
Integrated Process and Control System

Design

D. Murray. Laing

Thesis presented for Degree of Doctor of Philosophy

University of Edinburgh

1995

H

Declaration

I declare that this thesis was composed by myself and that it describes my own

work except where specifically stated in the text. The work was carried out be-

tween October 1987 and October 1993 in the Department of Chemical Engineering

at the University of Edinburgh under the supervision of Prof. J.W.Ponton.

D . Murray. Laing

Acknowledgements

I would like to thank all the people of the ECOSSE research group for their help

and support. Special thanks are due to Douglas Hutton who was a valuable

sounding board for ideas in the early years of this work, Neil Skilling for the

computing support he has provided and Eric Fraga and Rama Lakshmanan for

proof reading this thesis. I must also thank Prof. Ponton for his patience and

tolerance in supporting this work. Finally I wish to thank my wife, Teresa, whose

support while I was flnishingthis thesis was invaluable.

Abstract

The subject of this thesis is the integration of process and control system design.
A review is provided of the methods that have been developed to assess the op-
erability of a process design which have been the principal focus for process and
control system integration. Such methods are only part of the solution to design
integration. Concurrent design of the process and its control system is proposed
as the mechanism for more complete integration.

To support concurrent design a framework for hierarchical design of a pro-
cess operating system is developed. A process operating system is defined as the
complete collection of control schemes, alarms and operating procedures used for
managing the process through all phases of operation. The design of an integrated
operating system is approached by decomposing the problem into a hierarchy of
operating tasks. Three classes of operating task are identified: regulatory tasks
for optimising operation at a steady state, transition tasks for transferring the
process from one regulatory state to another and executive tasks which manage
the response to discrete events such as alarms and failures.

Operating tasks define the requirements for optimisation and failure manage-
ment. The implementation of an operating task is achieved by the design of
a control scheme for which a generic structure has been developed. The struc-
ture emphasises the use of explicit models with parameter estimation and control
distribution blocks providing the interface between the abstract model used for
optimisation and the reality of the underlying system.

A knowledge based representation has been developed to support operating
system design. Particular attention has been given to the problem of supporting
concurrent design of the process and operating system. A representation has
been developed that links process design alternatives with operating system design
alternatives by their association with a common operating task.

A case study that considers the design of a hierarchical operating system for
a hydrofluoric acid plant is included in this thesis. The study demonstrates how
the operating system may be developed in step with the process design. The
hierarchical development of the process is used to help formulate the operating
tasks for the operating system design. Through design of the operating system it
is possible to provide focussed feedback on the process operability requirements.
The final operating system structure demonstrates how failure management and
optimisation are integrated together.

Concurrent design makes it easier to formulate focussed operability studies
during the preliminary design of the process which are valuable in avoiding po-
tential operability problems. By timely identification of operability requirements
more appropriate process designs can be developed. Integrated design of a process
and its operating system is thus a significant aid to designing operable plants.

Table of Contents

Introduction
	

1

1.1 The divide between process and control system design1

	

1.2 	Defining Process Operability2

1.3 Integrated Design of a Process and its Operating System4

A Review of Process Operability Analysis 	 6

2.1 Review of Flexibility Analysis Techniques7

2.1.1 Assessing The Degree of Flexibility in a Design8

2.1.2 Optimal Design for a Fixed Amount of Flexibility13

2.1.3 Design with Optimal Degree of Flexibility15

2.1.4 Stochastic Evaluation of Flexibility16

2.1.5 Flexibility Analysis For Heat Exchanger Networks17

2.2 Dynamic Resilience19

2.2.1 Use of the Internal Model Control Structure20

2.2.2 Non-minimum Phase Elements22

2.2.3 Treatment of Constraints on Control Action26

2.2.4 Use of Extended Controllability Definitions28

1

2.2.5 Application of Steady-state Interaction Measures32

2.2.6 	Dynamic Robustness34

2.3 Operating Procedure Synthesis38

2.3.1 A Definition of Operating Procedure Synthesis39

2.3.2 	Synthesis Methods39

2.4 Summary of Operability Analysis41

2.4.1 	Flexibility42

2.4.2 	Dynamic Resilience42

2.4.3 	Operating Procedures 43

2.4.4 Aiding Operability Analysis by Integrating Design43

3. Concurrent Hierarchical Process and Operating System Design 45

3.1 Introduction45

3.2 Definition of a Process Operating System46

3.3 Hierarchical Problem Solving & Design48

3.3.1 Applying Hierarchical Problem Solving to Design51

3.3.2 	Hierarchical Process Design53

3.3.3 Hierarchical Control System Design54

3.4 A Framework for Hierarchical Operating System Design55

3.5 Structuring the Operating Task Specification55

3.6 Defining the Fundamental Operating Tasks58

3.7 The Functional Components of an Operating Task61

3.8 A Preliminary Design Case Study66

3.8.1 	Overview . 	 66

3.8.2 	Outline of Steps in Operating System Development 67

3.8.3 	Process Outline 68

3.8.4 	Refinement of Regulatory Tasks 69

3.8.5 	Physical Relations 69

3.8.6 	Physical Limits 71

3.8.7 	Failure Events 72

3.8.8 	External Demands 72

3.8.9 	Operating Strategy 73

3.8.10 	Operability Analysis 78

3.9 Developing Transition Tasks 79

3.10 Development of the Executive Tasks 81

3.11 Knowledge Representation for Operating System Design 82

3.12 Summary 83

4. Operating System Design for a Hydrofluoric Acid Plant 	85

	

4.1 	Input-Output Analysis85

4.1.1 	Production Task Modelling86

4.1.2 	Failure Management89

4.1.3 Demand Management - Stock Control91

4.1.4 	Operating task decomposition95

4.1.5 	Startup and Shutdown97

	

4.2 	Recycle Analysis 98

4.2.1 	Preliminary Process Optimisation99

4.2.2 On-line Optimisation of Section P2101

4.2.3 Determining Necessary Safety Margins 104

4.2.4 	Secondary Operating Strategies107

4.2.5 	Start up Procedure107

4.3 Primary Separation System108

4.4 	Reactor System112

4.5 	The Rectification Section113

4.6 Final Operating System Design114

4.7 Conclusions from Case Study115

5. Summary, Conclusions and Future Directions 	 118

5.1 	Summary 118

5.2 Conclusions and Future Directions120

A Bibliography
	 122

B. Derivation of Models for Case Study
	

129

13.1 Storage requirements for constant production'rate 129

13.2 Storage requirements with flexible production rates130

13.3 Derivation of dynamic model for pressure control130

13.4 Dynamic relation between conversion and reactor wall temperature 132

C. A Knowledge Representation for Operating System Design 	134

C.1 Overview of the Knowledge Representation Constructs134

C.2 General Support for Hierarchical Design138

C.3 Coordinating Process and Operating System Development143

C.3.1 Using a Combined Design Class143

C.4 Decoupling the Process and Operating System Hierarchies146

C.5 Operating Systems, Operating Tasks and Systerii Models147

C.6 Relating Process Designs with Operating Tasks149

C.7 Refinement of the Process and Operating System152

C.8 Representing the Design of an Operating System155

C.9 Combined Process and Operating System Decomposition159

C.10 Decomposition of the Operating System Alone164

C.11 Summary 166

D. Glossary and Nomenclature
	

167

D.1 	Definitions167

D.2 Abbreviations...............................168

D.3 Nomenclature for Operability Review168

D.4 Nomenclature for Case Study169

List of Figures

1.1 Concurrent Integrated Design 	 . 5

2.1 Expanding hyper-rectangles for two variable case11

2.2 The internal model control structure20

2.3 Correspondence between pole locations and dynamic stability . . . 23

2.4 Combination of slow and fast dynamics forming an inverse response 24

3.1 Problem solving using abstraction only49

3.2 Problem solving using abstraction and decomposition50

3.3 Representing solution alternatives as part of the decision hierarchy . 52

3.4 Recombining design alternatives....................52

3.5 A simple operations system structure59

3.6 A more sophisticated preliminary operating system design61

3.7 Core structure of a control scheme62

3.8 Control scheme structure with property estimation 63

3.9 Complete Functional Structure of a Control Scheme64

3.10 A Preliminary Block Flowsheet68

3.11 Enhanced Preliminary Block Flowsheet69

vi

3.12 Block flowsheet with production task decomposition overlayed . . . 76

3.13 Decomposition of Transition Mode81

	

4.1 	Process input/output structure . 86

4.2 Process with failure prevention ioops90

	

4.3 	Stock control strategy 1 92

	

4.4 	Stock control strategy 2 93

4.5 Two part process decomposition94

4.6 Production task decomposition96

4.7 Decomposition of Plant Startup97

4.8 Recycle Structure of HF Process98

4.9 Merging of process decompositions99

4.10 Operating task decomposition for production optimisation103

4.11 Secondary operating tasks for pressure recovery108

4.12 Startup of Reactor and primary separation systems109

4.13 Structure of the primary separation system110

4.14 Expanded design of separation operations111

4.15 Reactor system design 113

4.16 Rectifier section design 114

4.17 Revised operating task hierarchy 115

4.18 Complete ElF process with controls 116

C.1 A simple representation for design hierarchies139

C.2 Restructuring a design hierarchy140

C.3 Explicit representation of design decomposition141

C.4 A simple production system hierarchy144

C.5 Production system hierarchy after mode decomposition of the op-

erating system145

C.6 The relations between a process design and its models151

C.7 Refinement of a process and it models152

C.8 Initial state of process and operating system hierarchies153

C.9 Operating system refinement using projected process model154

C.10 Refinement introducing stricter operability requirements154

C.11 Refinement introducing a separate system model155

C.12 Relationships for a non-abstracted design158

C.13 Simple re-use of a decision strategy158

C.14 Decomposition of the process160

C.15 Decomposition of the fundamental model161

C.16 Decomposition of the goal operating task162

C.17 Decomposition reusing preliminary design as the supervisory scheme 163

C.18 Global refinement of a decomposed operating task164

C.19 Specialisation of decomposed operating tasks165

C.20 Recomposing the refinement to a task decomposition166

Chapter 1

Introduction

The subject of this thesis is the integration of process and control system design.

A primary motivation for integration is the production of process designs that

take appropriate account of how a process will be operated. The next chapter will

review the current research on methods for evaluating the operability of a process

design. Following the review a framework for the hierarchical design of a 'process

operating system' is presented. A case study on the design of a hydrofluoric

acid plant illustrates how the framework is used to develop a strategy for process

operation in step with the hierarchical design of the process.

1.1 The divide between process and control sys-

tern design

The conventional perspective on the development of a process is that the design of

the control system does not occur until the process itself is well developed. By this

stage most of the significant process design decisions have already been commit-

ted. If there is a control problem the main recourse is to use more sophisticated

control schemes. Such schemes however are more costly to design, implement, and

maintain. There are times when modification of the process can provide a better

1

Chapter 1 	 Introduction 	 2

solution. An example is provided by Ryskamp [1] who compared implicit and

explicit decoupling of distillation control systems. One of the main observations

of the work was that the implicit solution (ic. designing to avoid the interaction)

in general provided a more robust means of achieving decoupling.

There are two areas of activity directed at bridging the divide between process

design and control system design. The first is the development of methods to eval-

uate the inherent operability of a process design. The second is the development

of new approaches to design that integrate the development of the process and

control system.

1.2 Defining Process Operability

Operability is an umbrella term used to encompass all the properties that deter-

mine whether a process can meet the real time demands that will be made of it. A

'real time demand' may arise from a variety of sources. They can be due to inten-

tional and predictable operations such as switching product grades. Alternatively

they can be due to unavoidable uncertainty in the final operating conditions eg.

variability in catalyst activity. Douglas and Fisher [2] refer to these as the envi-

ronmental connections of the process and divide them into six categories:

1. Product Quality

2. Production Rate

3. Flows, composition, pressure & temperature of raw materials

4. Flows, composition, pressure & temperature of utilities

Fuel

Steam

Cooling Water

5. Process constraints

6. Internal Connections:

(a) Catalyst Deactivation

Chapter 1 	 Introduction 	 3

Exchanger Fouling

Equipment Wear

Each environmental connection represents a factor over which the designer has

little control. To obtain a base case design it is necessary to make assumptions

about each of these connections. The real time demands arise when operation

deviates from these assumptions.

The most common approach used to avoid operability problems is to add safety

margins or overdesign factors to the design. While the use of design margins is a

relatively simple approach to apply it has distinct limitations:

• Overdesign factors are usually quite arbitrary and it is not easy to select the

proper amount of over design to match the desired degree of operability, nor

where best to apply the overdesign.

• Overdesign tends to consider units in isolation whereas operability is a prop-

erty of the whole plant and so is better addressed in the scope of the whole

plant. This is particularly the case in highly integrated plants where inter-

actions between units are more numerous.

Validating that a process has sufficient operability has been dependent on sim-

ulation, either steady state or dynamic. Simulation, however, can also be an

arbitrary process. One of the main problems faced is the choice of suitable dis-

turbances to test operability, ie. what is the worst possible condition with which

to test the plant. Intuitive judgement is relied upon to identify the worst possible

case but, as Grossmann and Moran [3] illustrate, proper analysis can sometimes

defy intuition. To provide confidence in the operability of a plant several simu-

lation scenarios would have to be run which implies a large consumption of the

designer's and computer's time.

There are significant benefits to be gained by a systematic approach to process

operability. The research in this field has divided into two general categories:

Chapter 1 	 Introduction 	 4

• Flexibility: a flexible plant is capable of maintaining feasible operation for

the defined range of disturbances. The evaluation of flexibility is based on

steady state process models.

• Dynamic Resilience: also referred to as controllability. Dynamic resilience

measures are based on the analysis of the plant dynamics and how these

affect the ease of control.

The methods developed for analysis and design in both these areas are reviewed

in chapter 2. The tools that have developed in these areas provide measures of the

inherent operability limitations of a process design. What is often not considered

is how they will be utilised during the process of design.

1.3 Integrated Design of a Process and its Op-

erating System

Flexibility and controllability analysis can help the process engineer develop de-

signs that are easier to operate but the burden is on the process engineer to apply

these tools and interpret the results. Integrated process and control system design

is a way of giving the control engineers a more active role in the development of

the process.

The philosophy underlying integrated design is to involve all disciplines in

the development of the complete design (figure 1.1). All facets of chemical plant

design (the process, the control system, safety procedures, etc.) are developed

concurrently. Integrated design can ease the burden on the process designer. For

example, the control system designers are more likely to have the skills suited to

applying and interpreting many of the controllability analysis tools. In addition

concurrent desigil has the potential to make the development of the control system

Chapter 1 	 Introduction 	 5

Mechanical

Process
	Engineers

Engineers /

Complete Plant Design

Flowsheet) (Contr"
ç System)

Hazard
Procedures

-

Control
Engineers; /Civil

Engineers;

Figure 1.1: Concurrent Integrated Design

easier. If the control engineer's first sight of the process is only when the process

flow diagram is fully developed the amount of detail can be overwhelming. By be-

ing involved in the evolution of the process it is easier to develop an understanding

of the design intent and develop a control strategy to match.

In this thesis concurrent design is considered on a broader scope than just the

regulatory control system. The concept of a process operating .system is intro-

duced. A process operating system is the complete collection of control schemes,

alarms and procedures used in managing process operation. The goal is to de-

velop an integrated approach for complete operations management. A framework

for concurrent process and operating system design is developed in chapter 3.

As a demonstration of this framework a case study on the design of a hydroflu-

oric acid plant is presented in chapter 4. The result is an operating policy that

addresses both failure management and process optimisation. In addition the case

study illustrates how a more complete picture of the operating requirements for a

process may be developed from the initial stages of design.

Chapter 2

A Review of Process Operability

Analysis

In this chapter we will provide an overview of the methods that are available to

assess and improve process operability. The review has been divided into three

principal sections:

• Flexibility: steady state analysis of operation feasibility for variations from

nominal design conditions.

• Dynamic Resilience: the impact of process design on the regulatory con-

trol of a process.

• Operating Procedures: the methods for planning major changes in oper-

ation such as startup or shutdown.

Chapter 2 	 A Review of Process Operability Analysis 	 7

2.1 Review of Flexibility Analysis Techniques

Process flexibility is treated as a steady state problem. The goal is to ensure

that process operation is feasible for the full range of expected deviations from

the norm. Flexibility is limited by the ability of a plant to meet the constraints

that arise from safety, environmental, and equipment restrictions. The treatment

of these constraints is an important aspect of flexibility analysis. The constraints

that a designer would apply at the nominal design conditions do not necessarily

correspond to those that would be applied during departures from the nominal

conditions. Grossmann and Moran [3] suggest a division of constraints into two

categories:

• Hard Constraints: constraints which should never be violated (eg. product

specifications, safety)

• Soft Constraints: constraints which are more heuristic guidelines rather than

rigid rules (eg. minimum temperature approach).

At the nominal design point both sets of constraints would be applied, beyond

this point only the hard constraints are applied.

Before considering the possible ways of tackling flexibility it is first necessary

to express the design problem in a suitable form. A general mathematical repre-

sentation expresses the design problem as a set of non-linear equalities, and a set

of inequalities, viz

h(d,u,x,p) = 0 	 (2.1)

g(d,u,x,p) < 0 	 (2.2)

where h 	vector of equalities, eg. heat & mass balances.

Chapter 2 	 A Review of Process Operability Analysis 	 8

g 	vector of inequalities, eg. product specifications

d 	vector of design variables

u 	vector of control variables

x 	vector of state variables

p 	vector of uncertain parameters

For the nominal conditions for p the optimal design is given by,

min C (d, u, x, p) 	 (2.3)
d,u

where C 	Cost Function

The distinction between design variables and control variables is important, since

only the control variables may be manipulated after a plant is built to cope with

variations in the uncertain parameters. The control variables selected do not have

to be those that will ultimately be used for control, but must be of sufficient

number to eliminate any degrees of freedom left once d and p are specified.

There are three levels at which flexibility is typically addressed:

Assessment of the degree of flexibility: Determine how much variation in the

uncertain parameters a design can cope with.

Optimal design for specified flexibility: Determine the design which can cope

with specified parameter variations in the most cost effective way.

Design for optimal degree of flexibility: Balance the operating benefits of

increased flexibility against increased capital cost.

Each will be considered in turn in sections 2.1.1 to 2.1.5.

2.1.1 Assessing The Degree of Flexibility in a Design

Although this problem would seem to be basic to any form of flexibility analysis,

it has only been tackled by a few workers. Most of the studies have been addressed

Chapter 2 	 A Review of Process Operability Analysis 	 9

specifically to the problem of designing flexible heat exchanger networks, a topic

that will be discussed later. A general method for calculating a 'flexibility index' is

developed by Grossmann and Swaney [4]. Their work provides some fundamental

insights on the analysis of flexibility.

The first step is to obtain a description of the feasible region of operation for

a fixed plant design. The set of equalities, h, may be rearranged to express the

state variables, x, as a function of d, u and p, viz

h(d,u,x,p)=O 	x=x(d,u,p) 	 (2.4)

Substituting for x into the set of inequalities, g, gives a new set of inequalities, f,

dependent on d, u & p only, viz.

g(d,u,x,p) 	0 = g(d,u,x(d,u,p),p) < 0 	 (2.5)

= f(d,u,p) < 0 	 (2.6)

Thus, when the design variables, d, are known the feasibility of a design for a given

value of the parameters, p, is determined by the existence of a set of controls, u,

such that f(d, u,p) is less than or equal to zero. The feasible region, R, for the

parameters, p, is defined by,

	

R = { p I [3 U If(d,u,p) < 0J} 	 (2.7)

= R = {p I W(d,p) 0} 	 (2.8)

where, W(d,p) = min rnaxf(d,u,p)
U 	jEJ

J = Index set of function vector f

The function 'T!(d,p) forms a basic measure of feasibility (:5 0) or infeasibility

(> 0). The region R provides the basic information on flexibility. Visualising this

region once the dimension of p exceeds 3 is difficult. An approach proposed by

Arkun and Etzkorn [5], is to generate plots of the feasible region for selected pairs

of parameters.

Chapter 2 	 A Review of Process Operability Analysis 	 10

Instead of trying to describe the shape of the feasible region Grossmann and

Swaney [4] attempt to identify the maximum amount by which each uncertain

parameter may vary independently. The approach is analogous to trying to find the

largest hyper-rectangle which may fit within the feasible region. The proportions

of the hyper-rectangle are determined by the upper and lower bounds on each

parameter and a size index S such that the set of enclosed parameters P is given

by

P(S) {P
 I

(p - Sp) p (pV + SLp+)} 	 (2.9)

where, Lp

PU

-

-

Nominal Parameter Value

Expected Upper Bound

Expected Lower Bound

For the simple two variable case the hyper-rectangle is illustrated in figure 2.1.

It can be seen that F(S) expands out from the nominal point, as S increases. An

approximation of the feasible region is given by the largest hyper-rectangle that

fits within it. The size index S is treated as a measure of the potential flexibility

of the chosen design relative to the nominal disturbance region. The flexibility

index F is defined by,

F = maxS s.t. F(S) C R 	 (2.10)

Designs for which F > 1, have sufficient flexibility to cope with parameter devi-

ations equal to, or in excess of, the specified bounds. If 0 < F < 1 the design

can only cope with a maximum fraction F of the expected deviations. The anal-

ysis requires only minimal information about the parameter uncertainty, namely

a nominal point and upper and lower bounds.

The efficient computation of F is not a trivial problem as becomes clear by

considering how the requirement that F(S) be enclosed by R may be tested math-

Chapter 2 	 A Review of Process Operability Analysis
	 11

Simplified Feasible

	

Region,, 	 Design Constraints

I

! 	 / 	Nominal
! 	 Design /

\• •i---

	

I 	:

	

• 	 1/ 	 '.1 	 /

'N

	

I 	 \

/ Feasible 	 Design Space
Region

Design Parameter A

Figure 2.1: Expanding hyper-rectangles for two variable case

ematically,

P(S)cR

VpEP(8), W(d,p)<O

= max min max f3 (d,u,p) < 0
pEP(S) U 	jEJ

(2.11)

(2.12)

The max-mm-max formulation generally results in non-differentiable goals leading

to a diflcult non-linear programming problem. The additional goal of maximising

6 further adds to the complexity of the problem.

Some simplification is possible by considering what Grossman refers to as the

critical points of the disturbance region. These are the points on the hyper-

rectangle which become infeasible first, and may be regarded as the points at

which the operating conditions are worst. The formulation above involves an

Chapter 2 	 A Review of Process Operability Analysis 	 12

explicit search for these critical points. If they can be predicted beforehand one

layer of optimisation can be simplified.

An intuitive assignment of critical points is to select the extreme values of

p which correspond to the corners of hyp er-rect angle. The assumption is valid

provided the shape of the feasible region is convex. It has been demonstrated,

in particular for heat exchanger networks, that such conditions do not always

hold and intuition has not been able to identify the critical points. Unfortunately

unless the problem is of special mathematical structure it is not possible to verify

whether critical points will occur at the vertices. However, if this assumption is

valid the evaluation of F can be simplified to,

F = max6k .s.t. Vk E V, f(d,u,p(Sk)) 0 	 (2.13)
U,Sk

where, p(Sk)
= N + 8kP

= direction of vertex k

V = Set indexing all vertices

Even in this form the problem can be computationally intensive. The number of

vertices to be considered will increase exponentially with problem size. Also there

is no easy way to guarantee that the critical points will correspond to the vertices.

These limitations makes the formulation unsatisfactory. Grossmann and Floudas

[61 present a reformulation of the flexibility index as a mixed integer programming

problem which, it is suggested, is capable of dealing with the problems of non-

convex feasible regions, and for convex regions is expected to use fewer search

points than a vertex search.

Considered on the basis of probabilities the use of a hyper-rectangle to approx-

imate the feasible region is a conservative approach. The probability of a set of

parameters deviating to their maximum or minimum simultaneously is small. It

is more likely to get peaks in single parameters. A measure of flexibility that con-

siders only single peaks has been proposed by Morari et al. [7]. Their 'resilience

Chapter 2 	 A Review of Process Operability Analysis 	 13

index' is a measure of flexibility for heat exchanger networks. A polytope is used

rather than a hyper-rectangle to describe the parameter space. The vertices of the

polytope expand out parallel to the parameter axes and correspond to extremes

of individual parameters rather than extremes of combinations of parameters.

2.1.2 Optimal Design for a Fixed Amount of Flexibility

Having established a means of measuring flexibility, a natural extension to the

problem is to consider the most effective way of achieving a desired level of flexi-

bility. The problem here is to optimise the economics of the design while ensuring

that the plant will still be capable of operating over the full range of expected

parameter values. The optimal design problem has received significantly more

attention than the previous question of measuring how much flexibility a process

has. Many of the early formulations, which are reviewed by Grossmann et al. [8],

failed to properly express the problem. For example, no distinction would be made

between the control and design variables which would lead to an optimisation of

the form,

minEr {C(d,u,x,p)} 	 (2.14)
d,u

s.t. 	h(d,u,x,p) = 0

g(d,u,x,p) 	0

where, E 	= Expected value function based on range of p

An optimisation of this form results in over conservative designs because no al-

lowance is made for the fact that the control variables may be adjusted to reduce

the effect of parameter variations. A more appropriate formulation is to include

the control variables in an inner optimisation of the cost function, viz

minEr fminC(d,u,x,p)} 	 (2.15)

s.t. h(d,u,x,p)=0

g(d,u,x,p) < 0

Chapter 2 	 A Review of Process Operability Analysis 	 14

The two-stage optimisation is sometimes referred to as the 'Here and Now' prob-

lem. While this formulation will give the least conservative design, a rigorous

solution for any problem of realistic size is generally infeasible. In order to cope

with problems of significant size a few workers have searched for suitable decom-

position strategies. The approaches divide into two groups,

Specify Control Strategy : ie. Johns and Lakshmanan [9] specify a control

objective of maintaining constant flows between process sections thus reduc-

ing the interaction between sections so that each section may be optimised

separately.

Reduce to a Multi-period Design Problem : ic. consider only a discrete

set of points within the parameter space and optimise design for this set of

operating points. To select a representative set of operating points Malik and

Hughes [10] use a stochastic sampling technique. Grossmann and Moran [3]

however leave the selection to the designer.

Treatment of the constraints in these formulations varies significantly. In the work

of Malik and Hughes [10] feasibility is only checked for the randomly selected set of

parameter points. In the work of Crossmann and Moran [3] explicit consideration

is given to ensuring feasibility for all possible parameter realisations. All vertices

of the parameter space are included in the set of operating points as estimates

of the critical points of the feasible region. However, the approach will only be

valid if the feasible region has a convex shape, otherwise an alternative technique

to find the critical points would be required which would further increase the

computational effort required for this problem.

In the work of Johns and Lakshmanan [9] a quite distinct approach to uncer

tainty is taken. The paper builds upon earlier work of Johns et al.[11, 121. The

approach taken is to realistically cost every possible outcome of the uncertain pa-

rameters and optimise the process design hierarchically taking into account the full

Chapter 2 	 A Review of Process Operability Analysis 	 15

range of possible outcomes and their probabilities. If a particular outcome would

result in the process failing to meet its requirements that would be reflected in

the expected value. Thus while the approach does not aim to ensure feasibility

for all possible parameter realisations the potential impact of infeasibility can be

taken into account in the optimisation. The objective function considered in Johns

and Lakshmanan [9] incorporates a constraint which specifies a lower limit on the

probability of feasible operation for the process design. For example the designer

may require that there be a 90% chance of process operation being feasible.

A variation on the problem of optimal design for fixed flexibility is the opti-

mal redesign of a chemical process to increase its flexibility which is addressed

by Pistikopoulos and Grossmann [13]. They show that for a linear model there

exist analytical properties for flexibility that make it possible to formulate an ef-

ficient MILP problem. The MILP reformulation avoids problems of embedded

optimisations.

Even assuming that a feasibility test could be done efficiently the above rou-

tines tend to isolate the designer from the decisions concerning the design. Instead

it may be preferable to develop a more interactive approach, with the computer

providing guidance only. If satisfactory techniques can be developed for optimal

design with fixed flexibility, the next step would be to consider how much flexibility

should actually be incorporated in a process design.

2.1.3 Design with Optimal Degree of Flexibility

The progression from optimal design with fixed flexibility is to deterniine the

optimal degree of flexibility. From the difficulties encountered with the previous

problem it is apparent that this is far from a trivial problem. While it is possible

to assess the cost of flexibility in terms of extra capital costs, evaluating the

benefits of extra flexibility is more difficult. An approach based on stochastic

analysis is presented by Pistikopoulos and Grossmann [14]. The approach utilises

Chapter 2 	 A Review of Process Operability Analysis 	 16

analytical properties derived for the flexibility of linear process models to simplify

the construction of a trade off curve of retrofit costs against flexibility. Stochastic

analysis is then used to determine the expected revenue for particular points on

this curve.

2.1.4 Stochastic Evaluation of Flexibility

Instead of working simply with bounds on parameters a more meaningful measure

of flexibility might be gained by stochastic analysis. Pistikopoulos and Mazzuchi

[15] have developed a stochastic flexibility index which measures the probability

of feasible operation. Asbjornsen [16] developed a systems based analysis of oper-

ability which decomposed the the evaluation of operability into three probability

measures:

• Reliability: the probability of feasible operation. Reliability may be mea-

sured, for example, in terms of the mean time between failures. It will be

dependent not only on the feasibility of control but also the reliability of the

process equipment.

• Availability: the proportion of time that the plant is available for produc-

tion. Availability is closely related to reliability. It is also affected by the

time it takes to bring the process from a state of failure back to normal

operation.

• Performance: the probability of producing to the standards required.

However Asbjornsen's approach to process operability has received little further

development.

Chapter 2 	 A Review of Process Operability Analysis 	 17

2.1.5 Flexibility Analysis For Heat Exchanger Networks

So far the discussion has focussed on techniques for flexibility analysis that are

of general application. A result of their generality is that their solution becomes

complex. An alternative approach is to develop tools focussed on particular sources

of inflexibility. One area which has received such a treatment is the design of

flexible heat exchanger networks (HEN).

Some of the early work on flexibility in HEN was performed by Morari and

coworkers. In Morari et at. [17] a synthesis procedure was proposed based on

merging the HEN designs obtained from considering certain special cases. Each

case was designed to "subject a different part of the process to a severe test".

For example, one test is to require maximum cooling from the network. The

test is analogous to a limited inspection of the corner points of the parameter

range which implies the same restriction to convex feasible regions. A corner

point theorem was developed by Morari and Saboo [18] which laid out sufficient

conditions to guarantee that the feasible region would be convex (eg. constant heat

capacity flowrate). If a HEN problem satisfied these conditions it was safe to test

its flexibility using only the corner points of the parameter space. The corner point

theorem was used as part of a synthesis procedure which built upon the ideas of

design merging developed in the first paper [17]. Morari et at. [19] reformulated

the procedure as a mixed integer program for the automatic synthesis of flexible

heat exchanger networks.

The problem of optimal design for flexibility is addressed by Linhoff and Kot-

jabasakis [20]. The approach taken considers redesign by incorporation of con-

tingency heat exchange area, but not changes in network structure. Alternative

strategies for absorbing disturbances into the network are identified by the use

of sensitivity tables. The best strategy is then chosen by considering the eco-

nomic trade-offs. The optimisation is nested within another trade-off study that

determines the optimum amount of flexibility. One of the main limitations of the

Chapter 2 	 A Review of Process Operability Analysis 	 18

procedures is its inability to deal effectively with non-convexities in the feasible

region. The conditions necessary to satisfy Moran's 'corner point theorem' re-

strict significantly the types of problem that can be considered. To overcome this

limitation Calandranis and Stephanopoulos [21] tried to identify the root causes

of non-convexity in HEN problems. They observed that there were two basic

mechanisms which led to non-convexity:

Intrinsic Mechanism: a feasibility constraint of a critical exchanger is non-

linear. Critical exchangers are defined as the ones being closest to infeasi-

bility.

Pinch Associated Mechanism: a result of disturbances being of sufficient

magnitude to shift the location of the pinch to a new position in the network.

The effect is equivalent to a discontinuity in the feasibility constraints.

Based on these observations it was possible to predict whether non-convexity would

be a problem for particular disturbance cases, and to develop design strategies to

work around these problems. In this way by giving specific consideration to the

non-convexity mechanisms it is possible to provide the designer with a greater

understanding of the limitations in a design.

An argument against treating the flexibility of a HEN in isolation is that the

interaction between the network and the rest of the process can not be ignored.

Calandranis and Stephanopoulos [21] have considered part of this problem. The

disturbances entering a network are often inter-related as a result of the inter-

connections within the whole process. Therefore the disturbances that should be

considered are not those entering the HEN but the root disturbances entering the

process as a whole. Calandranis and Stephanopoulos address this by grouping

streams into clusters such that streams in different clusters are independent of

each other. The number of independent disturbances that can occur within a

network is then equal to the number of clusters.

Chapter 2 	 A Review of Process Operability Analysis 	 19

2.2 Dynamic Resilience

Flexibility analysis establishes an outer bound on the feasibility of process opera-

tion. It is focussed on determining whether a set of feasible steady states exists.

Dynamic resilience is concerned with how well that steady state can be maintained

in a dynamic environment. There are three primary criteria to be addressed when

considering the dynamic behaviour.

• Stability: a primary consideration for any plant.

• Accuracy: fast, smooth response to the elimination of errors.

• Robustness: insensitivity of stability and accuracy to uncertainties such as

model errors.

Limits are placed on these by the process design, the control structure, and the

control algorithms. Dynamic resilience analysis is concerned with the limitations

on dynamic performance inherent in the process design. Three approaches to this

problem will be considered:

Use of the Internal Model Control (IMC) Structure: The IMC structure is

used to provide a framework for analysis.

Extensions of Standard Controllability Definitions: Standard definitions of

controllability from control theory are refined to provide useful analysis tools.

Application of Steady State Measures: Simple ratios such as the relative

gain, based on steady state information, are considered for fast screening of

options.

Chapter 2 	 A Review of Process Operability Analysis
	

011

2.2.1 Use of the Internal Model Control Structure

The block diagram for the internal model control (IMC) structure is shown in

figure 2.2. In this diagram the variables are as follows,

Feedback 	 ii I 	 d
r r

+
Model 	-6 G

d

Figure 2.2: The internal model control structure

y process output vector

r setpoint input vector

d disturbance vector

Gc control system transfer matrix

G actual process transfer matrix

G process model transfer matrix

d estimate of disturbance vector

The rationale behind this structure can be seen by considering the relationship

between u, d, and d, viz

d = (G -)u + d 	 (2.16)

If the error between process behaviour and modelled behaviour is nil (ie. (G—ã) =

0) then the model comparison can derive the disturbances directly from the process

outputs. The IMC structure was used in Moran [25] to highlight two fundamental

observations concerning feedback control:

Chapter 2 	 A Review of Process Operability Analysis 	 21

• Any feedback controller contains an approximate inverse of the plant transfer

matrix.

• Closed ioop control quality is limited by system invertibility.

The first observation can be confirmed simply through rearrangement of the block

diagram. The second can be derived by considering the input/output relationship

of this system in the Laplace domain, viz.

y=GG(I+(G—C)) 1 (r—d)+d 	 (2.17)

If it is assumed that a perfect model is used (ic. C = G)then this simplifies to,

y = GG(r - d) + d 	 (2.18)

So to achieve perfect control we require,

(2.19)

which is equivalent to the second statement above. Put in literal terms to achieve

perfect control it is necessary that the behaviour of the process can be exactly

predicted in proper time. The dynamic resilience therefore may be expressed as

the ability to implement a feedback controller which is equivalent to the plant

inverse.

A feedback controller is limited by the requirement that it be stable, and

physically realisable. Dynamic resilience therefore is limited by the stability and

realisability of the plant model inverse. Factoring C into its invertible and non-

invertible parts, viz.

C=G+G- 	 (2.20)

where, C_ 	Invertible part

Noninvertible part 	 (2.21)

Chapter 2 	 A Review of Process Operability Analysis 	 22

Then the best possible control design is given by, G = G_ and the best achievable

control by

y = G(r - d) + d 	 (2.22)

Therefore the closer G+ can be made to identity the better the achievable control.

There is no unique solution to this factorisation. The best factorisation will depend

on relative importance of outputs, and the sources of non-invertibility. The factors

which prevent the full implementation of the plant inverse as a controller may be

divided into two classes:

• Non Minimum Phase Elements: either time delays which to be inverted

require predictive control, or right half plane (RHP) zeroes (often associated

with inverse response) which if inverted create unstable control elements.

• Physical Constraints on the Manipulated Variables: Preventing the full con-

trol action to be applied.

Treatment of these two classes of non-invertibility follows different lines, and so

will be discussed separately here.

2.2.2 Non-minimum Phase Elements

The term non-minimum phase (NMP) derives from frequency response analysis

of systems. If a system exhibits non-minimum phase behaviour then there exists

another system that can produce the same amplification but with a smaller phase

lag. For example, a system which can be modelled simply by a constant gain

involves no phase lag. When the system has a time delay added to it the gain

remains the same but a phase lag is added to the frequency response. Thus a

system with a time delay exhibits non-minimum phase behaviour.

As well as time delays a general source of non-minimum phase behaviour are

systems that possess right half plane (RHP) zeroes. The zeroes of a plant are

Chapter 2 	 A Review of Process Operability Analysis 	 23

defined as the roots of the numerator polynomial of the plant transfer function.

If this transfer function is inverted for use as the control algorithm these zeroes

become poles (the roots of the denominator polynomial) in the control system.

The location of poles in the complex plane is one of the common forms of

dynamic analysis used in control theory. As illustrated in figure 2.3 a pole which

LHP

Negative Real P
Stable Behaviou,

RHP

0- 1-

stive Real Poles
stable Behaviour

Figure 2.3: Correspondence between pole locations and dynamic stability

has a positive real part (ie. they lie in the right half plane of the graph) indicates

unstable behaviour. To avoid this instability the RHP zeroes of the plant must

not he transformed into poles of the controller. Thus right half plane zeroes in

the system model restrict the use of a plant inverse as part of the control scheme.

A characteristic indicator of RHP zeroes is the presence of an 'inverse response'

in the process behaviour. An inverse response is a response whose final steady

state offset is in the opposite direction to its initial response. The cause of this is

normally competing dynamic effects (see figure 2.4) one of small magnitude but

high frequency, the other of larger magnitude but lower frequency. An example

of inverse response is the behaviour of liquid level in a distillation column rehoiler

when the heat input is increased. Initially the increase in vapour from the reboiler

Chapter 2 	 A Review of Process Operability Analysis 	 24

Fast Response

/ \

Combined
Inverse Response

Slow Response

\

Figure 2.4: Combination of slow and fast dynamics forming an inverse response

can cause liquid on the lower trays of the column to spill over into the rehoiler,

increasing the liquid level. Eventually the increased holdup in the reboiler will

he boiled off by the increased heat input, the final effect being a lowering in the

liquid level. A controller using the heat input to regulate the level would, in

this situation, continuously increase heating in response to the the initial inverse

response of the level. In this way the inverse response can drive the controller to

saturation very quickly.

The definition that has been given for RHP zeroes applies to the single input

single output case. In the multi-variable case the process is represented by a plant

transform matrix G(.$). The zeros of G(s) are defined as the values of s for which

the rank of G(s) drops below its nominal rank. An implication of this definition

is that the presence of R.HP zeroes in a non-square system is rare. Such systems

have an excess of control variables and it is unlikely for them to lose rank.

The treatment of non-minimum phase elements is tackled by considering the

possible factorisations of G into its invertible and non-invertible parts. Arkun

[26] proposes a systematic factorisation procedure to generate a set of feasible

Chapter 2 	 A Review of Process Operability Analysis 	 25

controllers, Gi, defined by

Ci = {Gi F, s.t. F is proper & stable} 	(2.23)

where F = The Feedback Filter

this leads to the following input output relationship,

y = GFr + (I + C+F)d 	 (2.24)

= Hr + Dd 	 (2.25)

where, H 	setpoint sensitivity

D 	disturbance sensitivity

Since NMP elements cannot be removed from the control system then they

will appear in certain combinations of G+F. So studying H and D will give an

indication of whether the desired performance can be achieved. However, since

there is no unique factorisation of G there is a degree of freedom in the selection of

G and so of F. It is suggested by Arkun [26] that this be "judiciously used" by

the designer to generate control systems giving the required nominal performances.

An alternative approach is used by Morari et al.[27, 28]. Their aim is to analyse

the nature of the limitations imposed by NMP elements, and how the position and

magnitude of these influence the selection of optimal factorisations. The derivation

of an optimal factorisation requires the definition of a performance measure. The

measure depends on the weightings placed on each of the outputs. Since it is not

feasible to consider every possible combination of weightings a completely general

study is impractical. Instead Morari and coworkers consider special cases such

as totally decoupled control, or perfect control on one output. Both time delays

[27] and RHP zeroes [28] have been considered by this method, with the following

results:

• Time Delays: Routines to find the maximum necessary delay and the mini-

mum possible delay for each output have been derived. Also general insights

are given to guide the designer in reducing the effects of delays.

Chapter 2 	 A Review of Process Operability Analysis 	 26

• RHP Zeroes : The concept of a 'zero-direction' is developed that indicates

the outputs with which a zero is predominantly aligned. To shift the effect

of a zero from these outputs will result in significant interactions.

The limitation to the work of Morari and coworkers work is that it is only

capable of treating time delays and RHP zeroes separately. In comparison the

factorisation proposed by Arkun addresses both time delays and RHP zeroes si-

multaneously but does not try to really analyse the problems. Both approaches

assume that there are no limitations to the range of control action that may be

applied a problem which will be considered next.

2.2.3 Treatment of Constraints on Control Action

An important physical constraint on control is the range of control action possible.

A first step in evaluating the impact of such constraints is to determine what range

of control is required for perfect control. For the IMC control structure the control

action u is given by

U = Gc(r - d)
	

(2.26)

Taking the moduli gives

lul ~ IGc II(r — d)I 	 (2.27)

A Euclidean norm may be used for the vectors, but for G a compatible matrix

norm is required. Moran [25] uses a spectral norm which is defined as,

= max)12(G*G) 	 (2.28)

	

where, G 	complex conjugate transpose of C

	

A(G) 	Eigenvalue of G

Chapter 2 	 A Review of Process Operability Analysis 	 27

The spectral norm corresponds to largest singular value of G (sometimes called

the principal gain). It may be shown that,

Um(C)IUI :5 JGuj < UM(G)u 	 (2.29)

where, am (G) min

	

UM(G) 	L2 (C*G)

So substituting G 1 for G will give,

GCI = iC- i l 	 (2.30)

	

= IG+ G 1 i 	 (2.31)

	

GG' 	 (2.32)

If it is further required that the factorisation should give IG + i = 1 then,

	

iGi < 	
1 	

(2.33)
am (G)

So, using singular values for the matrix norms, an upper bound on the control

action required may be approximated by,

iul 	Ir - di 	 (2.34)
am (C)

If u is physically constrained, such that JUI 	lUimax, and the system is scaled such

that j Ulmax = 1 then to guarantee no control saturation the disturbance range is

restricted by,

	

Ir - dI <am (G) 	 (2.35)

which may then be expressed as a frequency response curve, viz

(r - d)i < a.(G()) 	 (2.36)

where w frequency

Such a plot gives a bound on the disturbance amplitude above which it is

likely that control will be saturated. The analysis is analogous to the common

SISO control criteria:

Chapter 2 	 A Review of Process Operability Analysis 	 28

"Choose systems where the manipulated variable has a large effect on

the controlled output."

A frequency response curve of minimum singular value provides a guide to the

effects of physical constraints on dynamic resilience. The limitation of singular

values is that they are scale dependent. The method is therefore most suitable

to comparing similar systems. What this method cannot provide is an indication

of what loss of performance would arise from occasional control saturation. In

this respect singular values are a conservative measure. The interpretation of a

singular value analysis is therefore not always straightforward.

2.2.4 Use of Extended Controllability Definitions

In state-space control theory, there are standard definitions for controllability. The

most common is state controllability which is defined as follows:

State Controllability:

"A system represented by the state space model,

th=Ax+Bu

is pointwise state controllable if, given any two states x 0 and x 1 , there

exists a time t i > 0 and an input u defined on the interval [0, t 1] such

that x is carried from x 0 at t = 0 to x 1 at t = t1."

The implication for a system which is state controllable is that from any initial

condition the system can be driven to any final condition using the set of controls

specified by u. The definition has certain limitations for the analysis of dynamic

resilience, viz

• The path from x o to x 1 is completely arbitrary.

• No account is taken of any bounds on variables.

Chapter 2 	 A Review of Process Operability Analysis 	 29

• There is no information on regulation, ie. disturbance rejection.

• It is assumed that all states are to be controlled, generally an impractical

requirement.

• The test does not give quantitative information on how controllable a system

is.

Thus state controllability is in some respects an insufficient test and in other

respects an over rigorous test.

An alternative to state controllability is functional controllability, which may

be defined as follows for systems involving time delays:

Functional Controllability:

"A system represented by a state space model and augmented with a

set of output equations, viz.

= Ax+Bu

Cx+Du

is functionally controllable if given an output trajectory, , which is

zero for y < Tmin and satisfies certain smoothness conditions, there

exists an input trajectory, €t, such that ü generates starting from an

initial state at the origin."

The presence of the output equation makes it possible to relax some of the con-

ditions of state controllability. Specifically it is not necessary for all the state

variables to be controllable, only those which have an effect on the output vector

y. A necessary condition for functional controllability can be found by considering

the Laplace transform of the above state-space description

= [C(sI - A) 1 B + D]ü 	 (2.37)

= Gu 	 (2.38)

Chapter 2 	 A Review of Process Operability Analysis 	 30

where, G 	process transfer matrix

C(sI—A) 1 B+D

So a sufficient condition for there to be a realisable input trajectory that will gener-

ate the desired output trajectory is that the process transfer matrix be invertible,

as was demonstrated by Morari et al.using the IMC structure.

The requirement that y = 0 for t < Tm in is included because for any system

involving delays a minimum delay must be allowed before independent trajectories

may be specified for the outputs. It was proposed in Perkins and Wong [29] that

this be used as a measure of the effects of the delays in a system on its dynamic

resilience, and an algorithm was developed to determine Tmin. The results of this

analysis are closely related to those obtained from analysis of the IMC framework

by Morari and Holt [27].

So far the results derived from controllability analysis have not differed signif-

icantly from those obtained from the use of the IMC framework, which seems to

provide a more flexible analysis framework. Where controllability analysis comes

into its own is in the application of structural controllability for which a general

definition would be as follows,

Structural Controllability:

"A system, X0 , is structurally controllable if there exists a controllable

system, X1 , which is structurally equivalent to X0 "

Two system matrices are structurally equivalent if there is an exact correspon-

dence between the locations of the fixed-zero and arbitrary entries in each matrix.

Structural controllability is not concerned with details of how state and control

variables are related just whether a relation exists. The structural analysis is a

simple form of cause and effect analysis. An occurrence matrix is used to represent

the cause and effect relationships of the dynamic system. The occurrence matrix

has columns which correspond to the variables and rows which correspond to the

Chapter 2 	 A Review of Process Operability Analysis 	 31

equations relating them. The presence of a state variable in an equation is marked

by an entry at the appropriate position in the matrix.

The necessary conditions for a system to be structurally controlled are well

established. Also the reasons for a system to fail the structural controllability

test have been shown by Johnston and Barton [30] to be related to one of three

problems:

• A contraction exists in the cause and effect relationships (ie. it is not possible

to independently specify all of the outputs).

• Not all outputs are accessible from manipulated variables.

• Access to one output is via another output state (ie. controlling one output

is only possible via another output so they cannot be controlled indepen-

dently).

An enhanced version of structural controllability is functional-structural con-

trollability which augments the occurrence matrix with rows corresponding to the

output equations of a system and columns corresponding to the additional vari-

ables. An augmented matrix is used by Perkins and Russell [31] as an analysis

tool. The representation was found to provide a better insight into the struc-

tural limitations of a system. It was observed that the conditions for structural

controllability define physically meaningful cause and effect paths.

Structural controllability in this form is only able to confirm whether a suitable

set of cause and effect paths exist for control. On its own this does not represent

a very powerful analysis tool. In order to extend the usefulness of structural

controllability an adaptation of the augmented occurrence matrix is developed.

Each non-zero element of the occurrence matrix is replaced by a value representing

the delay associated with that cause and effect relation. The effect of the location

of time delays on dynamic resilience are studied with this matrix.

Chapter 2 	 A Review of Process Operability Analysis 	 32

Using this matrix it was possible to determine the same minimum delay that

Perkins and Wong [29] identified using functional controllability. In addition,

based on the principles of structural controllability, cause and effect paths could

be traced out in the delay matrix to identify which were the limiting delays within

the system. For analysis of delays the augmented matrix is a useful tool, having

a simple physical interpretation which makes it easier to pin point appropriate

process modifications.

Another time-domain measure has been proposed by Carvallo et al. [32]. In

this case controllability is quantified as the minimum time necessary to overcome

the worst expected disturbance or setpoint change. Methods have been developed

to calculate this measure for linear deterministic systems subject to process con-

straints and delays. The development of a method for stochastic models is also

mentioned.

2.2.5 Application of Steady-state Interaction Measures

The problem with most techniques for dynamic analysis is that they are complex

and require detailed information which is only available at a late stage in design. It

would be useful to have simpler techniques which could give an indication of possi-

ble dynamic problems at the earlier stages of design. A tool with such potential is

the relative gain array (RGA) which provides a measure of the possible interaction

between control ioops. The advantage of the RGA is that it is based on steady

state information alone. The use of the RGA has been subject to controversy for

two principal reasons:

By using only steady state information, the results can lead to false conclu-

sions due to dynamic interactions.

It only considers setpoint perturbations, whereas in processes it is more

common for other external sources to be the principal source of disturbances.

Chapter 2 	 A Review of Process Operability Analysis 	 33

The first limitation is commonly tackled by using one of the dynamic interaction

measures, but these are of varying value and defeat the aim of using steady state

measures. The second limitation however has received less attention. An interest-

ing variation on the RCA is the Relative Disturbance Gain (RDG) discussed in

McAvoy and Marlin [33] . The RDC may be viewed as a more general form of rel-

ative gain in which the source of perturbation is not restricted to setpoint changes.

For the simple case of two interacting control loops, u 1 -p Yl and u2 -* Y2, under

a disturbance d the RDG for u1 is calculated as,

- gain of u 1 wrt d, with both control loops closed
(2.39) RD

GUI - gain of u 1 wrt d, with only u 1 	Yi loop closed

- a1/adl1,2 (2.40)
-

Using the RDG it is possible to identify where the greatest interactions exist,

but it does not give a quantitative measure of the loss or gain in performance.

McAvoy and Marlin [33] have investigated the relationship between the RDG

and the integral of the error (IE). Two integral errors are considered for each

loop, the IE5 which is the expected IE if interaction did not exist, and the IEmv

which is the IE with the effects of interaction included. Based on simple process

models, ie. only process gains, it was demonstrated that with P&iI feedback control

the ratio of IE5 to IEmv , referred to as the integral error ratio (IER), could be

related to the RDC, viz.

IER = IEmv /IEsv = (RDG) * tuning factor (2.41)

where, tuning factor = (P/I)sv /(PII)mv

(P/I)3 	ratio of proportional to integral action

when tuned ignoring interaction.

(P/I)mv 	ratio of proportional to integral action

when tuned to account for interaction.

The tuning factor is a measure of how much the controller had to be de-tuned

due to interaction. To obtain an accurate measure of this would require the multi-

Chapter 2 	 A Review of Process Operability Analysis 	 34

variable system to be optimally tuned which would impair the general convenience

of the procedure. To avoid this an approximate method for which the objective is

simply good dynamic performance is used to estimate the tuning factor.

The integral error ratio provides a convenient and easily understood measure

of the effect of interaction. A value greater than one indicates that the interaction

is detrimental to performance, and a value less than one that the interaction is

beneficial. Note that the IER of a decoupled system will be close to one, since

its aim is to eliminate the interactions, which provides a simple indication as to

whether decoupling is necessary.

The objective of developing a steady state measure has been to provide a conve-

nient and simple method of identifying and quantifying the significance of process

interactions. To achieve this it has been necessary to make several simplifications.

The integral of error IE is a poorer measure of performance than the integral

of absolute error (IAE) or integral of the square of error (ISE). Also some of

the conclusions are based on the use of a specific control system which may not

be the most appropriate for the problem. These assumptions though necessary

to maintain simplicity can lead to deceptive results, but there is no easy way of

judging when a fuller dynamic study should be used instead.

A frequency domain measure that is related to the RDC is discussed in Skoges-

tad and Wolf [35]. The indicators developed are aimed at providing a controller

independent measure of the sensitivity of a system to disturbances. The measures

do not account for RHP zeroes or time delays but are seen as a complement to

methods that have been developed to address those specific aspects.

2.2.6 Dynamic Robustness

In the techniques discussed up to this point there has been the implicit assumption

that an accurate dynamic model of the process is being used and that plant be-

Chapter 2 	 A Review of Process Operability Analysis 	 35

haviour will not deviate from that predicted by the model. The reality is generally

short of the ideal for several reasons, key amongst these being:

• Most analysis techniques are based on linear models, while real processes

are non-linear. Linearisation reduces the non-linear models to a form which

can be studied but results in uncertainty over the linear coefficients.

• Even for systems well approximated by linear models a change in operating

conditions will result in a change in the model parameters.

• Few processes are completely understood, particularly their high frequency

dynamics, so there is always a certain amount of "genuine" uncertainty.

In view of these factors it is important to ensure that a process is stable and

performs satisfactorily not only for the nominal dynamic model but also for all

realisable models. Research so far has only investigated the requirements for

robust stability. Robust stability is a problem that is more relevant when there

are only occasional plant perturbations, and it is only important that the plant

remain stable through these disturbances. Robust stability is also an important

precursor to the study of robust performance, a significantly more complicated

problem that as yet has no convellient solution.

A key step in assessing robustness is the selection of a suitable model for the

uncertainty. In Morari and Skogestad [36] it is observed that there is a distinct

trade-off between the rigour of a robustness study and the value of the results.

For example, simple robustness bounds could be obtained from crude uncertainty

descriptions, but such bounds tend to be misleading, and often difficult to at-

tribute physical significance to. Using more rigorous descriptions of uncertainty

these limitations can be overcome but the study of such uncertainty models in-

volves significantly greater effort. Thus the choice of uncertainty model does to a

large extent determine the value of the results obtained, and a certain amount of

experience is required to select an uncertainty description of suitable detail.

Chapter 2 	 A Review of Process Operability Analysis 	 36

The simplest uncertainty model that is commonly used is a lumped or 'unstruc-

tured' uncertainty which groups all the uncertainty together into one uncertainty

matrix, L. Unstructured uncertainty may take several forms, eg.

additive: C = C + LA 	 (2.42)

multiplicative input : C = G(I + Li) 	 (2.43)

	

multiplicative output : C = (I + Lo)G 	 (2.44)

The degree of uncertainty is normally specified in terms of a bound, 1, on the

magnitude of the perturbation matrix, L, given here in terms of the frequency

response,

L(iw)I <1(w) Vw 	 (2.45)

These models describe a region around G that will include the set of realisable

plants and also other plants which may not be realisable, thus its description

as 'unstructured'. The analysis of robustness must therefore assume that the

perturbation will occur in the worst direction for the plant. The conditions for

robust stability based on these types of uncertainty description generally involve

the condition number, e, of the process transfer matrix,

e(w) = G'(iw) G(iw)I 	 (2.46)

For example, in Moran [25] (where singular values were used for the matrix

norm) it was shown that for input multiplicative uncertainty a sufficient condition

for robust stability is,

< 1/ {c,rM(F)lJ(w)} 	 (2.47)

where, e(G) 	UM(G)/O(G)

F 	Filter Function

Good performance would require that F = I, but to guarantee stability when the

condition number is small, or the magnitude of uncertainty is large, would require

Chapter 2 	 A Review of Process Operability Analysis 	 37

that F -f 0 (ie. no feedback). The condition number is therefore an indicator

of the robust stability of a process. The main difficulty is the dependence of

the matrix norms on the scaling of the matrix. The problem of selecting an

appropriate scaling is discussed by Perkins and Wong [29] who also propose the

use of a condition number as a guide to robustness. In their work a different

matrix norm is used for which the optimal scaling problem has been solved.

The weakness of this unstructured approach is, as mentioned earlier, that it

tends to be over conservative. It is necessary to assume that the uncertainty will

occur in the worst way, irrespective of whether this is physically realistic. Also it is

difficult to specify 1(w) from the physical uncertainty bounds. A more structured

approach is used in Arkun et al. [37] to derive the following condition for robust

stability,

1 	 1

	

(1 - 	a) 	 + a 	- > (l(w)crM(H))2 	(2.48)
E 1 (0)6 2 (6) 	E 1 (G) 2

where,

	

a 	error projection

= aM,i(G)/cxm (C)

	

am, i 	i'th largest singular value

	

1(w) 	max a(L)
PEP

	

P 	region of uncertainty in parameters

There are two improvements in this over the totally unstructured approach.

The most obvious improvement is in the calculation of 1(w). Its value is derived

from the maximum magnitude L can attain within the uncertainty region, P. The

second improvement is less obvious and is related to a which is a measure of the

projection of the model error onto the most sensitive direction of the closed loop

system. If, by good design of a filter, this projection can be made smaller then a

greater amount on model uncertainty can be handled by the system.

Chapter 2 	 A Review of Process Operability Analysis 	 38

An interesting element of this work was the use of a symbolic equation manip-

ulation package called 'MACSYMA' to carry the key design variables through to

the transfer functions and so facilitate a sensitivity study to help in directing pro-

cess modifications. Two robustness indices are incorporated into a multi-objective

optimisation in Arkun and Palazoglu [38], trading off robust stability against eco-

nomics. The value of this procedure is unclear since robustness is only one aspect

of dynamic resilience, and the procedure ignores the effect of robust stability re-

quirements on nominal performance.

While the work of Arkun does take more account of the structure of the Un-

certainty, it still groups all sources of uncertainty into a single matrix. A more

complete model would consider each source of uncertainty as a separate source

of perturbations. The analysis of such models has been considered by Moran

and Skogestad [36] based on treating each perturbation source as an additional

feedback path. To specify the tightest possible bounds on the robust stability

conditions the structured singular value (SSV) is used. The problem with this

approach is that it involves significantly more effort to develop the complete un-

certainty model and to evaluate the SSV.

2.3 Operating Procedure Synthesis

Both flexibility and dynamic resilience focus on the operability of the plant during

its production phase of operation. The analysis methods determine limits on the

demands the process can be subject to and still maintain regulatory control. While

it is undesirable to exceed these limits, there are certain activities in which this is

unavoidable such as startup and shutdown. For these activities explicit operating

procedures are required so the operations are performed safely and efficiently.

To support these operating procedures it is not uncommon for modifications

to the process design to be required. As with the design of the control system if

Chapter 2 	 A Review of Process Operability Analysis 	 39

the operating procedures are not considered until the later stages of design then

options for redesign of the process will be restricted. Integrating the design of

the process and its operating procedures has received relatively little attention.

The principles source of insight on this topic come from research on operating

procedure synthesis. A systematic procedure for planning special operations can

help to evaluate the feasibility of a process design for the required operations.

2.3.1 A Definition of Operating Procedure Synthesis

Operating procedure synthesis is defined as determining the sequence of actions

which will drive a process from an initial state to a goal state (eg. from off line

to normal operation). The transition is subject to both physical constraints (eg.

a valve must be open before there can be flow through it) and safety constraints

(eg. at no time should an explosive mixture be formed).

If the two states are close then this could be treated as a normal setpoint

tracking control problem. In the operations of interest, however, there is a wide

separation between the initial state and the final state. The transition will gen-

erally involve several discontinuous modes of behaviour making it impractical to

manage by means of a single control scheme. An operating procedure decomposes

the transition into small steps that can be more easily managed.

Synthesis of operating procedure is a combinatorial problem since there are

many possible orderings of the operations that would achieve the same overall

transition. Searching the space of possible sequences for ones that are physically

feasible, safe and efficient is a non-trivial problem.

2.3.2 Synthesis Methods

Some of the earliest studies of operating procedure synthesis is provided by Rivas

et al. [41] and Rivas and Rudd [42]. The particular emphasis of their work was the

determination of safe sequences of valve operations in safety interlock systems. The

Chapter 2 	 A Review of Process Operability Analysis 	 40

method developed represented the process as a flow network and used symbolic

logic to model the effect of valve operations. Synthesis of a valve sequence was

achieved by constructing a hierarchy of goals which identified the key operations

and the order in which they should be performed. The valve operations synthesised

from this goal hierarchy were tested using the qualitative models. The limitation

of this work is its use of a 'generate and test' algorithm, an approach which is not

suitable for combinatorial problems of any significant size.

Fusillo and Powers [43, 441 developed a more general methodology for operating

procedure. The problem of searching a large space of alternative sequences is

decomposed in two ways:

• Divide the process into isolated sub-systems

• Break down the transition path into simpler transitions between intermedi-

ate stationary states.

Symbolic models were also used in their procedure but their form allowed for more

general specifications of constraints. The sequencing of the operations is achieved

by means ends analysis, comparing the current state with the goal state and select-

ing the operation which can reduce the most important difference. The emphasis

of the work was on the sequencing algorithm. Selecting appropriate system de-

compositions is not considered. The work was later extended to support planning

of purge operations [45] which involved the incorporation of extra knowledge on

possible purge operations and purgatives.

Lakshmanan and Stephanopoulos [46] provide a more rigorous study of the

modelling requirements for operating procedure synthesis. A hierarchically struc-

tured modelling framework is developed and used in the development of a non-

linear planning methodology [47]. Their work was followed by a specific study of

mixing constraints [48] focussing on how such general constraints can be trans-

formed into specific temporal constraints that are used by the planner.

Aelion and Powers [49] have developed an approach for automating the retrofit

Chapter 2 	 A Review of Process Operability Analysis 	 41

design of a process in order to make operating procedures feasible. The approach

decomposes the problem into two parts. Established synthesis methods are first

used to determine whether the procedure is possible with the unmodified design.

If not then a structural planner is used to modify the design and improve the fea-

sibility of the operation. The structural planner works by redesigning the process

so that additional intermediate states are possible. The intermediate states are

intended to provide a feasible path for the operating procedure.

2.4 Summary of Operability Analysis

The range of techniques for operability analysis is broad and complex. The goal

for most methods is to identify fundamental bounds on process operation that are

imposed by the process design. To assess the value of these methods for application

during process design the following issues should be considered:

• Value in comparison of designs: Often the primary issue to the designer

when considering operability is which of two otherwise equivalent designs is

better. An understanding of the significance of an operability measure is

necessary to determine what constitutes a significant difference.

• Degree of insight: Methods which can direct the designer to ways of improv

ing operability are naturally more desirable.

• Ease of application: If the formulation and computation of an operability

measure is too complex then it is less likely to be employed. Also if the

results are difficult to interpret then the value of the method is diminished.

Chapter 2 	 A Review of Process Operability Analysis 	 42

2.4.1 Flexibility

Flexibility measures are the most straight forward for a process designer to un-

derstand. The flexibility index developed by Grossman is a measure which can

be used not only for comparison of designs but also to identify when overdesign

exists. The approach relies on being able to identify the critical points of the

parameter space which is non-trivial for feasibility regions which are not convex.

The complexity of the resulting mathematical problems suggests that they are

most appropriately applied at the final stages of design.

A criticism of automated design methods is that they do not provide the de

signer with a lot of insight. The work of Calandranis and Stephanopoulos [21] is

an example of a more focussed study. Their work provides useful insights into the

operability problems of heat exchanger networks. Unfortunately similar analysis

for other aspects of process design is not available.

2.4.2 Dynamic Resilience

The methods developed for studying dynamic resilience are more difficult for a

process engineer to employ. The insights derived from Moran's analysis of the

1MG structure are a valuable basis for evaluation of the inherent limitations that

a process design imposes on control. Their main drawback is their foundation

on multi-variable control theory and frequency domain analysis, both unfamiliar

domains to most process engineers. Frequency domain plots of singular values and

condition numbers are a difficult basis for the process engineer to discriminate

between process designs. Robustness has received a lot of academic attention,

however an inspection of the case studies that have been published [50, 51, 52]

shows that most applications are on the synthesis of control structures. There are

few examples of its application as a dynamic resilience measure to improve process

design.

Chapter 2 	 A Review of Process Operability Analysis 	 43

Simpler analyses have been proposed which are derived from the state-space

concept of controllability. Also the RDG is possibly one of the simplest measures

for a process engineer to appreciate. In both cases the methods are focussed on

particular controllability problems.

There is a general difficulty of relating measures of dynamic resilience to eco-

nomic performance. Some guidance in this respect comes from case studies by

Marlin et al. [53] and Barton et al. [54]. These studies apply cost analysis to

determine where efforts should be focussed in retrofit control system design. The

effect of poor dynamic resilience can affect economic performance in different ways.

Where optimal operation is limited by constraints the effect of poor control is to

force operation further from the optimal constraints. In other situations the effect

of poor control may be in the cost of the control mechanism employed. Thus

at present putting resilience measures on a cost basis relies on insight into the

optimal operation of the process.

2.4.3 Operating Procedures

The brief review gives a taste of the challenges faced simply in finding suitable

operating procedures for a fixed plant design. Particular gaps are systematic

methods to decompose and re-integrate plants. The focus of synthesis methods is

on operation planning for final designs. The use of these synthesis methods during

process development to identify in advance the requirements for special operations

has not been considered.

2.4.4 Aiding Operability Analysis by Integrating Design

There are now many tools available to the process designer for evaluating the

operability of a process design. Putting these tools together to derive a balanced

conclusion is a non-trivial task for the designer. In particular the tools for study-

ing dynamic resilience produce results that are difficult for a process engineer to

Chapter 2 	 A Review of Process Operability Analysis 	 44

interpret. Instead of requiring the process designer to predict the needs of the

control system an alternative approach is to involve the control system designers

in the evolution of the process. The control engineers will be better placed to

provide feedback on the controllability of a design. Further if the control system

is developed in step with the process it is possible that more focussed operability

studies can be made. The next chapter will discuss how concurrent design of the

process and control system may be achieved.

Chapter 3

Concurrent Hierarchical Process and

Operating System Design

3.1 Introduction

The ability to evaluate the operability of a process design is only the first step

towards improved integration. Full integration is best supported by the concurrent

design of the process and control system. The potential benefits of this are:

• Improved understanding of the process by the control engineer.

Developing the control system in step with the process gives the control

engineer the chance to absorb the detail of the process design incrementally

rather than being faced with the information overload of a fully detailed

flow sheet.

• Easier Analysis of Operating Requirements.

A knowledge of the intended control strategy helps to focus operability anal-

ysis and clarifies the process operating requirements.

• An improved forum for informed negotiation between process and control

preferences involving both process and control system designers.

Concurrent design of the process and control system is a significant departure

from conventional design practice. The hierarchical model of design is proposed

45

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	46

as the basis of concurrent development. A framework for the hierarchical design

of a process operating system is presented which provides a basis for integrating

the management of process operations including the regulatory control, startup

and shut down of the process.

3.2 Definition of a Process Operating System

The process operating system is the complete collection of control schemes, alarms

and procedures used in managing process operation. By broadening the focus

from solely regulatory control to complete operations management an integrated

strategy for process operation can be developed. An additional goal in taking this

broader perspective is to identify operating requirements as early as possible in

the design process.

There are two basic functional requirements for an operating system failure

management and process optimisation.

Failure Management: Failure management does not only refer to equipment

failure but also encompasses such failures as exceeding safety limits or quality

constraints. There are two aspects to failure management, failure prevention and

failure recovery. The goal of failure prevention is to minimise the occurrence of

failures. The goal of failure recovery is to minimise the effect of a failure. Where

potential failures can be predicted accurately the emphasis can be placed on failure

prevention. In many cases the prediction of a failure event will involve too much

uncertainty in which case consideration must be given to failure recovery as well

as prevention.

Process Optimisation: The second function of the operating system is to opti-

mise the operation of the process. The objective of the optimisation will normally

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	47

be an economic one. There will also be phases of operation when a different

objective will be dominant, for example emission minimisation.

In addition to these basic functional requirements there are other criteria that

an operating system design must satisfy:

• Robustness: Most control algorithms either utilise an explicit model of the

process or require to be 'tuned' to one. Since the models are rarely precise

it is important that the performance of the operating system is insensitive

to model inaccuracies. Robustness is the ability of the system to maintain

safety and performance despite model uncertainties.

• Implementation: The design of an operating system must take into account

what it is practical to measure and control. Also the capabilities of the

control hardware must be considered. The solution of complex optimisation

may not be possible in real time. If the control hardware cannot run the

algorithm at sufficient speed then less complex algorithms or models need

to be adopted.

• Clarity: Systems in which the functions of components and their inter-

relations are easier to perceive are also easier to maintain and update. One

way of improving clarity is to employ explicit models where possible. For ex-

ample, where a derived property is required rather than implicitly encoding

this derivation into the algorithm formulation, utilise an intermediate state

variable and separate the property derivation from its use in the control

algorithm.

Conflict amongst these criteria is expected. They are listed in their approx-

imate order of importance. The order is not an absolute one and in practice an

operating system design must achieve a balance. Hierarchical problem solving can

help by providing a structured approach to balancing complexity against perfor-

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	48

mance. The details of hierarchical problem solving and its application in design

are considered next.

3.3 Hierarchical Problem Solving & Design

Hierarchical problem solving is a method of progressing from the abstract or 'high

level' solution to a final detailed, ground solution in an incremental fashion. The

approach makes it easier to manage the complexity in a design. There are two

key aspects to the approach:

• Abstraction: The use of reduced models which help focus on the key decisions

to be made.

• Decomposition: Dividing a design into parts that may be independently

tackled.

A useful general perspective on the use of abstraction for problem solving is

provided by Sacerdoti [56]. The focus of his work was on supporting domain

specific knowledge in a general purpose planner. It was observed that a common

aspect of human problem solving was the grading of decisions according to their

relative importance. The grading leads to a hierarchy of abstraction spaces and

decisions. The most ground problem contains all the variables of the problem.

Each increment of abstraction corresponds to a reduction in the number of decision

variables. Problem solving procedure works from most abstract to most ground

in a recursive process:

Solve problem for the current level of abstraction,

Fix the decisions made at this level,

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	49

Formulate the problem for the next more ground level of abstraction subject

to these fixed decisions,

Repeat 1 to 3 until all decisions are fixed.

The solution of a simple problem using purely abstraction is illustrated in

figure 3.1.

mm
Most Ground Problem: a,b,c,d C(a,b,c1d)

mm
a

a

1
minC2 (a*,b,c)

Increasing 	b,c
Abstraction I

(a *,b*, c*)

I 	 - min C (a*,b*, c*,d)
d 	3

(a,b,c,d}

Final Solution

* indicates fixed
decision variables

Figure 3.1: Problem solving using abstraction only

If the progression from abstract problem to ground problem can he made in

small steps a solution will be reached without decomposition. Limitations on

how a problem may he formulated restrict the step size. For example, in process

modelling it is difficult to define an intermediate step between using a mass balance

only and using a mass and heat balance. If it is not possible to reduce complexity

sufficiently by abstraction then decomposition of the problem is employed.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	50

Decomposition is the partitioning of a problem into separate, hopefully inde-

pendent, parts. The resulting set of reduced problems are solved concurrently.

The process of hierarchical refinement and decomposition is applied recursively to

each problem. The simple linear decision hierarchy of figure 3.1 now takes on the

structure of a decision tree as in figure 3.2.

Most Ground Problem: mm
a,b,c,d,e C(a,b,c,d,e) = C 1 (a,b,c) + C2 (a,b,d) + C3 (a,e)

rnn O(a)=O1 (a)+ C2(a)+ C3
(a)

(a)

rn/n- 	 C- 	- C
b C

12(a*,b) = 1 (a*,b) + 2 (a*,b)

mm 	 mmn c
d 	

2(a*,b*,d)

(a *,b*,d*)

V

Final Solution

mn C3(a*,e)

(a *, e *)

Figure 3.2: Problem solving using abstraction and decomposition

The trade off in using a hierarchical procedure is between ease of solution and

accuracy of solution. The primary issue is the significance of unmodelled interac-

tions on the optimum solution. For example, in the simple problem represented

in figure 3.1 the ideal model for C i (a) is one equivalent to

i (a) = min C (a, b, c, d)
b,c,d

Achieving a balance between accuracy of abstraction and ease of solution is a

key part of the hierarchical approach. Compensation for modelling inaccuracies

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	51

can be made by treating established values for decision variables only as initial

guesses. Refining approximate values as the degree of abstraction reduces can

produce a final solution that is closer to the local optimum. Revising decision

variables that have been made prior to a decomposition must be done with care as

this will potentially introduce inconsistencies between the decomposed parts. To

avoid this problem it is important that before decomposition the key interactions

between the sub-problems have already been resolved.

3.3.1 Applying Hierarchical Problem Solving to Design

The assumption so far has been that a fully detailed model of the problem has

been available from which abstractions are derived. For design this is not the case:

the specification for a design evolves as the design evolves. For hierarchical design

abstractions are derived from an understanding of prior designs. The decision

hierarchy is elaborated as the design is elicited.

In using abstract models for a design significant uncertainty is introduced. At a

preliminary level, therefore, it is not always possible to discriminate between a set

of alternative solutions. The hierarchical structure is a useful aid for systematically

exploring the design alternatives. The organisation of design alternatives isbuilt

upon the decision tree that is created during hierarchical design (see figure 3.3).

Each decision node is now connected to a set of alternatives and each alternative

then has a separate decision tree. The alternatives associated with nodes at the

top of the hierarchy will lead to more distinct design solutions than those further

down.

The need for decomposition is common in hierarchical design. However, with

the limited advance knowledge of design structure it is difficult to account for

all interactions before decomposition. In such situations maintaining consistency

between the branches of the decomposition is particularly important. A simple

approach to this is to recombine design branches when interdependencies have

V.

-\.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	52

has_subproblem

has_alternative
Decision A

•/ \
• 1 	\

•1

/ 	 \
/

Decision B 	Decision C

/
• 1

/
p

Decision D

Problem A

al

N
Problem B 	Problem C

b1 b2 	ci

Problem D Problem D

/\
dl 	d2 d3

(a) Original Decisions Hierarchy
	 (b) With alternatives interposed

Figure 3.3: Representing solution alternatives as part of the decision hierarchy

to be resolved. In recombination specific alternatives from each branch of the

decomposition of a decision node are selected and combined. The resulting de-

tailed design is recorded as a new design alternative for that node. For example,

figure 3.4 shows how the design alternatives from figure 3.3 are reorganised when

Problem A

al 	 a2=(bl,c1)

Problem B 	Problem C 	 Problem E

/\ 	 /\
bi 	b2 	ci 	e2=(dl,cl) e2=(d2,ci)

Figure 3.4: Recombining design alternatives.

the refinement of a design from level B to level D is dependent on design details

associated with problem C. The extra detail is provided by recombining alterna-

tives from the separate decomposition branches of problem B and C. Alternative

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	53

a2 is an example which is the result of combining design alternatives bi and ci.

The refinement of the recombined design (problem E) incorporates refinement of

bi from level B to level D with the additional detail required being taken from ci.

Recombination also provides an opportunity to review the assumptions and mod-

els that led to the current design hierarchy. Validating the final design hierarchy

is important to ensuring that the optimal design is found.

3.3.2 Hierarchical Process Design

Process design is an example of a domain where the methodology for hierarchical

design is well developed. Douglas [57] provides a thorough treatment of hierarchi-

cal preliminary design. The levels of design defined in this approach are:

• Batch versus Continuous.

• Input/Output Structure: A single block representation of the process fo-

cussing on the primary material flows into and out of the process. An eco-

nomic evaluation is restricted to material costs.

• Recycle Structure: Decisions are made on the reactor systems to be used and

what materials are to be recycled or purged. The recycle structure decisions

fix the product distribution entering the separation system.

• Separation System: The design of the separation system is itself treated in

three parts, general structure, vapour recovery system and liquid separation

system.

• Heat Integration.

The methodology can be used to rapidly generate a set of design alternatives. The

division of the process into sections with specific functions provides a suitable basis

for decomposition. Once the recycle structure is defined the reactor and separation

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	54

systems can be developed concurrently. Likewise as the separation sub-sections

are defined their design can be decomposed and developed concurrently.

Douglas [57] also provides shortcut models and heuristics to aid in the evalua-

tion of design alternatives. Having suitable models to evaluate the process at many

levels of abstraction is important to the effectiveness of hierarchical design. In de-

veloping a framework for concurrent design of the control system it is desirable to

take advantage of the hierarchical structure present in process design.

3.3.3 Hierarchical Control System Design

The application of hierarchical design to develop the control system concurrently

with the process design has received limited attention. Most studies of control

system synthesis start from an assumption that the process is fully defined. An

exception to this is the work of Ponton and Laing [58]. They demonstrate how a.

control system structure can be evolved in step with the evolution of the process.

For each step in the Douglas [59] methodology a corresponding control step is

proposed:

Process Design Control System Design

Input/Output structure Feed and product rate control

Recycle structure Recycle rates & purges

Separation sequencing Composition controls

Energy integration Temperature and energy balance control

- Inventory control

The procedure has been taught to chemical engineering students as part of

their control course and applied in their design projects. Using a hierarchical

approach was found to simplify the placement of the control loops. The relative

importance of different control loops was also more readily understood. A criti-

cism of the approach was that the final control system designs developed by the

students required an excessive number of composition meters. What is typically

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	55

missed is an extra level of refinement where required states are mapped to available

measurements, if necessary by using inference algorithms.

While the procedure uses only structural analysis and is focussed on regulatory

control it demonstrates the potential advantage of a hierarchical approach. The

following sections will present a more general framework for hierarchical design of

the complete process operating system.

3.4 A Framework for Hierarchical Operating

System Design

Organising the operating system as a hierarchy is a good way to approach the

balance between complexity and performance. From the work of Ponton and

Laing [58], it is also seen that the hierarchical approach to process design can be

utilised in the design of the control system. Operating system design will be based

on developing a hierarchy of operating tasks. High level operating tasks perform

the global optimisation and failure management for the process and plan on a long

time scale. Intermediate tasks focus management of a small set of units and plan

on a short time scale. The lowest level tasks will correspond to simple controllers

which have little planning capability but have a fast response.

3.5 Structuring the Operating Task Specifica-

tion

To provide a framework for defining the requirement of an operating task the

formulation of a dynamic optimisation problem is considered,

IF
min C[u(t)]= j CT(u,d,y,t)+CF(utF ,dtF ,yj F) tF) 	(3.1)
u(t)

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	56

subject to, ' 	y'(u, d, y, t) 	 Physical Relations

d - d'(t) 	 Demands

0 <g(u, d, y, t) 	 Operating Limits

where, 	u = The set of control variables.

y = The measure of the process state.

d = The time dependent demands.

{t 1 , tF} = Planning window of optimisation

CT = State transition cost function

CF = Final state cost function

Using this formulation as a guideline the specification of an operating task is

structured as follows:

Objective: An objective function is necessary to relate control actions to per-

formance. Included with the objective is the time scale or temporal scope of the

task (ie. {tI,tF}). For tasks concerned with basic production optimisation this

will take the form of a cost function. For the low level tasks which are essentially

standard controllers the objective simplifies to minimising error. The primary

function of some tasks will be failure management and for them the objective is

to minimise the number of failures.

Constraints: Constraints on the operation of a process are divided into three

classes,

• Physical laws: eg. heat and mass conservation and thermodynamic rela-

tionships. The physical laws restrict which variables may be manipulated

independently.

• Physical Limits: limits which physically cannot be exceeded. For example,

it is not possible for a composition to be greater than one or less than zero.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	57

Similarly there are limits to flow that may derived from restricted valve

ranges and pump capacities.

• Failure Conditions: for example safe temperature and pressure limits for a

unit. The limit of a failure condition can be physically exceeded but the

result would be a failure in operation.

While all three categories of constraint must be taken into account during de-

sign the failure conditions require particular attention. These must be actively

managed otherwise there is no guarantee that they will not be contravened.

Demands: The demands are time varying events not under the direct control of

the operating task which affect either the objective function or the integrity of the

constraints. The design of the optimisation strategy is directed towards response

to these demands. Demands arise from two sources,

• Supervisory Demands: targets or setpoints for operating variables that are

given to the operating task from a higher level task. Most high level tasks

do not change process operation directly but use supervisory demands to

direct lower level tasks. This allows the low level tasks to perform local

optimisation for the demands of shorter time scale.

• External Demands: the uncontrolled inputs to the system managed by the

operating task which includes the knock-on effect of external demands not

fully controlled by peer tasks. There is a one to many relationship between

external demands and disturbance variables. Where possible separate exter-

nal demands are used to differentiate between different causes of variation

of a disturbance variable.

Understanding the time scale of each demand is important in deciding the level

at which it will be addressed in the operating system.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	58

3.6 Defining the Fundamental Operating Tasks

The starting point of operating system design is the root operating task. The

specifications on this task that can be made at the start of design can only be

vague:

• Objective: fundamentally the objective for the operating system is to max-

imise profit from startup to shutdown.

• Constraints: As with the external demands it is difficult to determine the

physical relations or limits without some knowledge of the process design.

With respect to failure protection a general failure condition of hazardous

operation is identified. It is not possible at this stage to specify the con-

straints that this implies.

• Demands: Without knowledge of the process structure it is difficult to pin-

point external demands and at this level supervisory demands do not exist.

The objective given here encompasses a broad range of operation that is rarely

considered as a continuum. There are distinct phases of operation, which we define

as the operating modes of the process. The difference between operating modes is

related to either a discontinuity in process behaviour or a change in operating ob-

jective. A case for the latter would be when the set of active constraints changes.

A case for the former would be a shift from operating to maximise profit to op-

erating to minimise hazardous emissions. Different operating modes are likely to

require different operating strategies and so different operating task structures.

Identifying the fundamental operating modes for the process provides a valuable

start on structuring the operating system.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	59

For most plants there will be at least four modes of operation. The most con-

sidered phase of operation is the production mode when the process is running

at its nominal design conditions. Multiple production modes may exist, for ex-

ample when the process produces multiple grades of product. In order to reach

• production mode the process must go through startup which is represented as

• separate mode of operation. Likewise the shutdown of the process is treated

as a separate mode of operation. Finally, an important, though not so obvious,

mode to identify is the process when shutdown or in its inactive state. While the

'inactive' mode is not like to require any control it serves to define the start and

finish conditions for process operation. The modes that have just been defined fall

into two categories:

• Regulatory modes: The production and inactive modes are examples of reg-

ulatory modes. During these phases of operation the focus is on maintaining

an optimal steady state.

• Transition modes: Startup and shutdown are transition modes. The empha-

sis during these modes of operation is more on achieving a fast transfer of

the process from one state to another.

The mode decomposition can be viewed as a directed graph, as in figure 3.5(a),

Executive task

Start-Up

Inactive / 	 / Production

R

Transition task 	Transition task

(a) Graph of mode decomposition 	 (b) Operating task hierarchy

Figure 3.5: A simple operations system structure

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	60

where the regulatory modes are represented as nodes and transition modes by

arcs.

The basic operating modes of the process are used to define the fundamental

operating task for the operating system. This provides the first decomposition

of the root operating task. The resulting hierarchy of tasks is illustrated in fig-

ure 3.5(b). The operating tasks are divided into three classes:

• Regulatory Tasks: Regulatory tasks are associated with regulatory modes.

The supervisory demands for a regulatory task normally take the form of

conditions that should be maintained as long as that task is active.

• Transition Tasks: A transition task is similarly connected to a transition

mode. The supervisory demands for a transition task specify changes of

conditions which must be effected over a given period.

• Executive Tasks: The function of executive tasks are to control which mode

of operation the process should be in and consequently which operating tasks

should be active.

The basic decomposition that has been derived considers only the fundamental

process requirements. The decomposition can be extended by consideration of

the strategic operating requirements. For example in figure 3.6 an additional

regulatory mode labelled the 'secure state' is defined. This mode is intended to

provide a second option to full shut down in the case of minor failure events.

Startup and shutdown are both split into two phases utilising the intermediate

secure state. As a contingency, in the case of severe failures, a second mode for

shutdown is added for which the emphasis in on achieving a complete shutdown

quickly.

Another example of mode decomposition could arise for processes that have a

wide range of throughput. Such processes may be more straightforward to design

Chapter 3 	Concurrent Hierarchical Process and Operating 	System Design
	

61

- Direct
Shut—Do

Phase2
	

Phasel
Shut-Down

Inactive /

	
(Secure 	

Production

Phasel
	

Phase2
Start—Up
	

Start-Up

Plant Executive

Figure 3.6: A more sophisticated preliminary operating system design

as parallel sets of units. The main set of units support a base level of throughput.

The secondary set of units are brought on line only when throughput reaches the

limits of the main set of units and are taken off line when production is turned

down. The strategy can be represented as four operating modes, two regulatory

modes for high and low production rate and two transition modes for startup and

shutdown of the secondary set of units.

Defining the basic operating task structure is a valuable precursor to the initial

process design. The range of operating activities that the process must support is

more clearly identified.

3.7 The Functional Components of an Operat-

ing Task

The analysis discussed above establishes an outline strategy for process operation

based on identifying the fundamental modes of operation and defining a corre-

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	62

sponding operating task hierarchy. Each operating task is a separate control or

optimisation problem. The set of controls, measurements, and algorithms that

are employed to solve an operating task are defined as the control scheme for the

task. To provide a framework for the design of control schemes an analysis of the

necessary functional elements is considered.

The core function for a control scheme is optimisation. Design of this part of

the control scheme requires the selection of a set of control variables, u, and an

algorithm for determining their optimal value, ü = u'Q. To assist design clarity

optimisation models are formulated in terms of the supervisory and external de-

mands, d3 & d e , and a convenient set of state variables, x (eg. ü = u'(u, d3 , d e , X, t)).

The core structure of a control scheme is illustrated in figure 3.7

Eli

de

Figure 3.7: Core structure of a control scheme

Not all external demands will be available by direct measurement, and the state

variables chosen as convenient for the optimiser may not all be readily measurable

states of the process. Incorporating the relations between the desired properties

and available measurements into the optimisation formulation compromises clarity.

Instead a property estimation block is introduced. The function of this is to bridge

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	63

the gap between what is desired as inputs by the optimisation and what is available

from the underlying system. The revised structure is shown in figure 3.8. This

on

Optimiser

MEN
U 	 Property

I Estimation

Y 	If

Process
System

Feed Fwd

Figure 3.8: Control scheme structure with property estimation

structure also makes the distinction between disturbances that may be detected

before they impact on the process and those which can only be detected by their

effect on the outputs of the process.

Just as the state variables have been chosen as a convenient set for the optimi-

sation so to some extent are the control variables. For example, it may be simpler

to formulate an optimisation algorithm using temperature as the control variable

even though in practice it is a flow of heating utility that will be manipulated.

Once again to help keep the formulation of the optimisation algorithm simple this

is dealt with by introducing an extra functional block. This is referred to as the

control distribution block. The revised structure is shown in figure 3.9.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design
	

64

U

K?>

Opflmiser

Property
Estimation

Adaptation

Control
Distribution

F..

H_

Sub—
System 1 y

f

LI Sub-
System N

L__ 	—J
FeedFwd

Figure 3.9: Complete Functional Structure of a Control Scheme

The control distribution block bridges the gap between the control variables

of the optimisation and the available control mechanisms, it may take two forms.

If the relation between the control variables and control mechanisms is simple

then a straightforward mathematical transformation can be used. Alternatively

if the relation is more complex it would be transformed into a supervisory de-

mand for a slave operating task. In some cases implementing the control variable

employed by the optimiser may require supervisory demands to be distributed to

a set of slave operating tasks. For example, an optimisation algorithm may use

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	65

production rate as a control variable which according to the abstract model em-

pioyed fixes flowrates across the whole process. To bridge the difference between

the abstraction and the reality of the underlying system the control distribution

blbck converts the specification of production rate into supervisory demands for

fiowrates across the whole process.

The ability to preserve the abstract model used in the optimisation module

is a convenient feature in the hierarchical development of the operating system.

Initial control scheme designs focus primarily on the optimisation module using

the abstract model available at that stage of design. When the process is refined

the extra detail is accounted for in the slave operating tasks and the optimisation

module does not have to be reworked.

Also shown in figure 3.9 is an adaptation block. Adaptation is used as part

of the design strategy for addressing robustness problems. Where the design of

a control scheme is too sensitive to variations from modelled behaviour there are

three basic strategies for the redesign of that control scheme:

• Detuning: If it is not possible, or not desirable to track the model variation

then it is necessary to 'detune' the optimisation to allow for the uncertainty

that exists. Detuning usually implies a loss of performance.

• Mode Decomposition: If the variation in behaviour is large then it may be

worthwhile dividing the range of behaviour into separate operating modes

and tasks. A focussed strategy is then designed for each mode of operation.

In doing this the original task is replaced by an executive task responsible for

selecting the operating strategy best suited to the current process conditions.

• Adaptation: In many cases mode decomposition is an extreme solution to a

robustness problem. The adaptation block therefore is introduced to adjust

the strategic parameters of the optimisation and keep it in tune with the

process state. Strategic parameters are values such as planning horizon or

control gain.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	66

The generic structure for a control scheme developed is common to all classes

of operating task. The sequence in which this structure has been developed reflects

the manner in which it is expected that a control scheme will be developed for an

operating task.

3.8 A Preliminary Design Case Study

In this section the development of the operating system following preliminary

design of the process is considered. The process that will be considered is an

intentionally simplistic example. In chapter 4 a case study is presented for a real

process (the manufacture of hydrofluoric acid).

3.8.1 Overview

During the preliminary design phase process designers are interested in generating

a small set of candidate block flowsheets. This involves the enumeration of possible

structural alternatives followed by shortcut economic evaluation to eliminate the

least promising alternatives.

As candidate block flowsheets are identified they can be passed on to the

operating system designers. For these flowsheets preliminary operating systems

such as those identified earlier can be extended utilising the additional information

now available.

Combining the knowledge of operating strategy with the techniques of oper-

ability analysis discussed earlier the operations designer can then provide a more

complete evaluation of the feasibility of each candidate design. This can help

further reduce the range of design alternatives to be considered to a manageable

size.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	67

At the same time through this development operational requirements for the

process will be clarified (ie. the process characteristics desired for ease of opera-

tion). Being able to do this is important in establishing a forum for negotiation

between the preferences of the process designers and those of the operating systems

designers.

3.8.2 Outline of Steps in Operating System Development

The following is an indication of the basic steps followed in developing an operating

system:

• Expand the Flowsheet: In particular make sure all inputs and outputs to the

process have their sources or sinks identified. Also identify any key capacities

that should be considered.

• Refine the Operating Task Specification: with the additional detail available

about the process the optimisation specifications of the various operating

tasks may be refined. This includes adding detail to the physical relations

and also expanding on the demands and failure events that need to be ad-

dressed.

• Identify control mechanisms available to deal with each demand.

• Based on the interactions between control mechanisms determine what de-

mands will be handled by the global control scheme and which will be dis-

tributed to subsidiary operating tasks.

• From the control scheme designs determine operability requirements for the

process.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	68

3.8.3 Process Outline

To help illustrate how the specific classes of operating task will be developed we

will use a hypothetical process. The objective of the process is to produce a

product X via a simple reaction path A + B - X + Y. Y is a byproduct of

negligible value which must be passed to a site waste treatment facility. Of the

two raw materials B is the most expensive. It is therefore planned to run the

reaction with an excess of A to ensure as complete conversion of B as possible.

The initial process block diagram for this process is shown in figure 3.10

FeedA
Blender

Reaction
B

A 	X(Y)

Separation
Y(X) 	Waste

Treatment

Figure 3.10: A Preliminary Block Flowsheet

For clarity when considering the operating system design some simple exten-

sions to this flowsheet are introduced. First the basic storage facilities that are

planned are added. The available storage facilities affects the stock control policy

which is an important part of the top levels of an operating system design. Second

to help with identifying sources of external demands all streams should have some

form of both source and sink. To this end the raw material streams for A and B

are drawn as coming from market sources and the product stream for X is shown

going to a market sink. The byproduct Y is going to a waste treatment facility

which is outside the scope of this design project and is not traced any further than

that block. The extended flowsheet then looks like that of figure 3.11

Concurrent Hierarchical Process and Operating System Design

Reaction
7B ~ A+B— X+Y

J Feed A
I Blender x

A 	X(Y)

Y(X)
Separation

Waste
Treatment

69

ies

Chapter 3

A

B

Figure 3.11: Enhanced Preliminary Block Flowsheet

3.8.4 Refinement of Regulatory Tasks

To illustrate the steps in development of a regulatory task the production task will

be considered as an example. The first step is to derive a model for the operating

task for which the categorisation developed in section 3.5 is followed.

3.8.5 Physical Relations

At this stage of design only general details are available. The emphasis therefore

is on identifying the key variables that will be employed in operations planning at

this level in the operating system hierarchy. If the process designers have made

a basic evaluation of the process then the models they employed can probably be

directly used here. The formulation of a model starts by relating the objective

(maximising profit) to the state variables of the process.

.Pro fit = Sales Rate X x
dt

(Added Value In X - Unit Operating Costs) (3.2)

Added Value In X = Market Value X - Market Cost A

—Market Cost B 	 (3.3)

Unit Operating Costs = Blender Costs + Reactor Costs + Separation Costs

+ Waste Treatment Charges 	 (3.4)

For the individual section costs only qualitative relations are possible,

Chapter 3 	Concurrent ilierarchical Process and Operating System Design 	70

• Feed A Blender: The blending system at this stage of design is predicted to

have negligible operating costs, ie.

Blender Costs = 0 	 (3.5)

• Reactor: The two major factors affecting the reactors unit operating costs

are its throughput and the amount of excess A fed to the reactor (full con-

version of B is assumed). Nominally the reactor throughput is defined in

terms of the feed rate of B. Therefore the reactor cost function has the form,

Reactor Costs = CR (Throughput B, %Excess A) 	(3.6)

• Separation System: As with the reactor system the cost of the separation

system can be expected to be dependent on its throughput. In addition

increasing either the purity or recovery requirements for X will increase the

operating cost of the separation system. Finally variations in separation

feed composition can be expected to have significant effects on operating

cost. The cost function for the separation system is therefore expected to

take the form,

Separation Costs = Cs(Separator Feed Rate, %Recovery X,

%X in Product, %X in Separator Feed,

%A in SeparatorFeed) (3.7)

• Waste Treatment: The waste treatment system charges for its service on the

basis of volume treated. The unit operating cost for this system depends

therefore on its throughput and composition.

Waste Treatment Charge = Cw(Waste Feed Rate, %X in Waste) (3.8)

To determine the interrelations between the variables that have been enumer-

ated above and to derive the degrees of freedom available the fundamental physical

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	71

laws must be taken into account. At this level of detail only mass conservation is of

concern. Assuming complete conversion of B, and including the mass conservation

relations the profit function can be reformulated as,

Prof it = Sales Rate X x (Added Value In X
dt

—C R (Throughput B, %Excess A)

—Cs (Throughput B, %Excess A, %X in Product, % Recovery X)

—Cw (Throughput B, %X in Product, % Recovery X))

The mass conservation also introduces other dependencies from the dynamic

mass balance applied to the storage tanks, viz

Stored) = Purchase RateA - Throughput B 	(3.9)
dt

Stored) = Purchase RateB - Throughput B 	(3.10)
dt

Stored) = Throughput B x
%Recovery X

dt 	 1 - %X in Product

—Sales Rate X 	 (3.11)

No further physical relations are needed at this stage of design.

3.8.6 Physical Limits

Most of the physical limits are straightforward (eg. fractions must be in the range

of zero to one) and will not be enumerated here. An important set of limits that

are worth mentioning are the market limits. For this example, a case will be

considered where there is a limit to the amount of X that may be sold and to the

amount of B that may be purchased. The resulting constraints are,

0 < Purchase Rate B <Availability B (3.12)

0 < Sales Rate X <Demand X (3.13)

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	72

3.8.7 Failure Events

In the preliminary design only one general failure event was identified of hazardous

operation. With the additional detail about the process it is possible to refine

this. First there are the potential overflow hazards for the storage tanks. For the

production operating task this defines the following constraints,

A Stored < Max A Storage 	 (3.14)

B Stored < Max B Storage 	 (3.15)

X Stored < Max X Storage 	 (3.16)

In addition there are the failure conditions of hazardous operation for each of

the process sections. However since at this stage it is not possible to provide a

better definition for these it is not possible to give them further attention in the

production task.

For the production task there is an additional failure condition derived from

product quality requirements which introduces a further constraint,

98 <%X in Product 	 (3.17)

3.8.8 External Demands

For the model that has been developed the principal external demands are as-

sociated with the market nodes and affect Added Value in X, Availability B,

and Demand X. It is important to determine the magnitude and frequency of

the external demands that affect these variables. With market related factors one

form of demand that can be expected is seasonal variation. Seasonal variations

operate over a long time scale and are typical of the external demands that would

be addressed in the highest levels of the operating system hierarchy.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	73

3.8.9 Operating Strategy

If the operating task truly had as simple a specification as the one developed here

there would be little problem designing a single level control scheme to perform

the task. However the operating task is expected to become more complex as

the process develops. The aim at this stage of design is to identify a hierarchy

of operating tasks suitable for distributing management of the production mode.

The foundation for deriving this hierarchy is an analysis of the demands and

how they may be controlled. For each demand there is a set of potential control

mechanisms, where a control mechanism is defined as the set of free variables that

will be controlled and the physical relations that connect them to the demand.

For each control mechanism the following issues need to be assessed:

Control Power: Most control variables have a limited range of variation. At

a minimum the intended control mechanism must have sufficient 'control

power' to compensate for the expected range of the demand.

Speed of Response: it is important that the speed of response of a control

mechanism can match reasonably the time characteristics of the demand.

Speed of response will be limited in two ways

• Speed of Action: There are limits on how fast a change in a variable can

be implemented. Limits can be' due to the physical inertia of a system,

ie. to effect a change in temperature requires the thermal hold-up of

the heat exchange equipment to be changed first. It can also be limited

by operational requirements, for example while it may be physically

possible to change the throughput of a process rapidly this would have

destabilising effects on other parts of the operating system. Such a

restriction most often applies to controls employed at the top levels of

the hierarchy.

• Speed of Detection: As well as limits on how fast a control action can

operate there are limits on how fast the demand can be detected. Speed

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	74

of detection depends on where the demand can be detected and what

means of measurement are available.

Scope of effect: this is defined as the set of process units whose operation

will be significantly affected by a demand or the control response to that

demand. The scope of effect is used to define the set of units that must be

included in the process scope of an operating task.

Control Cost: The cost of a control mechanism should be compared against

the cost of the best achievable control.

At the initial stages of design it will not be possible to perform a rigorous

evaluation of all these factors. As with process flowsheet design to work round this

it is necessary to employ design experience and where possible develop shortcut

methods to evaluate the categories set out above.

Seasonal Variations of 'Added Value in X': There is nothing that can be done

within the scope of the production operating task to respond to any variations in

this variable. The demand is of more relevance to the superior executive task

where a change in operating mode may be considered if value of the product

reduces sufficiently to make operation unprofitable.

Seasonal Variations in 'Availability B': Seasonal variations affect the con-

straint on Purchase Rate B and through this the overflow constraint on B Stored.

If operation is favoured by maximising the throughput of B leading to Purchase Rate B

being matched to Availability B. In this case there are two control mechanisms

available:

1. The inventory of B Stored can be allowed to vary so that Throughput B

can be maintained. This is a relatively fast mechanism with only a small

scope of effect. It is however limited in control action and for this reason

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	75

unsuitable as a mechanism to compensate for the large or long term upsets

such as seasonal variations.

2. Adjust Throughput B to match the seasonal variations in Availability B

and leave B Stored as a free control mechanism for demands that have not

yet been detailed. Adjusting the Throughput B however has a significant

impact on all parts of the process and so should be addressed as part of the

global scope of the root production operating task.

Seasonal Variations in Demand X: These has a direct impact on the failure

protection for the capacity constraint on X Stored. The demand is most relevant

when operation is working to match Sales Rate X to Demand X. To avoid chang-

ing production throughput XStored could be allowed to float, but as before this

is unlikely to provide sufficient control power to be able to isolate Throughput B

from the seasonal variations in Demand X. Another possibility in this case is

to use Recovery X to affect the feed rate to the storage tank for X. The con-

trol power possible from using Recovery X is even less likely to be sufficient and

will certainly be a more costly mechanism. Therefore to manage this disturbance

source again it seems best to use Throughput B.

For this simple example there is no problem using the same control mechanism

to deal with two disturbance sources because at any one time only one of them

is likely to be constraining operation. If this was not the case it would be neces-

sary to ensure that there was sufficient flexibility in Throughput B to cope with

simultaneous disturbances from both sources.

At a minimum the top level operating task must manage the seasonal variations

in Availability B and Demand and will use Throughput B as its primary control

variable. The other free variables are still to be allocated to operating tasks. While

the demands that will be controlled by these free variables are not known their

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	76

scope of effect can be approximated and an appropriate task hierarchy determined

from that.

Production Mode Operating Task: Throughput, %ExcessA Optimisation

ase 	A 	
Bnder 	

A 	__ 	 I

StockControl A 	 FC 	FC 	 Stock Control X

Waste

	

+ 	
Separation 	

Y(X) 	

Tre:tm:nt

Stock Control B 	Reactor Optimisation 	 Separation Optimisation

Figure 3.12: Block flowsheet with production task decomposition overlayed

Figure 3.12 overlays on the process flowsheet a possible decomposition for the

production operating task. Note that where there is a possible conflict over which

operating task controls a flow, a flow control block has been added and associated

with a specific operating task. The elements of the hierarchy are:

• The Root Production Operating Task: The root production operating task

has a process scope that encompasses all parts of the process flowsheet. It has

already been identified that within this task the variable Throughput B is

to he used to coordinate process operation with market conditions. It is also

decided that %ExcessA should be addressed at this level since it affects most

elements of the profit function. If it is assumed that operating conditions

favour maximising Throughput B then the optimisation algorithm for this

operating task will include a rule of the form,

Throughput B = min(Availability B,Demand X) 	(3.18)

• Stock Control Tasks: Each storage facility and corresponding market point

have been assigned separate operating tasks. These will he responsible for

adjusting the appropriate sales or purchase rate to control inventories.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	77

• Blending and Reactor Optimisation Task: These two systems are grouped

together because it is expected that fine control of %ExcessA will be im-

plemented over the scope of these units. It might be expected to group the -

stock control of A under this task since any fine control of %ExcessA would

affect the control of AStored. The presumption of the decomposition chosen

is that the magnitude of any knock on effect to stock control will be suffi-

ciently small that it can be managed as an extra disturbance source to the

stock control task.

• Separation Optimisation Task: %RecoveryX and %XinProduct have been

left free for this operating task to use in minimising its operating cost. Simi-

larly to the blending and reactor optimisation task the scope of this operating

task could have been extended to include the stock control of X. Once again

the presumption is that any variations in operation in the separation system

can be managed by the stock control task as a new disturbance source.

Control Multiplexing and Supervisory Demands: At this stage it is useful

to consider how the control actions derived by the optimiser are applied to the

process. It has been indicated that Throughput B is determined at the top level

of the task hierarchy with the intention of fixing flows across the whole flowsheet.

This may appear to be eliminating important degrees of freedom at a very early

stage in design. However control of Throughput B is only being considered over a

long time scale. What is determined is the desired long term average for through-

put across the process. To express this within the framework of the operating task

hierarchy supervisory demands are used. The supervisory demands define target

flows appropriate to the process model used by the subsidiary task that corre-

spond to the flow target derived by the optimiser. The interpretation of these

supervisory demands can take two forms.

Chapter 3 	Concurrent ilierarchical Process and Operating System Design 	78

• A Directive: employed when an operating task actually has control over the

variable specified by the supervisory demand. A directive can have varying

degrees of sophistication. For example the directive can define upper and

lower bounds on the property restricting the amount of free action left to the

subsidiary task. Alternatively it may take the form of a nominal value and

a cost penalty indicating how expensive a deviation from the nominal value

will be. The subsidiary operating task can then include in its optimisation

a measure of the cost of deviations from supervisory targets.

• A Notification: Some subsystems are included in the scope of an operating

task not because they provide control but because they are affected by the

control. For these subsystems the supervisory demand provides notification

of the change in operating conditions providing advance information of a

demand event.

For example in the hierarchy proposed above, the operating task responsible

for the reactor also manages the flow controller FC—B. Based on the model

employed by the optimiser this flow is directly determined by Throughput B.

A supervisory directive is sent to this operating task to implement changes in

throughput. The operating task managing stock control of B is also strongly

affected by changes in throughput and receives a supervisory notification when a

change in flow is requested. The use of the control distribution block to manage

supervisory demands in this way is a useful mechanism for coordination of the

hierarchy of operating tasks.

3.8.10 Operability Analysis

Having refined the design of the operating task hierarchy and associated control

schemes the operating system designer is in a position to provide some useful

feedback for the process designers. The understanding gained from developing

the operating system can help focus operability analysis and provide the process

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	79

designer with a better specification of the capabilities required for operation. For

the simple example considered limited analysis is possible. A useful analysis that

is possible is to use information about the market conditions to determine the

flexibility in throughput rate required. The case study in chapter 4 gives more

consideration to this.

Simply having an understanding of the operating strategy can help as it pro-

vides a stronger basis for negotiation between the preferences of the process de-

signers and operating system designers. By having some idea of how the process

will be operated it is easier to determine the advantages and disadvantages of opt-

ing for one process or operating system design over another. Creating this forum

for negotiation is an important part of achieving integrated concurrent design.

3.9 Developing Transition Tasks

For small transitions the procedure for development of the transition task design

follows the same steps as described above for regulatory tasks. That is first to

use knowledge of the process design to refine the description of the operating

mode, construct an operating strategy appropriate to this model and define the

subsidiary operating tasks. For large transitions such as startup or shutdown the

procedure is not as simply defined. Such transitions often involve several possible

phases of behaviour and it is not practical to try and build models for every

potential operating mode in a transition when only a few are likely to be relevant.

Developing the definition of the operating mode and developing the transition

task design are thus much more closely interlinked. This is similar to the situation

faced at the initial stage of design where developing the mode decomposition and

the operating task decomposition are closely interlinked. Procedures such as those

developed by Fusillo and Powers [43] provide a useful framework for developing

transition tasks:

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	80

1. Plant Decomposition:

Divide Process into subsystems that can be physically isolated from

each other.

Specify the local initial and goal states.

2. Goal Reduction & Sequencing for each isolated system

Identify possible actions that will reduce the difference between the

current state and the goal state.

Select a feasible sequence of actions using the constraints as a guide to

reduce the search space.

3. Re-integrate the subsystems:

Find a suitable procedure to recombine the subsystems and drive the whole

process to its final goal state.

Determining the best process decomposition for an operation is a difficult bal-

ance. Smaller sets will be easier to drive to the goal states. However, achieving

such isolation can be costly in terms of capital equipment and re-integrating the

system can be more complex.

Based on such a procedure a transition task such as startup would develop

into a decomposition such as that in figure 3.13. Each intermediate stationary

state derived by the planning algorithm represents a new regulatory mode and

correspondingly a new regulatory task. To connect the sequences of stationary

states transition modes are included, each defining an additional transition task.

In addition to the operating tasks defined directly from the mode decompo-

sition we have new executive tasks. First the original startup transition task is

now redefined as an executive task. Its function is to coordinate the isolation and

re-integration of the process sections. Second, for each section an executive task

is assigned to coordinate their respective start up sequences.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	81

/ \ 	 Secaon1S'aqUp

cti.ns

. <//

Secfon 2 Starr Up

Secton3Start Lip /

Plant Start Up

Figure 3.13: Decomposition of Transition Mode

As understanding of the operating sequence develops this structure may he sim-

plified. For example some of the intermediate regulatory tasks may be dropped

with the intention of moving from one transition mode to another. In general how-

ever the regulatory modes immediately following section isolation and preceding

section re-integration will always he required while the separate startup sequences

synchronise.

3.10 Development of the Executive Tasks

Regulatory tasks and transition tasks are intended to deal with single operating

modes. In contrast the executive tasks are responsible for overseeing the switch

over from one mode to another. One of the most important aspects of this is

initiating failure recovery. For example, in the design of the regulatory task while

attention was paid to the conditions that could lead to failure events it was not

part of the design of the regulatory task to determine what action should he taken

if such events took place. Managing alarms and determining the appropriate re-

sponse to failure events is a function for the executive tasks. From the perspective

of the generic task structure developed earlier the objective of the optimisation

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	82

is focussed on determining the best mode of operation to be in. To design the

executive tasks there are two basic pieces of information that are required about

the supervised operating tasks.

• Preconditions: The preconditions for an operating task define the nec-

essary state conditions for the process before that operating task can be

brought into action.

• Termination Conditions: The termination conditions define states be-

yond which the operating task is not designed to cope. These will in the

main correspond to the failure events of the corresponding operating mode.

With transition tasks it would also include a definition of the end point that

the transition is designed to reach.

A simple executive task design would orient around monitoring for termination

conditions of the active task. If any arose it would search for a match between the

process conditions and operating task preconditions to determine the appropriate

operating task to initiate. More sophisticated designs might take a set of operating

tasks that could be active and continuously review which would give the best

performance.

3.11 Knowledge Representation for Operating

System Design

A knowledge representation to support operating system design has been devel-

oped. The representation was developed in parallel with the framework that has

been presented in this chapter and in part guided the development of the frame-

work. A full discussion of the knowledge representation is provided in appendix C.

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	83

The principal problem that is considered is how a knowledge based system can

assist in coordinating the development of the process and operating system. Two

approaches are consider to address design coordination. The first approach was

to represent the process and operating system as a combined design class, called

a production system. A single design hierarchy is supported with refinement and

decomposition applied to the process and operating system as a whole. Using

a combined hierarchy was simple to represent but in the context of concurrent

design was too restrictive.

The second approach to design Coordination used independent design hierar-

chies for the process and operating system. Separate design hierarchies removed

restrictions on the concurrent development of process and operating system de-

signs. However with independent hierarchies more careful attention to the link

between hierarchies is required. The approach that was adopted used a repre-

sentation of operating tasks and their associated process model as the basis for

providing the link. The operating tasks defines the requirements for operation

and include a model of the system to be controlled. If the behaviour of a process

is reasonably described by the operating task's system model then any operating

system alternatives for that task can be used with the process.

The weakness of the second approach to design coordination is the complex

system of object relations that were required. Where further development was

seen as particularly necessary was in supporting the relationships between models,

process designs, and operating tasks.

3.12 Summary

In this chapter the general principles of hierarchical design have been presented.

These principles have been used in developing a framework for hierarchical oper-

ating system design. Using a hierarchical approach is convenient for integrating

Chapter 3 	Concurrent Hierarchical Process and Operating System Design 	84

the concurrent design of the process and operating system. The framework also

provides a basis for developing an integrated operations management policy.

Designing an operating system is approached by defining a hierarchy of op-

erating tasks and then developing a control scheme for each task. The hierarchy

employs both process based and behaviour based decomposition to balance perfor-

mance with model complexity. A generic control scheme structure is proposed for

operating tasks which emphasises the use of explicit models in optimisers. Prop-

erty estimation and control distribution modules are used to interface between the

model employed for optimisation and the reality of the underlying system.

The process example that has been used in this chapter is a simple and artificial

problem. In chapter 4 a more complete case study is presented which addresses

the design of an operating system for a hydrofluoric acid plant.

Chapter 4

Operating System Design for a

Hydrofluoric Acid Plant

In chapter 3 a small example of process operating system design was presented for

a simple process, a more complete case study will now be developed. The subject of

the case study is the design of a process and operating system for the production

of hydrofluoric acid. Background on the process is available in the literature

[60, 611 and from the BUSS patent [62]. The process will be developed through

the hierarchical steps proposed by Douglas [57]. At each stage of development

consideration is given to the appropriate operating system design activities. It

should be noted that while only one decomposition is developed in the case study

more choices exist in the design of the operating system. Appendix B contains

the derivations of the models used in the case study.

4.1 Input-Output Analysis

The process input/output structure is shown in figure 4.1. The function of the

plant is to produce two grades of hydrofluoric acid, a technical grade (lIF T , >

90% HF), and an anhydrous grade (HFA, > 99.5% HF). The hydrofluoric acid is

produced by the reaction of CaF 2 with concentrated sulphuric acid,

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant

 -— — — — — — — — — —

Process P—O
— — — — — — —

I

Effluent I

:H2S%O4j

Process P—i

I-IF Processing

I Solid I

Effluent

Figure 4.1: Process input/output structure.

CaF 2 + H2SO4 -* 2 HF + CaSO 4 	(Ri)

The feed sulphuric acid is provided as a combination of concentrated sulphuric

acid and oleum (which is used to eliminate any excess water that may be present).

The source of the CaF 2 is fluorspar ore. The primary impurities in the fluorspar

are water, CaCO 3 and Si0 2 . The water increases the amount of oleum required

while the CaCO 3 and Si0 2 lead to the following side reactions:

	

CaCO 3 + H2SO4 -+ CaSO 4 + CO2 	(112)

	

Si02 + 4 HF -* SiF4 + 2 H 2 0 	(R3)

Two effluent streams are produced a solid effluent (CaSO 4) and a vapour effluent

(SiF4 , CO 2 , H 2 0). The effluent treatment blocks will be treated as utility systems

and are grayed out in figure 4.1.

4.1.1 Production Task Modelling

It is assumed that the operating system design has already been decomposed into

offline, startup, production, shutdown and primary executive tasks as was illus-

trated in figure 3.5. Development of the production task will be considered first.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 87

The initial step is to build a model of the process that identifies the key demands

and failure conditions relevant to the production task. At the input/output de-

sign level modelling focusses on the the market nodes which are divided into two

classes: purchase nodes and sales nodes.

Purchase Nodes: are the source of feed materials. The key elements for mod-

elling a purchase node are

• Quality: variations in feed compositions are modelled as external demands.

• Availability: A limit on supply rate of a feed is modelled as a physical

constraint. External demands are used to model any variability in the limit.

• Dynamics: how quickly can supply be adjusted to match consumption.

Models for external demands focus on putting bounds on the magnitude of van-

ation and if possible providing some indication of the time scale of the dynamics

of the demand.

For the purposes of the case study the sulphuric acid and oleum are treated

as reliable and unlimited resources. For the fluorspar the following conditions are

assumed:

• Quality: As a natural ore the composition of fluorspar cannot be expected

to be constant. The uncertainty in fluorspar composition is modelled by an

external demand: 1

ED-i: { description: "Variation in CaF 2 content of fluorspar ore"

disturbance variable: "Fraction of CaF 2 in feed fluorspar"

range: 0.95-0.99

dynamics: continuous, frequency 10 minutes per cycle. }

• Feed Availability: there is no limit to the availability of ore.

1 The format adopted for describing demands and failure conditions is for clarity and

does not represent active objects.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 88

• Dynamics: The delivery of ore is considered to be continuous but changes

in supply rate must be placed seven days in advance. The requirement is

modelled as a simple time delay:

Supply_Fluorspar(t) = Purchase..Fluorspar(t - 7days)

Sales Nodes: these are the final destinations for products. The key elements

required for modelling a sales node are:

• Quality: what are the product composition requirements? These will be

modelled as failure conditions.

• Rate of sale: what variation in sales rate is expected? Any variability is

modelled by an external demand.

For the technical grade hydrofluoric acid,

Quality: technical grade acid requires a minimum of 95% HF. The quality

constraint is modelled by a failure condition viz

{ description: "Off spec technical grade product"

limit variable: "Composition of HF in technical grade product"

failure condition: < 95% }

• Rate of sale: Technical grade product has a reasonably steady market,

changes are only expected to occur on a time scale of a month. The van-

ability is sales rate is modelled by the demand:

ED-2: { description: "Market demand variations for technical grade"

disturbance variable: "Sales rate of Technical Grade"

range: 45,000-50,000kg/day

dynamics: sustained deviations for periods of 30 days }

For the anhydrous grade,

• Quality: anhydrous grade requires a minimum of 99.5% HF. The quality

constraint is again modelled as a failure condition:

{ description: "Off spec anhydrous grade product"

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 89

limit variable: "Composition of HF in anhydrous grade"

failure condition: < 99.5% }

• Rate of sale: The market for anhydrous grade acid is smaller and more

competitive. Wider variations in sales rate are expected on a more frequent

time scale than encountered for the technical grade. The external demand

that models the variability in anhydrous grade sales is:

ED-3: { description: "Market demand variations for technical grade"

disturbance variable: "Sales rate of Technical Grade"

range: 5,000-15,000 kg/day

dynamics: sustained deviations for periods of 4 days

Hazard Analysis: further failure conditions are identified from analysis of the

hazardous properties of the materials being used in the process. For example,

emission of HF to the atmosphere is a general hazard that is described by the

failure condition, ie.

FC-3: { description: "Hazardous loss of HF to atmosphere" }

The failure condition is only minimally defined. More specific failure conditions

implied by this general failure condition are identified when failure management

is addressed.

4.1.2 Failure Management

In constructing a model for the production task several failure conditions have been

identified. The development of the operating system design starts by addressing

these failure conditions. There are two design issues to be considered for each

failure condition:

• Failure Prevention: what actions can be taken to prevent failure?

• Failure Recovery: what action should be taken if the failure event should

occur?

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 90

Failure prevention: to ensure the product quality constraints (failure condi-

tions FC-1 andFC-2) are met requires composition control on the appropriate

streams. At the current level of process abstraction it is not possible to determine

appropriate mechanisms for composition control. Instead the control requirements

are marked as incomplete loops on the process block diagram (see figure 4.2).

Vapour
Effluent

CCaF2>- 	

---- CH2SO4>-

Process P—i 	_______

HF Processing

-12S207

FT

Solid
Effluent

Figure 4.2: Process with failure prevention loops

To consider failure prevention for the safety constraint FC-3 it is first necessary

to consider how failure might occur. At the current level of design two mechanisms

can be foreseen by which HF could escape to the atmosphere ie. either with the

vapour effluent or by direct leakage from process equipment. In the first case the

vapour effluent treatment system provides a basic preventive mechanism. How-

ever, the capability of the vapour treatment system to remove HF is restricted,

therefore to protect failure condition FC-3 a secondary failure condition is derived,

FC-4: { description: "HF composition limit on effluent"

limit variable: "Composition of HF in vapour effluent"

failure condition: > 1% }

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 91

Prevention for the new failure condition is provided by applying composition con-

trol to the effluent feed stream.

In the case of a leak in the process equipment the safest approach is to ensure

that the pressure in all units is below atmospheric pressure. Any leaks will then

be of air into the process rather than of HF to the atmosphere. A secondary failure

event again defines this requirement,

FC-5:1 description: "Preventive Condition for FC-4"

limit variable: "Pressure of units in section P1"

failure condition: <PAtm" }

The additional pressure and composition control requirements are also marked

on figure 4.2.

Failure recovery: a strategy for failure recovery is necessary when the preven-

tion strategy cannot guarantee that the failure will not occur. Within the initial

operating task structure the basic action available for failure recovery is process

shutdown. For hazardous conditions that cannot be immediately controlled shut-

down is the necessary action and therefore is required for failure condition FC-3

and the conditions derived from it (ie. FC-4 and FC-5). Basic alarm response for

these failure conditions is assigned to the primary executive task which is respon-

sible for initiating shutdown. For the quality constraints FC-1 and FC-2 shutdown

is only justified if the quality requirements are persistently off spec. In the primary

executive the alarm response to a quality constraint failure is therefore delayed to

allow subsidiary tasks to make less extreme corrective action.

4.1.3 Demand Management - Stock Control

Three external demands have been defined for the production task. The first

demand (ED-i) affects the composition of the fluorspar. At the input/output

level of design this demand cannot be appropriately addressed and is deferred.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 92

Demands ED-2 and ED-3 affect the product sales rate and are an important

consideration in developing a stock control policy. The approach taken to stock

control also impacts on the operability requirements for the process. Three stock

control strategies will be considered.

Stock Control Strategy 1: The simplest approach for process design is to

set a fixed production rate for both product grades. Such an approach requires

that a floating inventory of product be maintained to absorb changes in the sales

rate for each product. Assuming the simple operating profile shown in figure 4.3

S____ 	— Sales
max Production

nom

Time
	

Time

Figure 4.3: Stock control strategy 1

a conservative estimate of the necessary storage capacity of each grade can be

derived (see section B.1).

	

V 	> TD(SmaxSmin) 	 (4.1)

	

where V 	Storage capacity

	

TD 	Time for which a peak deviation persists

	

5max 	Maximum sales rate

	

Smjn 	Minimum sales rate

A constant production does not require any special buffering for the process feeds

as they will be consumed at a constant rate. For disturbances with a long time

scale or wide sales ranges the constraint implies a large storage requirement for

the product. For the variations in sales rate set out in demands ED-2 and ED-3

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 93

the storage requirement for technical and anhydrous grades would be 150,000kg

and 40,000kg respectively. Storage capacities of that order are both economically

unviable and a serious safety hazard.

Stock Control Strategy 2: An alternative control strategy is to adjust pro-

duction rate to match current sales demand. Some storage capacity will still be

required to meet the sales requirements during the time it takes to change the pro-

duction rate of the process. Again, assuming a simple operating profile (figure 4.4),

S
uction

Time 	 Time

Figure 4.4: Stock control strategy 2

an estimate of the minimum storage required can be derived (see section B.2),

> (Smar
_

-'mzn
)

 2

(4.2)

- 	4r

where r = Speed of response of production rate

The derivation assumes that changes in sales rate can be predicted in advance

by half the time it takes to respond (eg. sales orders precede sales delivery by

(Smax - Smin) /4r). If sufficient advance notice is not available storage requirements

will increase.

The second strategy requires more flexibility in the process design. Comparing

the limits for the two strategies a necessary condition to justify the extra flexibility

is

(Smax - 5mm) r
> 	

(4.3)
4TD

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 94

To satisfy the variation in technical grade sales given in ED-2 would require r >

42kg1day 2 . Similarly for demand ED-3 requires that r > 625kg/day 2 . A response

rate of 625kg/day 2 is easily achievable but the storage capacities required will be

10,000kg and 40,000kg of technical grade and anhydrous grade respectively. To

get the storage capacities for anhydrous grade down to the equivalent of 1 hours

production requires that the process be able to change from nominal to maximum

production rate in 3 hours (ie. r > 40000kg/day 2).

Stock Control Strategy 3: A refinement of the second strategy is to utilise

the storage capacity for technical grade FIF as a common buffer for both products.

Using a common storage buffer is possible when the technical grade is produced

as an intermediate step in the production of the anhydrous product. The process

can he split into two sections with the technical grade storage interposed between

them (see figure 4.5). The rectifier section (P3) upgrades the HF product from

Vapour
Effluent

CaF2 _->-----1 	 ri P2

Primary 	
- 	

-

Processing

Solid
Effluent

Figure 4.5: Two part process decomposition

technical standard to anhydrous standard and is expected to have a faster response

than the primary processing section (P2). The storage requirement for anhydrous

HF, VT2, is determined by the response rate of the rectifier section alone, rp3 ,

(Smax,An - Smin,An) 2
VT2 ~ 	 (4.4)

4rp3

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 95

If the response rate of the rectifier section is sufficiently high it may be possible

to eliminate the requirement for anhydrous storage. To compensate for the slower

response rate of the first section additional technical grade storage capacity is

required. The worst case scenario is when the peaks in demand for both products

coincide. The storage requirement for technical grade is then,

VT1 ~
(Srnas,T - Smin,T)2

+ 	
- Smin,An)2

- 	
(4.5)

4rp2 	 4

When rp2 = rp3 this is equivalent to the previous strategy. The total storage

(VT1 + VT2) is determined by rp2 which is also the determining factor in the overall

response rate of the process (r). The total storage therefore is similar to that for

the second strategy, rp3 only determines the distribution of storage between VT1

and VT2. Therefore for the worst case scenario the gains from the new strategy

are restricted to the difference in storing anhydrous versus technical grade HF.

The total storage requirement can be reduced if the peaks in sales of technical

and anhydrous grade are not expected to coincide frequently. If peaks are never

coincident then anhydrous storage can be reduced to the maximum of the following

two constraints,

VT1 ~! (Smax,T - Sm in,T) 2 /8rp2 	 (4.6)

VT1 >— (Smax ,A n - Smin,An)2/8(Tp2 - rp3) 	 (4.7)

Three alternative stock control strategies have been considered. From an anal-

ysis of the storage and process requirements the third strategy is chosen. Further

analysis of the failure conditions and demands at the current stage of design is

not practical.

4.1.4 Operating task decomposition

The division of process operations in the third stock control strategy provides a

basis for decomposing the production task into a hierarchy as shown in figure 4.6.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 96

Primary
Executive

Production Task

/ rtoI IDemands: ED-2,ED-3

	

/Production / 	 /Production /
/ P2 / 	 / P3 /

	

Demands: ED—i 	 Demands:?

Figure 4.6: Production task decomposition

At the top of the hierarchy is the stock control task which monitors stock levels

and market demands and determines the target production rates. Control of

the process below this task is decomposed into two parts corresponding to the

two sections of the process. The stock control task directs the operation of the

subsidiary tasks via supervisory demands. The analysis of the control strategy

provides additional information on the expected range and and dynamics of the

supervisory demands.

SD-i :{description: "Target production rate for section P2"

range: 50, 000 - 65, 000kg/day"

dynamics: discrete, d/dt > 40, 000kg/day2 }

SD-2:1description: "Target production rate for section P3"

range: 10,000— 15,000kg1day"

dynamics: discrete, d/dt > 60, 000kg/day 2 }

The external demand affecting the fluorspar feed quality (ED-i) is delegated

to the operating task controlling the primary processing section.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 97

4.1.5 Startup and Shutdown

Some failure conditions have been identified for which shutdown should be initi-

ated. Monitoring the failure conditions and instigating shutdown is the responsi-

bility of the plant executive. The operating system design that can be performed

at the current level for the shutdown and startup tasks is very restricted. The

division of the process into two sections and the presence of a capacity between

them does provide a convenient basis for decomposing startup and shutdown pro-

cedures. Also it is noted that section P3 is expected to have faster dynamics than

section P2. It is undesirable to require section P3 to be maintained in an idle

state while waiting for section P2 to start up. A start up procedure is therefore

chosen that delays start up of section P3 until the latest practical moment. The

decomposition of the startup operating task is shown in figure 4.7. In choosing

Plant Start Up

/ Startup

\ Executive /

'a::p

Figure 4.7: Decomposition of Plant Startup

this strategy it is being assumed that heat integration will not couple the rectifier

and primary processing section.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 98

4.2 Recycle Analysis

In the Douglas methodology after defining the input/output structure the next

step is to decide on the required reactor systems and associated recycles. Sepa-

ration systems are treated as black boxes at this level. For the FIF process the

development of a recycle structure is straightforward. The products are produced

in a single reaction step and no reactions are reversible. Of the reactants only the

H 2 SO4 is feasible to recover and recycle. The recycle structure for the process is

shown in figure 4.8.

Vapour
Effluent

H2SO4

H2SO4

Reaction 	 I Separation
System 	 System

Gypsum

Solid
Effluent

Figure 4.8: Recycle Structure of HF Process

The process decomposition that has been developed for the production task

hierarchy (figure 4.5) does not match the recycle structure shown in figure 4.8. As

the decompositions are not incompatible it is a simple step to combine the two

(figure 4.9). The process design focusses on the reactor and acid recycle systems

which are encompassed by the primary processing section (P2). The results of the

'ProcessP-2 I
Vapour
Effluent

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 99

Figure 4.9: Merging of process decompositions

jrocess design are therefore most relevant to the operating task controlling that

section.

4.2.1 Preliminary Process Optimisation

The models used for preliminary process optimisation are an important basis for

the refinement of the production task hierarchy. A short analysis of the process

optimisation is therefore provided here. The key design variables introduced in

developing the recycle structure are:

• Reactor size, VR.

• Reaction temperature TR.

• Reactor Pressure PR.

• Molar ratio of H 2 SO 4 :CaF 2 at reactor inlet, A.

• Fractional recovery of H 2 SO4 in the separation section, R04.

For optimisation of the recycle structure it is assumed that production rate has

been fixed (eg. as a result of the stock control strategy). A simple profit function

can he derived,

/ 	CCaF2 A(1 - Rs04)

	

.Cso 4 I 	(4.8) Profit 	O.5FHF. I\CHF - X - 	+ Rs04 	J
—(CR,F + CR,o) - C 	 (4.9)

where FHF 	Annual production rate of HF

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 100

X 	Fractional conversion of CaF 2 to HF

CCaF2 Purchase price for CaF 2

Cs04 Purchase price for H2SO4

CR,F Annualised fixed costs for the reactor

CR,0 Annual operating costs for the reactor

C 	Annualised separator costs

	

CHF 	Combined sales price for HFT & HFA

(a fixed split between the two products is assumed)

(4.10)

To estimate the reactor fixed costs (CR,F) a correlation based on reactor size

V is required. The operating costs of the reactor (CR,o) are derived from the cost

of the utilities that are required to meet the reactor's heat duty. The reactor heat

duty will be determined by the reactor conversion and temperature. The separa-

tion costs (Cs) are more difficult to correlate at the current level of abstraction.

If C5 cannot be correlated with the design variables it is difficult to determine the

optimal level of recovery for H2SO4- The derivative of the profit function with

respect to recovery, Rs0 4 , is,

d(Prof it) = 0.5FHF(r - 1)Cs04 d(C
s)

-dRso4 	
(4.11)

dR504

Ignoring the contribution from Cs would lead to an optimal recovery of 100%

which is not realistic. Instead the recovery is set to 98% which is a heuristic

estimate of the optimal recovery. For the remaining design variables the influence

of Cs is assumed to be zero.

The derivative of the profit function with respect to reactor temperature is

given by,

	

d(Profit) 	FCaF2 dX d(CR,O)

dTR 	= 2X2
.(CCaF2 + A(1 - Rs04)Cs04)- - dTR (4.12)

dTR

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 101

In determining the optimal reactor temperature there is a trade off between ma-

terial costs and utility costs. For the purpose of the case study it is assumed that

material costs dominate over utility costs. The resulting implication is that profit

increases monotonically with reaction temperature. The reaction temperature is

ultimately constrained by the limitations of the construction materials which is

modelled by the failure condition:

FC-6:{description: "Maximum safe temperature for reactor"

variable: "Reactor wall temperature"

limit: < Tmax ,React or "
}

The optimal temperature for the reactor is at this constraint.

The reactor pressure (PR) only has a weak effect on the reaction kinetics. How-

ever because operation must run below atmospheric pressure (see failure condition

FC-5) there is a problem of drawing air into the process. To keep the inflow of

air to a minimum reactor pressure is kept as close to the constraint of FC-5 as

possible.

The remaining design variables are acid to fluorspar ratio (A) and the reactor

size (VR). As neither of these are constrained and they are interdependent their

values are optimised simultaneously.

4.2.2 On-line Optimisation of Section P2

The break down of the process optimisation that has been derived above for design

of the process is also a useful basis for the online optimisation of the process. As the

reactor volume will be fixed the number of decision variables is reduced. However

in the online optimisation it should be possible to take more accurate account

of the cost of separation. Recovery is therefore included in the simultaneous

optimisation rather that being treated as a fixed variable. The optimisation can

be broken down into three regulatory tasks:

• Constraint control on the reactor temperature.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 102

• Constraint control on the reactor pressure.

• Simultaneous optimisation of recovery and acid:fluorspar ratio.

Determining how the tasks will be organised into a hierarchy is dependent on their

scope of effect. Optimising the recovery and acid:fluorspar ratio must take into

account both the reactor section and primary separation section and therefore is

expected to be placed at a high level in the hierarchy. In contrast the temperature

control can be reasonably treated as a task local to the reactor system. The

pressure control is less easily placed into the hierarchical structure.

The pressure of the reactor is controlled by regulating the flowrate of the reactor

offgas. The pressure driving force for all flows of gas and vapour in the process is

provided by an exhaust fan at the end of the process. The flowrate of the reactor

offgas may be regulated either by regulating the power to the exhaust fan or by

placing a flow control valve on the reactor offgas stream. The latter option would

give the most direct control of reactor pressure and keep the scope of the pressure

control local to the reactor system. However a valve on any of the gas or vapour

streams is undesirable as it will increase pressure drops and therefore pumping

costs. The chosen method therefore is to control pressure by regulating power to

the exhaust fan.

To control pressure by regulating exhaust fan power implies a scope for the

pressure control that is wider than that of the optimisation (it affects both the

primary processing section and the rectifying section). On this basis pressure

control should be placed above the optimisation. However pressure control is

expected to operate on a much faster time scale than the optimiser. Also while

pressure control only has a weak influence on the optimisation, the optimisation

is expected to have a more significant influence on the pressure control. The

flow of information therefore is mainly from the optimiser to the pressure control,

providing advance notice of shifts in operating conditions. Pressure control is

therefore placed as a subsidiary task to the optimiser.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 103

The final task hierarchy for production optimisation of section P2 is shown

in figure 4.10. Solid lines are directives while dashed lines identify feedback or

Stock
Control

SD—i

TProduction P-2

Optimise

R&A

A c4) R Cs(R)

Reactor
Control/Controlj/Control/!

/Separation / 	/Pressure 	/

Figure 4.10: Operating task decomposition for production optimisation

feedforward information. The tasks in the decomposition are:

• Optimiser (process scope - "Primary Processing"): to optimise of recovery,

Rs04, and acid:fluorspar ratio, A. The task passes supervisory demands for

R04 and A to the separation control reactor control tasks respectively.

• Reactor Control (process scope - "Reactor System"): to implementing super-

visory demand setting acid:fiuorspar ratio the reactor control task is respon-

sible for reactor temperature control. The task is also required to provide

feedback to the optimiser of its operating costs.

• Separation Control (process scope - "Primary Separation"): to implement

the recovery requirements from the optimiser and provide feedback on the

operating costs of the separation section.

• Pressure Control (process scope - "HF process"): to maintain a safe pressure

in the process.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 104

4.2.3 Determining Necessary Safety Margins

An important observation is that two failure conditions (FC-5 & FC-6) are active

constraints in the process optimisation. For a failure condition that is an active

constraint the control objective is to operate as close to the constraint as possible.

Failure prevention requires that a there be a safe margin between the operating

point and failure constraints. A safety margin has a direct impact on optimal

operation. Analysis of the demands and planned control strategies can provide

more information on the necessary safety margins.

Temperature Control: The function of the temperature control is to prevent

the reactor wall from overheating and the basic control mechanism is to regulate

heat input. Throughput, which is under the control of the supervisory demand

SD-i, is a significant disturbance for this control task. However, the supervi-

sory demand provides advance notice of changes in throughput so it is possible

to schedule changes in heat input to match throughput and avoid significant tem-

perature deviations. The speed at which temperature control can respond to the

feedforward signal limits the rate at which production rate can be changed.

The variation in CaF 2 concentration identified in external demand ED-i will

have an effect on conversion and therefore on the heat balance. Also uncertainty

in the operation of the reactor will also lead to variations in conversion. An

approximate model of the relationship between conversion and the reactor wall

temperature can be derived from a simplified heat balance (see appendix B.4),

MwC,wTws = QR - UAT

+UA_
XFCaF/HR + UAT

MRCP,RS + FCP,R + UA 	
(4.13)

The relationship between TW and X is second order and rearranging the equation

into the standard form for a second order system (ie. Tw = KX/(7 -2 s2 + 27- (s + 1))

gives the constants:

System Gain: K = / HR/CP,R 	 (4.14)

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant
	

105

Time Constant: T 	
IMwC ,wMR

UAF
	 (4.15)

	

Damping Factor: (= 	x (UAMwC,w

+FCP,RMWC P,W + UACP,RMR)
	

(4.16)

For a second order system the output gain to a sinusoidal input is given by,

KA
AT = 	 (4.17)

- (wT)2)2 + (2(rw) 2

	

where Ax 	Amplitude of input disturbance

AT 	Amplitude of temperature response

	

w 	Frequencyofinputdisturbance

The time constant can be split into two parts: the reactor residence time (MR /F)

and the thermal inertia of the reactor wall (MwC,w/UA). Reactor residence time

is known to be approximately 60 minutes and if the thermal inertia is of the same

order then the combined time constant (the root of the product of the two terms)

will also be approximately 60 minutes. It is safe to expect that the system will

not be underdamped (ie. (< 1) and assuming perfect damping (ie. C = 1) the

normalised amplitude ratio is

	

ARN= 	= 	
1 	

(4.18)
KA 	/(i - 3600.w2) 2 + 14400w 2

The normalised amplitude ratio provides a measure of the effect of dynamics on

damping an uncontrolled disturbance in X. Combined with a steady state analysis

to determine the gain for the expected magnitude of input disturbances an estimate

of the necessary safety margin can be derived. Dynamic effects alone will damp

temperature disturbances by 99% for frequencies faster than 5 minutes per cycle

which is close to the time scale of the composition demand ED-i. A significant

safety margin with respect to ED-i is therefore expected to be required. Also the

analysis indicates that control for demands of similar frequency is not necessary.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 106

Pressure Control: the pressure control strategy proposed regulates the gas and

vapour flowrates through the whole process. Precise regulation of the pressure is

therefore important not only to improve safety margins but also to reduce the

demands on the separation control system. As for the temperature control a

system of Laplace equations can be derived to model the pressure dynamics (see

appendix B.3),

- 	RTR(1+KFPS)+FCaFX 	
(4.19) PR =

	VRS+2RTRKF

- 	RTS(1+KF(PR+PF)) 	
(4.20) PS =

	VSS+2RTSKF

	

where Ps 	Separation system pressure

	

PF 	Downstream pressure created by vent fan

	

KF 	Pipe flow constant

Deriving values for the model parameters from the current level of process

definition is difficult. As the author's design experience is not sufficient to esti-

mate the parameters, analysis is restricted to a qualitative evaluation. The time

constants for the separate equations are both of the form V/(RTKF). At one

atmosphere V/RT is equal to the molar hold up of a system which is expected to

be small. Also if pressure drops are to be kept small KF is expected to be large.

Therefore on a qualitative basis the pressure control system is expected to have

a fast response and is likely to be most sensitive to demands of higher frequency

than those identified so far.

In an industrial environment a stronger base of process design experience is

available. Design experience and a history of previous designs would assist in

determining reasonable estimates of the model parameters. A numerical analysis

of the pressure control system would then be possible.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 107

4.2.4 Secondary Operating Strategies

Within the operating task structure that has been developed so far if conventional

pressure or temperature control fails the only planned action is to shut down the

process. It is desirable to avoid such an extreme response if possible. To reduce

the need for shutdown secondary operating strategies are considered. A secondary

operating strategy uses additional control mechanisms to gain more control over

a failure condition. Typically additional control is obtained by overriding super-

visory demands given by optimisers.

Overpressure in the reactor can be compensated both by increasing the rate at

which gases are removed (the conventional control) and by reducing the reaction

extent in the reactor (eg. by cutting the feed to the reactor). Within the normal

operating task hierarchy the supervisory demand SD-i, which sets the production

rate, ultimately governs reaction extent. As a backup strategy in the case of over-

pressure reaction extent is governed by a "Pressure recovery" task. If pressure

reaches a given alarm level control is switched to the pressure recovery task which

will attempt to compensate for the overpressure by cutting the reaction extent.

Either operation will return to normal and operation will switch back to optimi-

sation or pressure will continue to rise until the alarms in the primary executive

initiate a plant shutdown. Switching between normal optimisation and pressure

recovery requires an executive task which is interposed between the stock control

task and the recycle optimisation (figure 4.11). The pressure recovery task will

also be decomposed into a hierarchy of operating tasks but many of the tasks

will be in common with the optimisation hierarchy (eg. for regulation of reactor

temperature and composition control).

4.2.5 Start up Procedure

The preliminary start up procedure defined at the input/output level decomposes

the operation into start up of the reactor and primary separation followed later

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 108

Stock
Control

SD—i

- - T 'oduction P-2
Recycle
Executive_/

/ Optimise / 	 /s
R&A /

der

Figure 4.11: Secondary operating tasks for pressure recovery

by startup of the rectifier section. It is now known that the reactor has a long

residence time and getting it to its operating temperature is likely to be the slowest

part of the start up operation. To ensure that no loss of HF occurs the primary

separation must be active before the reactor offgas starts to flow. If the reactor

can be preheated without having to charge it with feed then startup is arranged

as shown in figure 4.12. Preheating brings the reactor as close as possible to its

production temperature. As the reactor approaches its operating temperature the

primary separation is started up running at maximum recycle. Only once the

primary separation is running is acid and fluorspar fed to the reactor. Finally the

reactor and separation are brought up to production grade.

4.3 Primary Separation System

Following the design of the recycle structure the process design may be decom-

posed into the separate sections of reactor, primary separation and and rectifica-

tion. Figure 4.13 shows the structure for the primary separation system. Primary

separation is divided into three sections:

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	109

Reactor & Primary Separation 	I
Startup C artup \-------------------- I - - 	ecutive /-

epartion

H
Figure 4.12: Startup of Reactor and primary separation systems

• Acid Quench: to cool the reactor offgas and condense out the sulphuric acid

for recycle.

• Condenser: to separate the HF from the low boiling point impurities.

• HF Absorber: to recover I-IF from vapour effluent. Cooled H2SO4 is used to

extract the HF from the vapour stream.

The acid used for recovery in the absorber is fed back to the quench system where

the HF is boiled off by the hot reactor gases.

When decomposing the process design the context of each section as part of a

whole process is maintained (the grayed sections of the fiowsheet). Maintaining the

process context serves two purposes, first it connects the inputs of the section with

external demands entering the process. For example the uncertainty in fluorspar

composition (external demand ED - i) will affect the reactor offgas composition

entering the separation section. A simplified model of the reaction system relates

the stream entering the separation section with the external demand. The second

purpose is to identify any feedback effects that may exists between the outputs of

the section and its inputs, eg. build up of impurities in recycles.

—<~
eed ea tor

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant

Primary Separation S—I

H2SO4 	 H2SO4(HF)

H2SO4

7 	
1] 	

;

:C:.:F:2>
QithJ 	Condenser H4

	

. 	LR 	
er

nt 	
: .

HFTe 	 .

Figure 4.13: Structure of the primary separation system

The decomposition of the production tasks at the recycle design level defined a

'separation control' task to manage the primary separation system. The degrees of

freedom available for local optimisation are restricted by various constraints. The

failure conditions FC-1 and FC-4 set limits on the FIF composition in the technical

grade product and effluent stream (marked as open control loops in figure 4.13).

Also as the rectifier of section P3 is only designed to remove components lighter

than FIF there is a limit imposed proportion of H2SO4 which can be present in the

technical grade product so that failure condition FC-2 can be satisfied. Finally

the recovery of acid from the reactor offgas is supplied as a supervisory demand

by the production optimisation task.

A natural assignment of the control objectives to process operations is:

• Quench: H2SO4 Recovery & H 2 504 :FJF product ratio.

• Condenser: HF composition in product.

• Absorber: HF Composition in effluent

There is no apparent benefit to including an additional layer of process optimisa-

tion so the separation control task is decomposed into three reduced regulatory

110

Vapour
Effluent

tasks, one for each operation. An expansion of the flowsheet for each operation

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 111

with control loops marked is shown in figure 4.14. To ensure maximum recorery of

Primary Separation S-i

H2SO4 	 H2SO4 (HF)

Q-1 	 F-i 	 A-i
Acid

Quench 	 Condenser 	
Absorber

lAbsorber
Acid Quench

:T-j --------------- ----------------

Figure 4.14: Expanded design of separation operations

ElF the fiowrate of acid to the absorber is set to the maximum that can be achieved

without flooding the column. Similarly the liquid recycle rate in the quench is also

set to the maximum flow that can be achieved.

Condenser

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 112

4.4 Reactor System

The basic structure of the reactor system is straightforward, the oleum and sul-

phuric acid are combined in a pre-mixer which is then fed along with the fluorspar

to the reactor.

As with the primary separation most of the regulatory tasks for this sec-

tion have been pre-specified. The stock control task determines the feed rate

of fluorspar, the optimal ratio of acid to fluorspar is calculated by a supervisory

task. New control tasks to be addressed at this level are the regulation of oleum

feed rate and preheating of the feed acid to the reactor.

The oleum is used to keep the water content of acid that is fed to the reactor

to a minimum. The flowrate of oleum is therefore set by a control monitoring the

fraction of water in the reactor feed acid. The reaction of oleum with the water

partially preheats the reactor feed acid. Heating utility is still required to provide

additional preheating. The flowsheet published in the BUSS patent [62] has a heat

exchanger placed on the fresh feed to the pre-mixer. The placement is not ideal

as a means for controlling the temperature of the acid fed to the reactor. Instead

it has been chosen to place the heat exchanger after the mixer which provides a

more direct means of temperature control.

The final structure for the reactor system with its regulatory control system is

shown in figure 4.15.

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 113

Reactor System A-i 	 -............... 	[-------------

S1 re— 	A Mixer

Prima
Separa

Reactor

CaF2

Figure 4.15: Reactor system design

4.5 The Rectification Section

The rectifier section has the standard configuration of a simple distillation system

(figure 4.16). The stock control task sets the production rate for this system. As

was discussed in the development of the stock control strategy the rectifier section

is required to have a fast response to changes in production rate. The primary

failure condition pertinent to the rectifier section is FC-2 which sets a composition

limit on the product stream.

A degree of freedom is still left in the operation of the rectifier ie. the recovery

of HF to the product. Any HF lost in the top product of the rectifier is recycled and

must be recovered in the absorber of the primary separation system. To determine

the optimal recovery for the rectifier it is therefore necessary to account for the

interaction with the absorber. The implication is that the original hierarchical

structure is inappropriate. A revised hierarchy for the on-line optimisation is

overlayed on the process in figure 4.17.

Chapter 4
	

Operating System Design for a Hydrofluoric Acid Plant 	 114

H2SO4

CaF2

s
R-i 	

-i

Reaction 	 Primary
System 	 - Separation

Solid
Effluent

Vapour
Effluent

H 	rL FP• H;®

I Rectifier P-3

Figure 4.16: Rectifier section design

If operation of the rectifier and absorber are interdependent the implication

is that the design of the rectifier and absorber are also interdependent. The new

decomposition of the operating system is therefore a more appropriate decompo-

sition for the process design as well. The original hierarchical structure is more

appropriate for the startup of the process. Therefore for the same process design

two separate decomposition strategies are used in the operating system design.

However, the process design will only follow one decomposition path, and concur-

rent design for an operating tasks which employs a different decomposition will

not be straightforward.

4.6 Final Operating System Design

Figure 4.18 shows the complete FIF process with the basic regulatory control system

marked. The fiowsheet is derived from that given in the BUSS patent [62]. The

development of the process at this stage focusses on equipment design for each of

the unit operations. For the operating system design it is necessary to identify

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 115

Primary Separation

stem 	 Quench 	
Cndenser ! HF

CaF2

Solid
	

Recfier

1; 	k]QHF
Figure 4.17: Revised operating task hierarchy

secondary measurements for estimation of properties such as composition which

cannot he conveniently measured online. As the detailed designs for the process

equipment become available the models used in the operating tasks and control

schemes should be appropriately refined.

Operability analysis at this stage can make much more use of the methods

discussed in chapter 2. The preliminary operating system design has identified

some of the constraints and demands on operation. The final equipment design

introduces further constraints which can he combined with the failure conditions

and demands for a complete flexibility analysis. In fixing equipment sizes more

well founded dynamic models can be formulated to validate previous analyses and

to perform more complete dynamic resilience tests.

4.7 Conclusions from Case Study

The design of the hydrofluoric acid plant has been developed following the hi-

erarchical steps of the Douglas [57] methodology. In step with the hierarchical

development a basic strategy for on-line optimisation and regulatory control of

Figure 4.18: Complete HF process with controls

: cc

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 116

Chapter 4 	Operating System Design for a Hydrofluoric Acid Plant 	 117

the process has been developed (see figure 4.18). A basic procedure for start up

has been also proposed as part of the operating system design. In addition the use

of secondary operating strategies to provide a layered response to failure recovery

has been illustrated with respect to the pressure control system. The appropriate

structure for the operating task hierarchy has not always been clear cut. The

pressure control is an example of an operating task that did not fit naturally into

the task hierarchy.

A comparison of the proposed operating system design with current control

systems is difficult due to the lack of published data on current process perfor-

mance and operation. The design of the HF process and its control system has

evolved over several years. In the process of review and redesign operability prob-

lems are expected to be reduced. In following a hierarchical approach the basis

for a rational operating strategy has been developed in reasonable time.

Modelling restrictions have been a significant limit to the amount of oper-

ability analysis that has been possible during preliminary design. For example,

performing flexibility analysis when few of the equipment constraints are known

has limited value. However, by working from an understanding of the operating

strategy it has been possible to consider focussed studies. While these studies are

not as general as the methods reviewed in chapter 2 the link between the process

design and control performance is easier to understand. Methods for formulating

lumped models for whole process sections, including the prediction of the model

parameters, are needed to improve operability analysis for preliminary process

designs.

Chapter 5

Summary, Conclusions and Future

Directions

5.1 Summary

In chapter 2 a variety of approaches to operability analysis were reviewed. The

dominant areas of study in process operability are flexibility and dynamic re-

silience. Putting together the tools that have been developed in these fields to

derive a balanced conclusion is a non-trivial task for the process designer. The

evaluation and interpretation of dynamic resilience measures is a particular chal-

lenge for process engineers who are not familiar with the underlying control theory.

The proposal of this thesis was that, to assist in operability analysis and improve

design integration, concurrent design of the process and the control system should

be considered.

To support concurrent design a framework for the hierarchical design of a

process operating system was set out in chapter 3. A process operating system

was defined as the complete collection of control schemes, alarms and operating

procedures used for managing the process through all phases of operation. The

two primary functions of the operating system were seen to be:

• Failure Management: the prevention of and recovery from operating failures.

• Process Optimisation: optimisation of process operation.

UaV

Chapter 5 	 Summary, Conclusions and Future Directions 	 119

The design of an integrated operating system was approached by decomposing the

problem into a hierarchy of operating tasks. Three classes of operating task were

used in constructing the hierarchy:

• Regulatory tasks: for optimising operation at a steady state.

• Transition tasks: for transferring the process from one regulatory state to

another.

• Executive tasks: which manage the response to discrete events such as alarms

and failures.

An operating system is implemented by designing a control scheme for each of the

tasks in the operating task hierarchy.

A case study on the design of an operating system for a hydrofluoric acid plant

was presented in chapter 4. The study followed the hierarchical steps proposed

by Douglas [57] for preliminary process design. The resulting operating system

design addressed both on line optimisation and failure management. Not all op-

erating tasks fitted naturally into the hierarchical decomposition developed and

some consideration of alternative decompositions was needed. The application

of general methods for operability analysis during the preliminary design stages

was found to be limited by the degree of modelling that was possible. However,

by working from an understanding of the planned operating strategy, focussed

operability studies could be developed for the preliminary design.

A knowledge based representation has been proposed to support operating

system design. Particular attention was given to the problem of supporting con-

current design of the process and operating system. The representation developed

links process design alternatives with operating system design alternatives through

their association with a common operating task. Though the representation was

not employed in the case study it is suitable for extension and incorporation into

a more general design support system.

Chapter 5 	 Summary, Conclusions and Future Directions 	 120

5.2 Conclusions and Future Directions

Process operability is an important design issue. Methods for analysing operability

are only part of the solution to addressing this issue. Integrating the development

of the process, the control system and the operating procedures is an important

additional part of the solution. While on occasion there may be industrial projects

that develop the control system design or operating procedures in step with the

process design, in general the three are treated as independent activities. The

proposed framework for hierarchical operating system design unifies the design

of the control system and operating procedures such that they can be developed

concurrently with the design of the process.

A case study has shown that the general approach of decomposing operation

into a hierarchy of operating tasks is effective in developing an integrated operating

system design. Concurrent design also made it possible to formulate focussed

operability studies during the preliminary design of the process which are valuable

in avoiding potential operability problems.

By hierarchical design of an operating system a unified operating strategy

can be developed. Also by timely identification of operability requirements more

appropriate process designs can be produced. Integrated design of a process and

its operating system is thus a significant aid to designing operable plants.

Further work is proposed in three main areas:

Further case studies. To refine and extend the framework that has been pro-

posed it is important to pursue further case studies. In particular more consid-

eration needs to be given to the design of transition tasks such as startup and

shutdown. Also a strictly hierarchical approach to design is restrictive. The evo-

Chapter 5 	 Summary, Conclusions and Future Directions 	 121

lution of a process design does not always follow hierarchical steps. An appropriate

approach to operating system design in such cases needs to be developed.

Models for preliminary operating system design. To improve the operabil-

ity analysis at the preliminary design stages it is important to be able to formulate

suitable models. Some simple models were derived in the case study but their use

was limited by the ability to predict appropriate values for the model parame-

ters. A system for estimation of process dynamics based on statistical correlations

would be a useful aid.

Knowledge based system support. The focus of the knowledge representa-

tion has been on linking process and operating system design. Other aspects of

the representation are less developed and could benefit from enhancement. Trans-

ferring the representations that have been developed to a more complete design

support system is important for the further development of the knowledge repre-

sentation work.

Appendix A

Bibliography

C. J. Ryskamp. Explicit versus implicit decoupling in distillation control. In

Chemical Process Control II, page 361, 1982.

J. M. Douglas and W. R. Fisher. Analysis of process operability at the

preliminary design stage. Comp.8 Chem. Eng., 9(5):499, 1985.

I. E. Grossmann and M. Moran. Operability, resiliency & flexibility: Process

design objectives for a changing world. In Foundations of Computer Aided

Process Design, page 931, 1983.

I. E. Grossmann and R. E. Swaney. An index for operational flexibility in

chemical process design: Part 1. A. I. Ch. E. Journal, 31:621, April 1985.

Y. Arkun and W. G. Etzkorn. Computer aided operability analysis via inter-

active graphics. Comp.1 Chem. Eng., 5(4):233, 1981.

I. E. Grossmann and C. A. Floudas. Active constraint strategy for flexibility

analysis in chemical processes. Comp.1 Chem. Eng., 11(6):675, 1987.

M. Moran, A. K. Saboo, and D. C. Woodcock. Design of resilient process

plants -(VIII). chem.Eng.sci, 40(8):1553-1565, 1985.

122

Appendix A 	 Bibliography 	 123

I. E. Crossmann, K. P. Halemane, and R. E. Swaney. Optimization strategies

for flexible chemical processes. Comp. Chem. Eng., 7(4):439, 1983.

W. R. Johns and M. Lakshmanan. Optimal equipment sizing under technical

uncertainty. In PSE'85, number 92 in I. Chem. Eng. Symposium Series, page

223, 1985.

R. K. Malik and R. R. Hughes. Optimal design of flexible chemical processes.

Comp.& Chem. Eng., 3:473, 1979.

W. R. Johns, G. Marketos, and D. W. T. Rippin. The optimal design of

chemical plant to meet time varying demands in the prescence of technical

and commercial uncertainty. Trans. I. Chem. E., 56:249-257, 78.

G. Marketos. The optimal design of chemical plant considering uncertainty

and changing circumstances. PhD thesis, ETH 5607, ETH, Zurich, Switzer-

land, 1975.

E. N. Pistikopoulos and I. E. Grossmann. Optimal retrofit design for improv-

ing process flexibility in linear systems. Comp. Chem. Eng, 12(7):719-731,

1988.

E. N. Pistikopoulos and I. E. Grossmann. Stochastic optimization of flexibil-

ity in retrofit design of linear systems. Comp. Chem. Eng, 12(7):1215-1227,

E. N. Pistikopoulos and T. A. Mazzuchi. A novel flexibility analysis approach

for process with stochastic parameters. Com . Chem. Eng., 14(9):991-100,

1990.

0. A. Asbjornsen. Control and operability of process plants. Comp. Chem.

Eng., 13(4/5):351-364, 1989.

Appendix A 	 Bibliography 	 124

M. Moran, D. F. Marselle, and D. F. Rudd. Design of resilient processing

plants - II. Chem. Eng. Sc., 37(2):259, 1982.

M. Morari and A. K. Saboo. Design of resilient processing plants - IV. Chem.

Eng. Sc., 39(3):579, 1984.

M. Moran, A. K. Saboo, and R. D. Colberg. Reshex:- an interactive software

package for the synthesis and analysis of resilient hen's, parts I & II. Comp.l

Chern. Eng., 10(6):577, 1986.

B. Linhoff and E. Kotjabasakis. Sensitivity tables for the design of flexible

processes (1). Chem. Eng. Res. Des., 64:97, May 1986.

J. Calandranis and G. Stephanopoulos. Structural operability analysis of heat

exchange network. Chem. Eng. Res. Des., 64:347, September 1986.

Y. Shimizu. A plain approach for dealing with flexibility problems in linear

systems. Comp. Chem. Eng., 13(10):1189-1191, 1989.

I. E. Grossmann and D. A. Straub. Recent developments in the evaluation

and optimisation of flexible chemical processes. Technical Report edrc 06-

101-91, EDRC, 1991.

P. J. Fryer, W. R. Paterson, and N. K. H. Slater. Robustness of fouling

heat exchanger networks and its relation to resilience. Chem. Eng. Res. Des.,

65:267-271, May 1987.

M. Moran. Design of resilient processing plants - III. Chem. Eng. Sc.,

38(11):1881, 1983.

26. Y. Arkun. Dynamic process operability: Important problems, recent results

and new challenges. In Chemical Process Control III, page 323, January 1986.

Appendix A 	 Bibliography 	 125

M. Morari and B. R. Holt. Design of resilient processing plants - V. Chem.

Eng. Sc., 40(7):1229, 1985.

M. Morari and B. R. bit. Design of resilient processing plants - VI. Chem.

Eng. Sc., 40(l):59, 1985.

J. D. Perkins and M. P. F. Wong. Assessing controllability of chemical plants.

In PSE'85, page 481, 1985.

R. D. Johnston and G. W. Barton. Analysis of structural controllability. mt.

J. Control., 41(6):1477-1491, 1985.

J. D. Perkins and L. W. Russell. Towards a method for diagnosis of control-

lability and operability problems in chemical plants. Chem. Eng. Res. Des.,

65:453, November 1987.

F. D. Carvallo, A. W. Westerberg, and M. Moran. An index of controllability

for linear deterministic processes. Technical Report 06-58-89, EDRC, 1989.

T. J. McAvoy and T. E. Marlin. A short-cut method for process control

and operability analysis. In Chemical Process Control III, page 369, January

Om

T. J. McAvoy, G. Stanley, and M. M. Galarraga. Shortcut operability analysis

1. the relative disturbance gain. md. Eng. Chem. Proc. Des. Dev., 24:1181,

1985.

S. Skogestad and E. Wolf. Controllability measures for disturbance rejection.

In Interactions between Process Design and Process Control, J. D. Perkins,

editor, pages 23-29. IFAC, Pergamon Press, September 1992.

36. M. Morari and S. Skogestad. Design of resilient processing plants - IX. Chem.

Eng. Sc., 42(10):2425, 1987.

Appendix A 	 Bibliography 	 126

Y. Arkun, A. Palazoglu, and B. Manousiouthakis. Design of chemical plants

with improved dynamic operability in an environment of uncertainty. md.

Eng. Chem. Proc. Des. Dev., 24:802, 1985.

Y. Arkun and A. Palazoglu. A multi-objective approach to design of chemical

plants with robust dynamic operability characteristics. Comp. Chem. Eng.,

10(6):567, 1986.

I. D. L. Bogle and M. Rashid. An assessment of dynamic operability measures.

Comp. Chem. Eng., 13(11/12):1277-1282, 1989.

Y. Arkun and S. Ramakrishnan. Structural sensitivity analysis in the syn-

thesis of process control systems. Chem. Eng. Sci., 39(7/8):1167-1179, 1984.

J. R. Rivas, D. F. Rudd, and L. R. Kelly. Computer aided safety interlock

systems. A.I.Ch.E Journal, 20(2):311-319, March 1974.

J. R. Rivas and D. F. Rudd. Synthesis of failure safe operations. A.I.Ch.E

Journal, 20(2):320-325, March 1974.

R. H. Fusillo and G. J. Powers. A synthesis method for chemical plant oper-

ating procedures. Comp.P Chem. Eng., 11(4):369, 1987.

R. H. Fusillo and G. J. Powers. Operating procedure synthesis using local

models and distributed goals. Comp.& Chem. Eng., 12(9/10):10230-1034,

R. H. Fusillo and G. J. Powers. Computer aided planning of purge operations.

A .1. Ch.E Journal, 34(9/10):558-566, 1988.

R. Lakshmanan and C. Stephanopoulos. Synthesis of operating procedures

for complete chemical plants I - hierarchical structured modelling for nonlin-

ear planning. Comp. Chem. Eng., 12(9/10):985-1002, 1988.

Appendix A 	 Bibliography 	 127

R. Lakshmanan and G. Stephanopoulos. Synthesis of operating procedures

for complete chemical plants II - a nonlinear planning methodology. Comp.

Chem. Eng., 12(9/10):1003-1021, 1988.

R. Lakshmanan and G. Stephanopoulos. Synthesis of operating procedures

for complete chemical plants III - planning in the presence of qualitative

mixing constraints. Comp. Chem. Eng., 14(3):301-312, 1990.

V. Aelion and G. J. Powers. A unified strategy for the retrofit synthesis of

flowsheet structures for attaining or improving operating procedures. Comp.

Chem. Eng., 15(5):349-360, 1991.

M. Moran, J. A. Mandler, and J. H. Seinfeld. Control system design for a

fixed bed methanation reactor. Chem. Eng. Sc., 41(6):1577, 1986.

M. Moran, B. R. bit, K. Shimizu, and R. S. H. Mah. Assessment of control

structures for binary distillation columns with secondary refiux and vapour-

ization. md. Eng. Chern. Proc. Des. Dev., 24:852, 1985.

Y. Arkun, A. Palazoglu, and B. Manousiouthakis. Robustness analysis of

process control systems: A case study of decoupling control in distillation.

md. Eng. Chem. Proc. Des. Dev., 23:93, 1984.

T. E. Marlin, J. D. Perkins, G. W. Barton, and M. L. Brisk. Benefits from

process control: result of a joint industry study. J. Proc. Cont., 1:68-83,

March 1991.

G. W. Barton, W. K. Chan, and J. D. Perkins. Interaction between process

design and process control: the role of open loop indicators. J. Proc. Cont,

1:161-170, May 1991.

G. W. Barton and T. C. Nguyen. Improved control via process modification.

In Third Symposium on Process Systems Engineering, pages 39-43, 1988.

Appendix A 	 Bibliography 	 128

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence, 5:115, 1974.

J. M. Douglas. Conceptual Design of Chemical Processes. McGraw-Hill, 1988.

J. W. Ponton and D. M. Laing. A hierarchical approach to the design of

process control systems. Trans. I. Chem. E., 71:181-188, March 1993.

J. M. Douglas. A hierarchical decision procedure for process synthesis. A. I.

Ch. E. J., 31(3):353, March 1985.

H. C. Fielding and B. E. Lee. Hydrofluoric acid, inorganic fluorides and

fluorine. In Modern Inorganic Chemicals Industry, R. Thompson, editor,

pages 149-167. The Chemical Society, March 1977.

F. A. Lowenheim and M. K. Moran. Hydrofluoric acid. In Faith, Keyes, and

Clark's Industrial Chemicals, pages 464-467. John Wiley & Sons, 4 edition,

1975.

Process for the continous production of hydrofluoric acid. Patent 1216270

(UK), patent held by Buss AG, October 1967.

A. Struthers. A Knowledge Based Approach to Process Engineering Design.

PhD thesis, University of Edinburgh, 1990.

D. Hutton. Knowledge Based Flowsheeting. PhD thesis, University of Edin-

burgh, 1991.

Appendix B

Derivation of Models for Case Study

B.1 Storage requirements for constant produc-

tion rate

If the nominal production rate is Snom then if sales drop to Si,, for a sustained

period of TD then stock levels will increase by

LV = TD*(S nom Sm in) 	 (B.1)

If on the other hand sales increase to Smax the stock levels will drop by

TD*(S ma Snom) 	 (B.2)

To guarantee that there will not be a deficit or excess of stock it therefore necessary

to have a storage capacity, V, of

V = TD*(S max Sm in) 	 (B.3)

and it will be necessary to maintain a nominal stock level of

Vnom = TD*(S max Snom) 	 (B.4)

129

Appendix B 	 Derivation of Models for Case Study 	 130

B.2 Storage requirements with flexible produc-

tion rates

First consider a change in sales rate from its nominal value Snom to its maximum

Smax. If the rate at which production rate can be changed is r then the time

required to increase production rate to match sales rate is (Smax - Snom)/r. The

lowest peak in stock level occurs when the production rate change is started in

advance of the sales rate change by (Smax - Snom)/2r. The peak level will occur

half way through the change in production rate when

LV = 0.5.(Smax - Snom)/2r.(Smax - Snom)/2 	 (B.5)

= (Smax - Snom) 2 /8 	 (B.6)

Similarily for a change in sales rate from Snom to 8min the maximum drop in stock

level will be

—V = (Snom - Sm jn) 2 /8r 	 (B.7)

Assuming that Smax - Snom = Snom - 	then the necessary storage capacity

required is

V = (Smax - Sm in) 2 /4r 	 (B.8)

B.3 Derivation of dynamic model for pressure

control

For a unit with a vapour flow in of 	and vapour flow out of 	a molar

balance combined with the ideal gas law gives

dP 	RT
= 	- 	+ G) 	 (B.9)

Appendix B 	 Derivation of Models for Case Study 	 131

where C represents the net rate of vapour generation in the unit. The upstream

and downstream flows are determined by the pressures upstream (P) and down-

stream (Pd),

= KF(P - P)
	

(B.1o)

= KF(P — Pd)
	

(B.11)

The pipe flow constant Ifp will be treated as constant throughout the process.

Substituting the flow relations back into the pressure derivative gives,

dPRT
= _V(KF(Pup+Pdfl2P)+Gv) 	 (B.12)

Substituting difference variables and taking the Laplace transform gives,

= RT(1 + KF(PUP + Pd) + GV 	
(B.13)

(Vs + 2RTKF)

For the reactor G, the rate of vapour generation is related to the feed rate of

fluorspar (FCaF) and its conversion (X). Therefore the relationship for PR is,

RTR(1 + KFPS) + FCaFX

VRS + 2RTRKF

where Ps is the separation system pressure. For the separation system the down-

stream pressure is controlled by the exhaust fan. The rate of vapour generation is

treated as constant so Gv,S = 0, giving,

Ps=
RT5(1 + KF(PR + PF))

Vss + 2RTSKF

Appendix B 	 Derivation of Models for Case Study 	 132

B.4 Dynamic relation between conversion and

reactor wall temperature

Assuming a lumped parameter system, the temperature of the reactor wall, T,

is determined by the heat balance

MwC,w
dTw

	

 = QK - UA(Tw - TR) 	 (B.16)

	

where MK 	Mass of reactor wall

	

Ci,, W 	Heat capacity of reactor wall

UA = Effective Area x Heat Transfer Rate

If a constant average flow, F, and heat capacity, Cp,R, are assumed for the material

flowing through the reactor then a heat balance on the reactor contents gives

MRCP,R
dTR
 = FCP,R(TI - TR) + F.X.ZH R + UA(TS - TR) (B.17)

dt

	

where MR 	Mass of reactor contents

	

T1 	Inlettemperatureofreactants

X = Reaction Conversion

LXHR = Heat of reaction

(B.18)

Only the relationship between TW and conversion X is of interest. Taking Laplace

transforms (assuming F and T1 are constant) and combining the heat balances

gives,

MwC,wTws = QR - UAT
XFLH R + UAT

+UA_
MRC P,RS + FCP ,R + UA 	

(B.19)

From inspection the relation between TW and X is second order. Rearraned into

the standard format for a second order model (ie. g = K/(r 2 s2 + 2rs + 1)) the

Appendix B 	 Derivation of Models for Case Study 	 133

model parameters are,

	

System Gain: K = 	HR/cP,R 	 (B.20)

I
Time Constant: 	= V

Mw C
UAF

,wMR 	
(B.21)

	

Damping Factor: = 	x (UAMwC,w
2r
+FC,RMwC,w + UAC,RMR)r 	(B.22)

Appendix C

A Knowledge Representation for

Operating System Design

The development of the framework for concurrent hierarchical operating system

design was parallelled by the development of a knowledge representation to support

operating system design as part of an integrated knowledge based design support

system. To an extent the development of the representations also guided the

development of the design framework.

C.1 Overview of the Knowledge Representa-

tion Constructs

In this section provides an overview of the representation principles employed in

this work. Also in this section we shall introduce the terminology that will be

used to illustrate examples.

The principle programming language that was employed in this work was an

experimental language developed locally by Struthers [63] called CLAP ("Corn-

bined Logic And Procedures"). The language is built upon Prolog, a declarative

logic language. CLAP adds to this language object oriented facilities and special

134

Appendix C 	A Knowledge Representation for Operating System Design 	135

constructs for defining procedural operations. There are a wide range of object

oriented languages in existence employing varied interpretations of the object ori-

ented paradigm. At the core of object oriented programming is the encapsulation

of structure and function in objects. Objects with the same function and structure

are represented by a single class, specific examples of a class being referred to as

instances. Within object oriented systems modularity is achieved through inheri-

tance mechanisms. A class can be defined to have parent classes which means it

will inherit the structure and functions of those classes. It is then only necessary

to define those aspects of the new class which are specific to it. Where object ori-

ented paradigms tend to differ is in the way the structure and functions of objects

are defined and how inheritance is controlled.

An important feature of the object oriented paradigm provided in CLAP is

division of an object's representation into two parts, slots and relations. The

division is based on a distinction between information that is strictly local to an

object (ie. will only be referenced through that object) and information that exists

separately from the object. To illustrate this consider the following example:

Object(process_strea m)
•flowrate :{value_class: real; range: [O,_]}
•component_fractions : { value_class: real_vector}

O bject(process_u nit)
•function :{value_class: string}
• capital_cost : { value_class: real; range: [O,_]}

Set Relation(inlet_stream+-* {sink})
domain_class: process_unit
•range_class: process_stream

Set Relation(outlet_stream+-*{source})
domain_class: process_unit
•range_class: process_stream

The definitions provide a representation for a process fiowsheet. The first two

items are object definitions listing the slots that are defined for that class of object.

Following each slot name is a list of slot meta properties. Meta properties provide

control over the methods that set and access that slot. The example shows two

of the standard meta properties used: "value_class" which constrains the type of

Appendix C 	A Knowledge Representation for Operating System Design 	136

value that can be assigned to the slot and "range" which constrains the values

that can be set. By customising the methods for accessing and setting the slots

of an object class support for additional special meta properties can be provided.

The last two definitions in the example declare relations which are the primary

mechanism used to link objects to each other. Those in the example are used to

represent the fiowsheet structure, for example the directive:

$assert_relation reactor inlet_stream feed_A.

will create a relation identifying feed_A as an input to the reactor. The latter

object is referred to as the domain of the relation, the former as the range of the

relation. As with slots, relations may also have meta properties. Two basic meta

properties for relations are domain_class and range_class which control the object

classes that a relation may be used with.

Accessing the first relation is possible in two ways either as the inlet_stream

property of the reactor object or as the source property of the feed_A object. The

latter is known as the relation inverse. The relation inverse could have been used

in the previous assertion,

$assert_relation feed_A sink reactor.

Support for inverse relations is a key benefit from using relations instead of slots

to connect objects. The representation in the example above could have been

managed using simple slots to hold the information but additional code would

then have been required to maintain consistency between the cross-references.

Slots are therefore used primarily for associating information with an object that

requires no back referencing (ie. simple data types such strings and numbers, and

objects that are only accessed via the referencing object).

There are three basic classes of relation, viz

• Binary Relation: shown as domain_relation-range_relation and

Domain_Class
domain_relation 	__ Range_Class
range_relation

Appendix C 	A Knowledge Representation for Operating System Design 	137

• Set Relation: shown as domainre1ation4-{range_relation} and

domain_relation -.
Domain_Class -- range_relation 	

{
Range_Class }

• Dual Set Relation: shown as {domainrelation}-*{range..ielation} and

{ Domain_Class }
__,,—domain relation

"— range_relationL 	
{

Range_Class }

The simplest form of relation is a binary relation which specifies a unique link be-

tween two objects. Setting a binary relation overrides any previous relation of the

same name that was defined in either of the two objects. For the inlet..stream/sink

relation used in the example above while this behaviour is appropriate from the

perspective of the stream (ie. a stream can only have a single sink) it is not from

the perspective of the process unit. The class of relation used instead is a set

relation which associates a set of range object (eg. process streams) with a single

domain object (eg. process unit). When asserting the inlet.stream/sink relation

in the stream object any previously defined sink relation will be overwritten but

in the process unit object the new relation will simply be added to the set of

input_stream relations. Accessing the input _stream relation of the process unit

would return a list of the input streams associated with it by that relation.

The most general form of relation is the dual set relation which may be multiply

defined in both the domain object and range object. An alternate representation

for a process fiowsheet could use the dual set relation:

DSet Relation({inlet} +-{outlet})
•domain_class: process_unit
.range_class: process_unit
•stream

The connection between units is defined directly by this relation. If a stream is

associated with the connection it is recorded as part of the relation. As instances

of this relation are asserted each process unit accumulates a set of input units and

a set of outlet units.

Appendix C 	A Knowledge Representation for Operating System Design 	138

C.2 General Support for Hierarchical Design

An aspect that is common to the development of both the process and operating

system is the use of hierarchical design. In this section we consider what general

support can be provided for systems employing hierarchical development. One

valuable facility a knowledge based system can provide is a convenient mechanism

for keeping track of the hierarchical development. Two elements to hierarchical

design have been identified:

• Design Refinement: the gradual resolution of detail using successively less

abstract descriptions of the design. As part of the refinement process it is

important to support the development of alternative solutions.

• Design Decomposition: the division of a design into simpler reduced design

problems that are intended to be developed independently.

To provide common support for these operations across different design do-

mains the representations developed have been based on the use of general rela-

tions (relations which have no restrictions on domain class or range class). The

early experiments in supporting hierarchical design employed two relations, as

illustrated in figure C.I.

The parts/part.of relation provides a link between the general design object

and the more specific design objects that constitute it. A dual set relation is used

since a particular part may be used in more than one design alternative. The

refinements/refinedirom relation is used to keep track of the design alternatives

developed for each design object.

The example shows an initial design specification A for which two design al-

ternatives have been proposed: A.1 which has parts B, C & D and A.2 which has

parts E & F. For parts C and D further refinements have been made reflecting a

Appendix C 	A Knowledge Representation for Operating System Design 	139

rSimplified
Original

Design 	
reflnements 	

{ Design } 	L To 	r
efinedjrom

Refinement

r Conglomerate 1
p Design 	

parts Simplified

part_of 	
{

Design
} 	 L To 	

Part J

A

Set of
Refinements ..A.1

D. < C.2

F 	 < D.2
Set of
Parts

Figure C.1: A simple representation for design hierarchies

decomposition of the design into its separate parts. The design tree is thus built

up with alternating branches of parts and refinements. Reconstructing a complete

design requires a traversal of this tree selecting the alternative of interest on each

branch.

The representation is sufficient provided decomposition of the design always

splits the design into its individual parts. It is less satisfactory when the one to one

correspondence between parts and decomposition does not hold. Typically this

situation arises when there is strong interaction amongst a subset of the parts of a

design and so must be developed together. For example, if parts B & C of design

A.1 are strongly interdependent it is inappropriate to develop C independently

without first resolving this interdependence.

To address the interaction between design parts the design tree could be reor-

ganised, introducing an intermediate design object that groups together B & C.

Appendix C 	A Knowledge Representation for Operating System Design 	140

Figure C.2 illustrates how this is done, the parts B & C being replaced in A.1 by

D2 	
iB.1

A 	
1A2

B C 	 C.2

Figure C.2: Restructuring a design hierarchy

a composite design object Z. To keep a record of the original construction of A.1

the design object Z has B & C specified as its parts. Refinements however branch

from Z not its parts, each alternative reflecting a different balance of the global

design factors affecting B and C.

Supporting hierarchical design with the simple set of simple relations just dis-

cussed has some undesirable features. First it complicates inspection of the con-

struction of the design object A.1 requiring a recursive search through the parts

of each object referenced. Secondly retro-actively modifying a designs represen-

tation can create confusion causing problems in maintaining consistency in the

design project model. Finally this arrangement makes it difficult to consider al-

ternative decompositions.

Rather than relying on an implicit representation for design decomposition

an alternative explicit representation has been developed. The revised approach

instead of relying on the parts relation to double as a representation of design de-

composition uses an additional decompositionset object class and extra relations,

viz

Appendix C 	A Knowledge Representation for Operating System Design
	141

O bject(decomposition _set)
•recomposition_guards

Set Rel ation(decomposition { composite_object})
•range_dass: decomposition_set

DSet Relation({ decomposed _ob jects} {part_of_decomposition})
•domain_class: decomposition_set

Composite 	
decomposition 	I5- { Decomposition_set)

composite_object

r Simplified to:

Composite 	d 	Decomp-
• osition set

B C D

Set of r
Rejmneinents ..1 A. A.1 .1

A D.1

A<
d D.1

A.2
D

Decomposition
Set Z<

Z.2

BC

Figure C.3: Explicit representation of design decomposition

Figure C.3 shows how the relations are used to represent the design of the

previous example. Design A.1 is shown explicitly to have parts B, C & D. It

also has a single decomposition set associated with it which divides the design

into two parts D and Z. The decomposed_objects/parLof_decomposition relation

that connects these designs with the decomposition set is declared as a dual set

relation. Using a dual set relation allows a particular reduced design to he used

in multiple decompositions as well as possibly being part of the original design.

Appendix C 	A Knowledge Representation for Operating System Design 	142

The use of an explicit representation for decomposition makes it possible to

provide more control over design recomposition. Specifically the property recom-

position.guards is used to define conditions that must be satisfied for a particular

combination of refinements to be valid. For example in process design this may

be used to check that streams that were common in the initial reduced designs

are still consistent in the refined designs. The validated design resulting from re-

composition is recorded as a refinement to the original design (eg. design A. 1.1).

This provides a mechanism for reviewing design decomposition, by first recombin-

ing the refinements of interest into a refinement of the original design and then

developing new decompositions for the recomposed design. To keep track of the

source of such design refinements the meta property origin is added to the re-

finement/refinedirom relation which typically identifies the design tree traversal

followed in recomposing the design.

Appendix C 	A Knowledge Representation for Operating System Design 	143

C.3 Coordinating Process and Operating Sys-

tern Development

It is important that the development of the process and operating system follow

compatible paths. In an ideal situation the decomposition of a design creates

independent sub designs. Such perfect decompositions are rare in practice and

attention has to be given to coordinating and directing the development of the

separate design tasks. The decomposition of chemical plant design into process de-

sign and operating system design is a particular example of this. How a knowledge

based system can aid in coordinating the development of process and operating

system will now be considered

C.3.1 Using a Combined Design Class

One method for keeping the design of process and operating system linked together

is to use a merged design hierarchy. For this the production_system class was

defined to represent a combined process and operating system design,

Object(production_system)

ReIaton(process-production_system)
•domairi_class: production_system
.range_class: process

ReIation(operating_system<--production_system)
.domain_class: production_system
•range_class: operating_system

The design hierarchy of the production_system substitutes for the separate hierar-

chies of the process and operating system. An example of the development of pro-

cess and operating system using a combined hierarchy is illustrated in figure C.4.

The starting point of the example is a base design consisting of initial spec-

ifications for the process and operating system {Prl.O, OS1.O}. The first stage

of refinement of the production system arises from the development of alternative

Appendix C 	A Knowledge Representation for Operating System Design 	144

Pr-1.O
os-l.a

refinements

Pr-1.1 	Pr-1.2
	

Process
os-l.o 	os-l.o
	 J Alternatives

refinements 	 refinements

Operating System
J 	Alternatives

Pr-2.0 H Pr-3.0
OS-2.0 I OS-3.0

Combined
) Decomposition

Figure CA: A simple production system hierarchy

refinements to the base process design. Each process alternative is included in

the hierarchy as a production system that uses the new process design with the

same original operating system design. The first layer of refinement is shown in

the figure C.4.

Having established some preliminary process designs the next step is to refine

the operating system design for each production system. The refinements are

included into the production system hierarchy as alternatives which employ the

same process design but different operating systems. The new production systems

form the second layer of refinements in the figure.

With balanced refinement of the process and operating system the production

system hierarchy would continue to develop in this manner. Each layer of refine-

ment corresponds alternately with a refinement of the process or the operating

Appendix C 	A Knowledge Representation for Operating System Design 	145

system. Eventually the complexity of either the process or operating system de-

sign will grow to the point that decomposition is necessary. In the production

system hierarchy this is most simply managed by decomposing both process and

operating system together, as in the last layer of figure C.4. Unfortunately there

is not always a correspondence between the decompositions desired for process de-

velopment and those for operating system development. A particular case of this

is mode based decomposition of the operating system. In such situations while

the design of the operating system is divided into a set of reduced operating tasks

the process design is not normally decomposed at all.

Pr-1.O

os-1.o

decompositions 	 I Operating System
Decomposition

Pr-1.0 "J Pr-1.0

OS-2.0 K! OS-3.0

refin em en is

~1
.2>

"OS-2.0 	OS;-2.10

nementv 	I RF
Process

n innt * 	 - 	."-J

Pr-1.1 	Pr-1.2
OS-3.0 	OS-3.0

Figure C.5: Production system hierarchy after mode decomposition of the op-

erating system

Figure C.5 illustrates how the production system hierarchy would he structured

following mode decomposition of the operating system. In this case the mode

decomposition has divided productions system design into two parts. Each part

has a separate operating system design but they share a common process design.

Multiple referencing requires more attention to consistency maintenance. Also

it can lead to excessive growths in the production system hierarchy. When a set of

Appendix C 	A Knowledge Representation for Operating System Design 	146

alternatives are developed for the process each alternative must be incorporated as

a production system alternative in each branch of the production system hierarchy.

In figure C.5 this is demonstrated with two alternatives to Prl.O leading to the

generation of four production system alternatives.

The difficulty of supporting independent decompositions of process and oper

ating system is not the sole problem of the productions system representation.

The process of production system development that has been discussed here is

essentially a sequential one with alternating phases of process and operating sys-

tem refinement. While offering improved opportunities for design integration it

is likely to be at the cost of increased development time. In the traditional de-

sign organisation the process design would be completed straight through without

waiting for feedback from control system designers. The development process the

production system hierarchy is based upon implies that at each stage the process

designers must wait for feedback from the operating system designers.

It would be valuable instead to be able to develop the process and operating

system concurrently so that design integration could be achieved without excessive

penalties on development times. However supporting such concurrent activity

through the production system hierarchy is difficult since it couples tightly the

process and operating system development.

C.4 Decoupling the Process and Operating Sys-

tern Hierarchies

The experiments using a production system hierarchy, as discussed in the previous

section, suffered some fundamental limitations. At the core of the approach was

a tight coupling between process and operating system development. To gain a

more flexible approach to design development, attention shifted to the support

Appendix C 	A Knowledge Representation for Operating System Design 	147

of distinct development hierarchies for the process and operating system. The

development of the process and operating system are not completely independent,

some basis for linking compatible designs and coordinating development is re-

quired. The revised representation uses the operating tasks as the common focus

of development.

C.5 Operating Systems, Operating Tasks and

System Models

Operating tasks define the management functions required from the operating

system. The initial formulation of an operating task is based on knowledge of

the process design and operating objectives. With the development of a control

strategy for an operating task additional constraints on operation are elicited

(eg. the requirement for a certain amount of flexibility). Additional requirements

are recorded as part of the basis task for the control strategy. The basis task

constitutes a definition of the conditions under which the corresponding operating

system is applicable.

Operating tasks are developed as an additional design hierarchy alongside the

process and operating system design hierarchies. The basis task relation links an

operating system design to the operating task that defines its operating require-

ments.

rsimplifled to:
Operating_task 	

basis_task 	
Operating_system) I Operating - b 	Operating1

L stem 	-
task

A set relation is used to allow a set of alternative operating system designs to be

connected with a given operating task.

The specification of an operating task has three key parts,

• Objective: ie. the cost function and temporal scope.

Appendix C 	A Knowledge Representation for Operating System Design 	148

• Constraints: the physical laws relating variables and the physical limits on

their range, and the failure conditions.

• Demands: the supervisory demands from the higher levels of control, dis-

turbances sources from the environment.

Some of these elements depend primarily on the system being controlled and not

on the mode of operation. For example the basic physical relations and constraints

of a process are dependent on the design of the process not on how it is operated.

Similarly external demands are determined by the connections between a process

and its environment and are not altered by changing the operating objectives. The

process related elements of an operating task specification are grouped together

as a system_model. The resulting representation for an operating task is:

Object(operating_task)
.objective
•start_conditions
end _con di t ions

.supervisory_demands

.supervisory_feedback

Object(system_model)
physical_laws
physical_constraints
.disturbance_sources
•failure_conditions
•controls
•measurements

[to,'Pk'

smplified to:

Systemmodel __ 	0p ting_task 	
{ operating task } 	- system_model 	 rting - In 	System

 model

The interpretation of the contents of a system model depends on its context. Most

of the slots in these objects are derived from the decomposition summarised above.

The "controls" and "measurements" slots list the controls and measures available

in the system. The "supervisory_feedback" slot in an operating task is used to

specify information that is required as feedback to the supervisory layers.

Appendix C 	A Knowledge Representation for Operating System Design 	149

C.6 Relating Process Designs with Operating

Tasks

The system model is the key to relating process designs with operating tasks and

so with alternative operating system designs. The basic condition for a process to

be compatible with a given operating system design is that it is compatible with

the basis operating task of the operating system. Compatibility is determined by

the quality of the match between the system model and the real behaviour of the

process. The key to relating operating systems with process designs is to establish

a relation between system models and process designs.

A process design can be modelled to varying degrees of detail and so is ca-

pable of satisfying a range of system models. Associating all possible models of

a process through a single relation for that process poorly structures the infor-

mation. Instead to distinguish between different types of model a set of system

model relations is proposed.

The first type of system model we identify for the process is the 'fundamental'

model. The fundamental model is the most complete model that can be made

of the process without making assumptions about unresolved design detail. The

model is associated with a process design through the relation:

tsjmpjjfjed to:

System_model 	
process_alternative 	

{ Process_design } 	 Process 	I 	System 1
'fundamental_model"

metaropeies: [mapping 	
desin - - 	model]

A set relation is used so that processes with similar behaviour may utilise a com-

mon model. To further assist the use of a common model a meta property mapping

is used which record the correspondence between the variables of the model and

properties of the process. The fundamental model is the foundation from which

other are derived but in general is itself insufficient for most forms of analysis and

design. For example to perform a preliminary costing it is necessary to employ

Appendix C 	A Knowledge Representation for Operating System Design 	150

empirical cost functions for various parts of the design. Such functions are approx-

imations and only accurate for a restricted set of the possible design refinements.

As such they cannot be considered as part of the fundamental process model.

The models of a process which involve some dependency on as yet undesigned

details are referred to as projected models. A process may have a set of projected

models connected to it by the following relation:

System_model } 	
candirerocess 	

{ Process_design 	
Proess 	 System 1

[d..~,

Simplified to:

projected_model
meta_properties: [mapping I 	

gn 	 model 	
]

The mapping property again is used to record the correspondence between vari-

ables of the model and properties of the process. A dual set relation is used

to support both the use of a common projected model for multiple designs and

multiple projected models for a single design.

Projected models and fundamental models are also related through an addi-

tional relation:
rSimpli

Abst
fied to:

System_model } 	 Specialised
specialised_models 	

{ 	 ract 	S
abstracted_models

System_Model }

metaproperties: [mapping 	
ystern_modeI 	SYstem_modej

The relation is used to provide a link between a model, its abstractions and spe-

cialisations. Projected models are recorded through this relation as a specialised

model of the fundamental model. The mapping property in this case is used for

recording the equivalence between parts of the two models and any approxima-

tions made in establishing that equivalence. The simple refinement/refinedIrom

relation used in the design hierarchies is not used here because it is only a set

relation and it was desirable to be able to support multiple abstractions as well

as specialisations.

To illustrate the use of these relations consider a simple process described by a

single block (see figure C.6). If little is defined for the block other than its inputs

and outputs then its fundamental model is restricted to mass conservation con-

straints for the block (SMJ.O in the figure). However based on the expected design

Appendix C

Pr—l.O

1IEIi

A Knowledge Representation for Operating System Design 	151

ta1del I 	SM-1.O

sl.flow+ s2.flow=

'projected_model

	

) expansion

SM—i .1

physical_laws: [mass_conservation(
sl.flow+ s2.flow = s3.flow + s4.flow

process_conversion(
s3.flow= sl.flowx Pr2.conversion

Figure C.6: The relations between a process design and its models

for the block it is possible to provide additional constraints on the relationships

between the input and outputs. These additional constraints are combined with

the fundamental model to form a new model (SM1.1 in the figure). The model is

related to the process design as a projected model and to the original model as a

specialisation.

In producing a process refinement it is necessary also to develop a correspond-

ing refinement to the fundamental model. The first step is to find the model that

most closely maps to the fundamental model of the new design. The model should

be selected from among fundamental and projected models of the original design.

In the case of an exact match it is only necessary to add the relation identifying

the model as the fundamental model of the new design. If the closest match is one

of the projected models the new fundamental model is formed by specialisation of

this model and appropriately recorded. Such a procedure helps to reduce model

replication and keep the inter relations between models up to date. The closest

match may be the previous fundamental model in which case some of the original

Appendix C 	A Knowledge Representation for Operating System Design 	152

projected models may also be specialised for the new design. The result of this is

illustrated in figure C.7.

Pr—tO 	 SM-1.0

e
SM-1./'

Pr-1.1 	 SM-1.2
e 	/

p •- 	 /

SM—i .2A

Figure C.7: Refinement of a process and it models

C.7 Refinement of the Process and Operating

System

The relations discussed above provide a basis for relating compatible process and

operating system designs via their association with a common operating task and

system model. Coordinating refinement of process and operating system using

these relations is now considered.

The first step is to establish the foundation objects. The contents of these

objects will be minimal, the key aim being to establish the base objects for the

various hierarchies and the relation between them. The initial design state is

illustrated in figure C.8. The foundation process design (Pri.0) will typically only

identify the basic input/output structure of the process design. The associated

fundamental model (SM1.0) will correspondingly be equally simple. As well as

being the fundamental model of the process the model is also used as the system

model for the foundation operating task (0 Ti.0) which provides a basic definition

	

Appendix C 	A Knowledge Representation for Operating System Design 	153

Process Design 	 Operating Task 	 Operating System

	

Hierarchy 	 Hierarchy 	 Hierarchy

Pr-1.0 	 SM-1.0 ...__'__ OT-1.0 ..-__P___ os-to

\

	

\ 	 e

\

/i
/ 	Shut-

/ /Down\

Off-line 	Production

\ \s-/
Up

Figure C.8: Initial state of process and operating system hierarchies

of the operation goals and is the basis task of the foundation operating system

(OS1.0).

The initial focus for design development is the definition of a mode oriented

description of operation. For this example a basic mode decomposition is proposed

(ie. off-line/ st art- up /production/ shutdown). The decomposition is recorded as a

projected model of the foundation process design and as a specialised instance of

the foundation system model (shown as SM1.1 in the previous figure).

The simplest approach to development of the operating system is to use this

projected model as the basis for refinement. The operating task is first refined

using the new system model. The revised operating task is used to develop a

preliminary operating system design. If the resulting operating system design

requires no further operability conditions than those available from the projected

model then the new operating task will also be the basis task for the refined

operating system design (as illustrated in figure C.9). Alternatively the resulting

operating system design may refine the operability requirements. The additional

constraints are incorporated into a further refinement of the operating task and

system model. The result is the design state shown in figure C.10.

The projected model may be incompatible with that preferred for operating

Appendix C 	A Knowledge Representation for Operating System Design 	154

Process Design 	 Operating Task 	 Operating System
Hierarchy 	 Hierarchy 	 Hierarchy

	

Pr—l.O --f--... SM-1.0 ..__'_ - OT—l.O 	b

e 	 r 	 r
p

SM—l.i 	_.'_ OT—l.l 	b 	os—i.o

Figure C.9: Operating system refinement using projected process model

Process Design 	 Operating Task 	 Operating System
Hierarchy 	 Hierarchy 	 Hierarchy

Pr—l.O - 	SM—l.O .__'-_ OT—l.O __'___ Os—to

e 	 r
p

	

SM—li ..--'!--- OT—l.i 	 r

Jr

SM—i .1.1 ..__'!__ OT—i.l.l 	 os—to

Figure C.10: Refinement introducing stricter operability requirements

system design. For example in section 3.6 the preferred operating system design

required an additional intermediate 'secure' state with associated regulatory and

transition modes. The basis task and associated model for the extended decompo-

sition are represented as alternative refinements to the root task and model. The

resulting state of the design space is shown in figure C.11.

In the case of the latter two scenarios, new system models have been introduced

either as a specialisation or as an alternative to the original projected model. The

projected model provided the operating system designers with an indication of the

likely behaviour of future process designs from the process designers perspective.

These new models provide the process designer with an indication of the behaviour

desirable for future designs from the operations perspective. The revised system

Appendix C 	A Knowledge Representation for Operating System Design 	155

Process Design 	 Operating Task 	 Operating System
Hierarchy 	 Hierarchy 	 Hierarchy

Pr-1.0 - 	SM-1.0 ..-_'!-_ 01-1.0 -__'___ os—to

	

p / \ e
	

r

SM-1.1 	\ 	m. OT-1.1

SM-1.2

/ 	

Phasel 	 Shut-
Phase2

Down \ / Down
Shut-

Oft-line 	 Secure 	 Production

	

Phasel / 	"\ Phase2

Direct
Shut-Down

Figure C.11: Refinement introducing a separate system model

models provide direction for the next phase of process design which will generate

further refinements of the system models. The system model is used to describe

the preferences of the process and operating system designers on a common basis.

Refinement is one part of hierarchical design and this example demonstrates

how the refinement of the process and operating system design can be linked.

Before discussing how decomposition is managed it is necessary to consider in

more detail how the operating system design is represented.

C.8 Representing the Design of an Operating

System

As has now been described the design of an operating system starts by defining

the required functionality as an operating task. Meeting the specifications of this

task the designer has two basic options:

b__

Appendix C 	A Knowledge Representation for Operating System Design 	156

Either: Construct a set of algorithms to solve the operating task as a single

problem.

Or: Decompose the operating task into a set of simplified tasks for which simpler

sets of algorithms can be devised.

For the former case the set of algorithms are represented as a controLscheme,

which is associated with the operating system design by the relation:

[operating

Simplified to:
operatingstems 	

{
Operating_system } 	c 	Control controlscheme

stem
scheme

]

In the latter case the operating system design consists of a supervisory control

scheme and a set of slave operating systems. The supervisory control scheme for

an operating system design is identified by the relation above. The set of slave

operating systems are associated with the design through the relation:

rmate'

implified to:
slavesystemsOperatingsystem } 	 { Operating system } 	Slave

master_systems 	 peratin- -- ----Operating
stem 	 system

The slave operating systems may simply be single control schemes or could further

decompose the task extending the hierarchy of operating systems and control

schemes. The slave system relation is managed as a dual set relation to support

the use of a slave operating system in more than one design and also at more than

one point in the hierarchy for a single design. The latter case arises in particular

with very specific task (ie. single ioop controls) that are common to most modes

of operation.

The structure of a control scheme is based upon the decomposition discussed

in section 3.7. Four basic functions were identified:

• Optimisation

• Adaptation

Appendix C 	A Knowledge Representation for Operating System Design 	157

• Control Distribution

• Identification

The latter two of these are intended to provide an interface between the abstract

model employed by the adaptation and optimisation elements and the 'reality'

of the underlying system. The primary intent in making this distinction is to

encourage design clarity, keeping explicit the models that the design is founded

on. The division of function is also reflected in the representation of a control

scheme:

Object(control_scheme)
.control_distribution_algorithm
.identification_algorithm

Object(decision_strategy)
optimisation_algorithm adaptation_algorithm

rS.hem.

mplified to: d

	Decision

control_schemes 	
Control_scheme 	

Control
Decision_strategy 	ITdciin_strate

	 strategy]

Both of these objects use the operating task representation to record their design

basis via the "basis_task" relation:

r 	Simplified to: 	1
onrro1_sheme_ 	

{ Control_scheme Ope rating_task
Control 	b 	Operating __ basis_task

L scheme - - 	 task 	

]

Operating_task 	
de cision_strateg_12>___

{ Decision_strategy
r5imp1i to: 1 basis_task Decision 	 Operating

strateg 	
task 	J

A decision.strategy describes how control actions are determined and the as-

sociated basis task defines the modelling abstraction used in formulating the al-

gorithms. A controlscheme can be viewed as a shell around the decisionstrategy

which provides an interface between its internal model and the 'reality' described

by the basis task of the control scheme. With this division in the design represen-

tation it is possible to make use of a general decision strategy in multiple control

schemes without the need to replicate the design of the decision strategy.

Appendix C 	A Knowledge Representation for Operating System Design 	158

For example, in the preliminary design stages decision strategies are derived

without the need for greater abstraction than already exists. The operating

system, control scheme, and decision strategy all share a common basis task

(figure C.12). Following the next phase of process design the detail of the original

Operating Task 	Operating System 	Control Scheme 	Decision Strategy

	

Hierarchy 	 Hierarchy 	 Hierarchy 	 Hierarchy

01-1.0 -..---- 0s-1.0 --- ----- cs-1.o ----- --- DS-1.0

	

\- ------------ J /
	

/

/

Figure C.12: Relationships for a non-abstracted design

task is refined. If the refinement of the operating task only affects the inputs

and outputs that are available then the operating system design only requires re-

finement of the control distribution and identification algorithms. The decision

strategy then remains the same (figure C.13). If, as is more likely, additional deci-

Operating Task 	Operating System 	Control Scheme 	Decision Strategy

	

Hierarchy 	 Hierarchy 	 Hierarchy 	 Hierarchy

OT-1.0 -.----- OS-tO --- ---- .S-1.O ---- ---- DS-1.0
I

r 	 r 	 r

01-2.0 -- o-.o --- ----- CS-2.0

	

\ 	 - J /

Figure C.13: Simple re-use of a decision strategy

sion variables and demands are introduced the decision strategy on its own will be

insufficient. If the original task was formulated well it identified the key decision

factors for optimisation of process operation. The additional factors introduced

only refine the general optimum in which case the original control scheme design

may be preserved and used as part of the hierarchical strategy to meeting the goal

task.

Appendix C 	A Knowledge Representation for Operating System Design 	159

Supporting a Library of Standard Schemes

The approach discussed here provides a convenient basis for organising and

accessing a library of decision strategies. Many theoretical algorithms are based

on an abstract model of an operating task that is to be solved. With the approach

discussed here, these theoretical tasks are represented explicitly. The suitability

of a theoretical algorithm is determined by how well the goal task maps to the

theoretical task. Using the algorithm in a control scheme simply requires the

implementation of that mapping, there is no need to re-invent the algorithm.

For general control algorithms (eg. PID control) there may be a set of decision

strategies which reflect the different adaptation or 'tuning' strategies that can be

adopted for the control algorithm dependent upon the nature of the operating

task. Equally a library of decision strategies could describe alternative column

control configurations, where the detail of the associated operating tasks defines

the column conditions and behaviour for which they are best suited.

C.9 Combined Process and Operating System

Decomposition

Decomposition of the process design is the most straight forward aspect of devel-

oping a combined decomposition. The decomposition.set representation discussed

earlier is used (see figure C.14). For each of the reduced process designs a fun-

damental model will be required. These are generated by decomposition of the

fundamental model of the original process.

The decomposition of a system model however is not simply a case of parti-

tioning its parts appropriately. In breaking a model into parts, cause and effect

links that existed between the parts can be lost. If the information about these

links is not preserved it will appear as if the decomposed system has extra degrees

Appendix C 	A Knowledge Representation for Operating System Design 	160

Pr—tO

- s5

decomposition

Pr-2.0 	 Pr-3.0
s3 -
	--4 	:

Decomposition_set

Figure C.14: Decomposition of the process

of freedom. To preserve such information in the decomposed models peer demands

are associated with the shared variables. A peer_demand is treated as a special

class of demand used in the representation of system_models. It is a combination

of two other basic demand types disturhancesource and failuresource. At the

source of a broken cause and effect link it is used as a failuresource, at the sink

as a disturhancesource.

To illustrate, consider the case of a decomposition which splits a stream con-

necting two unit models. The connection links the outputs of the upstream unit

model with the inputs of the downstream unit model. When decomposed these in-

puts and outputs appear as free variables unless additional constraints are added.

The constraint is provided through the use of a peer demand. In the downstream

model it is added as a disturbance source associated with the input. The same

peer demand is added to the upstream model as a failure source associated with

the output.

The description of the peer demand is used in different ways in each system

model. In the downstream model it is used as a model of how the input is expected

to vary. In the upstream model its interpretation is as a limit on the variations

Appendix C 	A Knowledge Representation for Operating System Design 	161

permitted for the output. For the fundamental model the information that can be

included in the peer demand is restricted. However, as part of a projected model,

the peer demands provide a mechanism for specifying the extent to which distur-

bances can be passed on to other parts of the design. Recording the decomposition

of the fundamental model again uses the basic decomposition set representation

figure C.15.

Pr-1.0 -------------- SM—tO

d

d 	 I___

(
SM-3.O

disturbance_sources: 	failure_sources:
Pr-2.0 Pr-3.O 	 [peer_demand(s3)] 	[peer_demand(s3)]

- -

Figure C.15: Decomposition of the fundamental model

To follow the same decomposition in the development of an operating system

design implies the use of a hierarchical operating system design. The hierarchy

is represented by a supervisory control scheme and a set of slave operating sys-

tems. The operating task definitions for these are derived from a special form of

decomposition set used for the operating task hierarchy:

Object(tasLdecompositon)
class_of: (lecompositionset

-supery
slave_tasks

A slave task is created for each part of the decomposed system model. The model

decomposition however does not provide a basis model for the supervisory operat-

ing task. Nor does it define the supervisory_demands or supervisory_feedback for

the slave tasks. To complete the task decomposition it is necessary to formulate

the supervisory task which uses an abstraction of the full system model. One

Appendix C 	A Knowledge Representation for Operating System Design 	162

option is to utilise the tasks and models developed during earlier phases of the

design. If these have been well formulated for hierarchical development they will

pick out the factors of global importance. Using a task from the preliminary de-

sign as the abstraction for a supervisory task has the advantage that design effort

put into developing the preliminary control schemes is not wasted.

Once the formulation of the supervisory task is complete the final details of

the slave tasks can he completed. First the supervisory_demands and supervi-

sory_feedback of the slave tasks can he derived from the controls and measurements

employed in the supervisory task model. In addition to identify in the slave tasks

what demands are managed at a superior level the slots superviseddisturhances

and supervised_failures are added to the operating task representation.

Pr—O.O ---------- SM—O.O --
b
---- OT—O.O..

r 	 r
f 	

1
Pr-1.O ---------- SM-1.O - OT-1.0

d 	
d 	 d

Pr-2.O Pr-3.O 	 ' SM-3.O SM-2.0 	 oT—o.o
/ 	If 	 OT-2.O OT-3.0

\ 	 b 	 /
f 	

iiiiiiiiii/
b

Figure C.16: Decomposition of the goal operating task

Figure C.16 shows the relations that result from a decomposition that uses an

early design abstraction as the model for the supervisory task. For a single process

and system model decomposition several possible decompositions of the operating

task will exist.

Having established the task decomposition, development of an operating sys-

tern based on this decomposition has two parts.

Appendix C 	A Knowledge Representation for Operating System Design 	163

• Formulation of the Supervisory Control Scheme: If the task abstraction used

corresponds to a previous task specification then this could use any of the

corresponding preliminary control schemes.

• Evolution of the Slave Operation System Designs: The slave operating sys-

tems can he refined in step with the design of the corresponding process

sections following the same procedure as has already been discussed.

b

p

	

..OT—O.O 	 OS—O.O -------- CS-1.O
C 	"

r 	 r

	

OT-1.0 	__±_ OS-1.0 -

SI' 	\ s

OT-2.0 OT—f) 	OS-3.0 OS-2.0 SYstems

	

- - 	 - - J
b

Figure C.17: Decomposition reusing preliminary design as the supervisory

scheme

Figure C.17 shows the initial relations for a decomposed operating system design.

The design of the supervisory control scheme is only reviewed when the alternatives

developed from the decomposition are recombined into specific refinements of the

full operating system design.

Appendix C 	A Knowledge Representation for Operating System Design 	164

C.10 Decomposition of the Operating System

Alone

One problem indicated with the productionsystem representation was maintain-

ing different decomposition paths for the process and operating system designs.

A situation where this can arise is mode oriented decomposition of the operating

system. In such cases there is rarely any equivalent decomposition of the process.

For example, the decomposition shown in figure C.18 has been developed not as

the result of a process decomposition but from independent decomposition of the

operating system. Process development is on the whole process and as a result

process refinements update the fundamental model of the whole process not the

decomposed parts used by the operating system. To map the new information to

the models used by the operating system the decomposition must be reapplied to

the refined system model (see figure C.18).

f
Pr—l.0

r

Pr—i.i

m
SM—i .0 - OT-1 .0

\d 	\dC___
______ 	__

SM-3.0 SM— 	 OT-0.0
—2.0 OT-3.0

r

SM-3.1 SM-2.1

ni
01-2.1 OT

/
3.1

I
in

Figure C.18: Global refinement of a decomposed operating task

Feeding back information to the process designer is more complex. The de-

Appendix C 	A Knowledge Repre8entation for Operating System Design 	165

velopment of the operating system is focussed on the decomposed tasks not the

global design. Specialised requirements of the slave operating systems are added

as refinements to the decomposed operating tasks but this has no direct feedback

to the global models employed for the process design (figure C.19).

Pr-1.1

	

\d 	 in

	

\ 	/ in ___________________________
/ /
I SM-3 1 SM-2 1 i 	OT-2.1 OT-3.1

S 	 s
r 	r

OT-2.1.1 OT-3.1.1
SM-3.1.1 SM-2.1.1 	/

in /
\ 	 /

in

Figure C.19: Specialisation of decomposed operating tasks

For the process designers to discover what the special operating system require-

merits are it is necessary to inspect not only any refinements of the fundamental

model but also refinement to decompositions of this model. If there are many

levels of operating system decomposition this is an inconvenient process. Instead

the process designers may request the operating system designers to collate the

alternatives in the decomposition into a set of complete models reflecting probable

design requirements. The result is the introduction of refinements to the global

models and decomposition sets grouping together the design parts (figure C.20).

If the process and operating system design follow different decompositions this

problem is further compounded. To compare requirements and capabilities com-

posite models must he collated for both the process and operating system design.

Where there is a significant difference in the decompositions the implication is that

there is a mismatch in the priorities assigned to demands and decisions. Under

Appendix C 	A Knowledge Representation for Operating System Design 	166

SN I-1.1
	

OT-1.O

\d
	

,fl

-- 	 \
UI

I SM-3.1 SM-2.1
	

OT-2.1 OT-3.1

S
S
	 rI 	r

sm-

SM-1.1 --

\ IOT-2.1.1 OT-3.1.1 1
.1.1 SM_2.1.1

/ 	d
m

- OT-1.1
nz

Figure C.20: Recomposing the refinement to a task decomposition

such circumstances it would be wiser to review the decomposition strategy and

unify on a common approach.

C.11 Summary

The representations that have been developed are founded on a novel object ori-

ented paradigm with a strong emphasis on the use of relations to connect objects.

At the core of the representation scheme is the use of operating tasks and system

models to link concurrently developing process and operating system designs. A

basic set of relations have been proposed to organise the system models developed

during design but this relies on the user identifying and connecting related mod-

els. Support for developing process models using the CLAP language has been

considered more completely by Hutton [64].

Appendix D

Glossary and Nomenclature

D.1 	Definitions

Control scheme: The set of algorithms used to implement an oper-
ating task.

Dynamic resilience: The impact of process design on the regulatory con-
trol of a process.

Executive task: An operating task to coordinate alarm response and
select the active operating tasks.

External demand: Causes of disturbance to the process.

Flexibility: Steady state test of the feasibility of a process for
the expected variations in uncertain parameters.

Operating mode: A distinct phase of process operation.

Operating system: A unified system for control and operations man-
agement.

Operating task: The specification of a control or management func-
tion required of the operating system.

Regulatory task: An operating task for steady state control and op-
timisation.

Supervisory demands: Operating target set by supervising operating tasks.

Transition task: 	An operating task for control of a process through
switches in operating mode.

Robustness: 	Insensitivity of control to model uncertainty.

167

Appendix D 	 Glossary and Nomenclature 	 168

D .2 Abbreviations:

HEN: Heat exchanger network.

IAE: Integral of absolute error.

IE: Integral of error.

IER: Integral error ratio.

IMC: The internalmodel control structure.

ISE: Integral of the square of the error.

MIMO: Multiple input multiple output.

NMP: Non-minimum phase.

RDG: Relative disturbance gain.

RGA: Relative gain array.

SISO: Single input single output.

SSV: Structured singular value.

D.3 Nomenclature for Operability Review

a error projection of a model

w frequency

a singular value

Urn minimum singular value

aM maximum singular value

UM,i i'th largest singular value

C cost function

D disturbance sensitivity

PJ expected value function for uncertain parameters p

F feedback filter

G control system transfer matrix

C real process transfer matrix

G_ invertible part of process transfer matrix

Appendix D 	 Glossary and Nomenclature 	 169

G+ non-invertible part of process transfer matrix.

H setpoint sensitivity

L uncertaint matrix

LA Additive uncertainty

L 1 Input multiplicative uncertainty

L0 Output multiplicative uncertainty

O process model transfer matrix

d (flexibility) vector of design variables

d (dynamic resilience) disturbance vector

d estimate of disturbance vector

f() the susbstitution of equalities hQ into inequalites gQ to
eliminate state variables.

gQ vector of process inequalities

hQ vector of process equalities

1(w) frequency domain bound on uncertainty

p vector of uncertain parameters

r setpoint input vector

u vector of control variables

x vector of state variables

y process output vector

D.4 Nomenclature for Case Study

A molar ratio of H 2 SO 4 :CaF2at reactor inlet

CHF sales price for HF

CCaF2 purchase price for CaF 2

C,w heat capacity of reactor wall

CR,F annualised fixed costs for the reactor

CR,O annual operating costs for the reactor

Cs annualised separator costs

Cs04 purchase price for H2SO4

FHF annual production rate of HF

KF pipe flow constant

MK mass of reactor wall

Appendix D 	 Glossary and Nomenclature 	 170

MR mass of reactor contents

PF downstream pressure created by vent fan

PR reactor pressure

Ps separation system pressure

R50 4 fractional recovery of H 2 SO 4in the separation section

Smax maximum sales rate

Sj minimum sales rate

Snom nominal sales rate

TD time for which a peak deviation persists

T1 inlet temperature of reactants

TR reactor temperature

TW reactor wall temperature

UA effective area x heat transfer rate

V volume

VT1 storage capacity for technical grade HF

VT2 storage capacity for anhydrous grade FIF

VR reactor size

X fractional conversion of CaF 2 to HF

r speed of response of production rate

