the local structure 

based on a co-ranking matrix.[138], [139] First, the rank 𝑟௜௝ of 𝑥௜ with 

respect to 𝑥௝ is defined as 

 𝑟௜௝ = ห{𝑘: 𝑑௜௞ < 𝑑௜௝  𝑜𝑟 ൫𝑑௜௞ = 𝑑௜௝ 𝑎𝑛𝑑 𝑘 < 𝑗൯ห (A.10) 

where |𝐴| denotes the number of elements in the set 𝐴. Here, 𝑟௜௝ is an 
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integer indicating that 𝑥௜ is the 𝑟௜௝
th closest neighbor of 𝑥௝. Analogously, 

the rank in the feature space is defined as 

 𝑟௜௝
∗ = ห൛𝑘: 𝑑௜௞

∗ < 𝑑௜௝
∗  𝑜𝑟 ൫𝑑௜௞

∗ = 𝑑௜௝
∗  𝑎𝑛𝑑 𝑘 < 𝑗൯ൟห (A.11) 

The co-ranking matrix, whose elements are given by 

 𝑞௜௝ = |{(𝑘, 𝑙): 𝑟௞௟
∗ = 𝑖 𝑎𝑛𝑑 𝑟௞௟ = 𝑗}| (A.12)

represents the 2-dimensional histogram of the changes in ranks, i.e. 𝑞௜௝ 

is an integer that counts how many points of distance rank 𝑗 are ranked 

𝑖. Thus, if an embedding is carried out by a perfect reduction, the co-

ranking matrix will only have non-zero entries on the diagonal. If most 

of the non-zero entries are in the lower triangle, we can interpret this as 

an embedding collapsed distant points onto each other, and vice 

versa.[140] The number of points belonging to the kth nearest neighbors 

in both the observation space and feature space is computed as 

 LC(𝑘) =
1

𝑘𝑁
෍ ෍ 𝑞௜௝

௞

௝ୀଵ

௞

௜ୀଵ

 (A.13)

where 𝑁 is the number of data points. Intuitively, this represents the de-

gree of overlap between the neighboring sets of a data point and their 

corresponding embedding. LCMC adjusts this value by subtracting the 

expected overlap between two subsets of 𝑘 elements from 𝑁 − 1. 

 LCMC(𝑘) = LC(𝑘) −
𝑘

𝑁 − 1
 (A.14) 

The higher the LCMC value, the better the local structure preservation, 

and an LCMC value of 1 indicates perfect preservation.  
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A.3. Model equations for process units 

LINK 

 ൫𝐹୭୳୲,୅,    𝐹୭୳୲,୆,   𝐹୭୳୲,େ൯ = ൫𝐹୧୬,୅,    𝐹୧୬,୆,   𝐹୧୬,େ൯ (A.15)
 

MIX 

 
൫𝐹୭୳୲,୅,    𝐹୭୳୲,୆,   𝐹୭୳୲,େ൯ = ൫𝐹୧୬ଵ,୅,    𝐹୧୬ଵ,୆,   𝐹୧୬ଵ,େ൯ 

+ ൫𝐹୧୬ଶ,୅,    𝐹୧୬ଶ,୆,   𝐹୧୬ଶ,େ൯ 
(A.16)

SPLT 

For a split ratio 𝑟, 

 
൫𝐹୭୳୲ଵ,୅,   𝐹୭୳୲ଵ,୆,   𝐹୭୳୲ଵ,େ൯ ⋅ 𝑟 + 

൫𝐹୭୳୲ଶ,୅,   𝐹୭୳୲ଶ,୆,   𝐹୭୳୲ଶ,େ൯ ⋅ (1 − 𝑟) = ൫𝐹୧୬,୅,    𝐹୧୬,୆,   𝐹୧୬,େ൯ 
(A.17)

 

CSTR 

For a reactor volume 𝑉, 

 𝐹௜௡ = ෍ 𝐹୧୬,௜    where  𝑖 ∈ {A, B, C} (A.18) 

 

If 𝐹௜௡ ≠ 0: 

 𝑋୧୬,௜ =
𝐹୧୬,௜

∑ 𝐹୧୬,௜
   for  𝑖 ∈ {A, B, C} (A.19) 

 𝑋ത = 11.22 ⋅ 𝑋୭୳୲,୅ + 9.86 ⋅ 𝑋୭୳୲,୆ + 8.85 ⋅ 𝑋୭୳୲,େ (A.20) 

 𝑋୭୳୲,୅ = 𝑋୧୬,୅ ⋅
∑ 𝐹୧୬,௜

∑ 𝐹୧୬,௜ + 𝑘ଵ𝑉𝑋ത
 (A.21) 

 𝑋୭୳୲,୆ =
𝑋୧୬,୆ ∑ 𝐹୧୬,௜ + 𝑘ଵ𝑋୭୳୲,୅𝑉𝑋ത

∑ 𝐹୧୬,௜ + 𝑘ଶ𝑉𝑋ത
 (A.22) 

 𝑋୭୳୲,େ =
𝑋୧୬,େ ∑ 𝐹୧୬,௜ + 𝑘ଶ𝑋୭୳୲,୆𝑉𝑋ത

∑ 𝐹୧୬,௜
 (A.23) 

Else: 
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 𝐹୭୳୲,௜ = 0   for 𝑖 ∈ {A, B, C} (A.24) 

 

PFR 

For a reactor volume 𝑉, 

 𝐹௜௡ = ෍ 𝐹୧୬,௜    where  𝑖 ∈ {A, B, C} (A.25) 

 

If 𝐹௜௡ ≠ 0: 

 𝑋ത = 11.22 ⋅ 𝑋୭୳୲,୅ + 9.86 ⋅ 𝑋୭୳୲,୆ + 8.85 ⋅ 𝑋୭୳୲,େ (A.26) 

 
𝑑𝐹୭୳୲,௜

𝑑𝑉
= ቐ

−𝑘ଵ𝑋ത𝑋୭୳୲,୅                      for 𝑖 = 𝐴

𝑘ଵ𝑋ത𝑋୭୳୲,୅ + 𝑘ଶ𝑋ത𝑋୭୳୲,୆  for 𝑖 = 𝐵

𝑘ଶ𝑋ത𝑋୭୳୲,୆                          for 𝑖 = 𝐶

 (A.27) 

Else: 

 𝐹୭୳୲,௜ = 0   for 𝑖 ∈ {A, B, C} (A.28) 

 

DSTL1 

 
൫𝐹୭୳୲ଵ,୅,    𝐹୭୳୲ଵ,୆,   𝐹୭୳୲ଵ,େ൯ = ൫𝐹୧୬,୅,   0,   0൯ 

൫𝐹୭୳୲ଶ,୅,    𝐹୭୳୲ଶ,୆,   𝐹୭୳୲ଶ,େ൯ = ൫0,   𝐹୧୬,୆,   𝐹୧୬,େ൯ 
(A.29)

 

DSTL2 

 
൫𝐹୭୳୲ଵ,୅,   𝐹୭୳୲ଵ,୆,   𝐹୭୳୲ଵ,େ൯ = ൫𝐹୧୬,୅,   𝐹୧୬,୆,   0൯ 

൫𝐹୭୳୲ଶ,୅,   𝐹୭୳୲ଶ,୆,   𝐹୭୳୲ଶ,େ൯ = ൫0,   0,   𝐹୧୬,େ൯ 
(A.30)
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초 록 

계측기술의 발달로 양질의, 그리고 방대한 양의 공정 데이터의 취득이 가

능해졌다. 그러나 많은 경우 시스템 차원의 크기에 비해서 일부 운전조건의 

공정 데이터만이 취득되기 때문에, 공정 데이터는 ‘희소’하게 된다. 뿐만 아

니라, 공정 데이터는 시스템 거동 자체와 더불어 계측에서 발생하는 노이즈

로 인한 본질적인 확률적 거동을 보인다. 따라서 시스템의 예측모델은 예측 

값에 대한 불확실성을 정량적으로 기술하는 것이 요구되며, 이를 통해 오진

을 예방하고 잠재적 인명 피해와 경제적 손실을 방지할 수 있다. 이에 대한 

보편적인 접근법은 확률추정기법을 사용하여 이러한 불확실성을 정량화 하

는 것이나, 현존하는 추정기법들은 재귀적 샘플링에 의존하는 특성상 고차

원이면서도 다량인 공정데이터에 적용하기 어렵다는 근본적인 한계를 가진

다. 본 학위논문에서는 매개분포근사에 기반한 확률기계학습을 적용하여 시

스템에 내재된 불확실성을 모델링하면서도 동시에 계산 효율적인 접근 방

법을 제안하였다. 

먼저, 공정의 모니터링에 있어 가우시안 혼합 모델 (Gaussian mixture 

model)을 분류자로 사용하는 확률적 결함 분류 프레임워크가 제안되었다. 

이때 분류자의 학습에서의 계산 복잡도를 줄이기 위하여 데이터를 저차원

으로 투영시키는데, 이를 위한 확률적 다양체 학습 (probabilistic manifold 

learning) 방법이 제안되었다. 제안하는 방법은 데이터의 다양체 (manifold)

를 근사하여 데이터 포인트 사이의 쌍별 우도 (pairwise likelihood)를 보존

하는 투영법이 사용된다. 이를 통하여 데이터의 종류와 차원에 의존도가 낮

은 진단 결과를 얻음과 동시에 데이터 레이블과 같은 비거리적 (non-metric) 

정보를 효율적으로 사용하여 결함 진단 능력을 향상시킬 수 있음을 보였다. 

둘째로, 베이지안 심층 신경망(Bayesian deep neural networks)을 사용

한 공정의 확률적 모델링 방법론이 제시되었다. 신경망의 각 매개변수는 가

우스 분포로 치환되며, 변분추론 (variational inference)을 통하여 계산 효

율적인 훈련이 진행된다. 훈련이 끝난 후 파라미터의 유효성을 측정하여 불

필요한 매개변수를 소거하는 사후 모델 압축 방법이 사용되었다. 반도체 공

정에 대한 사례 연구는 제안하는 방법이 공정의 복잡한 거동을 효과적으로 

모델링 할 뿐만 아니라 모델의 최적 구조를 도출할 수 있음을 보여준다. 
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마지막으로, 분포형 심층 신경망을 사용한 강화학습을 기반으로 한 확률

적 공정 설계 프레임워크가 제안되었다. 최적치를 찾기 위해 재귀적으로 목

적 함수 값을 평가하는 기존의 최적화 방법론과 달리, 목적 함수 곡면 (ob-

jective function surface)을 매개화 된 확률분포로 근사하는 접근법이 제시

되었다. 이를 기반으로 이산화 (discretization)를 사용하지 않고 연속적 행

동 정책을 학습하며, 확실성 (certainty)에 기반한 탐색 (exploration) 및 활

용 (exploitation) 비율의 제어가 효율적으로 이루어진다. 사례 연구 결과는 

공정의 설계에 대한 경험지식 (heuristic)을 학습하고 유사한 설계 문제의 해

를 구하는 데 이용할 수 있음을 보여준다.  

 

주요어: 확률적 기계 학습, 매개 분포 근사, 불확실성 정량화, 확률적 다양

체 학습, 베이지안 신경망, 베이지안 추정, 강화 학습, 분포형 신경망. 
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