982 research outputs found

    Integrated process and control system design

    Get PDF

    Robust model predictive control for linear systems subject to norm-bounded model Uncertainties and Disturbances: An Implementation to industrial directional drilling system

    Get PDF
    Model Predictive Control (MPC) refers to a class of receding horizon algorithms in which the current control action is computed by solving online, at each sampling instant, a constrained optimization problem. MPC has been widely implemented within the industry, due to its ability to deal with multivariable processes and to explicitly consider any physical constraints within the optimal control problem in a straightforward manner. However, the presence of uncertainty, whether in the form of additive disturbances, state estimation error or plant-model mismatch, and the robust constraints satisfaction and stability, remain an active area of research. The family of predictive control algorithms, which explicitly take account of process uncertainties/disturbances whilst guaranteeing robust constraint satisfaction and performance is referred to as Robust MPC (RMPC) schemes. In this thesis, RMPC algorithms based on Linear Matrix Inequality (LMI) optimization are investigated, with the overall aim of improving robustness and control performance, while maintaining conservativeness and computation burden at low levels. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this issue, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques and the Elimination Lemma. The proposed algorithm computes the state-feedback gain and perturbation online by solving an LMI optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. In the case that only (noisy) output measurements are available, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The novelty lies in the fact that, instead of using an offline estimation scheme or a fixed linear observer, the past input/output data is used within a Robust Moving Horizon Estimation (RMHE) scheme to compute (tight) bounds on the current state. These current state bounds are then used within the RMPC control algorithm. To reduce conservatism, the output-feedback control gain and control perturbation are both explicitly considered as decision variables in the online LMI optimization. Finally, the aforementioned robust control strategies are applied in an industrial directional drilling configuration and their performance is illustrated by simulations. A rotary steerable system (RSS) is a drilling technology that has been extensively studied over the last 20 years in hydrocarbon exploration and is used to drill complex curved borehole trajectories. RSSs are commonly treated as dynamic robotic actuator systems, driven by a reference signal and typically controlled by using a feedback loop control law. However, due to spatial delays, parametric uncertainties, and the presence of disturbances in such an unpredictable working environment, designing such control laws is not a straightforward process. Furthermore, due to their inherent delayed feedback, described by delay differential equations (DDE), directional drilling systems have the potential to become unstable given the requisite conditions. To address this problem, a simplified model described by ordinary differential equations (ODE) is first proposed, and then taking into account disturbances and system uncertainties that arise from design approximations, the proposed RMPC algorithm is used to automate the directional drilling system.Open Acces

    Unknown Piecewise Constant Parameters Identification with Exponential Rate of Convergence

    Full text link
    The scope of this research is the identification of unknown piecewise constant parameters of linear regression equation under the finite excitation condition. Compared to the known methods, to make the computational burden lower, only one model to identify all switching states of the regression is used in the developed procedure with the following two-fold contribution. First of all, we propose a new truly online estimation algorithm based on a well-known DREM approach to detect switching time and preserve time alertness with adjustable detection delay. Secondly, despite the fact that a switching signal function is unknown, the adaptive law is derived that provides global exponential convergence of the regression parameters to their true values in case the regressor is finitely exciting somewhere inside the time interval between two consecutive parameters switches. The robustness of the proposed identification procedure to the influence of external disturbances is analytically proved. Its effectiveness is demonstrated via numerical experiments, in which both abstract regressions and a second-order plant model are used.Comment: 31 pages, 12 figure

    Probabilistic Line Searches for Stochastic Optimization

    Full text link
    In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent.Comment: Extended version of the NIPS '15 conference paper, includes detailed pseudo-code, 59 pages, 35 figure

    Optimization based energy-efficient control inmobile communication networks

    Get PDF
    In this work we consider how best to control mobility and transmission for the purpose of datatransfer and aggregation in a network of mobile autonomous agents. In particular we considernetworks containing unmanned aerial vehicles (UAVs). We first consider a single link betweena mobile transmitter-receiver pair, and show that the total amount of transmittable data isbounded. For certain special, but not overly restrictive cases, we can determine closed-formexpressions for this bound, as a function of relevant mobility and communication parameters.We then use nonlinear model predictive control (NMPC) to jointly optimize mobility and trans-mission schemes of all networked nodes for the purpose of minimizing the energy expenditureof the network. This yields a novel nonlinear optimal control problem for arbitrary networksof autonomous agents, which we solve with state-of-the-art nonlinear solvers. Numerical re-sults demonstrate increased network capacity and significant communication energy savingscompared to more na ̈ıve policies. All energy expenditure of an autonomous agent is due tocommunication, computation, or mobility and the actual computation of the NMPC solutionmay be a significant cost in both time and computational resources. Furthermore, frequentbroadcasting of control policies throughout the network can require significant transmit andreceive energies. Motivated by this, we develop an event-triggering scheme which accounts forthe accuracy of the optimal control solution, and provides guarantees of the minimum timebetween successive control updates. Solution accuracy should be accounted for in any triggeredNMPC scheme where the system may be run in open loop for extended times based on pos-sibly inaccurate state predictions. We use this analysis to trade-off the cost of updating ourtransmission and locomotion policies, with the frequency by which they must be updated. Thisgives a method to trade-off the computation, communication and mobility related energies ofthe mobile autonomous network.Open Acces

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method
    corecore