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Abstract

Probabilistic Machine Learning
Approach to Process Systems
Engineering through Parametric
Distribution Approximation

Damdae Park
School of Chemical and Biological Engineering
The Graduate School

Seoul National University

With the rapid development of measurement technology, higher qual-
ity and vast amounts of process data become available. Nevertheless,
process data are ‘scarce’ in many cases as they are sampled only at cer-
tain operating conditions while the dimensionality of the system is large.
Furthermore, the process data are inherently stochastic due to the internal
characteristics of the system or the measurement noises. For this reason,
uncertainty is inevitable in process systems, and estimating it becomes a
crucial part in engineering tasks as the prediction errors can lead to mis-
guided decisions and cause severe casualties or economic losses. A pop-
ular approach to this is applying probabilistic inference techniques that
can model the uncertainty in terms of a probability. However, most of the

existing probabilistic inference techniques are based on recursive



sampling, which makes it difficult to use them for industrial applications
that require processing a high-dimensional and massive amount of data.
To address such an issue, this thesis proposes probabilistic machine
learning approaches based on parametric distribution approximation,
which can model the uncertainty of the system and circumvent the com-
putational complexity as well. The proposed approach is applied for
three major process engineering tasks: process monitoring, system mod-
eling, and process design.

First, a process monitoring framework is proposed that utilizes a prob-
abilistic classifier for fault classification. To enhance the accuracy of the
classifier and reduce the computational cost for its training, a feature ex-
traction method called probabilistic manifold learning is developed and
applied to the process data ahead of the fault classification. We demon-
strate that this manifold approximation process not only reduces the di-
mensionality of the data but also casts the data into a clustered structure,
making the classifier have a low dependency on the type and dimension
of the data. By exploiting this property, non-metric information (e.g.,
fault labels) of the data is effectively incorporated and the diagnosis per-
formance is drastically improved.

Second, a probabilistic modeling approach based on Bayesian neural
networks is proposed. The parameters of deep neural networks are trans-
formed into Gaussian distributions and trained using variational infer-
ence. The redundancy of the parameter is autonomously inferred during
the model training, and insignificant parameters are eliminated a poste-

riori. Through a verification study, we demonstrate that the proposed

ii + 3



approach can not only produce high-fidelity models that describe the sto-
chastic behaviors of the system but also produce the optimal model struc-
ture.

Finally, a novel process design framework is proposed based on rein-
forcement learning. Unlike the conventional optimization methods that
recursively evaluate the objective function to find an optimal value, the
proposed method approximates the objective function surface by para-
metric probabilistic distributions. This allows learning the continuous ac-
tion policy without introducing any cumbersome discretization process.
Moreover, the probabilistic policy gives means for effective control of
the exploration and exploitation rates according to the certainty infor-
mation. We demonstrate that the proposed framework can learn process
design heuristics during the solution process and use them to solve sim-

ilar design problems.

Keywords: Probabilistic machine learning, parametric distribution ap-
proximation, uncertainty quantification, probabilistic manifold learning,
Bayesian neural networks, Bayesian inference, reinforcement learning,

distributional networks.

Student Number: 2015-21060
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Chapter 1

Introduction

1.1. Motivation

Data classification, model prediction, and finding optimal solutions
constitute the three principal components of the process system engineer-
ing tasks. For instance, model predictive control, process optimization,
and process design, in essence, seek to find optimal solutions with pre-
diction models; they only differ in optimization targets. For another in-
stance, we can notice that process diagnosis tasks are simply data classi-
fication tasks where dimensionality reduction models are employed to
predict the systems’ behaviors in their intrinsic dimensions. As such tasks
are based on models constructed from the process data, it is a natural
corollary that the amount of information a model can draw from the data
has significance to its performance on executing the given tasks.

One of such information is uncertainty, which can be divided into two
different kinds: aleatoric uncertainty from the stochastic process and ep-

istemic uncertainty due to insufficient data [1]. Owing to the



development of measurement technology, higher quality and large
amounts of process data are now available and the aleatoric uncertainty
has become less concerning. However, epistemic uncertainty caused by
data scarcity is unavoidable because the process systems normally oper-
ate around some specific operating conditions while they have high di-
mensionality — which is often referred to as the curse of dimensionality.
Considering that erroneous predictions can lead to misguided decisions
which can cause severe casualties or economic losses in process systems,
it is of utmost important to derive high-fidelity models that are able to
describe and quantify the uncertainty. To concretize the discussion, such
concerns will now be specifically dealt with some important issues found
in the process monitoring, process modeling, and process design tasks.
In the process monitoring, particularly when fault classification tasks
are given, uncertainty is on the data class (e.g., normal or fault) of a que-
ried data point. A possible solution to model such uncertainty is to train
a parametric classifier (such as GMM [2]) with available training data
and evaluate the posterior probability of the queried point to each data
class. In this case, typically a few important features of the data are ex-
tracted ahead of the classification as the classifiers usually show high
computational complexity to the data dimension. Statistical projection
methods based on PCA [3]-[5] and FDA [6], [7] have been widely used
for this purpose. However, these methods solely focus on preserving the
variance of the data, and do not preserve the structure of its original man-
ifold. As we will see later, this often leads to losing original data distri-

bution in the input space and incurs misclassification (see Box 1 in
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Figure 1.1 Uncertainties found in process systems engineering tasks.

w



Figure 1.1), especially when the data of two different classes are in prox-
imity. Therefore, a feature extraction method that can capture the original
data distribution becomes an indispensable element for achieving high
process monitoring performance.

In terms of system modeling, the model predictions (see Box 2 in Fig-
ure 1.1), or equivalently the estimates on the model parameters, always
entail the uncertainty. To obtain a probabilistic model, which can de-
scribe the stochastic nature of the system and quantify the uncertainty,
one can employ probabilistic inference techniques such as Markov chain
Monte Carlo (MCMC) [8]. However, such techniques usually involve
recursive sampling, and this makes it difficult to use them for industrial
applications that require processing a large number of data samples and
model parameters [9]. Furthermore, advanced modeling techniques, such
as surrogate modeling based on neural networks [10], [11] and system
identification methods based on model library [12], [13], require the es-
timation of a myriad number of parameters. In order to address such an
issue, a computationally efficient probabilistic modeling approach needs
to be devised.

Finally, for process design problems, we are uncertain about the ob-
jective function values at unevaluated points, whereas it is obvious that
estimates for those values can facilitate the searching process. Note that
the conventional optimization approaches such as mathematical pro-
gramming [14], [15] and metaheuristics [16], [17] query the next guess
based on the latest evaluation point and do not exploit the full evaluation

record. This seems somewhat inefficient considering that the objective



function surfaces often show simple patterns and we can suppose that the
unevaluated points would have similar values to those of the evaluated
points nearby. This implies that the objective function surfaces can be
efficiently ‘encoded’ with some parametric distributions [18], [19]. A
similar approach can be found in Bayesian optimization [20], except that
it is nonparametric and not scalable to the data size.

Summarizing our discussions so far, we can elicit that the uncertainty
found in process system engineering can be efficiently modeled by ap-
proximating the target objects with some parametric distributions, where
the target can be varied from process data and model parameters to ob-
jective function values. This constitutes the main theme of this thesis,
and we will demonstrate that it can effectively address some major issues

found in the three process engineering tasks.

1.2. Outline of the thesis

The remainder of this thesis is organized as follows. Chapter 2 pro-
vides the backgrounds on the probabilistic inference and the preliminar-
ies required to follow the next chapters.

In Chapter 3, a feature extraction method, called probabilistic mani-
fold learning, is developed for probabilistic fault classification and pro-
cess monitoring. The proposed method approximates a data manifold
prior to the projection by setting the distance on the manifold with the
pairwise likelihoods between the data points (see Box 1 in Figure 1.2).
This allows simultaneous utilization of limited labeled data and abundant

unlabeled data within a unified scheme. Moreover, through calibrating



the data distribution during the manifold approximation, it produces
nearly data-independent projection results. It leads to superior monitor-
ing and fault classification performance compared to the conventional
dimensionality reduction methods.

In Chapter 4, a process modeling methodology based on Bayesian
deep neural networks is proposed. The proposed method represents the
parameters of the neural networks by Gaussian distributions and learns
the distribution of the data. The optimal model structure and parameters
are obtained through a posteriori elimination of the parameters with
lower importance (see Box 2 in Figure 1.2). Through an experimental
study conducted on a semiconductor manufacturing process, it is demon-
strated that the proposed method can not only learn the complex and sto-
chastic behavior of the processes but also is able to derive an optimal
architecture of the neural network model.

In Chapter 5, a reinforcement learning-based process design frame-
work is proposed with distributional actor-critic network. Unlike the con-
ventional approach, which only employs recursive evaluation of objec-
tive function values to find the optimal solution, the proposed approach
approximates the objective function surface with distributional deep neu-
ral networks (see Box 3 in Figure 1.2). This enables using behavioral
cloning [21] with Monte Carlo tree search [22] and promotes stable
learning of continuous policy. We demonstrate that the process design
heuristics can be learned during the solution process, and we can use
them to solve similar design problems.

Finally, Chapter 6 summarizes the contributions made by the thesis



and discusses their limitations and possible directions for further work.
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Chapter 2

Backgrounds and preliminaries

2.1. Bayesian inference

In the Bayesian inference framework, any task involving learning
from data is given with some prior knowledge, based on which the model
is updated to incorporate the information from the data. More precisely,
we encode our initial belief as probabilities for different possible in-
stances of some variables or parameters 8, and represent it as a prior
p(6). Given observed data D, we can also describe how likely different
values of 8 are to have given rise to that data using a /ikelihood function
p(D|6). These can then be combined using Bayes’ rule to derive a pos-

terior p(0|D), which represents our updated belief on 6.

_ p@Ipe)  p(DIe)p(e)
POID) = Diop@ras ~ pD)

2.1)

The denominator p(D) here is a normalization constant known as the



marginal likelihood and ensures that p(0|D) is a valid probability distri-
bution. Therefore, we can think of Bayes’ rule into a much simpler form,
where the posterior being proportional to the prior times the likelihood.
A key feature of Bayes’ rule is that it can be used in a recursive fashion
where the posterior from one task becomes the prior, when the model is

updated with more data, that is,

p(D,16,D1)p(0]D,) _ p(D16,D)p(D110)p(6)
p(D;|D,) p(D2|D)p(D1)

p(0|D1,D;) = (2.2)
and this represents the core of the Bayesian framework: the model learns
the system by updating its beliefs with the observations. If the newly
acquired observations are against the prior experiences, it will not make
drastic changes to the underlying belief. It will only change its view if
multiple corroborating observations are obtained. Once a strong belief
about the system has been developed from consecutive learning, we can
take substantial confidence to change our mind, even if the learned belief

seems highly illogical.

2.2. Monte Carlo

Monte Carlo is an approximation method that can numerically esti-
mate probability distributions through random sampling. The most com-
mon use of Monte Carlo is to estimate the expectations of the distribu-
tions, which is often referred to as Monte Carlo integration.

Consider the problem of calculating the expectation of some function

10 11 O 11 =1



f (@) under the distribution 8~m(0) (that is usually p(8|D) for the

Bayesian inference case), which is given as
I'=Enelf(0)] = ] f(&)m(6)do (2.3)
We can approximate I using the Monte Carlo estimator I, where

N
1 _
I = Iye = Nz f(6n) 2.4)
n=1

and 6,,~m(0). The I is an unbiased estimator for I, that is, we have

N N
1 ~ 1 ~
Sl 5[5 100 -5 Y E@N -1 s

This indicates that Monte Carlo does not introduce any systematic error
(i.e., bias) into the approximation. We can get the true value of I if the

estimation is repeated with a large number N [23].

2.3. Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence [24], also known as relative
entropy, is a measure of the similarity between two probability density

functions P(x) and Q(x), given as below.

KL(P||Q) = jP(x)l g(gg ;) (2.6)

For a discrete variable x, KL divergence is computed as

P(x) (x)
KL(PIIQ) = Ex-p(x) l10g<Q( )>l ZP( )108(Q( )> (2.7)

A few important properties of KL divergence are:

11 + T )



* it is not symmetric, that is, KL(P||Q) # KL(Q||P), and thus, it is
not a distance metric;

* it can take on values in [0, oo], and particularly, if P and Q are the
exact same distribution, then KL(P||Q) = KL(Q||P) = 0. In other
words, if KL(P[|Q) = 0, then P = Q;

* for the KL divergence to be finite, the support of P needs to be
contained in the support of Q. If a point x exists with Q(x) = 0

but P(x) > 0, then KL(P||Q) = o».

The KL divergence can be rewritten as

KL(PIIQ) = Zp(x) log (QE ;)

= Z P(x)logP(x) — Z P(x)log Q(x) (2.8)

=—-H(P)+H(P,Q)
where H(P) is the entropy of P and H(P, Q) is the cross-entropy be-
tween P and Q. In Bayesian inference, P(x) is regarded as some true
distribution to be estimated and Q(x) is an approximate distribution. In
this case, the entropy term is given as a constant, and the cross-entropy

minimization is given equivalent to the KL divergence minimization.

2.4. Variational inference

In variation inference (V1) [25], [26], the posterior distribution of the
parameters 6 for the data D, P(0|D), is approximated by a variational

posterior distribution Q(8|®), which is a model described by variational

12 .



parameters ® (see Figure 2.1). Variational inference seeks the optimal
@ by minimizing reverse KL divergence between the posterior distribu-

tion and the approximated posterior distribution.
KL(QIIP) = Eg-o[log(Q(81®)/P(61D))] (2.9)

For a loss function L(D, ®) = KL(Q(GlCD)HP(HlD)), the optimal es-

timate of @ is given by

Py = argmin KL(Q(8|®)||P(61D))

(2.10)
= argmin [KL(Q(019)[1P(6)) — Eq(g))[P(D16)] + log P(D)]

and removing ®-independent term yields an effective loss function
Ly (D, ®) = KL(Q(IDIP(9)) — Eq(gp)[P(DIO)]  (2.11)

which is often referred as the variational free energy [27] or evidence
lower bound (ELBO) [28]. Note that the effective loss function is a lower
bound on the marginal log-likelihood log P(x), and it is given by the sum
of the prior dependent part that serves as a regularizer and the data-de-

pendent part given by the likelihood cost.

2.5. Riemannian manifold

A Riemannian manifold is an n-dimensional differentiable smooth
manifold M equipped with a positive-definite inner product g, on the
tangent space T, M for each point p € M. Here, M is a topological

space wherein the local space near each point can be approximated as

13 11 O 11 =1



Q(6|®)

Figure 2.1. Graphical illustration of the variational inference.
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Euclidean space. The process data X = {x;}I, in R" can be regarded as
being sampled from a Riemannian manifold (M, g) by some injective
maps @,: M & R".

By assuming that the metric g on M is locally constant, the shortest
path, or geodesic distance, between the data points on the local M is de-

rived by the following Lemma 1 [29].

Lemma 1. Let (M, g) be a Riemannian manifold embedded in an am-
bient R™, and let x € M be a point. Suppose that g is locally constant in

an open neighborhood U of x such that g is a constant diagonal matrix

7.,'.TL/Z

r(n/2+1)

in R™. Let B be a ball in R" centered at x, whose volume is

with respect to g. The geodesic distance from x to a point y € B is given
by dy(x,y) = %an (x,y), where r is the radius of B and dgn(x,y) is

the distance from x to y in R".

See Appendix A.1 for a proof of Lemma 1. According to Lemma 1, if
the given dataset is uniformly distributed on M, any ball of fixed volume
in M should contain the same number of data points. Conversely, let
By (x;) be the ball in R™ around the data point x; that contains its k near-
est neighbors. Then for any data point x;, the neighborhood on M,
On 1(Bk (xi)), should have the same volume. That is, the distances from

X; to its k nearest neighbors on M can be measured approximately by

Tlid]Rn (xl-,xij) forl1<j<kifr,= an(xl-,xik) where x;, is the Kt

15 11 O 11 =1



nearest neighbor of a given point x;.

2.6. Finite extended-pseudo-metric space

A finite extended-pseudo-metric space (FEPMS) is defined as a metric
space (X,d) where X is a set with finite elements, and the function
d: X X X - Ry, U {oo} is a metric on X such that for any x,y, z € X, the
following hold:

l. d(x,y) =>0,and x = y implies d(x,y) =0

2. d(x,y) =d(y,x)

3. d(x,z) <d(x,y)+d(y,z) ord(x,z) =

2.7. Reinforcement learning

Reinforcement learning (RL) is a subfield of machine learning that
aims at training an agent, which is a learner and a decision-maker, to
optimally behave in the system outside the agent, called environment.
Once the agent applies an action to the environment, the status of the
environment, referred to as a state, is changed and the environment feed-
backs a numerical value, reward, to the agent (see Figure 2.2). The agent
and environment repeatedly interact with each other for a sequence of
discrete time steps, and the discounted sum of the rewards obtained dur-
ing which is defined as a refurn. The goal of reinforcement learning can
be described as to find an optimal policy function that maps the actions
to given states [30].

More specifically, given a time step t = 0,1, ..., T, the agent receives

16 .



Environment

Action (a;)

St

Agent

Figure 2.2 Schematic of reinforcement learning.
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some representation of the environment’s state s; € §, where S is the set
of possible states, and selects an action a; € A(s;), where A(s;) is the
set of valid actions in state s,. One time-step later, as a consequence of
applying the action, the environment transits into a new state s;,; and
the agent receives areward ;.4 € R: S X A — R. Given a bounded ac-
tion sequence with maximal step T and a trajectory of state/action pairs

T = {(s,a.)}_, return R, for 0 < t < T — 1 is defined as
t+k+1<T

Re=Tip1 + Vg + = Z Y* e (2.12)
k=0

where y € [0,1) is discount factor.

The policy function is given as either a deterministic policy a = m(s)
or a stochastic policy m(als) = P[a; = al|s; = s]. As our interest is in
developing a probabilistically behaving agent, we will use the word pol-
icy hereafter to denote the stochastic policy.

As the states or actions are uncountable in many cases, it is often hard
to derive the exact solution of m* with iterative refinement methods
based on value iteration or policy iteration. In this case, we can approxi-
mate the optimal policy using parameterized functions such as neural
networks, i.e., we can set g+ (als) = m*(als) and find 6* by training.

With the same terminology, a deterministic Markov decision process
(DMDP) is defined by a tuple < §, A, R,y >. In DMDP, taking a given
action a for a given state s always results in the same next state s’. In
other words, choosing an action a is equivalent to choosing the reachable

state s’.
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2.8. Directed graph

A directed graph is a pair (V, E), where V is a finite non-empty set of
vertices and E is a set of ordered pairs of distinct edges. For e € E where
e:v—>wandv,w €V, we respectively call v and w fail and head. All
the vertices and edges in a graph can be uniquely indexed using ordered
numbers. That is, for an indexing function I, I(v) € {1,2, ..., |V|} and
I(e) €{1,2,...,|E|} forv €V and e € E, where |V| and |E| represent

the number of vertices and edges, respectively.
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Chapter 3

Process monitoring and fault classification

with probabilistic manifold learning!

3.1. Introduction

As modern industrial processes have become more complex and pro-
cess safety and high-quality products are demanded as prerequisites, ef-
fective monitoring of chemical processes is receiving considerably in-
creasing attention. Providing human-readable information is of great im-
portance for pragmatic diagnostic systems because it enables plant oper-
ators and maintenance workforces to be better informed of the process
status. Such information also provides rationales for the diagnosis results,

which facilitates making better decisions in taking remedial actions to

! This chapter is an adapted version of D. Park, J. Na, and J. M. Lee, “Clus-
tered Manifold Approximation and Projection for Semi-supervised Fault Di-
agnosis and Process Monitoring,” Ind. Eng. Chem. Res., vol. 60, no. 26, pp.
9521-9531, Jul. 2021. and D. Park and J. M. Lee, “Robust Probabilistic Man-
ifold Learning for Fault Diagnosis and Process Monitoring,” Comput. Chem.
Eng., In preparation.
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bring the plant back to its normal state. The process records usually in-
clude the information that indicates the operating conditions they have
been sampled from, and these a priori information, or labels, can be in-
corporated to enhance the diagnosis performance [31]-[34]. However,
labeling is costly and requires considerable expertise in many cases, and
only a few labeled data are likely to be available.

Faced with this situation, many semi-supervised methods have re-
cently been introduced that can utilize both labeled data and unlabeled
data for training the models. Some of those are based on deep ladder
networks [35], deep generative models [36], and multitask learning [37],
which share a functional structure where a feature extractor and a classi-
fier are serially connected. They utilize labeled data by imposing discri-
minant objectives to the classifier, thereby achieve superior performance
such as low classification error or faster training speed compared to some
competing methods. However, for the process monitoring tasks, they
may be restrictively used or require subsidiary dimensional reduction
processes because they only yield high-dimensional features. Further-
more, as their feature extractors are only trained subordinate to the clas-
sifier’s learning process, only discriminative patterns (e.g., clusters) are
likely to be produced without reflection of the transient behavior of the
process.

In contrast, traditional statistical monitoring techniques, such as prin-
cipal component analysis (PCA) and Fisher discriminant analysis (FDA),
can distill visually informative features of the process data with a few

principal dimensions. As their feature spaces are linearly projected space
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of the input space, the process statuses, such as the degree of deviation
from normal operating conditions, can be visually tracked based on the
extracted features [38]. Therefore, they can provide interpretable
grounds for the diagnosis results that are conducted based on the features.
For this reason, several studies have been conducted to extend the exist-
ing PCA and FDA algorithms to be compatible with semi-supervised
fault classification tasks [39], [40]. One common approach they take is
to formulate an objective function weighted with separate goals for un-
labeled data and labeled data. In this case, the visual characteristics of
the extracted features can be controlled by the weight values.

Despite the appealing benefits and successful applications, the statis-
tical process monitoring methods suffer from several drawbacks. First, it
is difficult to comprehend the direct effects of providing additional label
information and they can only be inferred by the projection results. Thus,
choosing the weights usually requires a repetitive tuning procedure. Sec-
ond, as they are linear methods, whose coordinates are given to maxi-
mally explain the variances of a given data set, a few data samples having
wider distributions are likely to dominate the projection. This often in-
curs the problem of overlapping clusters (e.g. the normal samples and
nearby incipient fault samples overlap in the feature space) [41], espe-
cially when multiple faults need to be taken into account. Such a problem
not only hampers the discrimination by the human eye in monitoring the
process but also deteriorates the discrimination performance of the clas-
sifiers that conduct fault classification based on the extracted features.

The problem is alleviated in FDA because it promotes cluster separation

22 11 O 11 =1



by maximizing the between-class variance. However, the local patterns
(e.g., time trajectories) of the original data are liable to be lost after fea-
ture extraction because FDA minimizes the variances within classes at
the same time. Moreover, they are known to be ineffective when the data
manifold has nonlinear curvatures, which can often be found in industrial
data. Although some kernel variants [42]-[44] are introduced that em-
ploy nonlinear kernel mappings in order to “unfold” such nonlinear data
prior to the projection, the improvement is not always guaranteed, as is
shown in the following verification study. Furthermore, designing kernel
function generally requires careful inspection of data and an additional
costly optimization procedure [45].

In order to address the issues mentioned above, we propose a manifold
approximation-based feature extraction method, named probabilistic
manifold learning (PML) and clustered manifold approximation and pro-
jection (CMAP). These two methods employ a probabilistic manifold
approximation process before the projection. During this process, they
draw the metric and non-metric attributes of the data and translates them
into one common measure, which can be viewed as /likelihood, thereby
utilizes the labeled and unlabeled data simultaneously. The projection
target of those methods is the clustered data manifold, not the raw data,
and this prevents the aforementioned overcrowding problem. The non-
linear structures of the dataset are extracted by topology-preserving pro-
jection without costly nonlinear kernel mapping. The effectiveness of the
proposed methods is demonstrated by the application to complex chem-

ical process data, and the results are compared with those obtained from
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five competing methods.
The remainder of this chapter is organized as follows. Section 3.2 de-
tails the proposed methods and fault diagnosis framework. A verification

study is performed in Section 3.3.

3.2. Methods

PML and CMAP is developed based on the framework of the Uniform
Manifold Approximation and Projection (UMAP) in [29]. The core of
UMAP is to approximate a manifold where the data points are uniformly
distributed and to project its simplicial structure into low-dimensional
space with minimal loss in structural properties. In this study, we con-
sider the simplest case (1-simplices only), where the problem is reduced
to the projection of pairwise distances. In this case, we can exploit the
available labels to re-evaluate the distances between points. Motivated
by this, in PML and CMAP, it is further assumed that the data manifold
forms clusters by their labels. Specifically, a uniform data manifold is
first approximated and repulsive displacement between the data points is
applied according to their label interactions. Note that we adopt the al-
gorithms of UMAP without modification, to examine the gain from in-
corporating partially labeled data in the process monitoring and fault di-
agnosis tasks. Instead, we provide concise descriptions for the uniform
manifold approximation and projection algorithms of their simplest case

in 3.2.1. and 3.2.3. For more details, one can refer to the original paper.
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Figure 3.2 Visual interpretation of local FEPMS.
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3.2.1. Uniform manifold approximation

For a given dataset X = {x;}}_, with x; € R®, a local FEPMS
(Xl-, dxl.), which has properties described in Section 2.6, is defined at

each data point x;. Here, X; is a set containing k nearest neighbors of x;

and the metric d,; is given by

dxl.(xl-,xj) = maX(O, (an(xl-,xj) - pl-)/ai) (3.1)
for x; € X; where o; and p; are specified to satisfy the following equa-

tions.
pi = m].in{dn%“(xi'xj)|du&”(xi'xf) >0} (3:2)

log, (k) = z exp (—dy, (x:, ;) ) (3.3)

J
where dgn (xi, xj) denotes the Euclidean distance between the points x;

and x;, p; is the distance to the nearest neighbor, and o; is a scaler. Figure
3.2 illustrates the local FEPMS in the input space.

The parameter p; ensures that x; is locally connected to at least one of
its nearest neighbors (i.e., the distance between them is 0) so that no point
in X is isolated. Assuming the local FEPMS forms a uniform manifold,
the scaler o; corresponds to the r in Section 2.5, and the distance d, is
the modified geodesic distance on the manifold. A simple experiment il-
lustrated in Figure 3.3 demonstrates that defining local FEPMS makes
the distances between the data points uniformly distributed regardless of

the type and dimensionality of the datasets. The penicillin and yeast
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fermentation process datasets can be found in [46] and [47].

For x;, x; € X, the distance measured from x; to x; will be, in general,
different from that from x; to x; as each data point defines its own
FEPMS with different o;. To merge these incompatible local views, each
of the local FEPMS is first translated into a fuzzy set (X;, u j|i) where
X = {(xl-,xj)} and yj”:)?l- - [0,1] is a membership function that
measures the likelihood between two points represented by the metric

attributes of the data.

Wjji = {exp (_dxi(xi; Xj)), ifx]- € X; 3.4)
] 0, otherwise

Then, a fuzzy union operation (probabilistic sum) is applied across the
local fuzzy sets. The membership function values defined on X = U; X;

are given as

Wi = g My — B (3.5)
Note that the resulting membership function values are symmetric.

The fuzzy set ()? , ,u}][) descreibes the overall structure of the uniformly

approximated manifold.

3.2.2. Clusterization

Let the labels of the point x; by y; € {—1,0,1,2...}, where y; = —1,
y; = 0,and y; = 1, 2, ... denote normal, unlabeled, and fault samples, re-

spectively. We define a membership function for each element (xi, xj) €

28 1] O



"Jaseyep ssao01d uonejuowIag 3seak (3) pue Joselep sseoord uononpoid urproruad
(3) ‘eep oSewnr 19JeM NTI8-TNM (2) ‘Apmis s1y) ur pasn eyep ss9001d [eotuoyd (p) Aq paurejqo 9q ued s)nsal Je[ruulg -doeds oy} jo
UOISUIWIP Y} JO SATI0ASALII PAINGLISIP [[9M I8 Saoue)sIp oy} “parjdde 1oyping st uondumsse A11A1300UU0D [80] 9 JT () “92139p owes
Ay} ISOWe I8 JAYJO B WO} Aeme JeJ pajedo] a1e syutod eiep [[e jey) sarjdur 3] -owes a3 A[rewrxoidde aq 03 sadeds [euorsuowip
U3y oy} ur soouelsIp [[& s1opudl Sureds ojdwig (q) “A[enuouodxd soSeaIoul d0uBISIp AFBIJAR ) ‘SosBaIoul 9ords o) JO UOISUIWIP
Ay} Sy (B) "paInseaw dIe SIOQqUSIOU 1SAIBIU ()7 SH 0} SIoUBISIP A ‘yurod yoed 104 ‘g7 03 7 WO SUOISUAWIP Y} FUIAIRA ‘XLIjBW
QOUBLIBAOD JIUN B PUE JOJOIA UBIW 0IIZ B [JIM UONNQLISIP URISSNED) 9JRLIBANW B WIOL} UMBIP d10M sd[dwes puesnoy) y ¢€°¢ 3In3iy

AJIAIZOBUUOD [820] Y}iM AJAI}OBUUOD [820] YlIM AJIAI}0BUUOD [BD0] UM AJAI}OBUUOD [820] Y)IM
Q0UE)SIp PajeoS aouejsIp pa|eos 2oue)SIp pajeos 8ouB)SIp pojeos
oL S 0 oL S 0 ol S 0 ol S 0

0 0

= | 20 o
s—1 S [
= == } = P
3 A Z (4
mc_.x . PIRS GOL X yOL X
osejep ssaoso.id asejep ssaso.id 2sSelep $S99201
Josejep Josejep Jose1ep dew ajem Jesejep d
UONEIUSWIS) JSBSA uononpoud uljjiolusg UBW}SET 99SSOUUS|
AJIAIIOBUUOD [BDO] U}IM
20UB)SIp Po|EoS aoue)sIp pajeos souejsig
oL S 0 I S0 0 Sl oL S 0
0 0
o
[}
50 503
z
q
: 3

Vi
0L yOL X 40b%

uonnquisIp Ueissnes) ajelieAl}jnw wolj sajdwes

- &)

ey
I

!
1

2 A -

29



X that measures the likelihood induced by their labels by

exp(_du) ) lfyl * y] and Vi + y] <0
Hfj = exp(=d,), ify;#yjandy;-y; # 0 (3.6)
1, otherwise

where d,,, d,, > 0 are hyperparameters that can be interpreted as virtual
distance between the samples. Note that we let the unlabeled samples
have less affinity with the normal samples than the fault samples. This is
to treat those “indistinguishable” samples more like fault samples from
a conservative point of view.

The clusterization operation is equivalent to intersecting two fuzzy

sets, having membership function values of y}f and ,uf] In this study,

probabilistic product is employed — that is dual to the probabilistic sum.

_ U, L

Kij = Hij * Hij (3.7)
The resulting membership function values describe the overall affinity
between two points. The distance between the two points x; and x; on

the clustered data manifold M', which embeds all the metric and non-

metric (label) information, can be approximated by

dM(xi, xj) = —log p;; (3.8)
The effect of the clusterization can be viewed as the repulsion between
the labeled points (see Figure 3.1b). As the projection in Section 3.2.3 is
performed to preserve all the pairwise distances, clusterization not only

disgregates the data points manipulated by the repulsion operation (ufj <

1) but also migrates unmanipulated neighboring points (,uf]- =1).
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3.2.3. Projection

By letting Z = {z;}_, with z; € R™ be the projection of X, the corre-
sponding fuzzy set Z = {(zi,zj)| Zy,7j € Z } and membership function
Vi) Z — [0,1] can also be defined. In this case, the manifold for Z is
R™ itself and its metric d is directly defined by the Euclidean distance
on R™. To facilitate the upcoming optimization procedure, v;; is given

by a smooth differentiable function.

= (1+a6?)" (3.9)
where §;; = ||zl- — 7 ||2 and a and b are hyperparameters that determine

the dispersion of the layout.
The goal of the projection is to find the layout of Z that minimizes the

difference between y;; and v;;. To this end, a loss function is defined by

binary cross-entropy between X and Z.

H(%,2) = Z[uulog( >+(1 ,ulj)log(

i#]

9]

The minimization of the loss function forces nearby (distant) points
on the manifold to be placed nearby (distant) in the reduced space. Z is
first initialized through spectral embedding [48] and optimized by itera-
tive stochastic gradient descent procedure. Dropping constant terms and
taking partial derivatives with respect to z;, the gradient of the loss func-

tion is given by
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ZabSZ(b 2
6Zl |:Ml]

(3.11)
—2b

(6+6 (1+a62b (2 - 7))

where € = 1073 is added to prevent division by zero.

The optimization process has been simplified and accelerated in two
ways. In CMAP, we utilize edge sampling [49] and negative sampling
[50] techniques on Equation (3.11) as in UMAP. For PML, we construct
a deep Autoencoder [51] with a reconstruction loss. Given the encoder
and decoder networks Enc(x) and Dec(z) respectively, the reconstruc-

tion loss is formulated as

Lrecon = Z (xi - DeC(EnC(xi)))z (3.12)

i

The loss functions for PML and CMAP are given as

Lpmr, = H + Liecon (3.13)
Lemar = H (3.14)

respectively.

3.2.4. Mapping of unknown data query

The low-dimensional layout Z' = {z/}}, for unlabeled data query
X' = {x/}M, is determined by the regression based on k-nearest neigh-
bors. For each query point x; € X', its k nearest neighbors, denoted by

X, are drawn from X. The referential points for z; € Z' are given by
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Z; = (X)), where m: X — Z is the map yielded from the projection in
3.2.3. Then for x; € X; and z; € Z;, following local membership func-

tions are defined.
ul; = exp (—dxi(x{,x]f)) (3.15)
v = (1+a(s)™) (3.16)
where &}; = |z{ — z{|| . The optimal layout of Z' is determined by min-

imizing cross-entropy between u; ; and Vi ; following the optimization

procedure in 3.2.3.

3.2.5. Inference

To demonstrate that the faults can be visually discriminated in the
DML’s feature space, we employ the Gaussian mixture model (GMM),
an unsupervised classifier whose classification performance is highly de-
pendent on the distribution of the data. Note that the input data for the
classifier are the extracted features, as illustrated in Figure 3.1.

The GMM is a superposition of Gaussian components whose proba-
bility density function is given by the weighted sum of Gaussian density

functions.

C
p(1.8) = ) meN (2] 5e) (3.17)
c=1

where z is a data point in the feature space R™, C is the number of
Gaussian components, and 7z, is the prior probability of selecting the cth

Gaussian component.
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Each Gaussian density V' (Z|ﬁc, fc) measures the probability of sam-
ple z conditioned on c, with its own mean /i, € R™ and covariance £, €
R™>*™_Once trained, the GMM allows inference on unknown data que-
ries. The posterior probability of the cth component is given as

(el = POPEO__ mel (2], E)
P YpDpEl) ~ SN (z]fn )

(3.18)

Another frequently used classification measure is the Mahalanobis
distance [27], which is a unitless and scale-invariant measure of the dis-
tance between a point and a distribution. The squared Mahalanobis dis-

tance dj,; from the point z to the cth Gaussian component is defined as
dy(z|z € ¢) = (2= ) E (2 — fic) ~ X (3.19)

where x2, is the Chi-square distribution with m degrees of freedom. The
confidence bound can then be defined in terms of the Mahalanobis dis-
tance to each Gaussian component that follows the y2, distribution. The
confidence bound of 100a% (0 < @ < 1) defines a region that encom-

passes 100a% of the given data as the sample size tends to infinity.

dye = F1(alm) = {z: F(z|lm) = a} (3.20)

z t(M=2)/2¢=t/2 . . e
where F(z|m) = fo Wdt is the cumulative distribution func-

tion of the Chi-square distribution.
Note that the parameters of the Gaussian components are only tuned
to describe the entire distribution of the data. Thus, we can expect high

classification performance only if each Gaussian component can exclu-
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Table 3.1 Fault scenarios used in dataset generation.

Name Process Disturbances Type
Fault 1 A/C feed ratio, B composition constant (stream 4) Step
Fault 2 B composition, A/C ratio constant (stream 4) Step
Fault 6 A feed loss (stream 1) Step
Fault 7 C header pressure loss (stream 4) Step
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Table 3.2 Simulation configuration used in training and test dataset generation.

Dataset Operation | Sampling # of sz}mpled Random seeds
type scenario period Ronnts . used
per simulation
Normal 19-24h [1,...,10]
Fault 1 [11,...,20]
Training Fault 2 500 [21,...,30]
Fault 6 24-29h [31,...,40]
Fault 7 [41, ...,50]
Normal [51, ..., 60]
Fault 1 [61, ...,70]
Test Fault 2 19-29h 1000 [71,...,80]
Fault 6 [81,...,90]
Fault 7 [91, ..., 100]
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sively capture the distribution of each class. Such a case holds if the input
data are clustered by their labels and the number of components is given
by the number of data classes. In this study, we satisfy the second condi-
tion so that the classification performance solely depends on the cluster-

ization degree of the features.

3.3. Verification study

3.3.1. Dataset description

Tennessee Eastman process (TEP) produces two products and one by-
product from four reactants, and consists of five major operation units:
reactor, partial condenser, vapor/liquid separator, product stripper, and
recycle compressor. The schematic of the process is illustrated in Figure
3.4. We ran the process by operation mode 1 with a closed-loop control
system [52], [53].

A total of 53 process variables, composed of 12 manipulated variables
and 41 measured variables, were sampled every 0.01 h. Four process
fault scenarios listed in Table 3.1 were used to generate the datasets [54],
[55]. We ran the process a complete 72 h, where the process was initially
run for the first 24 h under normal operating conditions and then for 48
h with faults. The training and test datasets were constructed as stated
in Table 3.2. The distribution of the data is represented in Figure 3.5. To
take account of the stochastic behavior of actual plants, we applied small
random variations to the reaction kinetics coefficients during the simula-

tion. We used different random seeds for each simulation and repeated
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simulations 10 times for each operation scenario to assess the reliability
of the results. Each feature of the datasets was scaled to [0, 1] with min-
max normalization. All the points are labeled while the first 10% of the
fault samples are unlabeled. This is because the time when the fault oc-
curred is unknown, and it is often hard to distinguish such incipient fault

samples from those of normal or fault in practice.

3.3.2. Experimental setup

To highlight the effectiveness of PML and CMAP, we compared those
to UMAP and seven methods described in Table 3.3. For unsupervised
methods, the dataset is provided without labels, whereas, for supervised
methods, the dataset is provided by labeling the unlabeled points.

The reduction dimension has been set to n = 2. For PML, CMAP, and
UMAP, k=50,d,=2,d,=5, a=1.58, and b = 0.9 were used.
The number of epochs for the iterative optimization in the projection was
set to 500, which was enough number for the layout to converge in our
experiments. The autoencoder architecture used in PML is illustrated in
Figure 3.6. For KPCA and KFDA, the Gaussian kernel, which has been
reported to be suitable for nonlinear process monitoring [56], was used
for a kernel function. The kernel coefficient is given a priori by the op-
timal value [45] derived for TEP.

To encourage each Gaussian component to capture the distribution of
data corresponding to each operating condition, we initialize each fi. as

the average coordinate value of each operating condition data in the
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Table 3.3 Dimension reduction methods used in the benchmark.

Abbrevi- . Training
ation Full name Type Mapping method
PML PIjObabIhStICE

manifold learning
. Semi-
Clustered. maI.llfold Manifold supervised
CMAP approximation .
. Approxi-
and projection .
mation
Uniform manifold
UMAP approximation
and projection [29] Nonlinear
Parametric t-distributed
PTSNE stochastic neighbor _
embedding [57] Unsupervised
. Graph
Locally linear .
LLE embedding [58] embedding
ISOMAP Isometr.lc feature
mapping [59]
Conditional Semi
CVAE variational “u :rvi;e d
autoencoder [60] P
Feature .
.. . Nonlinear
Variational learning
VAE
autoencoder [61] Unsupervised
AE Autoencoder [51]
Kernel Fisher
KFDA discriminant Nonlinear
analysis [62] Supervised
Fisher discriminant .
FDA analysis [6] Statistical Linear
— projection
KPCA el r1nc1pa1 Nonlinear
component analysis [63]
— Unsupervised
PCA Principal component Linear

analysis [3], [4]
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Figure 3.6 Autoencoder architecture used for parametric methods.
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feature space. The covariance matrix X, is initialized with the identity
matrix of size m, and the number of iterations is set to 1000, which was
a sufficient number for the GMM to converge in all the experiments con-
ducted in this study. To ensure that the estimated covariance matrices are
positive definite, we regularized the covariance matrices to have at least
a small value € = 2 X 1072 - tr(Z) /m, where X is the covariance matrix
of the data in the feature space. The parameters of the GMM are found

by the expectation-maximization (EM) algorithm [2].

3.3.3. Process monitoring

Figure 3.7 shows the projection results of the training dataset for the
methods compared. Note that Fault 6 has the widest distribution in the
input space (see Figure 3.5) and it dominates the projection direction of
PCA and FDA-based methods. This is because these methods find a low-
dimensional representation that maximizes the variance of data (PCA) or
the distances between the classes with their respective mean values
(FDA). Hence, the normal and Fault 2 data samples, which lie in close
proximity to each other in the input space, are overlapped in the feature
space, making it hard to distinguish them. Note also that using nonlinear
kernel mapping does not improve the results. In contrast, the extracted
features clearly separated by clusters in PML and CMAP, providing high
resolution for monitoring the processes. As similar results can also be
found in UMAP, we can deduce that data such characteristic is largely

attributed to the uniform manifold approximation and topology-preserv-
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ing projection operations.

In terms of effectiveness in utilizing label information, the proposed
methods are found to excel the conventional FDA or KFDA-based meth-
ods. The projection results of FDA and KFDA are confined to preserving
the points that are located far away or very close. This is because, aside
from the fact that they are linear methods, their objectives — maximize
the ratio of between-class variance to within-class variance — can only
either shrink or set apart the points. This results in losing the mid-scaled
distances that involve the data trajectories. In the proposed methods, the
label information is exploited in advance of the projection process and
only by imposing repulsions on “calibrated” points — note that all the
local distances were rendered to the range [0, 5] in the uniform manifold
approximation process in advance of clusterization (see Figure 3.3c and
Figure 3.3d). This enables controlling two competing objectives in label
utilization, which are to preserve the features of the metric data such as
data trajectory and to induce discriminative features using non-metric
information (labels). For example, giving large values on d,, and d,, can
foster clustering, resulting in a higher separation degree between the
clusters. The values can be appropriately chosen by a user within the
range [0, 5].

By comparing the feature space of CMAP with UMAP (see Figure
3.8), we can notice that clusterization operation is effective for preserv-
ing the trajectories and partitioning the feature space with respect to the
clusters. Such property is a crucial aspect for visually discerning faults

in the feature space and tracing their progress. A direct measure to
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analyze such difference is to compare their projection targets (i.c., the
data distributions on their manifolds). However, as the manifolds are
only described by the pairwise local distances, we can infer such, as a
workaround, by inspecting the changes in pairwise distances. Figure 3.9
shows the distribution of the pairwise distances in the input space and
their adjustment made in each method. We can notice that especially
larger separation is made for closely located data points (having dis-
tances of 0.5 — 1.5) in CMAP. Therefore, we can infer that the clusteri-
zation operation is an effective measure for disgregating this “over-

crowded” region.

3.3.4. Projection characteristics

The projection characteristics of the proposed methods can be mined
further with the pairwise distance plot. Here, the Pearson correlation co-
efficient (PCC) values represent the preservation degree of the (metric)
data structure. We can notice that PCA projects nearby (faraway) points
in the input space to nearby (faraway) points into the feature space and
this leads to a larger PCC value. The “ascending” trend in PCA can also
be found in PML and CMAP, which indicates that they preserve the
global structure of the data. The diverging trajectories of Fault 1 and
Fault 6 are shown in PML and CMAP in proper orientations (see Figure
3.5 and Figure 3.7). This implies that the global behaviors of the data,
such as the deviation degree from the normal operating condition, are

trackable in the feature spaces of the proposed methods. Note that this
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Table 3.4 Evaluation metric values. The bold entries denote the best and sec-

ond most scored.

DI DBI SE LCMC
Range [0, o) [0,1] [0, o] [0,1]
Best co 0 0 1
PML 0.17 1.07 37.0 0.29
CMAP 0.39 1.12 91.0 0.29
UMAP 0.29 1.15 375 0.28
PTSNE 46x 1073 20 381 0.2
LLE 8.1 x 10716 1.9 x 1012 0.99 0.13
ISOMAP | 1.8x 107! 8.3 x 108 2.3 0.21
CVAE 2.5x%x1073 220 0.80 0.08
VAE 3.8x 1073 259 0.92 0.14
AE 1.25 1.9 0.92 0.11
KFDA 5.7 x 10716 1.3 x 1012 143 0.06
FDA 53x 10713 3.5 x 10° 3.5 x 10* 0.04
KPCA 2.0x107° 8.2 x 103 0.55 0.20
PCA 1.9x107° 9.0 x 103 0.23 0.20
49



trend is not found in UMAP and all the distances are adjusted to have
almost the same length (see Figure 3.9).

To quantify the visualization performance in the process monitoring
tasks, we introduced four evaluation metrics. We used Dunn index (DI)
and Davies-Bouldin index (DBI) [64] to evaluate how well the data clus-
ters were separated, and Sammon’s error (SE) and the local continuity
meta-criterion (LCMC) [65] to measure how well the structures of the
data have been preserved during the feature extraction. whereas LCMC
measures the preservation degree of the local structures only. See Perfor-
mance Indices in the Supporting Information to refer to their equations.
The evaluation results are summarized in Table 3.4. It is shown that
CMAP performs the best in all the visualization properties of interest,
except structure preservation (SE), and PML ranked second in overall
performance. From the large whiskers (large deformation) in the pair-
wise distance plot (see Figure 3.9), we can infer that its small SE value
has been incurred from the recast made in the manifold approximation.
Compared to UMAP, CMAP has a larger SE value, implying that clus-
terization inhibits data structure preservation. But at the same time, it is
found that this improves all the other visualization properties, including

local structure preservation.

3.3.5. Fault diagnosis

We conduct two fault diagnosis tasks in this study: fault detection and

fault classification. In fault detection tasks, the process is diagnosed as
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deviating from normal operating conditions when the Mahalanobis dis-
tance from a queried data point to the normal operation cluster is larger
than the confidence bound in (3.20). The threshold for the fault alarm is
set by the 99% confidence bound of the normal operation data. Two types
of errors are taken into account: false alarm, where a process under nor-
mal operation is diagnosed as a fault, and missing alarm, where a process
under faulty operation is diagnosed as normal. The error rate is defined
as the number of misdiagnosed points divided by the number of total data
points.

Figure 3.10 and Figure 3.11 summarize the fault detection results on
the test dataset. Considering both the error rate and detection time, we
can notice that CMAP shows the most robust online monitoring perfor-
mance and superior detection performance. However, CMAP shows a
relatively larger false alarm rate compared to UMAP. This is because its
mapping amplifies the deviation from the normal operating condition; a
small deviation from the normal operating condition is mapped far away
from the normal region in the feature space. Since the detection tasks
have been performed based on the distance to the normal cluster, CMAP
is bound to have more chance to occur false alarms. But conversely, it
has a lower chance to miss the faults.

In fault classification tasks, the process status is identified with the
class for which the GMM gives the maximum posterior probability Fig-
ure 3.12 and Figure 3.13 summarize the fault classification results on the
test dataset. CM AP shows the lowest misclassification rates and time de-

lay in classifying the faults, especially for the hard-to-classify faults:
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Fault 1 and Fault 2. See Figure 3.8 that the clusterization characteristics
of CMAP in feature extraction facilitates GMM’s training process.
CMAP has less data dependency as it recasts data to a particular shape
(clustered manifold) first (see Figure 3.3) and sets it as its projection tar-
get. From a functional point of view, this manifold approximation pro-
cess can be viewed as a nonlinear mapping in conventional monitoring
techniques. In contrast, applying kernel function — one popular approach
to handle nonlinear data — is shown to have only a random effect on the
diagnosis performance of the classifier. See Figure 3.7 that the dataset
has not been linearized in KFDA and KPCA after the projection.
Note that we use posterior probability in fault classification tasks to di-
agnose the process and, unlike the fault detection case, CMAP yieldsro-
bust performance in classifying normal operating conditions (no false
alarms). It suggests that better diagnostic results can be attained by using

tailored classifiers and classification approaches.

3.3.6. Computational Aspects

To assess the computational aspects of the proposed methods for
online implementation, we evaluated their CPU runtimes with different
data sizes and compared with the other methods. The benchmark was
performed in Python 3.8 with a 4.3GHz Intel 19-7900X CPU, NVIDIA
GeForce GTX 1080Ti GPU, and 64 GB RAM. Only a single CPU core
was utilized, and the time limit was set by 50 min. The results are sum-

marized in Figure 3.14.
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From an implementation point of view, a model desired is one that can
process a large quantity of data during the training phase. In this case,
the time cost required to train the model can be ignored. In terms of scala-
bility to data size, the proposed methods are shown to work when 72,900
data points are fetched (see Figure 3.14a). Note that kernel-based con-
ventional nonlinear methods, namely KFDA and KPCA, suffer an out-
of-memory error in this case. This is because they construct a kernel ma-
trix, which costs space complexity O(N?), whereas the manifold approx-
imation-based methods handle the nonlinearity of data via sparse dis-
tance matrices, which cost less space complexity. It is observed that
CMAP and UMAP show linear time complexity of O(N1°2), and PML
costs a bit more computation time. This is promising because conven-
tional statistical projection methods have time complexities of O(N3)
and have been reported to be impractical to use with large amounts of
data [29].

Contrary to the training phase, in the test phase, the time cost to exe-
cute projection becomes a major concern. The number of data to be pro-
jected in each time step can be assumed to be relatively small. Figure
3.14b illustrates that the strategy of learning the mapping between the
input and feature spaces in PML can effectively reduce the time cost in

the order of magnitudes compared to CMAP.
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Chapter 4

Process system modeling with Bayesian neural

networks?

4.1. Introduction

The trends in microelectronics manufacturing have been toward ex-
treme miniaturization of device geometries and higher transistor density.
Plasma etching is one of the key processes in semiconductor manufac-
turing using for fabricating finer patterns. In the plasma etching, the pro-
cess first applies electric power to the electrodes in a vacuum reactor,
disassociating the etchant gas into electrodes, ions, photons, and radicals.
Electromagnetic fields are then applied, transferring kinetic energy to the
charged particles toward the wafer, and the wafer surface is etched via

physicochemical reactions [66], [67].

2 This chapter is an adapted version of D. Park, S. Ryu, G.-H. Kim, and J. M.
Lee, “Sparse Bayesian Long Short-Term Memory Networks for Computation-
ally Efficient Modeling of Stochastic Plasma Etch Processes,” Comput. Chem.
Eng., In preparation.
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The main goal of the process is to achieve a desired etch profile that
is described by the performance metrics including etch rate, uniformity,
selectivity, and anisotropy. As the etch profile is resulted from the time
accumulation of the plasma condition [68]-[70], many studies have re-
cently been exerted on monitoring [71], [72] and controlling the etching
process [73]-[76] in real-time.

In control system design and verification, the most crucial component
is the accuracy of the system model because the predictions obtained
from the model are used in deriving optimal control actions [77], [78].
Followings are the most crucial characteristics considered for modeling
the plasma etch processes:

*  Nonlinearity occurred from the physicochemical reactions of the

plasma,

*  Hybrid dynamics occurred from discrete control logics of the etch-

ing equipment,

*  Process drifts incurred from deposition/desorption of chemical

species to the reactor wall [79]-[81],

e Time delay from the control loop, and

*  Stochastic behaviors (e.g., noise) of the system.

There have been a number of studies to simulate these system charac-
teristics by formulating physical equations and conducting computation-
ally intensive numerical simulations [82]. Some of these works have suc-
ceeded in estimating the distribution of chemical species in the reactor

and deriving the strategies to enhance etch profile [83], as well as have
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investigated the effect of the wall condition on the etch profile [84].
However, most of them are based on a large number of simplifying as-
sumptions due to the lack of understanding of the inherent physicochem-
ical reactions and the numerical complexity. This can incur a large dis-
crepancy between model predictions and actual measurement, limiting
their use in control applications [85].

An applicable solution to the aforementioned problem is using the sur-
rogate models, which are mathematically simpler and empirically map
the input-output relationships of the system or computationally intensive
model [86]. For the plasma etch process, state-space representation [87],
response surface model [88], and the first-order-plus-time-delay
(FOPTD) model [73], [85], [89] have been employed. Among those, the
FOPTD model has been the most popular choice for practical use owing
to its mathematical simplicity and interpretability. However, the FOPTD
model is inherently limited because it can only describe the local re-
sponse of the system with linear approximation and requires auxiliary
measures such as gain scheduling to use it as a global model [90]. Fur-
thermore, the multivariable interactions cannot be taken into account in
the FOPTD model, that is, if it is under the conditions where such inter-
actions severely affect the system, it requires a separate procedure of de-
signing interaction decouplers [91].

As an alternative measure, the techniques that utilize artificial neural
networks have been employed to model the process. Some studies have
demonstrated its effectiveness in modeling the deterministic characteris-

tics of the etch process, as well as the interactions between multiple input
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and output variables of the process without prior knowledge of the sys-
tem dynamics [92]-[95]. Nevertheless, these studies have not taken into
account the stochastic behaviors of the process, and the strategy to derive
the optimal structure of the model has not yet been suggested.

Modeling the stochastic process behavior and quantifying the uncer-
tainty of the model prediction is crucial for the control system design and
verification because such model enables deriving robust control param-
eters by considering possible stochastic system behaviors. Yielding a
lightweight model is of importance for practical use because neural net-
work architectures are typically comprised of a myriad number of
weights (i.e., high memory complexity), which may constrain its use on
industrial sites.

We develop Bayesian long short-term memory (LSTM) based on
LSTM, which is known to be effective in modeling the nonlinear dynam-
ical processes [96]. A preliminary work has been presented in [97]. In
Bayesian LSTM, each weight of the LSTM is expressed as a Gaussian
distribution, and the distributional parameters are trained to maximize
the posterior probability to the dataset. After then, structural optimization
was executed by eliminating redundant weights (i.e., weights having
larger standard deviations). In a case study, the resulting sparse Bayesian
LSTM is found to preserve prediction accuracy even after eliminating
insignificant 90% weights of the Bayesian LSTM.

The remainder of this chapter is organized as follows. Section 4.2 de-
scribes the proposed method. A verification study is performed in Section

4.3.
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4.2. Methods

4.2.1. Long Short-Term Memory (LSTM)

The LSTM [98] is a type of recurrent neural network [99] that is de-
signed to model temporal sequences and their long-range dependencies
more accurately than conventional recurrent neural networks. Such prop-
erty is attained by allowing the network to learn when to forget and up-
date the hidden states given new information. We used an LSTM archi-
tecture described in [100], whose schematic is illustrated in Figure 4.1.
By given the system input u, € R™ and the system output y, € R™, the

updates for LSTM unit t are formulated as

iy = sigmoid(Wy;ur + Wy_ihi_q + b;) (4.1)
fe = sigmoid(Wy,_,pur + Wy, _,shi_4 + bf) (4.2)
o = sigmoid(Wyous + Wy_ohe—1 + by) 4.3)

ge = tanh(W,_,cuy + Wy chi_q + b.) (4.4)
X =fi Ox1+i: O g (4.5)
h; = o, © tanh(x,) (4.6)

where sigmoid(x) = (1+e7*)"1 €[0,1] , tanh(x) = (e* —e™*)/
(e*+e™) e [—1,1], and a © b denotes the element-wise products of
vectors a and b; i, ft, 0¢, g; are respectively the return values at input
gate, forget gate, and output gate; W;_,; and b; denote the weights from
the gate i to the gate j; x; and h; are long-term and short-term memory
states.

The system output is given by a fully connected layer:
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System output

Systeminput - @

Figure 4.1. Schematic of the LSTM network used in this study.
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y=W,h+b, 4.7)
where y = {y,}I_,, h = {h;}1_,, T is the number of LSTM units or win-
dowsize, and Wy, and by, are the weights of fully connected layer.

An LSTM can be viewed as a parametric model that assigns condi-
tional probability P(D|6) of some dataset D = (u;,y;); conditioned
on the network weights 8 = {6;}}2, where N is the number of sample
points and M is the number of weights. If we assume that the sample
points are drawn independently from a joint distribution P (u, y), the op-

timal weights can be found by maximum likelihood estimation (MLE):

N
OmLg = argmaxlogP(D|0) = argmaxz logP (y;|u;, 6) (4.8)
) o 4
i=1

If we assume Gaussian observation noise on the prediction, i.e., y =
fo(u) + € where f;; denotes LSTM and € ~ V' (0,52), the maximum
likelihood estimate can be found from the prediction error minimization

with mean squared error.

N
OMmLE = argmaxz logP (y;|u;, 6)
9 4

i=1

N 2
B 1 (vi = fou)
= arg;nax; log [\/ﬁ exp <— o2 )]
(4.9)

N 2
= argmax |- 7 log 2ma? — Y. (e = fo(w))
6 2 £ 202

N
= arg;nin Z()’i — fo (ui))z
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4.2.2. Bayesian LSTM (BLSTM)

Unlike conventional LSTM that finds a point estimate of 8, Bayesian
LSTM seeks the posterior distribution of the weights to the training data,
p(08|D), using the variational inference described in Section 2.2. Given
a loss function L(D, @) = KL(Q(GlCD)HP(HlD)), the optimal estimate

of @ is given as
@y1 = argmin [KL(Q(81)IP(8)) ~ Eq(pj)[P(DIO)] +log P(D)]

The optimal @ can be found using stochastic gradient descent on the
loss function in Equation (4.10), where the gradient on variational pa-

rameter is given as

0P

However, a gradient estimator for V¢EQ(0|<D) [log P(D|0)] is known

to exhibits high variance and hinder the training process [61]. To circum-
vent the posed problem, reparameterization trick [101] is used, where 6
is factorized using differentiable posterior distribution. First, Q (8|®) is
chosen to be a Gaussian with diagonal covariance. For each weight com-
ponent 6;, the mean 81.“ and standard deviation 6/ are defined, where the
weight is sampled by 6; = 6/ + 67 - &; with &;~N'(0,1). Here, to en-
sure non-negative a;, we further factorized 6 = log(l + exp(@ip )) We

HHPM

define variational parameters as ® = {6}, 6! 1oy Since € = {e 1L, is

independent to ®, Equation (4.11) can be rewritten as

66 .

(4.10)

) 9
55 LD, @) = = Eg_o(9|a) 10 Q(619) —log P(6) ~ log P(DI§)]  (4.11)



d 0
5 £(D,®) = == Ee 30108 Q(91) ~ 10g P(6) — log P(DI6)]

0
= Ee o) |55 108 0(019) — log P(6) ~ log PDIO))| 45,

K
%Z [log Q(6®|®) —log P(6%) — log P(D|6®)]
k=1

where K is the number of the random samples and 8% is the kth Monte
Carlo sample drawn from the variational posterior distribution Q (8|®).

Let £(6,®) = YX_,[logQ(68®|®) —log P(8™)) — log P(D|6™)]
for given data D, then the gradient for each distributional parameter 8 =

{6,}}1, in @ can be found as

Kl LD, ) = 0L(0,D) 00 9L(O, D)

948, 2) 08 (4.13)
I 260 oD 0o

and the training can be performed by using the usual backpropagation
process.

For minibatch training, the gradient is given as

—L(D @)—Zla¢| L(D; db)l

0 9 \ (4.14)
ﬁ|]_ L( ) ;[(IOg Q(g(k)|q)) logp(g(k)))/B

—log P(D]|0™)]
where B is the number of mini-batches per epoch. Algorithm 1 summa-

rizes the optimization process during the minibatch training.

After training the network with a training dataset, we can expect that



the weights are separated into Gaussian distributions having different pa-
rameters. In such case, the redundancy of a weight 8 can be measured by

the following signal-to-noise ratio (SNR)
QH

SNR _
0 = |37

(4.15)

and removing the weights having small SNR yields a sparse Bayesian

LSTM.

4.3. Verification study

4.3.1. System description

Figure 4.2 describes the schematic of a plasma etching reactor em-
ployed in this paper. A capacitively coupled plasma reactor equipped
with a 300 mm Si wafer was used. The reactor was powered by a 60 MHz
radio frequency (RF) generator. The generator was applied to the bottom
electrode and the bottom electrode was grounded. The gap between top
and bottom electrodes was 25mm and the area ratio between the top
showerhead and the bottom electrode was 1.33. The pressure of the
chamber was controlled by manipulating the throttle valve position of
the vacuum pump. Two optical emission spectrometers (AvaSpec-
ULS2048L, Avantes) were used in estimating the plasma variables,
where low wavelength range (255 — 523 nm) and high wavelength range

(492 — 1030 nm) were measured with 0.2 nm spectral resolution.

68 11 O 11 =1



Algorithm 1 Optimization procedure for a minibatch training in
Bayesian LSTM

Input

6: Weights of the LSTM network

Parameter

B: number of minibatches
K: number of random samples
a: learning rate

Ll

fork =12,..,K
Sample e ~N(0,1)
8% = 9 + log(1 + exp(8P)) o e®
K

£6,®) = ) [(10g0(6®]®) — 10g P(0%))/B
k=1

—log P(D]6™®)]
0L, 1) N L6, )
T ou
_oLWw,p)  L(6,p)
, = +
a0 ap
U< pu—aljy,
p < p—al

A
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4.3.2. Estimation of the plasma variables

The operating conditions specified above form weakly-ionized plasma
inside the chamber [102], where the electron excitation rate is equal to
the spontaneous photo decay process [103]. At this condition, the light

emission intensity from an i*" state to j* state is given by

[oe)

by = none [ 01y 2e/m)? fe)de @16

Ef]
where ng is the number density of ground state atoms, n,, is the electron
density, Elt]h is the excitation threshold energy from level i to level k, 0;;

is the excitation cross section, ¢ is the electron energy, m is the electron
mass, and f () is the electron energy distribution function (EEDF) [104].
Here, f(¢) is given by one-parameter Maxwellian distribution charac-

terized by an electron temperature, T,

f(eT,) = 4.17)

PAVE: £
Rk, )32 P <_ k_n)
where k is the Boltzmann constant.

The electron temperature can be measured using line-ratio method
[105]. The ratio of two emission lines from different excited states is

given as

&%) &
@_ fE{}‘ 0;;(€) - exp (—Te)sds
€

P fE,tg; o1 (€) - exp (—k—Te) ede

(4.18)

where 750.4 nm (Ar, 2p; — 1s;) and 425.9 nm (Ar, 3p; — 1s;) lines
were used.

The electron density was estimated via a linear correlation between
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the emission intensity of the wavelength at 750.4 nm and the measure-

ment from a Langmuir probe [103].

4.3.3. Dataset description

Table 4.1 describes the input and output variables of the system. The
manipulated variables were the setpoints for internal regulators in Figure
4.2. We generated data by applying bounded random fluctuations on the
setpoints for RF power, Ar flow rate, and O flow rate with different
changing intervals (see Figure 4.3 and Table 4.2). A total of 5995 data
points were obtained from running the process for 300s with 50ms sam-
pling rate. The first 70% samples were used training dataset and the re-
maining 30 % samples were used for test dataset. We employed window-
marching sampling for each dataset to recast the dataset into an LSTM-

compatible form.

4.3.4. Experimental setup

Based on an assumption that the delayed output is available when
making a prediction, we augmented the input data with 1-step delayed
output data. The input and output data were normalized into Gaussian
distribution with zero mean and identity covariance matrices prior to the
model training.

The initial values for memory states, i.e., x, and h,, were given by
zeros. For both LSTM and BLSTM, we used parameter settings de-

scribed in Table 4.3. Both the initial distributions of the weights and the
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Table 4.2 Operation ranges and change intervals applied.

Change

Unit |Min Nominal Max| . Note
interval [s]

Pressgre mTorr | — 30 3 3 Fixed durl‘ng
setpoint the operation
REpower | v 1500 350 500 5

setpoint
Arflowrate (o 1300 400  500|  12.5

setpoint
O:flowrate) 110 30 50| 175

setpoint
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Table 4.3 Parameter values used in LSTM and BLSTM.

Parameter Value
Dimension of the long-term memory states (x)
LSTM . : 50
Architecture Dimension of the shqrt—term memory states (h)
Number of LSTM units 20
Number of random samples (K) 10
Number of samples per mini-batch 1000
Training Number of mini-batches per epoch (B) 5
Maximum epoch number 500
Learning rate 0.01
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likelihood distributions are given by the Gaussian distributions with zero
mean and unit covariance matrices multiplied by 0.1. The termination
criterion for the training was given as
[Lis1 — Li] <1076 |1+ L] (4.19)

where k is the epoch number. In BLSTM, Gaussian distributions with
zero mean and identity covariance matrices were used for the prior and
likelihood function, and the variational inference was applied only to the
LSTM units (not to the fully connected layer).

To benchmark the prediction accuracy of the proposed method, the
FOPTD model [106] and fully connected neural networks (FC) were
used. The FOPTD model is formulated as

IO
dt

=—y(t) + K -u(t —14) (4.20)
where K is the process gain, 7 is the time constant, and 7 is the time de-
lay, respectively. The FC model is given as (4.7), except for the hyper-
bolic tangent activation function is applied to the outputs.

Since FC, LSTM, and BLSTM work in a time-marching window man-
ner, multiple predictions are possible at a time point. Considering the
practical situations of how prediction is made, the value obtained from
the terminal unit was used and the other prediction values were disre-
garded.

To benchmark the a posteriori regularization proposed in 4.2.2, L1

and dropout-based regularization were respectively employed on LSTM.

The loss function of the L1-regularized LSTM was given as
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N M
OMmLE = arg;nin IZ(%’ —fo (ui))z + Zlejl (4.21)
i=1 j=1

The compression rate was choosen as 10 (removing 90% of the
weights). For instance, in dropout-based LSTM, the dropout rate was

choosen as 0.9.

4.3.5. Weight regularization during training

Figure 4.4 illustrates the loss function values of the LSTM and
BLSTM and their weight distributions during the training. Posterior loss,
prior loss, and likelihood loss denote Y.K_[logQ(6®|d)/B],

K_[—1ogP(6™) /B],and ¥X_,[—log P(D|6®)] in Equation (4.14),
respectively. Both networks show robust convergence and are shown to
primarily minimize the likelihood loss. As the training progresses, the
parameter distribution gradually deviates from the prior distribution, and
the prior loss gradually increases. The posterior loss in BLSTM
fluctuates over epochs, where the inverse pattern can be found in mean
values of WP, denoted in W”. As WP accounts for the stiffiess of the
overall parameter distributions in BLSTM, the trajectory of the posterior
loss can be viewed as a measure of the overall flatness of the parameter
distributions in the BLSTM.

We can observe that the SNRs of the weights, 85V spread out as
optimization proceeds in BLSTM, which signifies that the BLSTM can
regularize the weights during the training. The training of the weights is

found to be faster in BLSTM than LSTM, where the maximum absolute

78 11 O 11 =1



‘K1oA1)00dsaI ‘onfeA uedw oy} pue uonnqLysip 1jowered oy Juasaidor smMoI YInoj pue pary) oy} ul saul] pjoq
pue seale papeys oy ‘Sururen ay) Suunp safueyod uornqrysip 3y3rom pue sasso] INISTH Pue INLST $'F 2In31

yoody
005 00% 00€ 00Z 00l

LOL X

o
te)

00k

o
v
—

00¢

e

€€

- ansd

SSO[ I0TIJ

poody oodyg yoody
005 00y 00€ 002 00L .~ 005 00% 00€ 00Z 00L 0G4 00+ 0%
& ¢ —_—
z 4
2 ——0 <
i
b
0
) z
s G-
z |/
= 0o I
) =
0
]
z 2 o
.- 0 &
0 g Y\ &
o =
8LC quc. I "OH.
oz S g
vLe Q o5 yoody
»n w0
T % @ 0SL  00L  0S
z
200 = Vo
9 ©
< n
v0'0 g @
oL
900

S0°0

SL0

n1s1g O+

WNLST

SSOT

&+ %

H

.'2_-|-

!
1

2 A -

79



values of the weights at 100 epochs were max(|W |, |b|) = (1.0, 0.8) for
LSTM and max(|W*#|, |b*|) = (2.8,1.4) for BLSTM.

4.3.6. Modeling complex behaviors of the system

Figure 4.5 shows fitting results of the FOPTD, FC, LSTM, and
BLSTM to the training dataset, as well as their predictions on the test
dataset. FC, LSTM, BLSTM models show high prediction accuracy,
whereas the FOPTD model exhibits large model-plant-mismatch error.
Note that the FOPTD model primarily describes the relationship between
the RF power setpoint (MV 1) and electron density (OV1) (see Table 4.4),
and the combinatorial effects of the input variables to the system are not
taken into account. This implies that the conditions where the large error
occurred in the FOPTD predictions are the conditions where the
interactions other than MV1-OV1 have not been correctly modeled or
those where the combinatorial effects significantly affect the system. In
other words, the results are shreds of evidence that the proposed method
can effectively model such complex system characteristics.

In terms of the structure of the neural networks, Figure 4.6
demonstrates that the LSTM architecture is more suitable in modeling
the nonlinearity and dynamical behaviors of the system, compared to the
fully connected neural networks. From Figure 4.7, we can further
ascertain that the proposed Bayesian LSTM architecture better models
the stochastic characteristics of the process such as noise. No significant

difference has been found in the results of Bayesian LSTM and sparse
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Figure 4.5 Fitting and prediction results of the (a) FOPTD, (b) FC, (c) LSTM, and
(d) BLSTM models on training and test datasets.



Table 4.4 Estimated FOPTD model parameter values.

RF power Ar flow rate  O2 flow rate
setpoint setpoint setpoint

Electron K 0.93 -83x1073 -0.13
density | © 0.22 1.7x107*  62x1073

T4 0.26 2.2 0.35

K 0.92 —0.18 x 1072 -0.13
Electron 11991 94x10°°  22x107?

temperature
T4 0.27 0.74 0.35
82
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LSTM models. Note that the noisy predictions in FC and LSTM have
been originated from the noises in the system input data and the random

initialization of the weights.

4.3.7. Uncertainty quantification and model
compression

As we trained the BLSTM with the distributional data acquired from
each operating condition, the model can learn the uncertainty inherent in
the process data from the training variational parameters. As a result,
even if the same input has been applied, it produces different outputs
with respect to the random seeds employed, and these outputs reflect the
stochastic behaviors of the process. Figure 4.8 shows the posterior
predictive distribution of BLSTM to the datasets. Note that larger
uncertainty is observed for the test dataset than the training dataset,
especially when the system input changes drastically. As such conditions
are where only a small number of samples are accessible, the results
manifest that the model can capture the uncertainty from the process data.

In BLSTM, variational parameters are regularized by priors having a
standard normal distribution during the training, and hereby relatively
redundant weights are identified as described in Section 3.1. This enables
eliminating relatively redundant weights by computing the SNR of each
weight according to Equation (4.15). From the histograms of weight
SNRs in Figure 4.9, we can notice that most of the weights are
insignificant and only a small fraction of the weights is valid in

prediction, where the prediction accuracy has not decreased at all even
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weights. Note that such selective pruning of the weights also enables
avoiding a time-consuming process of determining the optimal number
of weights in designing neural network models because the procedure is
executed a posteriori. This a posteriori regularization is shown to be
highly effective in obtaining an optimal model structure compared to

conventional L1-norm or dropout-based regularization.
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Chapter 5

Process design based on reinforcement learning

with distributional actor-critic networks?

5.1. Introduction

Recently, discussions have been made on the machine inference-based
autonomous chemical compound synthesis and process design [107],
[108] in the aim of meeting the rapid changes in market demands, such
as diversified products and customized drug manufacturing. The process
design problems can be described as finding an optimal layout called
flowsheet and the specifications of the units for given raw materials, tar-
get products, and the requirements specified. A design objective is usu-
ally given with the maximization of the profit obtained from process op-

eration.

3 This chapter is an adapted version of D. Park and J. M. Lee, “Autonomous
Process Design based on Behavioral Cloning between Distributional Actor-
Critic Networks and Monte Carlo Tree Search,” Comput. Chem. Eng., In
Preparation.
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Two process design approaches, namely decomposition method [109]
and optimization [15], [110], have been widely used for this purpose. In
the decomposition method, a chemical process is designed through a se-
quential and hierarchical decisions based on the design heuristics. The
resulting flowsheet, often referred to as base case design, is then modi-
fied by performing case studies in a way to yield a better process design.
The decomposition method can quickly locate a feasible solution from
exploiting design expertise, but it cannot guarantee its optimality as the
interactions between the design steps of the different hierarchies are not
taken into account.

In contrast, the optimization-based method first postulates a process
layout, so-called superstructure, that includes a set of alternatives of pro-
cess designs encoded by integer variables. The given process design
problem is then solved using optimization techniques such as mathemat-
ical programming or metaheuristic methods. As the sequential decisions
are simultaneously considered in the optimization framework, the recip-
rocal interactions can be taken into account. Because of this, optimiza-
tion-based methods have been established as state-of-the-art methods for
process design tasks. That said, as the superstructure construction heav-
ily relies on design expertise, there is possibility to miss the counter-in-
tuitive but still relevant process designs. Particularly for using mathe-
matical programming with commercial solvers, there exists a fatal short-
coming that the interim solutions cannot be obtained until the solver con-
verges. That is, unless the solver converged to a solution, the user cannot

even obtain suboptimal solutions.
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A possible solution to avoid potential bias from search space re-
strictions and obtain interim solutions is employing ab initio approach
[111], which does not construct a superstructure but instead sequentially
manipulates unit operations (e.g., addition, removal, ...) from a blank
flowsheet.

Nevertheless, all the aforementioned methods are solution searching
techniques that can only find problem-specific solutions. Contrary to this,
RL-based process design approach [30] can provide means to perform
solution learning. That is, the agent can learn the design heuristics during
performing designing tasks and utilize it to solve similar design tasks.
Nevertheless, relevant studies so far have only demonstrated the applica-
bility of RL to the process design tasks, confined to some simplest design
problems [112], [113].

This study first proposes a learnable process design framework based
on RL. To this end, the process design problem is first formulated in the
RL syntax. By following the terminology and definitions described in
Section 2.7, we define the state as a process flowsheet, the reward as a
profit obtained from the process operation, and the action as a selection
of unit type and its specification. We define implementing action as /ink-
ing a unit to one of the product stream existing in the flowsheet. The
schematic of the proposed framework is illustrated in Figure 5.1. The
design process is given as a DMDP described in Section 2.7

The key feature of the framework is behavioral cloning [21], where a
solution finder and a learner work in collaboration to find and learn the

optimal policy (see Figure 5.1). To be more specific, the learner guides
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the solution finder for an efficient solution process, and the data obtained
from the solution processes are used to train the learner. As the training
data are made up of suboptimal solutions rather than random experiences,
efficient learning is facilitated.

For the learner, distributional actor-critic networks (DACN) were de-
veloped to consider the hybrid action spaces. For solution finder, Neural
Monte Carlo tree search (N-MCTS) algorithm, which is known to stabi-
lize the training process with delayed rewards [114], was utilized. In or-
der to employ the neural networks, a flowsheet hashing algorithm that
can convert graphical process flowsheets into numeric tensors was de-
veloped.

The remainder of this chapter is organized as follows. Section 5.2
describes the proposed framework in detail. A verification study is per-

formed in Section 5.3.

5.2. Methods

5.2.1. Flowsheet hashing

The essence of the flowsheet hashing algorithm is to convert a given
process flowsheet G € G to a DACN-compatible tensor T € T where G
and T represent the possible set of flowsheet and tensors, respectively.,
the images of the two different process flowsheets should differ. In this
case, the mapping from the process flowsheets to the numeric tensors
should be given be injective. As the process flowsheets can be repre-

sented by directed graphs, where the nodes and edges respectively
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Table 5.1 Example of defining the invariant numbers for unit type.

Type Invariant Type Invariant
number number
FEED 1 SPLT 6
PRDT 2 CSTR 7
NULL 3 PFR 8
LINK 4 DSTL1 9
MIX 5 DSTL2 10
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Algorithm 2 Rank evaluation

Input G: graphical representation of the given process
v;: i node in the graph G
Parameter | n: maximum number for the iteration
Function T: return the unit type number
D: return the in-degree in the transitive closure of the
graph
P: return the port number of the input streams with
respect to their parent node
C: return the centrality
0: return ordinal orders for the given number array,
e.g., [4,2,1,3,4] = 0([5,2,1,3,5])
S: return the 2-digit encoding for the given number
array, e.g., 010302 = S([1,3,2]) and 011203 =
S([1,12,3])
L: count the number of elements in the given array
N: count the number of the nodes in the graph
U: return the unique elements of the given array
K: return the k™ prime number for given number &
p: return the parental nodes
s: return the successor nodes
[I: return the product of the elements
Output R =[nr];_ ( ). : array of the ranks
1: t; = T(Ui)
2: di = D(Ul')
3: fori=1,2,..,N(G)
4: if t; == 1 # unit type is FEED
S: a, =n;
6: else
7 =X Py
&: end if
9: c; = C(v;)
10: end for
1 g1, = 0(le ]y
12: I, = S([t;, d;, a;, ¢;]) # invariant number for v;
13: 7, =0(;)
14: n=0
15: while L(7;) # L(U(fi)) # tie breaking
16: 7, = K(7})
17: fori =1,2,..,N(G)
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18: if L(p(vy))

19: rip =1

20: else

21 7‘ip = 7ﬁp(vi)
22: end if

23: if L(s(v;))
24: =1

25: else

26: T'is = f.s(vi)
27: end if

280 f =1 0(r7) - 06
29: end for

30: r; = O(#;) # rank for v;
31: ifr;==1;forvVi=1,2,..N(G)orn>n
32: break

33: else

34: fi =T
35: n=n+1
36: end if

37: end while
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Algorithm 3 Flowsheet hashing

Input

G: graphical representation of the given process
V: array for the nodes in the graph G

Parameter | |T|: number of possible node types

W (L): width(length) of the 3D tensor

H¢: number of embedding layers for configurations
H: number of embedding layers for specifications
F: maximum flow rates

F: minimum flow rates

Function | zeros: return the tensor filled with zeros
by given dimensions
rank: return the array of the ranks using Algorithm 2
sort(-,idx): returnthe array sorted with the index idx
sortidx: return the indices for sorting
N: count the number of the nodes in the graph
M: count the number of the edges in the graph
T: return the unit type number
E: return True if a node specification is given;
otherwise, return False
S: return the maximum specification value
S: return the minimum specification value
P: return the port number
P;: return the maximum inlet port number
Py: return the maximum outlet port number
h: return the index of the head node
t: return the index of the tail node
F: return the flow rates
Output S: tensor representation of the process

1: §=zeros(W, L, H: + Hg)

2: R =rank(G)

3: idx = sortidx(R)

4. V =sort(V,idx)

5: fori=1,2,..,N(G)

6: v; = V[i]

7: t; =T)/IT|

8: if E(v;)

o § = (s: = s() / (5@ - &)

10: else
11: $;=0
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12:
13:
14:
15:
16:
17:
18:
19:

20:

end if
end for
S[1:N(G), 1:N(G), 1:H;] =¢;
S[1:N(G), 1:N(G), Ho + 1: H. + Hg] = §;
forj=1,2,..,M(G)
S[e(), h(), 11 =P(¢())/Po(t())
S[e(), h(), 21 =P(r())/Pi(h())

S[t(), h(), 3:He + Hsl = (F(G) —F)/(F — F)

end for
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represent process units and streams, we will first follow the terminology
presented in Section 2.8 and describe the algorithm in terms of the graph
theory.

An equivalent way to ensure the injective mapping is to uniquely de-
termine the orders or ranks of the nodes in the graph [115]. To this end,
we first define the invariant numbers for possible unit types as in Table
5.1 so that the number indicating unit type t; can be assigned to each
node v;. A name identifier n; is attached in the increasing order, i.e.,
FEED-01, FEED-02, to distinguish the units with the same type. We also
assign the invariant numbers to indicate the inlet/outlet ports of the units.
For a distillation tower with no side streams, for example, the port invar-
iant numbers can be assigned as input(1), top(1), bottom(2). Finally, the
centrality c; is defined for each node following equation.

2
¢ = (%) Bli .1)
where A; is the number of reachable nodes from v;, B; is the sum of the
distances from v; to all reachable nodes, and N is the number of nodes
in the graph. The rank r; € {1,2, ..., |[V|} is then evaluated for each node
v; following Algorithm 2. The evaluated ranks provide canonical num-
bering of the nodes and allow the injective hashing of the flowsheets.

The complete flowsheet hashing algorithm is described in Algorithm 3.

5.2.2. Behavioral cloning

The training of the agent is proceeded by a modified version of the
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behavioral cloning algorithm used in AlphaZero [116]. Specifically, for
a given state s, the N-MCTS outputs the estimates for the return, v(s),
and optimal policy function value, m(a|s). The neural networks are

trained by reducing the following loss function

L= (v(s) —ve(s))" —n(als) - log(mg(als)) +clioll  (5.2)

where vg(s) and g (a|s) are approximate functions given by the neural
networks. Note that the loss function forces the neural networks to clone
the behavior of the N-MCTS. As the agent has hybrid action space — ac-
tion is given as a combinatorial selection of discrete unit type and con-
tinuous unit specifications — the policy samples produced by the tree

search are given as Figure 5.2.

5.2.3. Neural Monte Carlo tree search (N-MCTY)

Starting from an empty tree, N-MCTS repeatedly performs the selec-
tion, expansion, rollout, and backpropagation phases to find a better ac-
tion. Specifically, a modified version of the PUCT algorithm used in Al-
phaZero was utilized. In N-MCTS, every action node in the tree stores
statistics {N(s,a),W(s,a),Q(s,a)} where N(s,a) is the visitation
count, W (s, a) is the cumulative return over all rollouts through (s, a),

and

_W(sa) 1 )
Qs a) = N(s,a) N(s,a) zsqs,(m,v" (") (5.3)

is the estimate for action-value where vg(s’) denotes the estimated
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Figure 5.2 Schematic of MCTS policy.
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return at s’ given by the neural networks. The graphical description of
the algorithm is given in Figure 5.3. The N-MCTS algorithm iterates the
following four phases:

1. Selection In selection phase, the agent descents the tree from the

root node according to:

JVN(s)

N(s,a)+1 (54)

a = argmax |Q(s,a) + cpyce " Mo (als) -
a
where N(s) = )., N(s, a) is the total number of visits to state s,
Cpuct € RY is a constant for scaling the amount the exploration/ex-
ploitation. The selection is performed until either a terminal state
is reached or an action that have not been tried before is selected.
2. Expansion and Estimate The agent then expands the tree by
appending a new leaf state s; and the value v(s;) is approximated
by the neural network.
3. Backup The results in the tree nodes are recursively backed-up.
Let the forward searching trace as {s,, ay, ..., S;—1, -1, S }. For
each state-action edge (s;, a;) where L > i > 0, the agent recur-

sively estimates the state-action value as
R(s;a;) = r(si, a;) + YR(Six1, Qisa) (5.5)

where R(s;,a;) = R(s;). The cumulative return W (s;, a;) is in-
cremented with the new estimate R(s;, a;) and the visitation count
N(s;, a;) is increased by 1. Lastly, state-action value is updated by

Q(s;,a;) = W(s;,a;)/N(s;,a;). This backup process is applied
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backward along the trace until we reach the root node s,,.

The searching procedure is repeated until the iteration reaches pre-de-
fined tree search budget N;,... After finishing the tree search, it returns
a root action set Ay = {00,0: ao,1, ...,ao,n} with associated counts Ny =
{N (SO, ao,o)’ N (SO, ao,1)’ o, N (SO, ao‘m)} where m denotes the number
of child actions implemented at the root node s,. The agent selects the
action for the implementation to the environment, a*, following the
probability distribution based on the visitation counts at the root node s,

that is,

a*~m(alsy) (5.6)

N(SO!a)
N(so)

where m(als,) = and N(so) = Xa,ea, N(so,a; ). We can store

the subtree that belongs to the picked action a* for the MCTS at the next
time step. Therefore, N(sy) can be larger than Nypee.

As we cannot enumerate all the actions in the continuous domain, we
utilize progressive widening [22] that confines the possible number of
child actions at state s, m(s), by a function of the total number of visit
to that state n(s). This facilitates exploiting actions with larger visitation
counts (which indicate producing better returns) to get more child actions
for consideration. Specifically, we employed the progressive widening

method described in [117], which is given as
m(s) = Cow * N(s)* (5.7)

where constants ¢y, € R* and x € (0,1) . To prevent excessive
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exploitation and facilitate exploration, the expansion counts for each

node is restricted by E,;pge.

5.2.4. Distributional actor-critic networks (DACN)

DACN are composed of two functional layers called actor and critic
that respectively approximates the policy and value functions. We em-
ploy Siamese architecture, where the two functional layers share the fea-
ture extraction layers. The schematic diagram of DACN is described in
Figure 5.4.

For the value function estimator, a fully connected layer can simply be
used. For the policy function estimator, however, a special measure is
required to compute the loss function (5.2) with the data obtained from
tree search (see Figure 5.2). Note that t(als) - log(ne (als)) can be cal-
culated only when the value 7y (als) is accessible, and the neural net-
work layers can only output a fixed tensor. For unit type, the number of
slots for a can be configured in advance so a soft-max layer can be used
to compute g (al|s). However, for unit specifications having continuous
domain, a is uncountable and 7y (a|s) is generally inaccessible. A naive
solution to this is to discretize the action space [18], but it is known to be
highly dependent on the quality of the grid [19].

To address this problem, we can approximate the continuous policy
with parameterized distribution functions (see Distributional layer in

Figure 5.5a). In practice, the action space is constrained by physical
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Figure 5.5 (a) Schematic of DAN and its interactions with MCTS. (b) Illus-

tration of probability density of beta distribution.
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restrictions (e.g., agitator speed of a reactor), and thereby we can choose
probability distributions with bounded supports. One of such is Beta dis-

tribution given as

['(B1 + B2)

p(x| By, B2) = TEIT(E,)

xﬁ1—1(1 _x)ﬁz—l (5.8)

where x € [0,1] and B,, B, are hyperparameters that determine the
shape of the distribution. Figure 5.5b illustrates the effect of the hyperpa-
rameter values.

The underlying rationale for using Beta distribution approximation is
that the optimal policy at given state s would be given as a Dirac function,
where its shape can be approximated by the Beta distribution with high
p1 and 3, values. Moreover, the Beta distribution has finite support so it
does not suffer from the boundary effect that is known to slow down the
training progress [19]. The distribution approximation is also numeri-
cally differentiable [118], so we can use simply perform backpropagation
to train the network, which enables rapid training.

Unlike the conventional approach that uses deterministic layers and
additive stochastic processes (e.g., Ornstein-Uhlenbeck process [119]) to
perturb the action in promoting exploration [120], [121], the resulting
policy function, named distributional actor networks (DAN), is inher-
ently stochastic and perform random exploration probabilistically. Fur-
thermore, the exploitation/exploration rate can be autonomously con-
trolled over the training. That is, we can initialize f; = 1 and f, = 1 to
promote exploration in the earlier stage of the learning process. As the

training progresses, the beta values are increased and the greedy actions
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Algorithm 4

Action masking

Input G: graphical representation of the given process
a: action candidate
Function N: count the number of the nodes in the graph
T: return the unit type number
P: count the number of PRDT nodes in the graph
F: count the number of FEED nodes in the graph
L: count the number of NULL nodes in the graph
Output V: flag indicating validity of the action
1: ifN(G) ==0and T(a)# 1 #only FEED action allowed
2: V=0
3: elseif P(G) ==
4: V=0
5: elseif F(G) # 0 and T(a) == 1 # FEED already exists
6: V=0
7: elseif T(a) == 4 and L(G) == 0 # LINK selected
8: V=20 but NULL does
9: endif not exist
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are encouraged (see Figure 5.5b).

5.2.5. Action masking

To avoid repeatedly sampling invalid actions and promote rapid sim-
ulation, action masking [122] technique is employed as described in Al-

gorithm 4.

5.3. Verification study

5.3.1. System description

The algorithm is demonstrated with a reactor-separator-recycle system
synthesis problem, Case 4 of benzene chlorination process in [123]. The

chemical reactions of this liquid-phase process are given as:

k
CeHg (A) + Cl, > C4HsCl (B) + HCI

- (5.9)
CeHsCl + Cl, = C4H,Cl, (C) + HCl

where k; = 0.412/h and k, = 0.05/h are the kinetic constants. The
hydrochloric acid produced is eliminated at the reaction level output by
a stripping operation whose cost is not taken into account. In the separa-
tion level, unreacted A is separated and recycled toward the reactor net-
work, valuable product B, of which the demand is assumed to be 50
kmol/h, and a side product C. The volatility ranking of these components
is given as a4 > ag > ac, and the possible separation tasks are defined

as A/BC, AB/C, B/C, and A/B.
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5.3.2. Experimental setup

To reduce the complexity of the task, we only considered two types of
separation, namely DSTL1 (A/BC) and DSTL2 (AB/C) in the following
case studies. Refer to A.3 for the model equations of the process units.
The minimum and maximum possible operation conditions are specified
as Table 5.2. Stopping the designing process is considered by defining
additional action. As a result, a total of 11 environmental objects is de-
fined in this study.

When applying MIX unit, we do not merge two PRDT nodes but in-
stead create a NULL node and attached it to the input of MIX unit. The
NULL node here is virtual node and prepared to consider possible recy-
cle operation. The action RECY links a PRDT to a NULL.

The CAPEX and OPEX of the process units are given as in Table 5.3,
and the reward is defined as the profit of the process given as

Profit = 720(S — P) — Cost
where

Sales (S) = 92.67 Z Fip

i=PRDT
Purchase (P) = 47.86 Z Fia (5.10)
i=FEE
CAPEX,
Cost = z S+ 0.52 - OPEX;

i=UNIT
The hyperparameters for training, reward, MCTS, and DACN are
given as in Table 5.4, and Wegstein method [124] is used to simulate the
processes with process loops.

A total of four case studies have been conducted as below:

111 21 A 1] =



Table 5.2 Specifications for process units and streams.

Type Specification Unit Min  Default Max
FEED Flowrate of A | kmor/hr | 50 75 100
PRDT - - - - -
NULL - - - - -
LINK Target NULL - 0 0 1

MIX - - - - -
SPLT Split ratio - 0.05 0.5 0.5
CSTR | Reactor volume m3 0.01 25 50

PFR Reactor volume m3 0.01 25 50

DSTL1 - - - - -
DSTL2 - - - - -
F4
Fg Flow rates kmor/hr | 0 0 10
Fc
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Table 5.4 Hyperparameter settings.

Type Parameter Value
Search space Number of episodes 40,000
p Number of actions for each episode 9
n 100
L 20
State H, )
Hg 3
y 0.99
Reward r for penalty —10*
Ntree 100
E node 10
MCTS Cpuct 108
Copw 3
K 1.2
Hidden nodes per residual layer 10
DACN Number of the residual layers 19
scalerg 1000
114



* Case l:

solve the base case problem.
* Case 2 (transferability test 1):

CAPEX of CSTR = 25,794 + 7,000V
* Case 3 (transferability test 2):

CAPEX of CSTR = 8,000 + 10,000V
* Case 4 (hyperparameter sensitivity test):

— 6
Cpuct = 10

5.3.3. Result and discussions

Figure 5.6 describes the results obtained from Case 1. Note that the
proposed method yields an almost identical process design to the ground
truth stated in the reference. As intended, we can observe that the agent
initially selects all the actions with almost the same probability and be-
comes to choose the optimal action (e.g., MIX at s;) exclusively as train-
ing progresses. Table 5.5 details the policy of DACN at episode 33230
where the selectivity represents the ‘sharpness’ of the policy distribution.
We can find a few notable observations as below:

* The DACN selects FEED action with a high probability at the in-

itial state, presumably due to action masking.

* The second most optimal action for s; is found to be CSTR. This

is plausible as we can speculate that the suboptimal solutions
could be non-loop processes.

e Ats,, s3, and s,, the DACN selects DIST1 with the second-
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highest probability and the selectivity to CSTR is getting lowered.
This indicates that the suboptimal solutions may include early ter-
mination of the design process without the implementation of
CSTRs.

* Atsg, the DACN has low selectivity on DSTL2, which reflects
the redundancy of selecting DSTL2 and LINK at s,.

* Ats,, the DACN selects STOP with a probability comparable to
choosing LINK. This indicates that the suboptimal solutions may

include non-loop processes.

Figure 5.7 shows the profit trajectories for the case studies. The result
of Case 2 demonstrates that the proposed methodology can locate a high
return solution faster at the early stages of solving a similar process de-
sign problem to that encountered in the training process. Such transfera-
bility seems also valid at the early stages in Case 3 but becomes to lose
its property as the learning progresses. The results reveal that transfera-
bility is not always guaranteed, especially if the given problem is signif-

icantly different from the problem used in the training.

116 3



a

F = 52kmol/hr V =4.8m3

b

F = 52kmol/hr V = 5.0m®

c D 6 T T T T T T T T T
I Episode #1
I Episode #33230

CSTR DSTL1 DSTLZ FEED LINK MIX PFR SPLT STOP

Figure 5.6 (a) Optimal solution obtained and (b) its ground truth. (c) The action

policies for s; at episode 1 and 33230. The policies were calculated by normalizing
1,000 samples obtained from DACN.
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Chapter 6

Concluding remarks

6.1. Summary of the contributions

In this thesis, probabilistic machine learning methods have been de-
veloped to model and quantify the uncertainty that arises from the scar-
city of the process data. The underlying theme was to approximate the
target distribution via parameterized distributions and circumvent the
computational complexity that occurred in probabilistic inference.

In Chapter 3, we proposed a process monitoring methodology using
PML. The process data was assumed to be realized from a Riemannian
manifold where data are clustered with respect to their classes. This man-
ifold was approximated from measuring the pairwise likelihoods of the
data points and projected into low-dimensional space by preserving the
likelihoods. To be specific, a uniform manifold was first approximated
with the metric attributes of the data and the local distances between the
data points were calibrated. Then the non-metric attributes were utilized

by imposing lower likelithood among those points. This postulated
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clustered manifold and induced the data to be clustered in the feature
space. In this way, those hard-to-distinguish fault points were able to be
efficiently discriminated after projection, which drastically improved the
monitoring performance. We have also shown that it has much more flex-
ibility in tracing and controlling the resultant effect from incorporating
prior information of the data (i.e., data labels), compared to the conven-
tional statistical projection methods that have been popular choices in
practice.

In Chapter 4, a probabilistic modeling approach using Bayesian deep
neural networks was proposed, and its performance has been demon-
strated by the application to the plasma etch process. Assuming that the
parameters of the neural networks have a Gaussian distribution, a sto-
chastic model was derived by learning the distribution of the data. After
training the model, the optimal model structure and parameters were ob-
tained by a posteriori elimination of the parameters having lower im-
portance. The resulting sparse Bayesian networks were found to preserve
the prediction accuracy with respect to the full Bayesian networks even
though we eliminate 90% of the weights. We have shown that it is not
only possible to simultaneously learn the complex behavior and stochas-
tic characteristics of the processes, but also to obtain an optimal model
structure. Note that the resulting architecture is differentiable, that is, the
Jacobian and Hessian matrices of the system model can also be easily
obtained by automatic differentiation. These suggest that the proposed
methodology can be utilized for designing model-based control systems.

In Chapter 5, a reinforcement learning-based process design
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framework was proposed with distributional actor-critic network. Unlike

the conventional approach, which only employs recursive objective

function evaluation to find the optimal solution, the proposed approach

approximates the objective function spaces with distributional deep neu-

ral networks. We demonstrated that the process design heuristics can be

learned and transferred to solve similar design problems, rather than

simply finding a solution as conventional approaches have done.

6.2. Future works

The directions for the future work can be made as follows:

The PML proposed in Chapter 3 was devised to obtain the same
low-dimensional representation as CMAP, while gaining compu-
tational efficiency by mapping the input and latent spaces using
neural networks. However, as the results reveal, PML had diffi-
culty in discriminating hard-to-distinguish two different class data.
Note that the only difference between the algorithms between
PML and CMAP was that CMAP utilizes pointwise optimization
based on nearest neighbors while PML performs transformative
mapping using neural networks. Therefore, we can infer that the
performance degradation found in PML is stemmed from using
neural architecture, which is well known to suffer from the high
dependency on initial values and convergence to local optimum.
A possible solution could be introducing automated machine
learning techniques [125] to find out the optimal neural architec-

ture and a hyperparameter set that are tailored to the given dataset.
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In PML, we utilized the autoencoder networks and derived an in-
verse mapping from the latent space to the input space, which can
generate synthetic data through simple sampling. Therefore, if
there is an imbalance in the amount of data among the classes, we
can utilize it to oversample the minor data classes and improve the
diagnostic performance. Note that the proposed methods are based
on that the local distances between the data points are calibrated
to be within the range of [0, 5] by the uniform manifold approxi-
mation. As we have only demonstrated such property empirically
through various datasets, theoretical prove should be made.

Even though the probabilistic modeling technique presented in
Chapter 4 provides uncertainty measures for the predictions, we
can still raise fundamental questions on its robustness to the ex-
trapolation. A possible solution for this may be using a first-prin-
ciples model and applying the same modeling techniques — repa-
rameterization and variational inference — to the model parameters.
Some studies have already shown that the variational inference on
physical parameters also works for the dynamical systems de-
scribed by ordinary differential equations [126]. In this case, we
can further anticipate that the proposed model compression tech-
nique can be used in discovering the governing equations of the
system. To be specific, we can first construct a model library [127],
which is composed of possible candidates of physicochemical
terms, and then perform a posteriori model compression to elim-

inate redundant terms. Contrary to the existing approach that
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employs LASSO (L1 regularization) [128] for the model com-
pression, the suggested approach could be able to produce sto-
chastic models and attain better accuracy (see Figure 4.9).

The reinforcement learning-based process design approach pre-
sented in Chapter 5 are having limitations as much as the de-
scribed potential benefits. First, it was observed that it suffers
from the instability and hyperparameter sensitivity during the
training, which are well known problems of reinforcement learn-
ing. Even though many solution approaches such as recovering
[129] and averaging [130] are proposed, the issue has not solved
yet and being the biggest drawback against the conventional math-
ematical programming approach. Second, the generalization of
the problem-dependent process constraints and that of the state
representation for varying number of process units (number of ac-
tions) have not been developed. Promising solution strategies for
these may be employing reward shaping [131] and hierarchical
graph convolutions [132], respectively. Finally, note that the pro-
posed method based on policy approximation using distributed
neural networks. That is, if a large number of actions should be
taken into account, distribution flattening occurs, and it can slow
down the learning process. Introducing hierarchically structured
policy networks [133] could be a fundamental solution to this
problem, but a more promising approach would be directly incor-

porating the domain knowledge into the agent [109].
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Appendix

A.1. Proof of Lemma 1

Let x1, ..., x™ be the coordinate system for the ambient space. A ball

B in M under Riemannian metric g has volume given by

7.[n/zrn
det(g) dx' ...dx™ = \/det(9) =———— Al
| VaeGg)d .dx" = Aot s (AD)
n/2.,.n
If we fix the volume of the ball to be ———, we arrive at the require-
r(n/2+1)

ment that

1
det(9) = 7 (A2)

and since g is assumed to be diagonal matrix, we can solve for g as

1.
gij = {r_z = (A3)
0 otherwise

The geodesic distance on M under g from p to g where p,q € B is

defined as

b
inf fa / g(c@),¢®)de (A4)

where C is the class of smooth curves ¢ on M such that c(a) = p and
c(b) = q, and ¢ denotes the first derivative of ¢ on M. Given that g is

as defined in (A.3), we can derive that this can be simplified to
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A.2. Performance indices for dimension reduction

A total of four performance indices [65], [134], [135] were used to
evaluate the clustering degree and data structure preservation. To meas-
ure the clustering degree, we introduced two clustering performance
measures; the Dunn index (DI) and Davies-Bouldin index (DBI). These
were originally designed to evaluate the performance of clustering algo-
rithms, where the labeling is assessed based on the distances between
given data points. Conversely, we used them to evaluate how well the
data points were clustered in a situation where data labels are known a
priori. We used Sammon’s error (SE) and the local continuity meta-cri-
terion (LCMC) to measure how well the global and local structures of

the dataset in the input space were preserved in the feature space.

Dunn Index (DI)
For given clusters {Cj };<x<x DI is defined as follows:

Tlrg]nA(Ci, G)

DI = (A.6)

max §(Cy)

where A(C;, C;) is the distance between clusters C; and Cj, and 6(Cy)
represents the size or diameter of a cluster C), that can be defined in many
different ways. We defined A(C}) as the maximum distance between

points in the cluster k:

6(Cy) = x;?]%)ékd(xi,xj) (A.7)
As shown in (A.6), DI measures whether the clusters are compact and

well separated, and a larger DI value indicates better clustering.[136]
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Davies-Bouldin index (DBI)
DBI measures the average separability by considering every pair of

clusters, and a smaller DBI value indicates better clustering.

K

1 5(¢) +8(¢;)

i=1

where C;, A(C;), and §(C;, C;) are defined the same as in DI.

Sammon’s error (SE)
SE, which is also referred to as Sammon’s stress, measures the degree
of preservation of the global structure using the distances between data

points in the observation and latent spaces.[137]

n-1 n % \2
Coynsiyn g d.: (A.9)
=1 &4j=i+1"1 7= j=it1 tj

where d;; = dgn (xl-,xj), di; = dRm(zi,zj), and an SE value of 0 indi-

cates a perfect reduction.

Local continuity meta-criterion (LCMC)
LCMC measures the degree of preservation of the local structure

based on a co-ranking matrix.[138], [139] First, the rank 7;; of x; with

respect to x; is defined as

Tij = |{k:dik < dij or (dik = di]' and k <])| (A.10)

where |A| denotes the number of elements in the set A. Here, 7;; is an
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integer indicating that x; is the r; jth closest neighbor of x;. Analogously,

the rank in the feature space is defined as

1 = |{k: diy < djj or (djie = dij and k < j)} (A11)

The co-ranking matrix, whose elements are given by

qij = l{(k, D)1 = L and 1y = j} (A.12)
represents the 2-dimensional histogram of the changes in ranks, i.e. q;;
is an integer that counts how many points of distance rank j are ranked
i. Thus, if an embedding is carried out by a perfect reduction, the co-
ranking matrix will only have non-zero entries on the diagonal. If most
of the non-zero entries are in the lower triangle, we can interpret this as
an embedding collapsed distant points onto each other, and vice
versa.[140] The number of points belonging to the & nearest neighbors

in both the observation space and feature space is computed as

LC(k) =%i§k:q” (A.13)

i=1j=1

where N is the number of data points. Intuitively, this represents the de-
gree of overlap between the neighboring sets of a data point and their
corresponding embedding. LCMC adjusts this value by subtracting the

expected overlap between two subsets of k elements from N — 1.

k
LCMC(k) = LC(k) — —— (A.14)
N -1

The higher the LCMC value, the better the local structure preservation,

and an LCMC value of 1 indicates perfect preservation.
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A.3. Model equations for process units

LINK
(Fout,Al Fout,B' Fout,C) = (Fin,A' Fin,B: Fin,C) (A.15)
MIX
(Fout,A' Fout,B' Fout,C) = (Finl,Al Finl,B: Finl,C) (A.16)
+ (Finzar Finzp Finzc)
SPLT
For a split ratio 7,
(Foutl,Al Foutl,B' Foutl,C) T+ (A 17)
(FoutZ,A; FoutZ,Br FoutZ,C) (1-r)= (Fin,A; Fin,B' Fin,C)
CSTR
For a reactor volume V,
F,, = Z Fy: where i € {AB,C} (A.18)
If F,, #0:
Xy = e {A,B,C} (A.19)
Y Fing
X =11.22 “ Xouta +9.86 - Xouep +8.85 - Xouec (A.20)
2 Fin,i
X =X - S A21
out,A inA ZFin,i + k1VX ( )
X; F.;+ kX VX
Xout,B — in,B Z in,i 1 OEt,A (A.22)
D Fin; + kVX
X; F;+ kX VX
Xout,C — in,C Z 1n§ = 2 out,B (A.23)
n,t
Else:
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Fout; =0 fori € {A,B,C}

PFR

For a reactor volume V,

Fin = z Fin,i where i € {A, B, C}

IfFl'n # 0:

X =11.22 - Xouen + 9.86 - Xouep + 8.85 - Xouec

_kl)?Xout,A fOI‘ i == A
dFout,i _ > = .
W kiXXouea + ko2 XXouep fori = B
kyXXoutB fori =C
Else:
Fout; =0 fori € {AB,C}
DSTL1
(Foutl,A; Fout1,Bs Foutl,C) = (Fin,A; 0, 0)
(FoutZ,Al FoutZ,B: FoutZ,C) = (01 Fin,B: Fin,C)
DSTL2

(Foutl,A; Foutl,Br Foutl,C) = (Fin,A; Fin,Br 0)
(FoutZ,Al FoutZ,B' FoutZ,C) = (O' 0, Fin,C)
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(A.27)

(A.28)

(A.29)

(A.30)
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