
Robust Model Predictive Control for Linear Systems Subject to
Norm-Bounded Model Uncertainties and Disturbances:

An Implementation to Industrial Directional Drilling System

ANASTASIS GEORGIOU

supervised by
Dr. Imad M. Jaimoukha
Dr. Simos A. Evangelou

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

April 2022

Imperial College of Science, Technology and Medicine
Department of Electrical and Electronic Engineering

Control and Power Research Group





Statement of originality

I hereby declare that this thesis is the product of my own endeavour, and that any ideas or quotations

from the work of other people, published or otherwise, are appropriately referenced.

Anastasis Georgiou

Department of Electrical and Electronic Engineering

Imperial College London, London, U.K.

June 9, 2022

i



ii



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution-Non Commercial-No Derivatives 4.0 International Licence (CC BY-NC-ND). Under this

licence, you may copy and redistribute the material in any medium or format on the condition that;

you credit the author, do not use it for commercial purposes and do not distribute modified versions

of the work. When reusing or sharing this work, ensure you make the licence terms clear to others by

naming the licence and linking to the licence text. Please seek permission from the copyright holder

for uses of this work that are not included in this licence or permitted under UK Copyright Law.

iii



iv



Abstract

Model Predictive Control (MPC) refers to a class of receding horizon algorithms in which the current

control action is computed by solving online, at each sampling instant, a constrained optimization

problem. MPC has been widely implemented within the industry, due to its ability to deal with

multivariable processes and to explicitly consider any physical constraints within the optimal con-

trol problem in a straightforward manner. However, the presence of uncertainty, whether in the form

of additive disturbances, state estimation error or plant-model mismatch, and the robust constraints

satisfaction and stability, remain an active area of research. The family of predictive control algo-

rithms, which explicitly take account of process uncertainties/disturbances whilst guaranteeing robust

constraint satisfaction and performance is referred to as Robust MPC (RMPC) schemes.

In this thesis, RMPC algorithms based on Linear Matrix Inequality (LMI) optimization are inves-

tigated, with the overall aim of improving robustness and control performance, while maintaining

conservativeness and computation burden at low levels. Typically, the constrained RMPC problem

with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high com-

putational burden for online implementation. To remedy this issue, a novel approach is proposed to

linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidef-

inite relaxation techniques and the Elimination Lemma. The proposed algorithm computes the state-

feedback gain and perturbation online by solving an LMI optimization that, in comparison to other

schemes in the literature is shown to have a substantially reduced computational burden without ad-

versely affecting the tracking performance of the controller.

In the case that only (noisy) output measurements are available, an output-feedback RMPC algorithm

is also derived for norm-bounded uncertain systems. The novelty lies in the fact that, instead of using

an offline estimation scheme or a fixed linear observer, the past input/output data is used within a

Robust Moving Horizon Estimation (RMHE) scheme to compute (tight) bounds on the current state.

These current state bounds are then used within the RMPC control algorithm. To reduce conservatism,

the output-feedback control gain and control perturbation are both explicitly considered as decision

variables in the online LMI optimization.

Finally, the aforementioned robust control strategies are applied in an industrial directional drilling

configuration and their performance is illustrated by simulations. A rotary steerable system (RSS)

is a drilling technology that has been extensively studied over the last 20 years in hydrocarbon ex-

v



ploration and is used to drill complex curved borehole trajectories. RSSs are commonly treated as

dynamic robotic actuator systems, driven by a reference signal and typically controlled by using a

feedback loop control law. However, due to spatial delays, parametric uncertainties, and the presence

of disturbances in such an unpredictable working environment, designing such control laws is not a

straightforward process. Furthermore, due to their inherent delayed feedback, described by delay dif-

ferential equations (DDE), directional drilling systems have the potential to become unstable given the

requisite conditions. To address this problem, a simplified model described by ordinary differential

equations (ODE) is first proposed, and then taking into account disturbances and system uncertain-

ties that arise from design approximations, the proposed RMPC algorithm is used to automate the

directional drilling system.
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CHAPTER 1

Introduction

Over the past few decades MPC has been exploited for many researches and its application in the in-

dustrial processes has found great success [1]. MPC is inarguably the most widely accepted modern

optimal control strategy [2]. This is mainly due to the fact that, compared to many traditional control

algorithms (for example PID controller), it explicitly considers process constraints within its formula-

tion. This allows the MPC algorithm to operate a plant closer to their constraint boundaries (without

any violation) which enables optimal performance. Other advantages of MPC include its ability to

handle multivariable, non-minimal phase and unstable processes, as well as a comparably straight-

forward way of tuning the controller. Numerous aspects of this class of advanced control algorithms

have been the subject of extensive research over the last two decades for both linear and nonlinear

systems [2–5]. For instance, stability conditions of the MPC schemes have been investigated through

the use of terminal cost or by extending the prediction horizon of the optimal control problem [3].

A number of predictive control schemes within the literature have been proposed for deterministic

systems (see for example [3, 6–8] and the references therein).

Although the MPC scheme is less conservative compared to other schemes, it is computationally com-

2



1.1. Background and Motivation 3

plex and requires more online time to find a solution which makes it inappropriate for fast dynamic

systems. Another disadvantage of this model-based optimal control scheme is that the effectiveness

of the controller relies to a large extent on the accuracy of the dynamic model utilised to characterise

the plant. However, uncertainty, in the form of additive disturbances, state estimation error, a plant-

model mismatch is generally present in most industrial implementations. Therefore, robust constraint

satisfaction and stability remain active areas of research [2, 9–13]. In this respect, the field of Robust

MPC (RMPC) is wide open for research to come up with novel ideas that will close the gap with

respect to optimal performance, robustness, and computation time and its application to industrial

processes.

1.1 Background and Motivation

In this section, a brief overview on state and output feedback robust MPC schemes, estimation algo-

rithms and the industrial application of directional drilling problem are presented.

1.1.1 State-feedback Robust Model Predictive Control

The family of predictive control algorithms, which explicitly take account of process uncertain-

ties/disturbances whilst guaranteeing robust constraint satisfaction and performance is referred to as

robust MPC schemes [2]. An obvious approach to extend the MPC problem for uncertain systems is

to solve an open-loop optimal control problem as is done with nominal MPC. Whilst this is attractive

from a computational complexity perspective, it often leads to infeasibility and suboptimality [3].

A more effective method is to consider a state-feedback control law, as shown in [12], where state-

feedback parameterization has been used in RMPC for systems subject to additive disturbances. By

considering future inputs as linear/nonlinear functions of current and future predicted states, feedback

RMPC schemes mitigate the effect of uncertainties whilst potentially avoiding the infeasibility issues.

Nonlinear feedback schemes enjoy reduced conservatism, however, their main drawback is the exces-

sive online computational burden due to the combinatorial nature of the optimization. Therefore, this
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work focuses on linear state-feedback RMPC schemes. The three main types of RMPC schemes pro-

posed in the literature include feedback min-max MPC, tube-MPC and LMI based RMPC schemes.

The min-max MPC method computes the optimal control sequence that satisfies the constraints and

steers the uncertain system to a robust positively invariant set whilst guarding against the worst-case

uncertainty [9,10]. The second approach, which has received significant attention in the recent years,

is the tube-MPC (TMPC) class of algorithms [11]. These algorithms, instead of considering the worst-

case uncertainty, decomposes RMPC into an offline robust controller design (calculation of "tubes"

based on invariant sets) and online open-loop MPC problem based on a nominal system trajectory

(without uncertainties). Then, this approach guarantees that all possible closed-loop state trajectories

of the uncertain system lie inside a “tube” around the future prediction nominal trajectory, where the

tube is computed offline by using the uncertainty bounds [6,11]. Although min-max MPC and TMPC

methods have a reduced online computational burden, they both rely on offline calculations that can

lead to conservatism within the overall robust control scheme. An alternative approach to RMPC is

to use semidefinite programming to compute, online, an optimal control sequence by solving an LMI

optimization problem [14–16]. The two main advantages of the LMI based RMPC method are the

explicit incorporation of uncertainty description within the optimization and the polynomial time that

the optimization problem requires for its solution, which, although still high compared with min-max

MPC and TMPC methods, allows online implementation [17] for certain problems. Further details

around the implementation issues and trade-offs between min-max RMPC, TMPC and MPC via LMI

techniques have been reviewed and quantified in [18]. Ideally, to reduce conservatism due to offline

calculations, the desirable approach in linear state-feedback RMPC is to directly consider the control

feedback gains as decision variables in the online optimization. However, as noted in [12], formu-

lating such an RMPC problem in the standard way leads to sequences of predicted states and inputs

that are nonlinear functions of the state-feedback gains, which renders the problem nonlinear and

nonconvex. A solution to this problem has been proposed in [19, 20] where the state-feedback gains

are computed through sequential online optimization based, in part, on the principles of dynamic pro-

gramming. In most of the work described above, the focus has been on systems that involve only

disturbances/noise or simple scalar uncertainties. A generalization of RMPC to systems subject to

structured uncertainties and disturbances was proposed in tube-MPC format in [21–23] and in ongo-
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ing research on System Level Synthesis (SLS) [24,25]. An LMI based RMPC approach was proposed

in [14] and used in an industrial directional drilling application in [26]. In this LMI based scheme,

the state-feedback gain and control perturbation are computed online whilst avoiding the nonconvex-

ity issues. Although this approach shows significant performance improvement, it introduces a large

online computational burden, which makes it unsuitable for fast dynamical systems. Therefore, com-

putationally efficient RMPC formulation without sacrificing the robust control performance remain

an active area of research by the control community.

1.1.2 Robust Estimation

In most industrial applications the states that characterise the dynamics of a system are not physically

measurable and only noisy output measurements through sensors are available. Thus, state estimation

plays an important role in different engineering areas such as feedback control, fault detection, system

monitoring, as well as system optimization. One of the most popular approaches for state estimation,

in a general context, is Kalman filtering, which is based on the minimization of the variance of the

estimation error [27]. However, the main assumptions in the standard Kalman filter approach are that

the state-space model of the linear system does not include any uncertainty and thus it accurately

represents the real system, and also there are no constraints on the states. As these premises are not

satisfied in many industrial applications, the standard Kalman filter may not have robust properties

against an uncertain model with disturbances [28].

Recent studies in the literature, which investigate output-feedback robust control schemes, mostly

employ a fixed stable linear observer, such as a Luenberger observer, to compute an estimate of the

linear system-state, which is subsequently used within the control scheme (see for example [29–32]).

The main assumption in [29] and [31] is that the observer has to run for a sufficiently long time before

implementing the control scheme, in order to allow the estimation error to enter an invariant set. It

is clear that the choice of observer gain has an impact on the estimation error bounds and, therefore,

on the overall control algorithm. However, in most of the aforementioned schemes the observer is

designed offline (to ensure stability). Consequently, all of the aforementioned offline calculations can

potentially add to the conservatism of the corresponding control algorithm.
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A very promising online approach to the estimation problem is the so called Moving Horizon Estima-

tion (MHE). Originally proposed by [33] in the early 90s, the estimation scheme suggests estimating

the state of a dynamic system by using only the input/output information of the system over the most

recent time interval. MHE is a filtering scheme that can be solved online and it can successfully over-

come the previously mentioned problems introduced by offline calculations. In the last decade, MHE

has become a very popular topic of investigation and its application to linear and non-linear systems

has achieved significant success [34–39].

Despite the plethora of MHE algorithms proposed in the literature, the contributions when the system

is uncertain are negligible. In [40] the minimization of an upper bound on a worst-case quadratic cost

defined over a moving horizon window allows one to construct a filter for uncertain linear systems.

This design method is based on the solution of min-max regularized least-squares problems [41].

However, robust least-squares problems are known to have computational difficulties reaching a so-

lution, since they are in general NP-hard [42].

1.1.3 Output-feedback Robust Model Predictive Control

As mentioned above, in most practical systems of interest, only (noisy) measurements of output are

available. Predictive control algorithms for such systems are known as Output-Feedback MPC (OF-

MPC) schemes and we discuss these next. Most of the OF-MPC studies proposed in the literature

use the system output signal to estimate the state which is subsequently used within a state-feedback

RMPC scheme, due to its ability to tolerate state estimation error (see e.g. [29–31, 43, 44]). Since the

exact value of the estimation error is unknown, an offline estimation policy is used to replace state

estimation error by its outer bound. State estimation error is generally assumed to be bounded by

an invariant set and is considered as a source of disturbance within the system. One of the major

advantages of schemes such as [29] and [31] is that their online computational complexity is similar

to that of (full-state) nominal MPC schemes. An OF-MPC approach based on LMI/BMI optimization

for systems subject to norm-bounded parametric uncertainty and disturbances is developed in [45],

where the estimation bound is pre-specified (offline) as a constraint of the optimization problem. Lø-

vaas et. al. proposed an OF-MPC approach for system subject to unstructured model uncertainty,
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where the feedback control gain is pre-specified offline and is used as a known parameter for the

online optimization problem [46]. In the dynamic output feedback RMPC approach proposed in [47],

the state estimation gain and control gain are considered as a decision variables and the ellipsoid es-

timation bound is refreshed at each sample time. Although the closed-loop system in this method is

proven to be quadratic-bounded, the resulting optimization problem is computationally demanding

since the optimization problem needs to be solved by an iterative cone complementary method. An

extension to the above work is presented in [48], where the estimation state matrix instead of estima-

tion gain is considered as a decision variable and the optimization problem is expressed in an LMI

form. Finally, Vilaivannaporn el. at. have recently proposed a new robust output feedback predic-

tive controller for systems subject to disturbances and measurement noise, where adaptive invariant

tubes for both estimation and control error, as well as, observer gains are updated at each sampling

time [49].

It is clear that the choice of observer gain has an impact on the estimation error bounds and, therefore,

on the overall control algorithm. However, in most of the aforementioned schemes, the observer is

simply designed offline (to ensure stability). Moreover, in some cases the control feedback gain K is

also assumed to be known and fixed. Both of these factors can potentially add to the conservatism of

the corresponding robust control algorithm. Furthermore, it is common in the output-feedback RMPC

algorithm to use state estimates to calculate the control signal instead of directly using the output

measurement. As a result, the controller’s performance is constrained by the estimation accuracy.

1.1.4 Directional Drilling Problem

For more than a century now, oil and gas industry has constantly searched for more economic and

more efficient technologies to exploit hydrocarbon energy resources [50, 51]. The process to obtain

and extract hydrocarbon energy resources such as oil and gas which remain the major fuels for pow-

ering today’s society, experience two major difficulties. Firstly, access to energy resources sometimes

requires boreholes with complex curves, which is not a simple task with conventional drilling systems.

Secondly, deep-seated and offshore hydrocarbon explorations are commonly under an unpredictable

environment and extreme working conditions, while targeting resource locations in the crust of earth
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[21]. The solution of these difficulties could be tackled by drilling systems called Rotary Steerable

Systems (RSS) [52]. In the beginning, when RSS system was introduced, actuation commands for

steering the drilling mechanism to a pre-defined path were determined by experienced professionals

using the tool past performance data and available real-time measurements. While it matured, to avoid

humans error, RSS technology started to be treated like robotic actuator systems, and the trajectory

tracking problem today is solved by control automation, typically controlled by a control unit using

feedback loop control law [53, 54]. Unfortunately, designing such a control law that tracks a pre-

defined reference signal is not a straightforward process. The main difficulty of developing a control

algorithm for the RSS system is the lack of knowledge about the dynamic system which characterises

the behaviour of the system. Previous research studies considered empirical or numerical models with

conventional controllers such as PID [55], however, these models could not fully reflect the dynamic

behaviour and variations of the system. As a result, the control law is very difficult to be applied in

real-time in directional drilling applications. Another important issue for the design of a controller

of the RSS systems is that conventional control laws are not able to handle model uncertainties and

disturbances, which are caused by design approximations on the system’s model and unpredictable

working environment, respectively. Recently, researchers investigating the behaviour of RSS systems

in directional drilling applications have proposed a three-dimensional analytical model using non-

linear delay differential equation (DDE) [56]. The analytical model of RSS has been very promising

since it can characterise the behaviour of the system with minimum error. Using the framework of the

RSS analytical model, the aim of this study is to develop an appropriate control law that can guarantee

robustness and stability in the presence of the aforementioned uncertainties and disturbances, while

physical and safety constraints are preserved.

1.2 Challenges and Contribution

1.2.1 Research Challenges

The most important challenges addressed in this thesis can be classified into two categories as listed

bellow:
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1. Control and Estimation designs for Uncertain System

• Robust performance under structured uncertainties and disturbances. Most of the algo-

rithms presented in the literature consider either external disturbance signals or structured

uncertainties within the formulation of RMPC scheme, but not both at the same time, due

to the complex nature of the optimization problem that arises.

• Computation time. Traditional online RMPC algorithms have a heavy computational bur-

den. Therefore, the existing RMPC algorithms are barely used in fast dynamic systems.

Finding feasible solutions to the RMPC problem, while minimising the computation ef-

fort, is significantly important.

• Optimised estimation error. Output feedback RMPC algorithms are normally associated

with offline observer schemes. Offline calculations lead to a larger state estimation error

which can impact on the overall control performance. Estimating the states of the system

by solving an optimization problem online can provide better control accuracy and less

conservativeness.

• Problem feasibility subject to constraints. Computing an initial feasible solution and en-

suring the recursive feasibility of a constrained optimization problem is a very important

condition in control synthesis.

2. Directional drilling automation

• Dynamic model for directional drilling system. Conventional Directional drilling system

representations based on literature utilised either less accurate kinematic system models,

or comprehensive dynamic models that are far more complex and are presented in terms

of delay differential equation (DDE).

• Implementation. Factors such as the location of the controller (down-hole or at the sur-

face), location of sensors and available data, time delays, computational time, and safety

constraints are some of the key features which have to be considered in the control design

and implementation. Addressing those factors on the control formulation that is currently

located on the surface or embedding a control unit down-hole, are extremely challenging

topics.



10 Chapter 1.

1.2.2 Contribution and Thesis Configuration

The main objective of this thesis is to develop Robust MPC strategies based on LMI optimization to

automated complex industrial systems, based on approximated models subject to uncertainties and

additive disturbances. A brief description and the contribution of each of the upcoming chapters are

provided below.

Chapter 2 presents some fundamental concepts from optimization theory such as convex optimization,

quadratic and semidefinite programming, linear matrix inequalities, and Schur complement. We also

discuss the S-procedure which is an effective technique to re-formulate non-convex optimizations

into (convex) LMI problems and is of key importance to the developments of the following chapters.

Lastly, a summary of the two main identification procedures used to model an uncertain system is

presented.

In Chapter 3 the problem of RMPC of linear-time-invariant discrete-time systems subject to struc-

tured uncertainty and bounded disturbances is investigated. Typically, the constrained RMPC prob-

lem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high

computational burden for online implementation. To tackle this issues, a novel linearization proce-

dure is proposed for the state-feedback RMPC problem, with minimal conservatism, through the use

of Elimination Lemma and semidefinite relaxation techniques. The proposed algorithm computes the

state-feedback gain and perturbation online by solving an LMI optimization, where is shown to have

a substantially reduced computational burden without adversely affecting the tracking performance of

the controller. To improve the scalability of the control algorithm for systems with faster dynamics,

a single LMI sufficient condition for all the constraints is provided, to further reduce the online com-

putation time of the control algorithm. Additionally, an offline strategy that guarantees feasibility on

the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through

numerical examples from the literature.

Chapter 4 investigates the problem of state estimation for LTI discrete-time systems subject to struc-

tured feedback uncertainty and bounded disturbances. The proposed robust moving horizon estima-

tion scheme computes at each sample time tight bounds on the uncertain states by solving an LMI
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optimization problem based on the available noisy input and output data. In comparison with con-

ventional approaches that use offline calculation for the estimation, the suggested scheme achieves an

acceptable level of performance with reduced conservativeness, while the online computational time

is maintained relatively low. The effectiveness of the proposed estimation method is assessed via a

numerical example.

Using the results from Chapters 3 and 4, an output-feedback RMPC scheme for norm-bounded un-

certain systems is proposed in Chapter 5, considering that only the noisy output measurements are

available. The novelty lies in the fact that, instead of using an offline state estimation scheme or a fixed

linear observer, the past input/output data is used within a RMHE scheme to compute tight bounds

on the current state. These current state bounds are then used within the output-feedback RMPC

control algorithm. To reduce conservatism, the output-feedback control gain and control perturbation

are both explicitly considered as decision variables in the LMI optimization. Additionally, an offline

strategy that guarantees feasibility on the RMPC problem is presented. Numerical examples from the

literature are used to demonstrate the advantages of the proposed scheme.

In Chapter 6, the proposed robust control and estimation schemes presented in this thesis, are utilized

to automate an industrial directional drilling system. The complex bottom hole assembly rotary steer-

able system is first approximated by a simplified model described by ordinary differential equations in

a state-space closed-form representation. Then disturbances and system uncertainties that arise from

design approximations are considered within the formulation of RMPC in order to avoid constraints

violation imposed by the problem specifications. The stability and computational efficiency of the

scheme are improved by a state feedback strategy computed offline using Robust Positive Invariant

(RPI) sets control approach and model reduction techniques. A crucial advantage of the proposed

control scheme is that it computes an optimal control input considering physical and designer con-

straints. The control strategy is applied in an industrial directional drilling configuration represented

by a DDE model and its performance is illustrated by simulations.

Finally, in Chapter 7 an overall summary of the main contributions of the thesis is provided and

potential future research directions are suggested.
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1.3 Notation

The notation used is fairly standard. R denotes the set of real numbers, Rn denotes the space of n-

dimensional real (column) vectors, Rn×m denotes the space of n×m real matrices, and Dn denotes the

space of diagonal matrices in Rn×n. For A∈Rn×m, AT denotes the transpose of A and for A∈Rn×n,

H (A):=A+AT . If A∈Rn×n is symmetric, σ(A) denotes the smallest eigenvalue of A. We call A=AT

positive semidefinite and we write A� 0 if σ(A)≥ 0 and we call A positive definite and write A� 0 if

σ(A)> 0. Analogous definitions apply to the largest eigenvalue σ(A), with respect to A� 0 (negative

semidefinite) and A≺ 0 (negative definite). For x,y∈Rn, the inequality x<y (and similarly ≤, > and

≥) is interpreted element-wise. The notation Iq denotes the q× q identity matrix with the subscript

omitted when it can be inferred from the context. For matrices A1, . . . ,Am, diag(A1, . . . ,Am) denotes a

block diagonal matrix whose i-th diagonal block is Ai. The symbol ei denotes the i-th column of the

identity matrix of appropriate dimension. If UUU⊆Rp×q is a subspace, then BUUU ={U ∈UUU : UUT � I}

denotes the unit ball of UUU . Finally, for matrices A and B, A⊗B denotes the Kronecker product.



CHAPTER 2

Background Theory

In this chapter, theoretical background material that is relevant to the context of MPC formulations is

presented. In particular, the basic concept of convex optimization is briefly discussed in Section 2.1,

followed by an introduction to quadratic programming, which is given in Section 2.2. The branch

of convex optimization called Semi-definite Programming is presented in Section 2.3, along with

some important techniques used throughout this project, such as linear matrix inequalities and Schur

complement. In Section 2.4, a procedure to transform a nonconvex optimization problem to semi-

definite programming is illustrated. Finally, in Section 2.5 the two main identification procedures

used to model an uncertain system are presented.

2.1 Convex Optimization

As discussed in Chapter 1, MPC is an optimization-based control technique. In particular, an opti-

mization problem is solved online, at each sampling instant, to compute the optimal control sequence.

14
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Therefore, it is essential that the formulated optimization problem is such that it can be solved in an ef-

ficient manner - within the sampling interval. One such class of problems are the convex optimization

problems [57].

Recall that convex optimization problems are of the general form:

min
x

f (x)

subject to gi(x)≤ di, i = 1, . . . ,m
(2.1)

where gi(x)≤ di represents convex constraints and f (x) is the convex cost function to be minimized.

These two components of optimization in (2.1) are quite significant and we briefly discuss each of

them below.

Definition 2.1.1 A set C is convex if, for any x1, x2 ∈ C, and a such that 0 ≤ a ≤ 1, the following

relation holds

ax1 +(1−a)x2 ∈C (2.2)

Similarly, a convex function can be defined as follows.

Definition 2.1.2 A function f : Rn→ R is convex if its domain is a convex set and if for every pair of

points x1, x2 in the domain of f , and α such that 0≤ α ≤ 1, the following inequality is satisfied:

f (αx1 +(1−α)x2)≤ α f (x1)+(1−α) f (x2) (2.3)

Recall that in the context of (2.1), the advantage of minimizing a convex function subject to convex

constraints is that any local minimum of the problem is also a global minimum. Furthermore, for

strictly convex functions (i.e. functions for which inequality (2.3) is strict), the minimum (if it exists)

is unique. Algorithms, such as interior point methods [11], exploit these properties and are thus able

to solve convex problems in an efficient, fast and reliable manner.

Convex optimization methods also play an important role in solving nonconvex problems. Algorithms

for solving nonconvex and nonlinear optimization problems are generally inefficient. One approach
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to solving such problems is to consider local optimization methods which yield a locally optimal

solution. However, these methods require an initial solution of the decision variables as a starting

point, which is a critical factor in the algorithm convergence. In such cases, an approximate convex

formulation can be obtained for the original nonconvex problem (see Section 2.4). Then, the solution

of the (approximate) convex problem, which is easily computed, can be used as the initial condition

for the local optimization.

Convex optimization subsumes a large class of problems. For example, an important type of problems

are the so-called Linear Programs (LP). These are of the form:

minimize cT x

subject to α
T
i x≤ bi, i = 1, . . . ,m

(2.4)

where the vectors c, αi ∈ Rn and scalars bi ∈ R . Note that the cost function and constraints in (2.4)

are both linear and, therefore, convex. Another key class of optimization problems are the convex

Quadratic Programs (QP), and is presented next.

2.2 Quadratic programming

Quadratic programming is an optimization program for minimising a quadratic cost function sub-

ject to linear equality and inequality constraints [58]. The quadratic programming problem has the

following structure:

min
x

1
2

xT Hx+ f T x

sub ject to


Ax≤ b

Aeqx = beq

lb≤ x≤ ub

(2.5)
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where Ax ≤ b and Aeqx = beq denote the linear inequality and linear equality constraints on variable

x, respectively; lb and ub represent the lower and upper bounds on x. In order to ensure that only one

unique solution exists for this problem, the matrix H = HT ∈ Rn×n is required to be positive definite

(H � 0). Quadratic programming is widely used in the control and estimation fields, and is the most

common method to solve effectively the nominal Model Predictive Control problem.

2.3 Semidefinite Programming

In the context of robust optimization and RMPC formulations, a particularly important class of convex

optimization problems are the so-called semidefinite programs, which we discuss next.

Semidefinite programming has attracted substantial research interest over the past few decades [59].

This is because semidefinite programs (SDPs) have extensive application in system and control the-

ory as well as other fields such as combinatorial and robust optimization. Also, importantly, there

exist efficient algorithms to solve SDPs, for instance interior point methods [60]. SDPs are convex

optimization problems which involve the minimization of a linear function subject to a constraint that

requires a symmetric matrix - which is affine in the decision variables - to be positive semidefinite. In

particular, an SDP can be written as:

minimize cT x

subject to F(x)� 0
(2.6)

with

F(x) := F0 +
n

∑
i=1

xiFi (2.7)

where x ∈ Rn is the decision variable, with xi denoting the i-th entry of x, and symmetric matrices

F0,Fi ∈ Rm×m, are given for all i. Note that for the case when all the matrices F0, . . . ,Fn are diagonal,

the constraint in (2.6) becomes equivalent to m linear inequalities. Hence, in this case, the SDP

problem simply reduces to a linear program of the form given in (2.4). The constraint in (2.6) is more
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generally known as a Linear Matrix Inequality and we briefly discuss these next.

2.3.1 Linear Matrix Inequalities

Linear Matrix Inequality (LMI) techniques play an important role in the formulation of various prob-

lems within system and control theory [17]. For instance, one of the most widely used LMI conditions

is the Lyapunov inequality for establishing stability [61, Section 2.5.2].

The robust predictive control algorithms proposed in this thesis are also mostly based on LMI con-

straints, which are formally defined as:

F(x)� 0, F(x) := F0 +
n

∑
i=1

xiFi. (2.8)

Note that the symmetric matrix F(x) is affine in variable x∈Rn and is required to be positive semidef-

inite, i.e. yT F(x)y� 0,∀y. Furthermore, (2.8) represents a convex constraint on x. Strict inequalities

(i.e. positive definite or negative definite) or negative semidefinite inequalities can also be defined

analogously. In certain cases, optimization problems involve multiple LMI constraints, for instance:

minimize cT x

subject to Fk(x)� 0, k = 1, . . . , p
(2.9)

with

Fk(x) := Fk
0 +

n

∑
i=1

xiFk
i , i = 1, . . . ,n (2.10)

Such problems can be readily transformed to an SDP of standard form (2.6), as follows:

minimize cT x

subject to L (x) := diag(F1(x), F2(x), . . . , F p(x))� 0
(2.11)

Finally, an important LMI result, which will be used extensively in the development throughout this

thesis is known as the Schur complement [62]. This is a result to represent some convex nonlinear

matrix inequalities in the form of LMIs without any conservatism, and is given by the following



2.4. Semidefinite relaxation 19

lemma [62]:

Lemma 2.3.1 Define matrices A = AT , C =CT and B of appropriate dimensions and let

L :=

 A B

BT C


Then, for C � 0, the matrix L � 0 if and only if A− BC−1BT � 0. Similarly, for A � 0, the

matrix L � 0 if and only if C−BT A−1B� 0. Furthermore, the following three statements are also

equivalent

(i) L � 0

(ii) C � 0 and A−BC−1BT � 0

(iii) A� 0 and C−BT A−1B� 0

2.4 Semidefinite relaxation

In various fields of engineering, such as robust control design, communications and signal processing,

one often encounters many important optimization problems that are computationally intractable (for

example nonlinear nonconvex problems). For such optimizations, it is generally very difficult to

compute the (global) solution, that is if one even exists [63]. In these cases, semidefinite relaxation

provides a useful technique to obtain an (approximate) convex formulation for the original nonconvex

optimization problem, in the form of an SDP (2.6), see e.g. [64,65]. The solution of the SDP generally

serves as a good approximation to the actual optimal solution for the nonconvex problem. In fact,

under certain conditions, semidefinite relaxation does not introduce any conservatism and hence, the

SDP solution corresponds exactly to the optimal solution. As we will show in this thesis, feedback

RMPC formulations for uncertain systems of the form (1.10) also result in optimization problems

which are nonlinear and nonconvex in the decision variables (the control gain K). Therefore, we

propose to obtain convexity through the application of semidefinite relaxation techniques to derive
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RMPC algorithms based on SDP problems. Such an approach has the advantage that the resulting

SDPs are solved very efficiently using interior point methods [17]. This, therefore means that the

proposed RMPC control law can easily be computed online in polynomial time [15].

2.4.1 The S-procedure

The S-procedure is a technique that is used to relax some nonlinear, nonconvex optimizations and

obtain their SDP approximations [61, 66]. It has found great application in many problem areas

within control theory. The S-procedure can formally be defined as follows [61, Section 2.6.3].

Lemma 2.4.1 Let F0, . . . ,Fp be quadratic functions of the variable x ∈ Rn such that:

Fi := xT Tix+2uT
i x+υi, i = 0 . . . , p (2.12)

where Ti = T T
i . Then, the following condition

F0(x)≥ 0 ∀x, such that Fi(x)≥ 0, i = 1, . . . , p (2.13)

holds if there exist τi ≥ 0, . . . , τp ≥ 0 such that

 T0 u0

uT
0 υ0

− p

∑
i=1

τi

 Ti ui

uT
i υi

� 0 (2.14)

Furthermore, when p= 1, the converse also holds provided that there exists an x1 such that F1(x1)> 0.

Remark 1 If the functions Fi, i = 0, . . . , p, are convex in x, then (2.13) and (2.14) become equiva-

lent. This is the so-called Farkas’ Theorem [67]. Furthermore, if the function Fi are affine, then the

equivalence of (2.13) and (2.14) is known as the Farkas’ Lemma.
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2.4.2 S-procedure application example

In this section, let us consider an example problem so as to clarify the application of the S-procedure.

Let

x+ = [(A+BuK)x+Bww] (2.15)

where x ∈X := {x ∈ Rn : −d ≤ x ≤ d}, w ∈ W := {w ∈ Rnw : −u ≤ w ≤ u} are bounded signals,

A, Bu, Bw are given matrices and d, u are known vectors. The main objective is to compute a matrix

K, if it exists, such that

eT
i [(A+BuK)x+Bww]− γ ≤ 0, ∀x ∈X , ∀w ∈W , i = 1, . . . ,n. (2.16)

The feasibility problem would require finding a K for a given γ , whereas the optimization problem

consists of computing a K that minimizes γ . However, in both cases, it is clear that (2.16) requires

nonlinear optimization techniques. To address this issue, we now use the S-procedure to obtain an

equivalent SDP formulation for the above problem (see also Remark 2).

Theorem 2.4.2 There exists K and γ such that (2.16) is satisfied if and only if there exist diagonal

positive semidefinite matrices Dx ∈ Rn×n and Dw ∈ Rnw×nw such that the following LMI is satisfied:

L (γ,K,Dx,Dw) :=


Dw 0 1

2(A+BuK)T ei

∗ Dw
1
2BT

wei

∗ ∗ γ−dT Dxd−uT Dwu

� 0. (2.17)

Proof: For any Dx ∈ Rn×n and Dw ∈ Rnw×nw , the left hand side of inequality in (2.16) can be

written as

eT
i [(A+BuK)x+Bww]− γ =−(d− x)Dx(x+d)− (u−w)Dw(u+w)

− [−(d− x)T Dx(x+d)− (u−w)T Dw(u+w)− eT
i (A+BuK)x− eT

i Bw + γ]

Using matrix manipulation for the terms inside the square-bracket in the above equation we can
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rewrite it in a matrix forms as:

eT
i [(A+BuK)x+Bww]− γ =−(d− x)Dx(x+d)︸ ︷︷ ︸

Jx

−(u−w)Dw(u+w)︸ ︷︷ ︸
Jw

−
[

xT wT 1

]
L (γ,K,Dx,Dw)


x

w

1


(2.18)

where L (γ,K,Dx,Dw) is the matrix defined in (2.17).

Notice that Jx ≤ 0 and Jw ≤ 0 for all x ∈X and for all w ∈W for any diagonal, positive semidefinite

matrices Dx and Dw. Then, using the S-procedure (Farkas’ Theorem) [81], it follows that the existence

of such Dx and Dw such that L (γ,K,Dx,Dw) � 0, is a necessary and sufficient condition for (2.16).

Therefore, the result follows.

Remark 2 To clarify the above findings, note the following:

• In order to simplify the presentation, a step has been skipped in Theorem 2.4.2, where defin-

ing the functions F0 and Fi to represent (2.16) in the form (2.13), which allows the use of

Lemma 2.4.1, along with Remark 1, to arrive at (2.16) that corresponds to (2.14).

• The diagonal entries of Dx and Dw simply correspond to the τi in (2.14).

• Sufficiency of (2.17) for (2.16) follows from (2.18) without the need to reference the S-Procedure.

Necessity follows from the S-Procedure since F0 and Fi are affine functions of the variables.

• Even though the theorem dealt with the feasibility problem of (2.16), the optimization problem

follows since the cost function is linear in the variable γ .

2.5 Uncertain System Models

As discussed above, real world processes may have a very complex plant description, which cannot be

captured by the designed system model. To avoid using very complex models for control application,
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uncertain systems are utilised to capture any plant-model miss-match. In this section the two main

uncertain model representations, which arise from two different modeling and identification proce-

dures commonly used in robust control are presented. The first model under consideration is known

as ’Polytopic’ or ’multi-model’, and the second which is more frequently used is called ‘structured

feedback uncertainty’ robust control model. In general linear uncertain systems are given as follows:

x(k+1) = A(k)x(k)+B(k)u(k)

y(k) =Cx(k)

[A(k) B(k)] ∈Ω

(2.19)

where u(k) ∈ Rnu is the control input, x(k) ∈ Rnx is the state of the plant and y(k) ∈ Rny is the plant

output, and Ω is some pre-specified set.

2.5.1 Polytopic uncertainty

In the polytopic system representation of uncertain system, the set Ω is a polytopic set:

Ω =Co{[A1, B1], [A2, B2], . . . , [AL, BL]}, (2.20)

where Co denotes the convex hull. Therefore, [A, B] ∈Ω if and only if there exist some nonnegative

λ1,λ2, . . . ,λL, which are summing to one, such that

[A, B] =
L

∑
i=1

λi[Ai, Bi].

Note that when L= 1 the polytopic uncertain system corresponds to the nominal LTI system. Method-

ologies on how a polytopic system models can be developed are presented on the next paragraph.

Suppose that for the (possibly nonlinear) system under consideration, we have input/output data sets

at different operating points, or at different times. From each data set, we develop a number of linear

models (for simplicity, we assume that the various linear models involve the same state vector). Then

it is reasonable to assume that any analysis and design methods for the polytopic system (2.19), (2.20)

with vertices given by the linear models will apply to the real system. Alternatively, suppose that the
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equilibrium point for the nonlinear system is equal to x = 0, u = 0 and the Jacobian [∂ f
∂x

∂ f
∂u ] of a

nonlinear discrete time varying system x(k+1) = f (x(k),u(k),k) lies inside the polytope Ω. Then it

can be shown that every trajectory (x,u) of the original nonlinear system is also a trajectory of (2.19)

for some LTV system in Ω [68]. Thus the original nonlinear system can be approximated (possibly

conservatively) by a polytopic uncertain LTV system. Equivalently, it can be shown that bounds on

impulse response coefficients of single input/single output FIR plants can be transformed to a poly-

topic uncertainty description on the state-space matrices. Thus, this polytopic uncertainty description

is convenient for many problems of engineering significance.

2.5.2 Norm-bounded structured feedback uncertainty

A second, more popular uncertain system model representation for robust control consists of an LTI

system with uncertainties or perturbations appearing in the feedback loop:

x(k+1) = Ax(k)+Bu(k)+Bp p(k)

y(k) =Cx(k)

q(k) =Cqx(k)+Dquu(k)

p(k) = ∆q(k)

(2.21)

The matrix ∆ typically has a block-diagonal structure:

∆ =



∆1 0 · · · 0

0 ∆2 · · · 0
...

... . . . ...

0 0 · · · ∆r


(2.22)

where ∆i : Rni → Rni . The matrix ∆ can represent either a memoryless time-varying matrix or a

convolution operator, with the operator norm induced by l2-norm less than 1 (for e.g., a stable LTI

dynamic system).

Each ∆i is assumed to be either a repeated scalar block or a full block, where it can model uncertain-
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ties for number of factors, such as nonlinearities, dynamics or parameters, that are unknown, unmod-

eled or neglected. A number of control systems with uncertainties can be recast in this framework

(see for example [14,15,26,69]. For ease of reference, we shall refer to such systems as systems with

structured uncertainty. Note that in this case, the uncertainty set Ω is defined by (2.21) and (2.22).

For the LTV case, it is easy to show through routine algebraic manipulations that the system (2.21)

corresponds to the system (2.19) with

Ω = {[A+Bp∆Cq B+Bp∆Dqu] :

∆ satisfies (2.22) with σ̄(∆i)≤ 1}.
(2.23)

When ∆ = 0 and p(k) = 0 ∀ k ≥ 0, the system corresponds to the nominal LTI system.

The issue of whether to model a system as a polytopic system or a system with structured uncertainty

depends on a number of factors, such as the underlying physical model of the system, available model

identification and validation techniques. For example, nonlinear systems can be modeled either as

polytopic systems or as systems with structured perturbations. We shall not concern ourselves with

such issues here: instead we shall assume that the structured feedback uncertainty model is available.



CHAPTER 3

Computationally Efficient State-Feedback Robust Model Predictive

Control for Uncertain System

3.1 Introduction

In this chapter the problem of RMPC of linear-time-invariant (LTI) discrete-time systems subject to

norm-bounded structured uncertainty and bounded disturbances is considered. Typically, the con-

strained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a

prohibitively high computational burden for online implementation. To remedy this issues, a novel

approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism,

through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-

feedback gain and perturbation online by solving an LMI optimization that, in comparison to other

schemes in the literature is shown to have a substantially reduced computational burden without ad-

versely affecting the tracking performance of the controller. Additionally, an offline strategy that

guarantees feasibility on the RMPC problem is presented. The effectiveness of the proposed RMPC

26
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algorithm compared to other schemes in the literature is demonstrated through numerical examples.

The contributions of this chapter are summarized as follows. Firstly, a new LMI-based RMPC scheme

is proposed in Section 3.2 for systems subject to structured uncertainty and disturbances. The feed-

back gain and control perturbation are considered as decision variables whilst nonlinearities are cir-

cumvented using a novel linearization procedure (see Section 3.3). This substantially reduces the

online computations, while it improves performance due to its less restrictive nature (see Remark 23)

without reducing the feasibility region. Secondly, to reduce the online computation time further,

an extension is proposed in Section 3.4 which derives a single LMI sufficient condition for all the

constraints. This improves the scalability of the algorithm. Finally, Section 3.5 proposes an offline

initialization strategy to guarantee recursive feasibility for the problem. The formulation and results

presented in this chapter are mainly based on the result presented in [70].

The following lemma has been used throughout this work to deal with norm-bounded feedback un-

certainty structure.

Lemma 3.1.1 Let H11 =HT
11,H12,H21, and H22 be real matrices. Let ∆̂̂∆̂∆ be a linear subspace and

define the linear subspace:

Ψ̂={(S,R,G) : S=ST �0,R=RT �0, S∆=∆R, H (∆G)=0∀∆∈ ∆̂̂∆̂∆}. (3.1)

Then det(I−H22∆) 6= 0 and H11+H
(
H12∆(I−H22∆)−1H21

)
� 0 for every ∆∈B∆̂̂∆̂∆ if there exists

(S,R,G)∈Ψ̂ such that: 
H11 HT

21 +H12GT H12S

∗ R+H
(
H22GT) H22S

∗ ∗ S

� 0. (3.2)

Note that the above Lemma is based on the results presented in [71, Lemma 3.2] followed by some

rearrangements using Schur complement argument.
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3.2 Problem Statement

In this section, we are first presenting the system description including control dynamics, constraints

and cost signal. Then, utilizing a causal state feedback control law and recasting disturbances as

structure bounded uncertainties similar to [14], the RMPC control problem is presented. Lastly, the

difficulties to solve this optimization problem using linear optimization solvers are highlighted.

3.2.1 System Description

The following linear discrete-time system, subject to bounded disturbances and norm-bounded struc-

tured uncertainty, is considered (see e.g. [15]):



xk+1

qk

fk

zk


=

n nu np nw

n

nq

n f

nz



A Bu Bp Bw

Cq Dqu 0 0

C f D f u D f p D f w

Cz Dzu Dzp Dzw





xk

uk

pk

wk


, pk=∆kqk,


qN

fN

zN

=


Ĉq 0

Ĉ f D̂ f p

Ĉz D̂zp


xN

pN

, pN = ∆NqN ,

(3.3)

where xk ∈Rn,uk ∈Rnu,wk ∈Rnw , fk ∈Rn f ,zk ∈Rnz, pk ∈Rnp and qk ∈Rnq are the state, input, dis-

turbance, constraint, cost, and input and output uncertainty vectors, respectively, with k ∈N :=

{0,1, . . . ,N−1}, where N is the horizon length. It is assumed that the state xk is measurable. Note

that the description includes terminal cost and state constraints to ensure closed-loop stability [4].

The symbols in capital letters denote coefficient matrices with the dimensions indicated for ease of

reference.

Furthermore, ∆k ∈B∆∆∆ where ∆∆∆⊆Rnp×nq is a subspace that captures the uncertainty structure. Fi-

nally, the disturbance wk is assumed to belong to the set Wk ={wk∈Rnw : −d̄k≤wk≤ d̄k}, where the

disturbance’s bound d̄k>0 is given.
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Remark 3 Note that we allow uncertainty in all the problem data including the constraints and the

cost signal. It is easy to verify that the dynamics in (3.3) can be rewritten in the form:


xk+1

fk

zk

=


A+Bp∆kCq Bu+Bp∆kDqu Bw

C f +D f p∆kCq D f u+D f p∆kDqu D f w

Cz+Dzp∆kCq Dzu+Dzp∆kDqu Dzw




xk

uk

wk


 fN

zN

=
 Ĉ f +D̂ f p∆NĈq

Ĉz+D̂zp∆NĈq

xN .

3.2.2 Algebraic formulation

To simplify the presentation, with a slight abuse of notation we re-parameterize the disturbance as

uncertainty by redefining Wk :={∆w
k d̄k: ∆w

k ∈B∆∆∆
w}, where ∆∆∆

w=Dnw ,

Bp :=
[
Bp Bw

]
,Cq :=

Cq

0

,Dqu :=

Dqu

0

, d̄k :=

 0

d̄k

, pk :=

pk

wk

,
qk :=Cqxk +Dquuk + d̄k,

where new uncertainty dimensions are np := np+nw and nq := nq+nw. The vector z̄k is assumed

to be given and defines the reference trajectory. The constraint and terminal constraint signals are

defined by f̄k and f̄N , respectively, and are assumed to be known. They are chosen to satisfy polytopic

constraints on the input and state signals, and terminal state signals, respectively. The only assumption

that is imposed here is that the terminal constraints presented here by f̄N are define a Robust Control

Invariant set (RCI) [72]. This is used to derive conditions for recursive feasibility on the proposed

control scheme (see Remark 8).

By defining the stacked vectors,

u =


u0

...

uN−1

∈ RNu, x =


x1

...

xN

∈ RNn, ζζζ =


ζ0

...

ζN

∈ RNζ ,
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where ζζζ stands for f, f̄,p,q,z, z̄ or d̄ and Nn =Nn, Nu=Nnu and Nζ =(N+1)nζ , we get



x

q

f

z


=

n Nu Np 1

Nn

Nq

N f

Nz



A Bu Bp 0

Cq Dqu Dqp d̄

C f D f u D f p 0

Cz Dzu Dzp 0





x0

u

p

1


, p = ∆̂q, (3.4)

with ∆̂ ∈B∆̂̂∆̂∆⊂ RNp×Nq where,

∆̂̂∆̂∆={diag(∆0,∆
w
0 , . . . ,∆N−1,∆

w
N−1,∆N):∆k∈∆∆∆,∆w

k ∈∆∆∆
w},

and where the stacked matrices in (3.4) (shown in bold) have the indicated dimensions and are readily

obtained from iterating the dynamics in (3.3) and the re-definitions in this section. The input signal

ui is considered as a causal state feedback that depends only on states x0, . . . ,xi (see e.g. [73]). Thus

u = K0x0 +Kx+υυυ , (3.5)

where υυυ ∈RNu is the (stacked) control perturbation vector and K0, K are the current and predicted

future state feedback gains. Causality is preserved by restricting [K0 K]∈K ⊂RNu×Nn , where K is

the set of Nu×Nn lower block triangular matrices with nu×n blocks. K0, K and υυυ are considered as

decision variables. Note that, while K0 is redundant for a given x0 as it can be absorbed in υυυ , we keep

it for when we tackle the case of variable x0 in Section 3.5. Substituting the expression of x in (3.4)

into (3.5) gives,

u= K̂0x0+K̂Bpp+υ̂ , (3.6)

where
[

K̂0 K̂ υ̂

]
=(I−KBu)

−1
[

K0+KA K υυυ

]
.

Note that u is affine in K̂0, K̂ and υ̂ which have the same structure and dimensions as K0,K and υυυ ,

respectively. Note also that

[
K0 K υυυ

]
= (I + K̂Bu)

−1
[

K̂0−K̂A K̂ υ̂

]
, (3.7)
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and so
[
K̂0 K̂ υ̂

]
will be used as the decision variables instead. Using (3.6) to eliminate u from (3.4)

and re-arranging x0 gives


q

f

z− z̄

=


DK̂
qp DK̂0,υ̂

q

DK̂
f p DK̂0,υ̂

f

DK̂
zp DK̂0,υ̂

z


p

1

,

:=


Dqp+DquK̂Bp Dquυ̂+(Cq+DquK̂0)x0+d̄

D f p+D f uK̂Bp D f uυ̂+(C f+D f uK̂0)x0

Dzp+DzuK̂Bp Dzuυ̂+(Cz+DzuK̂0)x0−z̄


p

1

·
(3.8)

Note that all the coefficient matrices in (3.8) are affine in K̂0, K̂ and υ̂ . Finally, eliminating p using

p = ∆̂q we get  f

z− z̄

=
DK̂0,υ̂

f +DK̂
f p∆̂(I−DK̂

qp∆̂)−1DK̂0,υ̂
q

DK̂0,υ̂
z +DK̂

zp∆̂(I−DK̂
qp∆̂)−1DK̂0,υ̂

q

· (3.9)

For convenience, we write f=F (K̂0, K̂, υ̂ , ∆̂) and (z−z̄)T(z−z̄)=Z (K̂0, K̂, υ̂ , ∆̂) to emphasize de-

pendence on the variables.

3.2.3 RMPC problem

Given the initial state x0, the RMPC problem is then to find a feedback law uk for all k ∈N such that

the cost function, is minimized, while the constraint signals satisfy fk≤ f̄k and fN ≤ f̄N for all wk ∈Wk

and all ∆k ∈B∆∆∆ and for all k ∈N . The RMPC problem can be posed as a min-max problem [9],

where the objective is to find a feasible (K̂0, K̂, υ̂) that solves

J = min
(K̂0,K̂,υ̂)∈U

max
∆̂∈B∆∆∆

Z (K̂0, K̂, υ̂ , ∆̂), (3.10)
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where U is defined to be the set of all feasible control variables (K̂0, K̂, υ̂) such that all the problem

constraints are satisfied:

U :={([K̂0 K̂], υ̂)∈K ×RNu:F (K̂0, K̂, υ̂ , ∆̂)≤ f̄,∀∆̂∈B∆̂̂∆̂∆}.

K0, K and υ can be computed online and applied in the usual receding horizon MPC manner, where

the first input of the control sequence u is applied to the plant, the time window is shifted by 1, the cur-

rent state is read and the process is repeated. Since the optimization in (3.10) is nonconvex, a semidef-

inite relaxation is used by introducing an upper bound γ2 on the cost function. Using Lemma 3.1.1

and a Schur complement argument, the next result derives nonlinear conditions for solving (3.10).

Theorem 3.2.1 Let all the variables be defined as above. Then Z (K̂0, K̂, υ̂ , ∆̂)≤ γ2 and

F (K̂0, K̂, υ̂ , ∆̂) ≤ f̄ are satisfied for all ∆̂∈B∆̂̂∆̂∆ if there exists a solution to the nonlinear matrix

inequalities

T1 +H (T2K̂BpT3) � 0, (3.11)

T i
1 +H (T i

2K̂BpT i
3) � 0, i = 1, . . . ,N f , (3.12)

where

T i
1 T i

2

T i
3 0

=

1 Nq Np Nu

1

Nq

Np

Np



eT
i (f̄−DK̂0,υ̂

f ) (DK̂0,υ̂
q )T− eT

i
2 D f pGT

i −
eT

i
2 D f pSi −

eT
i
2 D f u

∗ Ri+H
(
DqpGT

i
)

DqpSi Dqu

∗ ∗ Si 0

0 GT
i Si 0


,

T1 T2

T3 0

=

Nz 1 Nq Np Nu

Nz

1

Nq

Np

Np



I DK̂0,υ̂
z DzpGT DzpS Dzu

∗ γ2 (DK̂0,υ̂
q )T 0 0

∗ ∗ R+H
(
DqpGT) DqpS Dqu

∗ ∗ ∗ S 0

0 0 GT S 0


,
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where ([K̂0 K̂], υ̂)∈K ×RNu and (S,R,G), (Si,Ri,Gi)∈ Ψ̂, i∈N f :={1, . . . ,N f } are slack variables

with Ψ̂ defined in (3.1).

In the sequel, we will occasionally write T1(γ
2, K̂0, υ̂ ,S,R,G) etc. to emphasise dependence on the

variables. It follows that the relaxed RMPC problem can be summarized as:

min{γ2 :([K̂0 K̂], υ̂)∈K ×RNu,(3.11),(3.12) are satisfied,

(S,R,G),(Si,Ri,Gi)∈Ψ̂, i∈N f }.
(3.13)

Definitions (3.8)-(3.9) verify that (3.13) is nonlinear due to terms of the form K̂BpZT where Z stands

for S,Si,G and Gi. Note that (3.13) is linear for fixed K and RMPC schemes with fixed K have been

proposed [30]. However, this introduces conservatism depending on the choice of K. A linearization

scheme is proposed in [14], which uses an S-procedure to separate K̂. However, this scheme has a

high computational burden. Furthermore, some of the introduced linearization variables are restricted

to a specific form. To overcome these two limitations, a new linearization procedure for (3.13) is

proposed, which substantially reduces the computational complexity at the expense of only minor

conservatism in the formulation.

3.3 Linearization scheme for the relaxed RMPC problem

As mentioned in Section 1.1, although min-max MPC and TMPC are more suitable for fast dynamic

system due to their lower online computational cost, both schemes rely heavily on offline calculation

to achieve robustness which can lead to performance conservatism within the overall robust control

scheme. Moreover, both methods are more complex to implement due firstly to the complexity of

calculating robust invariant sets (necessary for both methods) and secondly to the not straightforward

process of tuning all the parameters of the MPC [18]. On the other hand, LMI-based methods reduce

conservatism by explicitly incorporating uncertainty within the online optimization problem. How-

ever, this method suffers from its heavy computational cost, which makes it impractical for systems

with a high number of states or fast dynamics. Considering the control gains and perturbation as
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decision variables in the optimization problem in the case of systems subject to both norm bounded

model uncertainties and additive disturbances (shown in Section 3.2), the problem presented in (3.10)

is nonlinear and nonconvex. Subsequently, linearization methods using extended S-procedure pro-

posed lead to conservatism and a significant increase in the computational cost. In this section,

utilizing the Elimination lemma (see Lemma 3.3.1), a novel linearization procedure is proposed to

overcome the nonlinearity and nonconvexity for the LMI based RMPC problem presented in (3.13),

while conservativeness and computation burden are maintained at low levels. The following form of

the Elimination Lemma will be used in this section.

Lemma 3.3.1 (Elimination Lemma) Let Q=QT ∈Rn×n,B∈Rn×m and C∈Rn×p be given matrices

and let B⊥ and C⊥ denote orthogonal complements of B and C, respectively. Then the following two

statements are equivalent:

(i) (B⊥)TQ(B⊥)� 0 & (C⊥)TQ(C⊥)� 0

(ii) ∃ Z ∈ Rp×m : Q+H (CZBT )� 0,

where B⊥ and C⊥ denote orthogonal complements of B and C, respectively. The proof and some

applications of the Elimination Lemma can be found in [61, 74, 75]. The next result uses the Elim-

ination Lemma to derive LMI sufficient conditions for the nonlinear matrix inequality conditions of

Theorem 3.2.1.

Theorem 3.3.2 Let all variables be as defined Section 3.2. Then, Z (K̂0, K̂, υ̂ , ∆̂)≤ γ2 and

F (K̂0, K̂, υ̂ , ∆̂) ≤ f̄ for all ∆̂∈B∆̂̂∆̂∆ if there exist solutions ([K̂0 K̂], υ̂) ∈K ×RNu , X ∈ RNn×Nn , with

X lower block-diagonal with n×n blocks, (S,R,G), (Si,Ri,Gi) ∈ Ψ̂, ∀i ∈N f to the following LMIs:

 T1 +H (T2K̄Y ∗) ∗(
BpT3− K̄T T T

2
)
−XY ∗ X +XT

 � 0 (3.14)

 T i
1 +H

(
T i

2K̄Y ∗i
)

∗(
BpT i

3− K̄T (T i
2)

T)−XY ∗i X +XT

 � 0, (3.15)

for any Y ∗ ∈ RNn×(Nz+1+Nq+Np),Y ∗i ∈ RNn×(1+Nq+Np) and where K̄ := K̂X ∈K .

Furthermore, suppose that (3.11) and (3.12) have feasible solutions for (γ2, K̂0, K̂, υ̂ ,R,S,G,Ri,Si,Gi)=
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(γ2∗, K̂∗0 , K̂
∗, υ̂∗,R∗,S∗,G∗,R∗i ,S

∗
i ,G

∗
i ) so that

T1(γ
2∗, K̂∗0 , υ̂

∗,S∗,R∗,G∗)+H
(
T2K̂∗BpT3(S∗,G∗)

)
�0, (3.16)

T i
1(K̂

∗
0 , υ̂

∗,R∗i ,S
∗
i ,G

∗
i )+H

(
T i

2K̂∗BpT i
3(S
∗
i ,G

∗
i )
)
�0,

and let Y ∗ = BpT3(S∗,G∗)+(T2K̂∗)T and Y ∗i = BpT i
3(S
∗
i ,G

∗
i )+(T i

2K̂∗)T . Then (3.14) and (3.15) are

feasible.

Proof: We prove the first part by proving that the LMIs in (3.14) and (3.15) are sufficient for the

nonlinear matrix inequalities in (3.11) and (3.12), respectively. We first use the Elimination Lemma

to give an equivalent form to (3.11). In order to separate K̂ from T3, the inequality in (3.11) can be

rearranged as:

[
I T2K̂

] Q︷ ︸︸ ︷ T1 T T
3 BT

p

BpT3 0


C⊥︷ ︸︸ ︷ I

K̂T T T
2

� 0. (3.17)

Then, applying the Elimination Lemma 3.3.1 on (5.36) (with B = I) shows that (5.36), hence (3.11)

is equivalent to  T1 T T
3 BT

p

BpT3 0

+
C︷ ︸︸ ︷−T2K̂

I


Z︷ ︸︸ ︷[

Y X

]
+

Y T

XT

[−K̂T T T
2 I

]
�0, (3.18)

where Y and X are free slack variables. Since H (X)�0, X is nonsingular and we can define K̄ :=K̂X

as a new variable. To preserve the structure of K̂ which ensures causality, we restrict X to be block

lower triangular (with n×n blocks). To preserve linearity, we restrict Y to have the form Y =−XY ∗

with Y ∗ free (but not a variable). Substituting Y =−XY ∗ into (5.37) proves that (3.14) is sufficient for

(3.11) (but not necessary due to the restrictions on Y and X). A similar procedure proves that (3.15)

are sufficient for (3.12).

Next, we prove feasibility of (3.14) and (3.15). To show that (3.14) has a feasible solution, set

(γ2, K̂0, K̂, υ̂ ,R,S,G,X)=(γ2∗, K̂∗0 , K̂
∗, υ̂∗,R∗,S∗,G∗, I). Then the LHS of (3.14) becomes

T ∗ :=

T ∗1 +H
(
T2K̂∗

(
BpT ∗3 +(K̂∗)T T T

2
))
∗

−2(K̂∗)T T T
2 2I


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where T ∗1 :=T1(γ
2∗, K̂∗0 , υ̂

∗,S∗,R∗,G∗) and T ∗3 :=T3(S∗,G∗). Applying a Schur complement on T ∗

shows that T ∗� 0 if and only if (3.16) is satisfied. It follows that (3.14) is feasible if (3.16) is. A

similar procedure proves the feasibility of (3.15).

Remark 4 Theorem 3.3.2 provides sufficient LMI conditions for the initial nonconvex RMPC prob-

lem. Therefore, K0, K and υ can be computed online and applied in the usual MPC manner, where

the first input of the control sequence u is applied to the plant, the time window is shifted by 1, the

current state is read and the process is repeated.

Remark 5 In comparison to [14], the novelty of the proposed linearization procedure is that it does

not restrict the structure of the slack variables (R,S,G) and (Ri,Si,Gi) beyond the requirements of Ψ̂,

and therefore it is less conservative.

3.4 Single LMI approach for handling constraints signal for RMPC

problem

Instead of solving multiple matrix inequalities for the constraints (one for each of the N f constraints

(3.12) or (3.15)), we propose a strategy to combine all within a single inequality. This results in

reduced computational complexity and improved algorithm scalability. Our algorithm is based on the

following result which uses an S-procedure to derive one LMI condition that is sufficient for a set of

elementwise inequalities.

Theorem 3.4.1 Let f̃ ∈ RN f and let e ∈ RN f be the vector of ones. Then f̃ ≥ 0 if there exist µ ∈ R

and M ∈ DN f such that,

L :=

 2µ
(

f̃ −Me− eµ
)T

∗ M+MT

� 0. (3.19)

Proof: Let ΩΩΩ :={diag(δ1, . . . ,δN f ) : δi∈{0,1},
N f

∑
i=1

δi=1}. Then,

f̃ ≥ 0⇔ eT
∆ f̃ + f̃ T

∆
T e≥ 0 ∀∆ ∈ΩΩΩ. (3.20)
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Let ∆∈ΩΩΩ. Since δi∈{0,1} and ∑
N f
i=1 δi=1, then

M∆ := ∆M+MT
∆

T−∆(M+MT )∆T =0 ∀M∈DN f ,

µ∆ := eT
∆eµ+µeT

∆
T e−2µ =0 ∀µ∈R,

(3.21)

respectively. It is straightforward to verify the identity,

eT
∆ f̃+ f̃ T

∆
T e=eT M∆e+µ∆+

[
1 eT ∆

]
L

 1

∆T e

·
The proof now follows from (3.20) and (3.21).

Theorem 3.4.1 enables us to give sufficient conditions for the constraints in (3.12) in the form of a

single matrix inequality.

Theorem 3.4.2 Let all variables be as defined Section 3.2. Then, Z (K̂0, K̂, υ̂ , ∆̂)≤ γ2 and F (K̂0, K̂, υ̂ , ∆̂)≤

f̄ for all ∆̂∈B∆̂̂∆̂∆ if there exist solutions ([K̂0 K̂], υ̂) ∈K ×RNu , (S,R,G),(S̃, R̃, G̃) ∈ Ψ̂, µ ∈ R and

M ∈ DN f to (3.11) and,

T̃1 +H (T̃2K̂BpT̃3)� 0, (3.22)

where

T̃1 T̃2

T̃3 0

=
1 N f Nq Np Nu

1

N f

Nq

Np

Np



2µ (f̄−DK̂0,υ̂
f −Me−eµ)T (DK̂0,υ̂

q )T 0 0

∗ M+MT −D f pG̃T −D f pS̃ −D f u

∗ ∗ R̃+H (DqpG̃T ) DqpS̃ Dqu

∗ ∗ ∗ S̃ 0

0 0 G̃T S̃ 0


·

Proof: We only need to prove that (3.22) is sufficient for f̃ := f̄−f≥0 for all ∆̂∈B∆̂̂∆̂∆, where f

is defined in (3.9). Using Theorem 3.4.1 and rearranging (3.19) verifies that a sufficient condition for
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the constraints is

H11+H (H12∆̂(I−H22∆̂)−1H21)�0, ∀∆̂∈B∆̂̂∆̂∆, (3.23)

where we have used a strict inequality to avoid issues related to optimality and conditioning and where

H11 H12

H21 H22

:=


2µ

(
f̄−DK̂0,υ̂

f −Me−µe
)T

0

∗ M+MT −DK̂
f p

DK̂0,υ̂
q̂ 0 DK̂

qp

·

Using Lemma 3.1.1 on (5.39) and the definition of (3.8) yields the matrix inequality (3.22) as a

sufficient condition.

Using the linearization procedure in Section 3.3, we next derive sufficient LMI conditions for the

problem stated in (3.13).

Theorem 3.4.3 Let all variables be as defined Theorem 3.4.2. Then, Z (K̂0, K̂, υ̂ , ∆̂)≤γ2 and

F (K̂0, K̂, υ̂ , ∆̂)≤ f̄ for all ∆̂∈B∆̂̂∆̂∆ if there exist ([K̂0 K̂], υ̂)∈K ×RNu , (S,R,G),(S̃, R̃, G̃)∈Ψ̂, µ∈R,

M∈DN f and X∈RNn×Nn , with X lower block-triangular with n×n blocks, to (3.14) and the following

LMI:  T̃1 +H
(
T̃2K̄Ỹ ∗

)
∗(

BpT̃3− K̄T T̃ T
2
)
−XỸ ∗ X +XT

�0, (3.24)

for any Y ∗∈RNn×(Nz+1+Nq+Np), Ỹ ∗∈RNn×(1+N f+Nq+Np) and where K̄ := K̂X ∈K .

Furthermore, suppose that (3.11) and (3.22) have feasible solutions for (γ2, K̂0, K̂, υ̂ ,R,S,G, R̃, S̃, G̃)=

(γ2∗, K̂∗0 , K̂
∗, υ̂∗,R∗,S∗,G∗, R̃∗, S̃∗, G̃∗) so that (3.16) and

T̃1(K̂∗0 , K̂
∗, υ̂∗, R̃∗, S̃∗, G̃∗)+H

(
T̃2K̂∗BpT̃3(S̃∗, G̃∗)

)
� 0. (3.25)

are satisfied and let Y ∗ = BpT3(S∗,G∗)+ (T2K̂∗)T and Ỹ ∗ = BpT̃3(S̃∗, G̃∗)+ (T̃2K̂∗)T . Then (3.14)

and (3.24) are feasible.

Proof: The result can be proved by applying the Elimination Lemma 3.3.1 on (3.22) in a similar

procedure to that used in the proof of Theorem 3.3.2 and is omitted.
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Remark 6 Note that the LMI presented in (3.19) is based on semidefinite relaxation procedure and

provides only sufficient conditions for f̃ ≥ 0 and can therefore be conservative. To reduce the conser-

vativeness, we can add more redundant constraints in Theorem 3.4.1 For example, it can be shown

that the redundant constraint ∑
N f
i=1 δ 2

i = 1 can be used to replace the LMI in (3.19) by the less conser-

vative LMI  2µ +ν
(

f̃ −Me− eµ
)T

∗ M+MT −νI

� 0.

with ν ∈ R. However, this is not pursued further in this work. Our numerical experimentation,

including the examples presented in Section 3.6, indicates that in practice, the single LMI sufficient

condition for the constraints provided by Theorem 3.4.3 (which is based on Theorem 3.4.1), performs

as well as the multiple LMI sufficient conditions for the constraints provided by Theorem 3.3.2.

3.5 Feasibility analysis

A major problem in MPC is to ensure that the constraints are feasible. Infeasibility may arise if the

constraints are too tight or it may be due to the approximations used to obtain a practical solution.

In the context of this work, to guarantee feasibility, Theorems 3.3.2 and 3.4.3 require initial feasible

solutions to (3.11), and (3.12) (to compute Y ∗ and Y ∗i ) or (3.11) and (3.22) (to compute Y ∗ and Ỹ ∗).

On the other hand, (3.11) and (3.12) are nonlinear and difficult to solve and these computations

need to be carried out online. In this section we develop algorithms that address these issues that

involve extensive computations, which, however, are convex and can be carried out offline. We will

concentrate on Theorem 3.4.3 since the procedure for Theorem 3.3.2 is similar. One approach is

to use the solutions in step k as the initial solutions in step k+ 1. There is no guarantee that these

solutions are feasible in step k+1 since xk will be different from xk+1.

Our approach is to find solutions to (3.11) and (3.22) offline that are feasible for every x0 in a con-

strained set. Note that both (3.11) and (3.22) can be written as M(x0) :=M1+H (M2x0M3)� 0 in

which M3 is constant and M1 and M2 are independent of x0, see (3.8). The next result uses an S-

Procedure to derive sufficient conditions for M(x0)�0 for all x0 in a polytopic set and forms the basis
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for our Algorithm 1.

Theorem 3.5.1 Let M1 = MT
1 ∈Rm×m, M2 ∈Rm×n, M3 ∈R1×m, C0 ∈Rp×n, c0 ≤ c̄0 ∈Rp be given.

Then M1+H (M2x0M3)� 0 for all x0 ∈X0 := {x0 ∈Rn : c0≤C0x0≤ c̄0} if there exists 0�D0 ∈Dp

such that

L :=

M1 +
1
2H (MT

3 (c
T
0 D0c̄0)M3) ∗

MT
2 −

1
2CT

0 D0(c0 + c̄0)M3 CT
0 D0C0

� 0

Proof: A manipulation verifies the following identity

M1 +H (M2x0M3) = M0 +

[
Im MT

3 xT
0

]
L

 Im

x0M3

,
where M0 :=MT

3 (C0x0−c0)
TD0(c̄0−C0x0)M3. The result then follows from the constraints on x0 and

the structure and sign-definiteness of D0 (which ensure that M0�0 for all x0 ∈X0) and since L � 0

(which ensures that the second term on the RHS of the identity is positive definite for all x0 ∈Rn).

Theorem 3.5.1 gives an LMI procedure for solving (3.11) and (3.22) for all x0∈X0 when K̂ is given

and for solving (3.14) and (3.24) for all x0∈X0 when an initial feasible solution for (3.11) and (3.22)

is given. Algorithm 1 outlines the suggested offline policy for computing initial feasible solutions for

Theorem 3.4.3.

Remark 7 If β =1 at the end of Step 2, we have feasible solutions to (3.11) and (3.22) for all x0∈X0

and we can use Theorem 3.4.3 online. If fewer online computations are needed, Theorem 3.4.2 can be

used online with K̂= K̂∗ and K̂0, υ̂ can be used to minimize γ . If β >1 at the end of Step 2, then, with

minor modifications to Algorithm 1, Theorem 3.4.3 can still be used, although without a guaranteed

feasible solution, but possibly a good initial solution if β ∼1 since the conditions are not necessary.

Alternatively, we may sub-divide X0 into subsets, find a feasible solution for each and use a look-up

table to choose the initial solution given x0 in the online implementation. See Example 1 for more

details.
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Algorithm 1: Initial feasible solutions for Theorem 3.4.3
Result: Lookup Table contain Y ∗(S∗,G∗, K̂∗) and Ỹ ∗(S̃∗, G̃∗, K̂∗), ∀x∈X0

Step 1:
In the (3.22) LMI fix K̂ (e.g. K̂=0) and replace f̄ by β f̄ .
Minimize β such that (3.22) is satisfied for all x0∈X0 (using the finding of Theorem 3.5.1).

Record variables β , S̃ and G̃ and let K̂∗=0, S̃∗= S̃, G̃∗= G̃, i=1,βi=β .
Select a maximum number of iterations imax and tolerance tolβ <1;
Step 2:
while (β > 1) & (i < imax) do

In the (3.24) LMI, replace f̄ by β f̄ and to find the smallest β ≥ 1 such that (3.24) is
satisfied for all x0 ∈X0 (using the finding of Theorem 3.4.3 and 3.5.1).

Set βi+1 = β and update K̂∗ := K̂, S̃∗ := S̃ and G̃∗ := G̃;
if ( |βi+1−βi|

βi+1
< tolβ ) then

break; (convergence to a β > 1)
end
Set i := i+1.

end
Step 3:
if β > 1 then

Sub-divide X0 into smaller sets;
Go back to Step 2;

else
In (3.11) fix K̂= K̂∗ and minimize γ2 such that (3.11) is satisfied for all x0 ∈X0 (using

the finding of Theorem 3.5.1).
Record γ2 and let S∗ = S and G∗ = G;

end
Step 4:
Set j = 1, γ2

j = γ2 and select jmax to be the maximum number of iterations and tolγ < 1 to be
a tolerance.

while ( ( j < jmax) do
Minimize γ2 such that (3.14) and (3.24) are satisfied for all x0 ∈X0 (using the finding of

Theorems 3.4.3 and 3.5.1).
Set γ2

j+1 = γ2 and update K̂∗ := K̂, S∗ = S, G∗ = G, S̃∗ := S̃ and G̃∗ := G̃;

if (
|γ2

j+1−γ2
j |

γ2
j+1

< tolγ ) then
break;

end
Set j := j+1.

end
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Remark 8 Note here that recursive feasibility of the proposed schemes could be ensured using the

standard shifting arguments and the assumption that the invariant terminal set defined by f̄N . In

particular, under the conditions given in [76], the optimal control sequence computed at time k can be

shifted and appended with the terminal control law u fN to yield : {u(k+1 | k), · · · ,u(k+N | k),u fN}

which remains feasible at next time step k+ 1 (see [3, 14] for further details). However, since our

proposed linearization procedure derives only sufficient (and not necessary and sufficient) conditions

further investigation in the topic needed.

3.6 Numerical Examples and Simulations

In this section the effectiveness of the proposed algorithms is illustrated by two benchmark examples

taken from the literature. The simulations in both examples are performed using MOSEK LMI/SDP

solver within the CVX package [77], in MATLAB R2019b on a computer with 2.40 GHz Intel

Xeon(R) CPU and 64.0 GB memory.

3.6.1 Example 1

The first system is a variation on a system proposed in [14, 19, 20]. It is a second order unstable

process subject to time-invariant uncertainty as well as external bounded disturbances. The system’s

dynamics are represented in the form of (3.3) with the following distribution matrices:

A=

 1 0.8

0.5 1

, Bu=

1

1

, Bw=

0.1

0.1

, Bp=

0.1 0

0 0.1

,
Dqu=Bu, Cq=A, Ĉq = 0.

The uncertainty is considered to be time-invariant of the form ∆∆∆ := {δ I2 : δ ∈R} and the disturbances

set is taken to be W := {w ∈ Rnw :−1≤ w≤ 1}. For illustration, we give the structure of the sets ∆̂∆∆



3.6. Numerical Examples and Simulations 43

and Ψ̂ for a prediction horizon N = 2, even though we will be using N = 5 in our simulations:

∆̂∆∆ = {diag(δ I2,δ
w
0 ,δ I2,δ

w
1 ) : δ ,δ w

0 ,δ
w
1 ∈ R}

Ψ̂={(S,R,G): R=S=ST =



S11 0 S13 0

0 s22 0 0

ST
13 0 S33 0

0 0 0 s44


�0,

G =−GT =



G11 0 G13 0

0 0 0 0

−GT
13 0 G33 0

0 0 0 0


},

where S11 = ST
11, S33 = ST

33, G11 =−GT
11, G33 = GT

33, S13, G13 ∈ R2×2 and s22, s44 ∈ R.

Moreover, the input and state constraints are given by−ū≤ uk≤ ū= 8,k = 0, . . . ,N−1 and−x̄≤ xk≤

x̄ = [7 7]T ,k = 0, . . . ,N, respectively (C f = [I 0 − I 0]T ,D f u = [0 1 0 −1]T , f̄k = [x̄T ū x̄T ū]T ,Ĉ f =

[I −I]T , f̄N = [x̄T x̄T ]T ,D f p = D̂ f p = 0,D f w = 0). Finally, the initial state is set to be at the boundaries

of the state constraints x0 = x̄. Given the above process description, the control objective is to regulate

the unstable system subject to uncertainties and disturbances into the origin whilst satisfying the input

and state constraints. The states and inputs are equally weighted (Cz = [I 0]T ,Ĉz = I,Dzu = [0 I]T ).

To accomplish the control objective, two robust algorithms presented in this paper are applied to the

system. The first computationally efficient RMPC algorithm, CE_RMPC#1(K̂0, K̂, υ̂), is described by

Theorem 3.4.3, where the decision variable are (K̂0, K̂, υ̂) and the initial feasible solutions (Y ∗,Ỹ ∗) are

computed offline by Algorithm 1. The second robust algorithm, CE_RMPC#2(K̂0, υ̂), is described by

Theorem 3.4.2, where K̂ is fixed to K̂∗ (computed offline by Algorithm 1) and the decision variables

are K̂0 and υ̂ . Note that for Example 1, the variable β in Algorithm 1 is greater than 1 if we take X0 to

be the entire constrained state-space (X0 := {x0 :−x̄≤ x0 ≤ x̄}). Thus X0 is divided into 25 smaller

sets X i, j
0 , with β = 1 for each of these sets, and a look-up table has been used to store (Y ∗,Ỹ ∗) for
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each subset. The subset we used are

X i, j
0 ={

 x01

x02

: xi
01≤x01≤ x̄i

01, x j
02≤x02≤ x̄ j

02}, i, j=1, . . . ,5,

where for k = 1,2,

[x1
0k, x̄

1
0k]=7[.75,1], [x2

0k, x̄
2
0k]=7[.4, .75], [x3

0k, x̄
3
0k]=7[−.4, .4],

[x4
0k, x̄

4
0k]=−7[.75, .4], [x5

0k, x̄
5
0k]=−7[1, .75].

The time to compute the initial solutions (Y ∗,Ỹ ∗) for all subsets is 94.5 seconds. Note that offline

computation time depends on the number of subsets and terminal iteration values imax and jmax. The

controller from [14] is also presented for comparison. All algorithms are simulated with prediction

horizon N=5.

As shown in Fig. 3.1, using the proposed computationally efficient robust algorithms from Theo-

rem 3.4.3 or Theorem 3.4.2 with fix K̂, robust control performance has been achieved, while both

states (x1,x2) of the unstable system are converging faster to the origin compare to the results from

[14]. Fig. 3.2 illustrates the control input computed by the robust control algorithms considered in this

example, where it can be seen that the input computed by the proposing algorithms hit the constraint

boundaries, in comparison with the input computed by the algorithm suggested in [14]. Therefore,

it can be stated that the robust algorithms presented in this paper are less conservative, even in the

case of a fix K̂, due to the novel linearization procedure (see Remark 23). The most notable out-

come using the proposed robust algorithms is that they required significantly low computation burden

compare to the robust method from the literature. In particular, as shown in Table 3.1, using the

CE_RMPC#1 (K̂0, K̂, υ̂) procedure results in the average and maximum computation cost per itera-

tion being reduced by 94% and 92%, respectively, as compared to the algorithm proposed in [14].

Implementing CE_RMPC#2 (K̂0, υ̂) results in the average and maximum computation cost per itera-

tion being reduced by 96% and 94%, respectively, in comparison to the time required by the algorithm

in [14]. The numerical values in Table 3.1 were realized using the same computer to solve the above

regulation problem and repeated 10 times for each method.
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Figure 3.1: States trajectory simulation results observed by the proposed RMPC algorithms and the
algorithm from the literature to the second order unstable system.

Table 3.1: Computation time per iteration

Horizon Length N = 5
Method Mean ± Std Deviation Maximum time
Tahir et.al (2013) [14] 23.4573 ± 2.2287 s 29.3438 s
CE RMPC #1 (K̂0, K̂, υ̂) 1.4187 ± 0.4482 s 2.5313 s
CE RMPC #2 (K̂0, υ̂) 0.9187 ± 0.2686 s 1.7656 s

3.6.2 Example 2

In this section, the benchmark problem of control tracking of a coupled spring-mass system (see for

example [14, 15]) is considered. In particular, the mechanical system consists of a two-mass-spring

system as shown in Fig. 3.3. By discretizing the continuous-time equations of the system using

Euler’s first order approximation for the derivative and with sampling time of Ts = 0.1s, the following
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Figure 3.2: Control input sequence computed by the proposed RMPC algorithms and the algorithm
from the literature considering the the model of the second order unstable system.

discrete-time state space equations are obtained [78]:



x1(k+1)

x2(k+1)

x3(k+1)

x4(k+1)


=



1 0 0.1 0

0 1 0 0.1

−0.1 K
m1

0.1 K
m1

1 0

0.1 K
m2

−0.1 K
m2

0 1





x1(k)

x2(k)

x3(k)

x4(k)



+



0

0

0.1
m1

0


u(k), y(k) = x2(k),

where m1 and m2 are the two masses and K is the spring constant. The state variables x1 and x2 are

the position (displacement) of mass 1 and 2 respectively, whereas x3 and x4 represent their respective

velocities. For the nominal system, m1 = m2 = K = 1 with the appropriate units and control force u

acting on m1.

The objective for this problem is to compute a control law u (force that would be apply to the first mass

m1), such that the output (state x2) to track a unit step whilst providing robustness against persistent

variations in the spring constant K, as well as satisfying the states and input constraints:

−1≤ u(k)≤ 1, −x̄≤ x(k)≤ x̄, x̄ = [1.5 1.5 1 1]T ,
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Figure 3.3: Configuration of coupled spring-mass system [14].

In this setup, the exact measurements of the state of the system are assumed to be available, while it is

assumed that the spring constant K is uncertain within the range Kmin ≤ K ≤ Kmax, where Kmin = 0.5

and Kmax = 10, in appropriate units. Therefore, the uncertainty in K can be modeled as structured

feedback uncertainty as presented in (3.3), by defining,

A =



1 0 0.1 0

0 1 0 0.1

−0.1Knom 0.1Knom 1 0

0.1Knom −0.1Knom 0 1


, Bu =



0

0

0.1

0


,

Bp =



0

0

−0.1

0.1


, Cq =

[
Kdev −Kdev 0 0

]
, Dqu = 0,

where δ = K−Knom
Kdev

, Knom = 1
2(Kmax +Kmin), and Kdev =

1
2(Kmax−Kmin). Due to the time invariant

structure of the uncertainty matrix ∆ = δ I, the slack variables S = R, S̃ = R̃ are full symmetric positive

definite while G and G̃ are full skew symmetric. The weighted matrices in the cost function are set as

Cz = [5I 0]T , Dzu = [0 I]T and the prediction horizon is set as N = 6.

The output response in Fig. 3.5 shows that both proposed algorithms robustly steer the system to the

reference signal. Fig. 3.5 also shows the responses of the infinite horizon methods in [15, 16] and the

finite horizon method in [14], as well as NL-RMPC(K̂0, K̂, υ̂) which is described by Theorem 3.3.2

(New Linearization RMPC with multiple LMIs) . It can be seen that our approaches converge much
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Figure 3.4: Time history of the output variable (x2) using the proposed RMPC controllers that utilized
new linearization with a single LMI to achieve step tracking. Algorithms from the literature based on
infinite and finite horizon schemes are displayed for comparison.
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Figure 3.5: Time history of the input signal (u) computed by the proposed RMPC controllers that
utilized new linearization with a single LMI to achieve step tracking. The control signal calculated by
algorithms from the literature based on infinite and finite horizon schemes is displayed for compari-
son.

faster than the two infinite horizon methods. Comparing with [14], it can be seen that even though all

algorithms have excellent tracking properties, the proposed controllers have slightly faster responses

due to the less restrictive nature in the formulation (see Remark 23). Fig. 3.5 also shows that the

control input calculated by the proposed algorithms is much faster and is closer to the upper bound.

According to the finding in figure 3.6, our method also gives a much smaller cost function compared

with the infinite horizon methods and similar cost compared with the finite horizon method in [14].

To quantify the effect of Theorem 3.4.3 compared with Theorem 3.3.2 with respect to feasibility

domain, Kmax was increased until infeasibility is observed. CE_RMPC#1 and CE_RMPC#2 can reach

a solution for values up to Kmax = 20.5, while NL-RMPC for values up to Kmax = 21. Therefore we

can conclude that the large computation time reduction using the suggested algorithms (CE_RMPC#1

and CE_RMPC#2) comes with only a small reduction in the feasibility domain. Comparing the
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Figure 3.6: Cost signal history using the proposed RMPC controllers. Algorithms from the literature
based on infinite and finite horizon schemes are displayed for comparison.

Table 3.2: Computation time per iteration for the two-mass-spring system subject to uncertainties.

Method Mean ± Std Deviation Max. time
Inf. horizon RMPC from [15] 1.0788 ± 0.3321 s 2.2813 s
Inf. horizon RMPC from [16] 1.0679 ± 0.3002 s 2.5625 s
RMPC from [14] 3.0672 ± 0.5137 s 5.3750 s
CE RMPC #1 1.0734 ± 0.2695 s 2.0156 s
CE RMPC #2 0.3502 ± 0.1044 s 0.7117 s
NL-RMPC 2.3547 ± 0.9762 s 3.7656 s

computational times in Table 3.2, it can be seen that CE_RMPC#1 has a similar computational burden

as [15, 16], and is much faster than [14] and the algorithm NL-RMPC. A significant computation

time reduction can also be observed for CE_RMPC#2. Therefore our approach combines the fast

online computational performance of the infinite horizon methods and the good performance of the

finite horizon approaches. Note that in general, a larger prediction horizon increases the computation

time, while stability is improved. Restricting the computational time to be similar to infinite horizon

methods from the literature (on average 1 sec), the prediction horizon was set to N=6 to allow a fair

comparison with respect to performance. Horizon length N = 7 gives an average computational time

t = 2.1845 sec, however, the control performance was not noticeably improved.
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3.7 Synopsis

In this chapter, two algorithms are proposed to reduce the computational complexity of state-feedback

RMPC for linear-time-invariant discrete-time systems, subject to structured uncertainty and bounded

disturbances. In particular, a new linearization approach, based on the Elimination Lemma and S-

Procedures, is developed to address the nonlinearity and nonconvexity associated with state-feedback

RMPC, with minimal conservatism whilst resulting in a substantially lower computational burden

as compared to similar methods in the literature. The approach requires initial feasible solutions to

the nonlinear matrix inequalities, which however can be obtained offline. Further reduction in the

computational complexity is achieved by a proposed algorithm that solves a single LMI for handling

all the constraints in the RMPC problem.

The effectiveness of the proposed techniques is demonstrated through numerical examples taken from

the literature. In particular, it has been shown that the proposed RMPC scheme can successfully

calculate an optimal control signal up to 96% faster than other finite horizon RMPC, while being able

to steer the system quicker to a predefined reference with minimum conservativeness compared with

other RMPC approaches.



CHAPTER 4

Robust Moving Horizon State Estimation for Uncertain Linear

Systems using Linear Matrix Inequalities

4.1 Introduction

As already mentioned in Section 1.1.2, moving horizon estimation algorithms can be solved online

and they can successfully overcome the previously mentioned conservativeness problems introduced

by offline calculations. Despite the plethora of MHE algorithms proposed in the literature, the contri-

butions when the system is uncertain are scarce. One such contribution is [40], in which the minimiza-

tion of an upper bound on a worst-case quadratic cost defined over a moving horizon window allows

one to construct a filter for uncertain linear systems. This design method is based on the solution of

min-max regularized least-squares problems [41]. However, robust least-squares problems are known

to have computational difficulties reaching a solution, since they are in general NP-hard [42]. Reduc-

tion of the excessive online computational burden can be achieved by reformulating the optimization

problem as an equivalent SDP problem using LMIs. SDP is concerned with optimization problems

51
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that have solutions over the cone of all positive semidefinite matrices. SDP is a well-established

methodology that allows the solution of a class of problems within a given accuracy in polynomial

time using interior-point methods [79].

In the present work, instead of employing an offline linear observer, the past input/output data window

is used, in a manner similar to Receding Horizon Estimation (RHE) described in [33], to compute

online (tight) bounds on the current state. The main contribution of this chapter is the generalization of

MHE from systems subject to disturbances only (investigated in [34]), to systems subject to structured

feedback uncertainty, as well as external disturbances, which is more realistic for applications. In

addition, the proposed estimation method reduces conservativeness as compared to observer based

methods by solving online an optimization problem through LMIs, while keeping the computational

burden low. Finally, in the proposed method, at every sample time hard bounds on the estimated state

are given rather than only the estimated state values, which most of the estimation schemes in the

literature compute. Very importantly, hard bounds on the estimated states can potentially be used in a

control scheme and improve significantly the robust properties of the controller.

The remainder of this chapter is organized as follows. In Section 4.2 the estimation problem descrip-

tion is presented. The proposed state estimation is explained in Section 4.3. In Section 4.4 and 4.5

the overall proposed algorithm and simulation results for an exemplary case study from the literature

involving a paper-making process are presented, respectively. Finally, conclusions are drawn in Sec-

tion 4.6. The formulation and results presented in this chapter are mainly based on the result presented

in [80].

4.2 Problem Statement

In this section, the system description including system dynamics, initial condition, disturbances and

uncertain signals, is first provided. Then the problem of moving horizon estimation for discrete-time

systems subject to bounded disturbances and structured uncertainties is presented as an optimization

problem.
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4.2.1 System Description

The following linear discrete-time system, subject to norm-bounded structured uncertainty and exter-

nal disturbances, is considered (see for example [15]):


xk+1

qk

yk

=


A Bu Bw Bp

Cq Dqu 0 0

Cy Dyu Dyw Dyp





xk

uk

wk

pk


, pk=∆kqk, (4.1)

where k = 0,1,2, . . . is the time instant, ∆k ∈ B∆∆∆ , where ∆∆∆ ⊆ Rnp×nq is a subspace that captures

the uncertainty structure. Furthermore, xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny , wk ∈ Rnw are the state, input,

output and disturbance signal, respectively, at time instant k. Here pk ∈ Rnp and qk ∈ Rnq represent

the uncertainty vectors and all other symbols in capital letters denote the appropriate distribution

matrices. Only the input uk and the noisy output yk are measured and it is assumed that (A,Cy) is

detectable and (A,Bu) is stabilizable.

Furthermore, lower and upper bounds x0 and x0 on the initial state are given a priori such that (see

also Section 4.3):

x0 ∈X0 :=
{

x ∈ Rn : x0 ≤ x≤ x0

}
. (4.2)

Finally, the unmeasured additive disturbances wk are bounded by a given nonnegative vector r so that

wk ∈W :=
{

w ∈ Rnw :−r ≤ w≤ r

}
. (4.3)

Remark 9 Note that uncertainty is allowed in all the problem data including the state and the output

signal. It is easy to verify that the state dynamics in (4.1) can be re-written in the form:

xk+1 = (A+Bp∆kCq)xk +(Bu +Bp∆kDqu)uk +Bwwk, ∆k ∈B∆∆∆.

Remark 10 For the sake of clarity of exposition, both the state-disturbance (ηk) and output-disturbance

(νk) are combined into a single vector in (4.1), namely wk := [ηT
k νT

k ]
T .
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4.2.2 Estimation Problem

The objective of the proposed RMHE algorithm is to compute tight upper/lower bounds on the states

using a moving and fixed-size window of past input and output data. The information vectors for the

inputs and output are defined as follows:

u = [uT
k−Ne

, · · · , uT
k−1]

T ,

y = [yT
k−Ne

, · · · , yT
k ]

T ,

(4.4)

where Ne > 0 denotes a given estimation horizon. The information vectors are updated every sample

time by removing the oldest input/output data while the new output measurement and the latest control

input are added. Then the estimation problem can be transform into an optimization problem as

follows:

Problem 4.2.1 At the time instant k, for given information vectors (u,y) and pre-computed state

bounds values (xk−Ne
, x̄k−Ne), it is required to find lower and upper bound (xk, xk) on the current

state that solve the min/max and max/min problems

max
xk

min
wk∈Wk, ∆k∈B∆∆∆

eT
i xk, (4.5)

min
x̄k

max
wk∈Wk, ∆k∈B∆∆∆

eT
i xk. (4.6)

such that the dynamics in (4.1) are satisfied.

Remark 11 Note here that decision variables in the above problem are the lower and upper bound

of the current state and information vectors (u,y) and initial state bounds (xk−Ne
, x̄k−Ne) are known

parameters. For the lower bounds calculation minimum disturbances and uncertainty are consid-

ered and for the upper bound calculations the maximum bounded disturbances and uncertainty are

considered.

Such a strategy that solves the above estimation problem through LMI optimization is developed in

this chapter as described in more detail in Section 4.3.
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4.3 Estimation Problem Formulation using LMIs

This section formulates an optimization problem which uses the past Ne inputs and outputs (as well

as the current output yk) to compute upper and lower state bounds (xk and xk), as briefly presented in

Section 4.2.2.

We start by iterating the process dynamics in (4.1) to obtain:


xk

q

y

=


A Bu Bw Bp

Cq Dqu Dqw Dqp

Cy Dyu Dyw Dyp





xk−Ne

u

w

p


, p =∆∆∆q, (4.7)

where the input/output data vectors u and y (defined in (4.4)) are known, and w = [wT
k−Ne
· · · wT

k ]
T ,

q = [qT
k−Ne
· · · qT

k−1]
T , p = [pT

k−Ne
· · · pT

k−1]
T and ∆∆∆ = diag(∆k−Ne, · · · ,∆k−1). All the bold matrices in

(4.7) are the stacked coefficient matrices, which can be computed through iteration over the estimation

horizon Ne using (4.1).

By using the definition of q in (4.7), the vector p (:=∆∆∆q) can be rearranged as:

p =∆∆∆(I−Dqp∆∆∆)−1(Cqxk−Ne +Dquu+Dqww). (4.8)

Then, using (4.8) to eliminate p from (4.7) gives:

 xk

y

=

 Ad +Bp∆Cd Bu +Bp∆Dqu

Cyd +Dyp∆Cd Dyu +Dyp∆Dqu


 d

u

, (4.9)

where ∆ :=∆∆∆(I−Dqp∆∆∆)−1, Ad := [A Bw], Cyd := [Cy Dyw], Cd := [Cq Dqw] and d := [xT
k−Ne

wT ]T

such that xk−Ne

−r

=: d ≤ d ≤ d :=

xk−Ne

r

 , (4.10)

where r = 1⊗ r and where 1 represents the Ne–dimensional vector of ones.
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By using (4.9) and (4.10), upper- and lower-bounds on xk are derived in the following theorem.

Theorem 4.3.1 Let all variables be as defined above. Then, an upper-bound on the i-th element of

xk, i.e. eT
i xk, can be computed by minimizing eT

i xk subject to the existence of (S̄i, Ḡi) ∈ Ψ̂, µi ∈RNeny ,

0≺ Di
x ∈ D, ∀i ∈Nn := {1, · · · ,n} and the LMI



Di
x Π12 CT

d GT
i CT

d Si

? Π22 µT
i Dyp− 1

2eT
i Bp +(Dquu)T Gi (Dquu)T Si

? ? Si +DT
qpGT

i +GiDqp DT
qpSi

? ? ? Si


�0, (4.11)

where Π12=−1
2Di

x(d +d)− 1
2AT

d ei +CT
ydµi and Π22=eT

i xk +d
T

Di
xd− eT

i Buu−2µT
i yu .

Similarly, a lower-bound on eT
i xk can be computed by maximizing eT

i xk subject to the existence of

(Si,Gi) ∈ Ψ̂, µi ∈ RNeny , 0� Di
x ∈ D, ∀i ∈Nn := {1, · · · ,n} and the LMI



Di
x Λ12 CT

d GT
i CT

d Si

? Λ22 µT
i Dyp− 1

2eT
i Bp +(Dquu)T Gi (Dquu)T Si

? ? Si +DT
qpGT

i +GiDqp DT
qpSi

? ? ? Si


�0, (4.12)

where Λ12=−1
2Di

x(d +d)+ 1
2AT

d ei +CT
ydµi and Λ22=−eT

i xk +d
T

Di
xd + eT

i Buu−2µT
i yu, and where

yu = y−Dyuu.

Proof: In order to take account of the available past input/output data (u,y) in the proposed

formulation, the following equality constraint is considered, based on the expression for y in (4.9):

y∆∆∆−C∆∆∆
d d = 0, (4.13)

where y∆∆∆ := y− (Dyu +Dyp∆Dqu)u and C∆∆∆
d := (Cyd +Dyp∆Cd). Now by considering xk as an upper-
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bound on xk in (4.9), it is required for all i ∈Nn:

eT
i xk− eT

i xk = eT
i (A

∆∆∆
d d +B∆∆∆

uu)− eT
i xk ≤ 0, (4.14)

where A∆∆∆
d := Ad +Bp∆Cd and B∆∆∆

u = Bu +Bp∆Dqu.

By incorporating (4.13), it can then be verified that for any diagonal Di
x � 0 and µi ∈ RNeny

eT
i xk−eT

i xk =− (d−d)T Di
x(d−d)

−
(

µ
T
i (y

∆∆∆−C∆∆∆
d d)+(y∆∆∆−C∆∆∆

d d)T
µi

)
− d̂T L i(D

i
x,∆∆∆,µi)d̂, ∀i ∈Nn,

(4.15)

where d̂ := [dT 1]T and L i(D
i
x,∆∆∆,µi) is defined as:

Di
x − 1

2Di
x(d +d)− 1

2(A
∆∆∆
d )

T ei +(C∆∆∆
d )

T µi

? eT
i xk− eT

i B∆∆∆
uu+d

T
Di

xd−2µT
i y∆∆∆

 (4.16)

By using the constraints (4.10) and (4.13) in (4.15), together with the S-procedure (Farkas’ Theorem)

[67], it follows that L i(D
i
x,∆∆∆,µi) � 0, ∀i ∈ Nn, is a sufficient condition for (4.14). Applying a

Schur complement argument followed by a re-arrangement, shows that, for all i ∈Nn, this sufficient

condition can be written as:

Ri+Fi∆∆∆(I−H∆∆∆)−1E+ET (I−∆∆∆
T HT )−1

∆∆∆
TFT

i �0, (4.17)

where

 Ri Fi

E H

:=


Di

x −1
2Di

x(d+d)− 1
2AT

d ei +CT
ydµi 0

? eT
i xk+d

T
Di

xd−eT
i Buu−2µT

i yu µiDT
yp− 1

2eT
i Bp

Cd Dquu DT
qp

·

Using Lemma 3.1.1 yields the LMI (4.11) as a sufficient condition for (4.17) for all ∆∆∆ . A similar

procedure can be used to derive LMI (4.12) for the lower-bound i.e. −eT
i xk ≤−eT

i xk, ∀i ∈Nn.
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Remark 12 The estimated value of the state x̂k is selected to be the mid-point of the upper and lower

bounds of the state computed by the LMIs (4.11) and (4.12), i.e x̂k =
1
2(x̄k +xk). Note that, at the time

k = 0 the initial estimated value x̂0 is arbitrarily selected to be the mid-point of the known a priori

initial bounds (x0,x0).

Remark 13 Note that the LMIs (4.11) and (4.12) always have feasible solutions since they are used

to evaluate upper bounds on eT
i xk and lower bounds on eT

i x̄k. The main issue is the tightness of these

bounds. The quality of the bounds is illustrated in the example below.

Remark 14 For systems with only disturbances (i.e. no uncertainty), tight lower/upper bounds on

xk can easily be computed through a simple Linear Program (LP) given by minimizing/maximizing

eT
i (Add + B̃uũ) subject to the constraints d ≤ d ≤ d and C̃ydd = ỹ− D̃yuũ (see also Section 5.4.2).

Remark 15 Note that whilst a large value of Ne means a more accurate computation of the state-

bounds (due to greater amount of data being considered in the moving window), it can be computa-

tionally expensive (particularly in the presence of model-uncertainty which lead to an LMI problem

instead of an LP) since the estimation problem is solved online at every time step. Hence, the choice of

Ne is problem-dependent and should be made in a way so as to find a balance between the conflicting

requirements of computational complexity versus state-bound accuracy.
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4.4 Overall RMHE Algorithm

4.4.1 Implementation Strategy

The proposed estimation scheme computes online hard upper and lower bounds on the state xk based

on past input/output data. However, at sample time k=0 there is no past data to compute the state

bounds and the state estimation value. Thus, at the time point k=0 the a priori bounds on x0 are used

and x̂0 is computed (see Remark 12). Subsequently, while more data is collected from the input/output

at each iteration, the estimation horizon Ñe is incremented until it reaches the pre-specified estimation

horizon Ne. During this period the current state bounds xk, x̄k and the estimated state x̂k are computed

by considering all available past data. By the time that Ñe is equal to Ne the bounds and the estimated

state are calculated by the moving horizon framework presented in Section 4.3. The overall approach

can therefore be outlined as follows.

Algorithm 2: Robust Moving Horizon Estimation scheme
Result: xk−Ne

, x̄k−Ne

Step 1:
Initially at k = 0, given a priori bounds on x0 compute the estimated state x̂0. Then apply the

first control action u0 onto the system.
Step 2:
Update the vectors u, y with the newly available input/output data from the current and
previous step (uk−1,yk).

Step 3:
if Ñe < Ne then

Ñe=Ñe+1
else

Ñe = Ne
end
Step 4:
Using vectors u, y and state bounds xk−Ne

, x̄k−Ne solve the LMI problem in Theorem 4.3.1
multiple times to compute each element of state bounds (2n times) and estimated state x̂k of
the current state xk.

Step 5:
Return to step (2).

Remark 16 Note here that if the initial states bounds xk−Ne
, x̄k−Ne satisfy the inequality xk−Ne

≤xk−Ne ,

xk−Ne ≤ x̄k−Ne , then using the Algorithm 2 the actual state value is always between the estimated

lower/upper bounds xk ≤ xk ≤ x̄k.
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4.5 Numerical Example

The benchmark problem of the control of a paper-making process (see for example [20, 81, 82]) is

considered in this subsection to investigate the performance of the proposed estimation scheme. The

system, shown in Fig. 4.1, consists of process states x = [H1 H2 N1 N2]
T , where H1 and N1 denote

liquid level and composition of the feed tank, respectively, and H2 and N2 denote liquid level and

composition of the headbox, respectively. The control input vector is given by u = [Gp Gw]
T , where

Gp is the flow rate of stock entering the feed tank and Gw is the recycled white water flow rate. All

variables are normalized (i.e. they are zero at steady state) and only noisy measurements of H2 and

N2 are available. The consistency and composition of white water is a source of uncertainty within

the dynamics, particularly in the state N1 and input Gw. Moreover, disturbance ζk affects all four

states and νk denotes the output measurement noise (see Remark 10 to describe the system as shown

in (4.1)).

Figure 4.1: Schematic of Paper Machine Headbox [82].

The discrete-time dynamics (including uncertainty description), sampled at 2 minutes (see [81]), are

given by (4.1) with:

A=



0.0211 0 0 0

0.1062 0.4266 0 0

0 0 0.2837 0

0.1012 −0.6688 0.2893 0.4266


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Bu=



0.6462 0.6462

0.2800 0.2800

1.5237 −0.7391

0.9929 0.1507


, Bw=



1 0

1 0

1 0

1 0


, Bp=



0

0

1

0


,

Cq =

[
0 0 0.2 0

]
, Dqu =

[
0 0.2

]

Cy =

0 1 0 0

0 0 0 1

 , Dyw =

0 1

0 1


The process disturbance and output measurement noise are respectively characterized by the sets:

ζk ∈ Z :=
{

ζ ∈ R :−0.1≤ ζ ≤ 0.1

}
, νk ∈V :=

{
ν ∈ R :−0.05≤ ν ≤ 0.05

}

Finally, the estimation horizon for the above set-up is set at Ne = 15 and the initial state bounds are

x0 = [−0.1,−1.5,0,−1.5]T and x̄0 = [0.1,1.5,1,1.5]T . For an arbitrary control input sequence u (see

for example 4.2), the objective of the estimation scheme is to compute tight bounds on the states of

the system, while the estimation error (errori = xi− x̂i) between the actual states and the estimated

states is computed.
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Figure 4.2: Pre-specified control input applied in the paper making process to access the proposed
robust estimation algorithm.

Figures 4.3 to 4.5 show the simulation results. For the sake of comparison with previous works, the

classic Luenberger observer and Receding Horizon Estimation (RHE) method proposed by Alessan-

dri in [34], are considered. The control input signal applied to the paper making machine for all

estimation algorithms under consideration in this case study is presented in Fig. 4.2. The value of ∆k
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Figure 4.3: The observed states x2 and x4 for two different estimation schemes (Luenberger observer,
RHE), as well as the actual states evolution with their respective computed upper and lower bounds
by the proposed RMHE.

is set equal to 0.5 for all k. Figure 4.3 shows the state bounds for the measured states (x2 and x4), while

Fig. 4.4 illustrates the state bounds for the unmeasured states (x1 and x3). For comparison purposes, in

these figures the estimated state by utilizing Luenberger observer (dashed light blue) and RHE (dashed

black), as well as the actual states (solid blue lines) of the process (not measurable in real time) are

also included in these plots. It is noted that the computed bounds almost touch the actual states at

some points, which demonstrates their tightness and the effectiveness of the new estimation scheme.

It is also important to observe that for both algorithms considered from the literature, sometimes the

estimated states are outside the hard bounds provided by the proposed MHE algorithm, which again

demonstrates the superiority of the proposed scheme. Figures 4.5 and 4.6 show the state estimation

error for the measured and unmeasured states, respectively, where it can be seen that the estimation

error using the proposed RMHE converges faster and into a smaller set around zero as compared to

the other methods under consideration from the literature. All the simulations are performed using

MOSEK LMI/SDP solver within CVX pakage in MATLAB R2017b on a computer with 2.40GHz In-

tel Xeon(R) CPU and 64.0GB memory. The average online computation time at each sampling time

(2 minutes) for the MHE estimation problem at the presented example is 0.8 seconds. Note that the
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Figure 4.4: The unobserved states x1 and x3 for two different estimation schemes (Luenberger ob-
server, RHE), as well as the actual states evolution with their respective computed upper and lower
bounds by the proposed RMHE.
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Figure 4.5: Estimation error for the observed states x2 and x4 using the proposed RMHE method,
Luenberger observer and Receding Horizon Estimation from the literature.
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Figure 4.6: Estimation error for the unobserved states x1 and x3 using the proposed RMHE method,
Luenberger observer and Receding Horizon Estimation.

estimation horizon is directly related with the estimation error and computational burden. Although

selecting a short estimation horizon results in less online computation time, the estimation error is

larger due to the lack of information considered to the estimation problem. On the other hand, con-

tinuing to increase the estimation horizon does not improve further the estimation error due to data

overfeeding. Therefore, choosing a suitable value of estimation horizon depends on the sampling time

of the system (maximum available computation time) and the estimation error improvement that you

get by increasing the estimation horizon. In the presented example the maximum estimation horizon

is Ne = 45, however it is chosen to be Ne = 15 since there is no improvement in the estimation error

above this value.
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4.6 Synopsis

In this chapter an investigation of the estimation problem based on past input/output data of linear

discrete-time systems subject to model-uncertainties and bounded disturbances is presented. An on-

line algorithm that computes estimates of the state alongside with tight bounds is suggested, while

conservativeness is reduced and computation complexity is maintained low. Importantly, the pro-

posed robust moving horizon estimation algorithm is formulated in a convex form and optimality is

guaranteed at every sample time by solving an LMIs optimization problem. Finally, the effectiveness

and superior performance of the proposed MHE algorithm as compared to state-of-the-art algorithms

in the literature is demonstrated by an industrial process example.



CHAPTER 5

Output-feedback Robust MPC using Input/Output Data

5.1 Introduction

In this chapter, the output-feedback RMPC constrained control problem for linear discrete-time sys-

tems subject to norm-bounded model uncertainties, additive disturbances and noisy measurement is

considered. The developments on this chapter is an extension to the results of a state-feedback RMPC

for uncertain systems presented in Chapter 3, where the states of the system were assumed to be

measurable and available. Using the findings of RMHE presented in Chapter 4, instead of employ-

ing a commonly used offline observer, we use the past input/output data window, to compute (tight)

bounds on the current state which are then used within the output feedback control algorithm, rather

than using estimation error bounds. Furthermore, to reduce conservatism, the feedback gain (K) and

control perturbation (v) are both explicitly considered as decision variables in the online optimization.

Similar to the state feedback RMPC approach demonstrated in Chapter 3, the nonlinearity associated

with such a formulation is resolved by using the Elimination Lemma and the S-procedure to develop

an algorithm based on LMI optimizations.

66
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The contributions of this chapter can be summarized as follows. A new OF-RMPC scheme, based

on convex LMI optimization is proposed to generalize the OF-RMPC problem to systems subject to

structured feedback uncertainty, as well as external disturbances (see Section 5.2). In particular, to

reduce conservatism, the feedback gain (K) and control perturbation (υ) are explicitly considered as

decision variables within the OF-RMPC optimization problem, whilst nonlinearities are circumvented

by using the Elimination Lemma and the S-procedure. Importantly, the proposed linearization method

substantially improves performance due to its less restrictive nature without reducing the feasibility

region of the problem (see Remark 23). To reduce the online computation time of the controller,

analogous to the single LMI approach presented in Section 3.4, an extension is proposed to derive

a single LMI-based sufficient condition for all the problem constraints (instead of solving multiple

LMIs for each constraint within the problem). This in turn helps to improve the scalability of the

proposed algorithm. Moreover, instead of employing an offline observer to directly estimate the states

of the system, past input/output data window is considered to compute (tight) bounds on the current

state which are then used within the output feedback control algorithm. Finally, an initialization

strategy, computed offline, is proposed to guarantee feasibility for the online OF-RMPC problem, see

Section 5.3.

This chapter is organized as follows. Section 5.2 provides a description of the system and formulates

the output-feedback RMPC problem subject to uncertainties/disturbances. A feasibility analysis is

discussed in Section 5.3 where an offline policy to guarantee recursive feasibility is provided. In

Section 5.4, a summary of the overall algorithm is proposed and numerical examples to highlight

the effectiveness of the proposed OF-RMPC scheme are presented. Finally, in Section 5.5, some

concluding thoughts, as well as potential future work directions, are presented.
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5.2 Output-feedback RMPC Problem

In this section, we first provide a description of the system including control dynamics, constraints

and cost function. Then, we formulate the output-feedback RMPC problem. Note here that the formu-

lation procedure followed for the output-feedback case mirrors the state-feedback case in Chapter 3.

5.2.1 System Description

As before, we consider the following linear discrete-time system subject to norm-bounded uncertainty

and additive disturbances. The main difference from the system considered in 3.3 is that output

measurements affected by sensor noise are now available.



xk+1

qk

yk

fk

zk


=

n nu np nw

n

nq

ny

n f

nz



A Bu Bp Bw

Cq Dqu 0 0

Cy Dyu Dyp Dyw

C f D f u D f p D f w

Cz Dzu Dzp Dzw





xk

uk

pk

wk


, pk=∆kqk,


qN

fN

zN

=


Ĉq 0

Ĉ f D̂ f p

Ĉz D̂zp


xN

pN

, pN = ∆NqN ,

(5.1)

with xk ∈Rn, uk ∈Rnu , yk ∈Rny , wk ∈Rnw , fk ∈Rn f , zk ∈Rnz are the state, input, output, disturbance,

constrained signal, and cost signal, respectively, at prediction step k, where k∈N := {0,1, · · · ,N−1}

and N denotes the control horizon. Note that the description includes terminal cost and state con-

straints to ensure closed-loop stability [4]. The symbols in capital letters denote coefficient matrices

of the system, with the dimensions indicated for ease of reference. Furthermore, ∆k ∈B∆∆∆ where

∆∆∆⊆Rnp×nq is a subspace that captures the uncertainty structure. Here pk ∈ Rnp and qk ∈ Rnq repre-

sent the uncertainty vectors and all other symbols denote the appropriate distribution matrices. Only

the noisy output yk is measured and we assume that the pair (A, Cy) is detectable and (A, Bu) stabiliz-
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able. Moreover, it is assumed that bounds on the initial state are given a priori such that:

x0 ∈X0 :=
{

x ∈ Rn : x0 ≤ x≤ x0

}
. (5.2)

Remark 17 Alternatively, initial state bounds (x0,x0), can be computed using inital sensor measure-

ment y0 through equation 5.1, considering the maximum output-disturbance/feedback uncertainty.

Finally, the (unmeasured) additive disturbances belong to the bounded set:

wk ∈W :=
{

w ∈ Rnw :−r ≤ w≤ r

}
, (5.3)

where 0< r ∈Rnw is a predefined vector that captures the maximum (state/output) disturbance values.

The objective of the online optimization problem is to find a feedback law uk, for all k ∈N , such

that the future constrained outputs satisfy fk ≤ f̄k, fN ≤ f̄N for all wk ∈W and ∆ ∈B∆∆∆ , and the cost

function

J = max
wk∈Wk, ∆∈B∆∆∆

N

∑
k=0

(zk− zk)
T (zk− zk) (5.4)

is minimized.

Similar to Chapter 3 the vector z̄k ∈ Rnz is assumed to be known and defines the reference trajectory.

The constraint and terminal constraint signals are defined by f̄k and f̄N , respectively, and are assumed

to be known. They are chosen to satisfy polytopic constraints on the input and state signals, and

terminal state signals, respectively. The only assumption that is imposed here is that the terminal

constraints defined by f̄N are within a polytopic invariant set [72]. This is used to derive conditions

for recursive feasibility on the proposed control scheme (see Remark 27).
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Remark 18 Note that we allow uncertainty in all the problem data including the constraints and the

cost signal. It is easy to verify that the dynamics in (5.1) can be rewritten in the form:



xk+1

yk

fk

zk


=



A+Bp∆kCq Bu+Bp∆kDqu Bw

Cy +Dyp∆kCq Dyu +Dyp∆kDqu Dyw

C f +D f p∆kCq D f u+D f p∆kDqu D f w

Cz+Dzp∆kCq Dzu+Dzp∆kDqu Dzw




xk

uk

wk


 fN

zN

=
 Ĉ f +D̂ f p∆NĈq

Ĉz+D̂zp∆NĈq

xN .

Remark 19 For clarity of exposition, we have combined both the state-disturbance (ηk) and output-

disturbance (νk) into a single vector in (5.1), namely wk := [ηT
k νT

k ]
T .

5.2.2 Algebraic formulation

Following the standard predictive control formulation the stacked vectors are defined as:

x =


x1

...

xN

∈ RNn, u =


u0

...

uN−1

∈ RNu ,

ξξξ =


ξ1

...

ξN

∈ RNn
ξ , ζζζ =


ζ0

...

ζN

∈ RNζ ,

where ξξξ stands for y, w, p, q and ζζζ stands for f, f̄, z, z̄, and where the dimensions of the stack

matrices are Nn = Nn, Nu = Nnu, Nξ = Nnξ and Nζ = (N +1)nζ . Then the dynamic system over the
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horizon N can be written as:



x

q

y

f

z


=

n Nu Np Nw

Nn

Nq

Ny

N f

Nz



A Bu Bp Bw

Cq Dqu Dqp Dqw

Cy Dyu Dyp Dyw

C f D f u D f p D f w

Cz Dzu Dzp Dzw





x0

u

p

w


, p = ∆̂q, (5.5)

with ∆̂ ∈B∆̂̂∆̂∆⊂ RNp×Nq where,

∆̂̂∆̂∆={diag(∆0,∆1, . . . ,∆N):∆k∈∆∆∆},

and where the stacked matrices in (5.5) (shown in bold) have the indicated dimensions and are readily

obtained from iterating the dynamics in (5.1).

By defining a vector [xT
0 wT ]T = d ∈ RNd such that

 x0

−1⊗ r

=: d ≤ d ≤ d :=

 x0

1⊗ r

 ,
where 1 represents a vector of ones and ⊗ is the Kronecker Tensor Product, equation (5.5) can be

written as:



q

y

f

z


=

Nd Nu Np

Nq

Ny

N f

Nz



Dqd Dqu Dqp

Dyd Dyu Dyp

D f d D f u D f p

Dzd Dzu Dzp




d

u

p


, p = ∆̂q, (5.6)

with Dgd := [Cg Dgw], where g stands for q, y, f and z above. Using the information of the upper

and lower bounds of the initial states (x0,x0) and the bounds of disturbances, following simple vector
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manipulations, we can express the vector d as a norm-bounded uncertain signal:

d = ∆
d d̂ +do (5.7)

where ∆d := diag(∆x,∆w) with ||∆d||≤ 1, d̂ := [(1
2(x0−x0)

T , 1T ⊗ rT ]T , and do := [1
2(x0 + x0)

T , 0]T .

∆x represents the initial uncertainty of the system due to model mismatch and ∆w is the uncertainty

introduced by reparameterizing the disturbances into uncertainties. Note that by definition ||∆x||≤ 1

and ||∆w||≤ 1, therefore it is verified that ||∆d||≤ 1.

5.2.3 Output-feedback RMPC

For the proposed output-feedback RMPC scheme the following form of a control law is considered:

u = Ky+v (5.8)

where K is the output-feedback control gain and v ∈ V ⊂ RNu is the control perturbation. To ensure

causality (i.e. ui depends only on y j, j = 0, . . . , i), we impose that K ∈K ⊂ RNu×Nn , where K is the

set of Nu×Nny lower block triangular matrices with nu×ny blocks. Substituting the equation for y in

(5.6) into (5.8) yields the following expression for u:

u = K̂Dydd + K̂Dypp+ v̂ (5.9)

where

[K̂ v̂ ] := (I−KDyu)
−1[K v].

Note that u is affine in the new variables (K̂, v̂) and that the original control variables (K,v) can easily

be recovered from (K̂, v̂) as follows:

[K v ] := (I + K̂Dyu)
−1[K̂ v̂ ]. (5.10)
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Remark 20 Note that an alternative way to formulate the RMPC problem is to consider state-

feedback control law of the form of u = K0x̂0+Kx+v (see Chapter 3), where x̂0 is the state estimated

value computed using the state bounds x̂0 = 1
2(x0 + x0). However, by utilizing the same estimation

scheme the two control options (state-feedback, output-feedback) have similar performance in the

overall control scheme. The state-feedback option could potentially add conservativeness to the prob-

lem since it simply considers the state as a midpoint of the bounds without using any information from

the output measurements.
The aim of the rest of this section is to obtain a representation of vectors y, f and z in terms of the

(new) decision variables K̂ and v̂. To this end, by using the control structure in (5.9), we can eliminate

u from (5.6) to yield



y

q

f

z−z̄


=



(I+DyuK̂)Dyp (I+DyuK̂)Dyd Dyuv̂

Dqp+DquK̂Dyp Dqd+DquK̂Dyd Dquv̂

D f p+D f uK̂Dyp D f d+D f uK̂Dyd D f uv̂

Dzp+DzuK̂Dyp Dzd+DzuK̂Dyd Dzuv̂−z̄




p

d

1



:=



DK̂
yp DK̂

yd Dv̂
y

DK̂
qp DK̂

qd Dv̂
q

DK̂
f p DK̂

f d Dv̂
f

DK̂
zp DK̂

zd Dv̂
z




p

d

1



:=



DK̂
yp̂ Dv̂

y

DK̂
qp̂ Dv̂

q

DK̂
f p̂ Dv̂

f

DK̂
zp̂ Dv̂

z


 p̂

1



(5.11)

with p̂ := [pT , dT ]T such that

p̂ = ∆̂q̂+qo, (5.12)

were qo := [0, dT
o ]

T and

q̂ :=

q

d̂

=

DK̂
qp DK̂

qd

0 0


︸ ︷︷ ︸

DK̂
q̂p̂

p̂+

Dv̂
q

d̂


︸ ︷︷ ︸

Dv̂
q̂

(5.13)
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Using (5.7), the new structured subspace ∆̂ is defined as:

∆̂={diag(∆0,∆
d
0, . . . ,∆N−1,∆

d
N−1,∆N):∆k∈∆∆∆,∆d

k ∈∆∆∆
d}.

For convenience, we also define

DK̂
q̂p̂ = D̂q +Dq̂uK̂Ĉy, (5.14)

DK̂
f p̂ = D̂ f +D f uK̂Ĉy, (5.15)

DK̂
zp̂ = D̂z +DzuK̂Ĉy, (5.16)

where D̂ f := [D f p D f d], Ĉy := [Dyp Dyd], D̂z := [Dzp Dzd] and

D̂q :=

Dqp Dqd

0 0

 , Dq̂u :=

Dqu

0

 .
Inserting q̂ from (5.13) into (5.12) and simplifying yields:

p̂ = (I− ∆̂DK̂
q̂p̂)
−1

∆̂(Dv̂
q̂ +DK̂

q̂p̂qo)+qo. (5.17)

Then, using (5.17) to eliminate p̂ from (5.11) gives


y

f

z−z̄

=


DK̂
yp̂∆̂(I−DK̂

q̂p̂∆̂)−1(Dv̂
q̂ +DK̂

q̂p̂qo)+DK̂
yp̂qo +Dv̂

y

DK̂
f p̂∆̂(I−DK̂

q̂p̂∆̂)−1(Dv̂
q̂ +DK̂

q̂p̂qo)+DK̂
f p̂qo +Dv̂

f

DK̂
zp̂∆̂(I−DK̂

q̂p̂∆̂)−1(Dv̂
q̂ +DK̂

q̂p̂qo)+DK̂
zp̂qo +Dv̂

z

 (5.18)

Now define

v̄ := v̂+ K̂Dyddo (5.19)

and let α denote y, f , z. Then, it can be verified that

DK̂
α p̂qo +Dv̂

α = Dαddo +Dαuv̄− ᾱ := Dv̄
α (5.20)
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where the ᾱ term in (5.20) is only included in the definition for α = z, and denotes the reference

trajectory z̄ which is given. Furthermore, we define

Dv̂
q̂ +DK̂

q̂p̂qo =

Dqddo +Dquv̄

d̂

 := Dv̄
q̂ (5.21)

Finally, using the redefinitions in (5.20) and (5.21), we can re-write (5.18) as


y

f

z− z̄

=


DK̂
yp̂∆̂(I−DK̂

q̂p̂∆̂)−1Dv̄
q̂ +Dv̄

y

DK̂
f p̂∆̂(I−DK̂

q̂p̂∆̂)−1Dv̄
q̂ +Dv̄

f

DK̂
zp̂∆̂(I−DK̂

q̂p̂∆̂)−1Dv̄
q̂ +Dv̄

z

 :=


DK̂,v̄,∆̂

y

DK̂,v̄,∆̂
f

DK̂,v̄,∆̂
z

 (5.22)

5.2.4 Sufficient conditions for the constraints and cost

In this section, we derive sufficient conditions for the satisfaction of the constraints as well as an

upper bound on the cost function. For convenience, we write f = F (K̂, v̄, ∆̂) and (z− z̄)T (z− z̄) =

Z (K̂, v̄, ∆̂) to emphasize the dependence of the constraints and the cost function on the variables.

Using the notions that are presented above, the OF-RMPC problem can be posed as a min-max prob-

lem [9], where the objective is to find a feasible couple (K̂, v̄) that achieve the minimum,

J = min
(K̂,v̄)∈U

max
∆̂∈B∆∆∆

Z (K̂, v̄, ∆̂), (5.23)

where the set U is defined to be the set of all feasible control variables (K̂, v̄) such that all the problem

constraints are satisfied:

U ={(K̂, v̄) : eT
i F (K̂, v̄, ∆̂)≤ eT

i f̄,∀i ∈N f ,∀∆̂}. (5.24)

The following theorem uses Lemma 3.1.1 to derive sufficient conditions for (K̂, v̄)∈U (necessary

and sufficient in the case of unstructured uncertainties, see Remark 21) and an upper bound, call it γ2,

on the cost function in (5.23).
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Theorem 5.2.1 Let all variables be as defined above. Then, J(K̂, v̄, ∆̂) ≤ γ2 and (K̂, v̄) ∈ U for

all ∆̂∈B∆̂∆∆, if there exist solutions (S,R,G),(Si,Ri,Gi) ∈ Ψ̂, ∀i ∈N f := {1, · · · ,(N + 1)n f }, to the

following matrix inequalities

T1 +H (T2K̂ĈyT3)� 0, (5.25)

and

T i
1 +H (T i

2K̂ĈyT i
3)� 0, i = 1, . . . ,N f (5.26)

where,

T1 T2

T3 0

=

1 Nz Nq Np Nu

1

Nz

Nq

Np

Np



γ2 (D̂v̄
z)

T (Dv̄
q̂)

T 0 0

∗ I D̂zGT D̂zS Dzu

∗ ∗ R+H
(
D̂qGT) D̂qS Dq̂u

∗ ∗ ∗ S 0

0 0 GT S 0


,

T i
1 T i

2

T i
3 0

=
1 Nq Np Nu

1

Nq

Np

Np



eT
i ( f−Dv̄

f ) (Dv̄
q̂)

T− 1
2eT

i D̂ f GT
i −1

2eT
i D̂ f Si −

eT
i
2 D f u

? Ri+H
(
D̂qGT

i
)

D̂qSi Dq̂u

∗ ∗ Si 0

0 GT
i Si 0



where (K̂, v̄) ∈ (K ,υ) and (S,R,G), (Si,Ri,Gi) ∈ Ψ̂,i∈N f := {1, . . . ,N f }, are slack variables with

Ψ̂ defined in (3.1).
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Proof: The constraints in (5.24) can be written as

eT
i f̄− eT

i f =eT
i f̄− eT

i DK̂
f p̂∆̂(I−DK̂

q̂p̂∆̂)−1Dv̄
q̂− eT

i Dv̄
f ≥ 0

∀i ∈N f , ∀∆̂∈B∆̂∆∆.

(5.27)

A re-arrangement verifies that (5.27) can be written in the form:

Hi11+H
(
Hi12∆(I−H22∆̂)−1H21

)
�0, ∀i ∈N f , ∀∆̂∈B∆̂∆∆ (5.28)

where  Hi11 Hi12

H21 H22

 :=

 eT
i (f̄−Dv̂

f ) −
1
2eT

i DK̂
f p̂

Dv̄
q̂ DK̂

q̂p̂

·
Using Lemma 3.1.1 on (5.28) yields the matrix inequality (5.26).

Next, we consider the cost function. Let γ2 be an upper bound on the cost such that

Z (K̂, v̄, ∆̂) := (z− z̄)T (z− z̄)≤ γ
2. (5.29)

By taking the Schur complement argument, the inequality (5.29) can be written as

γ2 (z− z̄)T

? I

� 0 (5.30)

Using the definitions in (5.22), it is easy to verify that (5.30) can be re-arranged into the form

H11+H
(
H21∆(I−H22∆̂)−1H21

)
, (5.31)

 H11 H12

H21 H22

 :=


γ2 (Dv̄

z)
T 0

Dv̄
z I DK̂

zp̂

Dv̄
q̂ 0 DK̂

q̂p̂

·



78 Chapter 5.

Finally, an application of Lemma 3.1.1 on (5.31) yields (5.25).

It follows that the output-feedback RMPC problem can be summarized as:

min{γ2 :(K̂, v̄)∈(K ,υ), ((5.25),(5.26) are satisfied

(S,R,G),(Si,Ri,Gi)∈Ψ̂, i∈N f }
(5.32)

By considering the definitions (5.14)-(5.16), it can be verified that problem (5.32) is highly nonlinear

and non-convex in K̂ due to terms of the form DφuK̂ĈyΦ, where low case φ stands for q̂, f and z

and capital Φ stands for S, Si, G, Gi, i ∈N f . Here, note that optimization problem stated in (5.32)

becomes convex for a fixed K. Output-feedback RMPC schemes with a fixed K have been proposed

in the literature, see e.g. [30], [45] and the references therein. However, this introduces a degree of

conservatism depending on the offline choice of K. To remedy this, we now use Lemma 3.3.1 to

convexify problem (5.32) at the expense of only minor conservatism within the formulation.

Remark 21 Note that there is no gap in Lemma 3.1.1 in the case of an unstructured ∆ (see e.g. [71]).

Therefore, conditions in (5.25), (5.26) become both necessary and sufficient for systems subject to

unstructured uncertainties and/or additive disturbances.

Theorem 5.2.2 Let all variables be as defined Section 5.2. Then, Z (K̂, v̄, ∆̂)≤ γ2 and F (K̂, v̄, ∆̂)≤ f̄

for all ∆̂∈B∆̂̂∆̂∆ if there exist solutions (K̂, v̄)∈ (K ,υ), X ∈RNn×Nn , with X lower block-diagonal with

n×n blocks, (S,R,G), (Si,Ri,Gi) ∈ Ψ̂, ∀i ∈N f to the following LMIs:

 T1 +H (T2K̄Y ∗) ∗(
ĈyT3− K̄T T T

2
)
−XY ∗ X +XT

�0, (5.33)

 T i
1 +H

(
T i

2K̄Y ∗i
)

∗(
ĈyT i

3− K̄T (T i
2)

T)−XY ∗i X +XT

�0, (5.34)

for some Y ∗ ∈ RNn×(Nz+1+Nq+Np),Y ∗i ∈ RNn×(1+Nq+Np) and where K̄ := K̂X ∈K .

Furthermore, suppose that (5.25) and (5.26) have feasible solutions for (γ2, K̂, v̄,R,S,G,Ri,Si,Gi) =
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(γ2∗, K̂∗, v̄∗,R∗,S∗,G∗,R∗i ,S
∗
i ,G

∗
i ) so that

T1(γ
2∗, v̄∗,S∗,R∗,G∗)+H

(
T2K̂∗ĈyT3(S∗,G∗)

)
�0, (5.35)

T i
1(v̄
∗,R∗i ,S

∗
i ,G

∗
i )+H

(
T i

2K̂∗ĈyT i
3(S
∗
i ,G

∗
i )
)
�0,

and let Y ∗ = ĈyT3(S∗,G∗)+(T2K̂∗)T and Y ∗i = ĈyT i
3(S
∗
i ,G

∗
i )+(T i

2K̂∗)T . Then (5.33) and (5.34) are

feasible.

Proof: We prove the first part by proving that the LMIs in (5.33) and (5.34) are sufficient for

the nonlinear matrix inequalities in (5.25) and (5.26), respectively. In order to separate K̂ from T3, the

inequality in (5.25) can be rearranged as:

[
I T2K̂

] Q︷ ︸︸ ︷ T1 T T
3 ĈT

y

ĈyT3 0


C⊥︷ ︸︸ ︷ I

K̂T T T
2

� 0. (5.36)

Then, applying the Elimination Lemma 3.3.1 on (5.36) (with B = I) shows that (5.36) is equivalent to

 T1 T T
3 ĈT

y

ĈyT3 0

+
C︷ ︸︸ ︷−T2K̂

I


Z︷ ︸︸ ︷[

Y X

]
+

Y T

XT

[−K̂T T T
2 I

]
�0, (5.37)

where Y and X are free slack variables. Since X + XT � 0, X is nonsingular and we can define

K̄ := K̂X as a new variable. Then in order to preserve the structure of K̂, we restrict X to be block

lower triangular (with n×n blocks). In order to preserve linearity, we restrict Y to have the structure

Y =−XY ∗ with Y ∗ free (but not a variable) so that K̂Y =−K̂XY ∗ =−K̄Y ∗. Substituting Y =−XY ∗

into (5.37) proves that (5.33) is sufficient for (5.25) (but not necessary due to the above restrictions

on the slack variables Y and X). A similar procedure proves that (5.34) are sufficient for (5.26).

Next, we prove feasibility of (5.33) and (5.34) for the the given Y ∗ and Y ∗i . To show that (5.33) has

a feasible solution, set (γ2, K̂, v̄,R,S,G) = (γ2∗, K̂∗, v̄∗,R∗,S∗,G∗) and let X = I. Then the LHS of
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(5.33) becomes

T ∗ :=

T ∗1 +H
(
T2K̂∗

(
ĈyT ∗3 +(K̂∗)T T T

2
))
∗

−2(K̂∗)T T T
2 2I


where we have defined T ∗1 := T1(γ

2∗, v̄∗,S∗,R∗,G∗) and T ∗3 := T3(S∗,G∗). Then applying a Schur

complement on T ∗ shows that T ∗ � 0 if and only if (5.35) is satisfied. It follows that (5.33) is feasible

if (5.35) is. The feasibility of (5.34) can be shown using a similar procedure.

Remark 22 Theorem 5.2.2 provides sufficient LMI conditions for the initial nonconvex and nonlinear

relaxed RMPC problem presented in (5.32). Therefore, the control gains K and control perturbation

v can be computed online and applied in the usual receding horizon MPC manner, where the first

input of the control sequence u is applied to the plant, the time window is shifted by 1, the current

output measurement is read and the process is repeated. Note that v̂ can be recovered from v̄ and the

expression in (5.19), where K and v can be recovered from the variables K̂ and v̂ by the expression in

(5.9) and (5.19).

Remark 23 The novelty of the proposed linearization procedure is that it does not restrict the struc-

ture of the slack variables (R,S,G) and (Ri,Si,Gi) beyond the requirements of Ψ̂, and is therefore

less conservative compared to other LMI-based Robust MPC approaches suggested in the litera-

ture [14, 75].

Remark 24 When the system is subject only to additive disturbance (and no model-uncertainty), the

matrix inequalities (5.25), (5.26) become linear. To see this, note that in such a case, Cq, Dqu become

zero and therefore, DK̂
q̂p̂ and Dv̄

q̂ are no longer functions of variables (K̂, v̂). In addition, the variables

G, Gi become zero since ∆ is now purely diagonal. Then, effecting the congruence transformation

diag(I, I,S−1,S−1) on (5.25), and considering S−1 as a variable, renders (5.25) linear in (K̂, v̂). A

similar procedure can be adopted to linearize (5.26). Hence, these LMIs become necessary and

sufficient conditions for the cost and constraints. Therefore, the output-feedback RMPC problem for

systems with additive disturbances becomes convex with no additional conservatism.
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Remark 25 It is worth mentioning here that a simple procedure for linearizing the inequalities

(5.25), (5.26) is to set S = Si = λ INp , and G = Gi = 0, ∀i, for a variable λ ∈R, and subsequently take

λ K̂ as the variable. Though this may seem attractive from a computational point of view, the problem

is the excessive conservatism potentially associated with such a restriction which, in turn, is likely to

render the problem infeasible (examples for such scenario can be found in [83]).

In general industrial control applications involve a large number of constraints to preserve operational

safety. Similar to the observation made in Section 3.4, the LMI optimization problem presented in

Theorem 5.2.2 will require a high computational burden, due to the large number of constraints asso-

ciated with the MPC formulation. Instead of solving multiple matrix inequalities for the constraints

(one for each of the N f constraints (5.26) or (5.34)), using Theorem 3.4.1 we propose a strategy to

combine all constrains LMIs within a single inequality.

Theorem 5.2.3 Let all variables be as defined above. Then, Z (K̂, v̂, ∆̂)≤ γ2 and F (K̂, v̂, ∆̂)≤ f̄ for

all ∆̂∈B∆̂̂∆̂∆ if there exist solutions (K̂, v̂) ∈ (K ,υ), (S,R,G),(S̃, R̃, G̃) ∈ Ψ̂, µ ∈ R and M ∈ DN f to

(5.25) and,

T̃1 +H (T̃2K̂ĈyT̃3)� 0, (5.38)

where T̃1 T̃2

T̃3 0

=
1 N f Nq Np Nu

1

N f

Nq

Np

Np



2µ (f̄−Dv̂
f−Me−eµ)T (Dv̂

q)
T 0 0

∗ M+MT −D̂ f G̃T −D̂ f S̃ −D f u

∗ ∗ R̃+H (D̂qG̃T ) D̂qS̃ Dq̂u

∗ ∗ ∗ S̃ 0

0 0 G̃T S̃ 0


·

Proof: We only need to prove that (5.38) is sufficient for the constraints

f̃ := f̄−f= f̄−DK̂
f p̂∆̂(I−DK̂

q̂p̂∆̂)−1Dv̄
q̂−Dv̄

f≥0 ∀∆̂∈B∆̂̂∆̂∆.
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Using Theorem 3.4.1 and a rearrangement of (3.19) verifies that a sufficient condition for these con-

straints is:

H11+H (H12∆̂(I−H22∆̂)−1H21)�0, ∀∆̂∈B∆̂̂∆̂∆, (5.39)

where,

H11 H12

H21 H22

:=


2µ

(
f̄−Dv̂

f−M1−1µ

)T
0

∗ M+MT −D̂ f

Dv̂
q 0 D̂q

·

Using Lemma 3.1.1 on (5.39) and some rearrangement yields the matrix inequality (5.38) as a suffi-

cient condition.

Using the linearization procedure presented in Theoren 5.2.2, we next derive sufficient LMI condi-

tions (signle LMI for constrained signal) for the problem stated in (5.32).

Theorem 5.2.4 Let all variables be as defined as above. Then, Z (K̂, v̂, ∆̂) ≤ γ2 and F (K̂, v̂, ∆̂) ≤ f̄

for all ∆̂∈B∆̂̂∆̂∆ if there exist solutions (K̂, v̂) ∈ (K ,υ), (S,R,G),(S̃, R̃, G̃) ∈ Ψ̂, µ ∈ R and M ∈ DN f

and X ∈ RNn×Nn , with X lower block-diagonal with n×n blocks, to (5.33) and the following LMI:

 T̃1 +H
(
T̃2K̄Ỹ ∗

)
∗(

ĈyT̃3− K̄T T̃ T
2
)
−XỸ ∗ X +XT

�0, (5.40)

for some Y ∗∈RNn×(Nz+1+Nq+Np), Ỹ ∗∈RNn×(1+N f+Nq+Np) and where K̄ := K̂X ∈K .

Furthermore, suppose that (5.25) and (5.38) have feasible solutions for (γ2, K̂, v̂,R,S,G, R̃, S̃, G̃) =

(γ2∗, K̂∗, v̂∗,R∗,S∗,G∗, R̃∗, S̃∗, G̃∗) so that (5.35) and

T̃1(K̂∗, v̂∗, R̃∗, S̃∗, G̃∗)+H
(
T̃2K̂∗ĈyT̃3(S̃∗, G̃∗)

)
� 0. (5.41)

are satisfied and let Y ∗ = ĈyT3(S∗,G∗)+ (T2K̂∗)T and Ỹ ∗ = ĈyT̃3(S̃∗, G̃∗)+ (T̃2K̂∗)T . Then (5.33)

and (5.40) are feasible.

Proof: The result can be proved by applying the Elimination Lemma 3.3.1 on (5.38) in a similar

manner to the proof of Theorem 5.2.2 and is therefore omitted.
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It follows that the output-feedback RMPC problem can now be given by the following LMI optimiza-

tion:

φ =min{γ2 :(5.33) and (5.40) are satisfied for (K̂, v̂)∈(K ,υ),

(S,R,G),(S̃, R̃, G̃) ∈ Ψ̂. (5.42)

5.3 Feasibility analysis

A very critical point in RMPC schemes is to ensure feasibility of the optimization problem subject

to constraints, first at the initial step (k = 0) and second recursive feasibility of the LMI optimization

problem. Infeasibility may arise if the constraints are too tight or it may be due to the approximations

used to obtain a practical solution, especially with RMPC.

In the context of this work, to guarantee feasibility, the solutions we provide in Theorems 5.2.2 and

5.2.4 require initial feasible solutions to the matrix inequalities in (5.25), and (5.26) (to compute Y ∗

and Y ∗i ) or (5.25) and (5.38) (to compute Y ∗ and Ỹ ∗). On the other hand, the matrix inequalities in

(5.25), (5.26) and (5.38) are nonlinear and difficult to solve. Furthermore, all these computations

need to be carried out online. In this section we develop algorithms that address these issues that

involve carrying out extensive computations, which, however, are convex and can be carried out

offline. We will concentrate on Theorem 5.2.4 (Single LMI for constrained signal) since the procedure

for Theorem 5.2.2 is similar.

One approach is to solve offline the LMIs in (5.25), and (5.26), with fix K̂ = 0 (feasible but not optimal

solution), for the entire constrained state-space as initial state bounds and use the results (S,G, S̃, G̃)

as initial guess in variables (Y ∗ and Y ∗i ) to solve the problem (5.42) at time k = 0. Then use the

solutions computed in time step k as the initial solutions in time step k+1. There is no guarantee that

these solutions are feasible in step k+1 since xk and the associated stated bounds (xk and xk) will be

different from xk+1 and next sample time state bounds (xk+1, xk+1), respectively.

Another approach, which we demonstrate in detail here, is to find solutions to (5.25) and (5.38) offline
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that are feasible for every x0 in the state space constrained set (Fx):

x0 ∈Fx :=
{

x ∈ Rn : xl ≤ x≤ xh

}
, (5.43)

where xl and xh represent the minimum and the maximum value that belongs inside the state con-

strained set.

Algorithm 3 outlines the suggested offline policy that creates offline a lookup table that contains initial

feasible solutions for Theorem 5.2.4 for any x0 ∈Fx.

Algorithm 3: Offline computation of Initial feasible solutions for Theorem 5.2.4
Result: Y ∗(S∗,G∗, K̂∗) and Ỹ ∗(S̃∗, G̃∗, K̂∗)

Step 1:
In Theorem 5.2.3, fix K̂ (e.g. K̂ = 0), replace f̄ by β f̄ and minimize β such that (5.38) is

satisfied for all x0 ∈Fx. Record β , S̃ and G̃ and let K̂∗ = 0, S̃∗ = S̃ and G̃∗ = G̃. Set i = 1,
βi = β and select imax to be the maximum number of iterations and tolβ < 1 to be a
tolerance;

Step 2:
while (β > 1) & (i < imax) do

In Theorem 5.2.4, replace f̄ by β f̄ and find the smallest β ≥ 1 such that (5.40) is satisfied
for all x0 ∈Fx. Set βi+1 = β and update K̂∗ := K̂, S̃∗ := S̃ and G̃∗ := G̃;

if ( |βi+1−βi|
βi+1

< tolβ ) then
break; (convergence to a β > 1)

Set i := i+1.
Step 3:
if β > 1 then

Sub-divide Fx into smaller sets;
Go back to Step 2;

else
In Theorem 5.2.3 fix K̂= K̂∗ and minimize γ2 such that (5.25) is satisfied for all x0 ∈Fx.

Record γ2 and let S∗ = S and G∗ = G;
Step 4:
Set j = 1, γ2

j = γ2 and select jmax to be the maximum number of iterations and tolγ < 1 to be
a tolerance.

while ( ( j < jmax) do
In Theorem 5.2.4, minimize γ2 such that (5.33) and (5.40) are satisfied for all x0 ∈X0.

Set γ2
j+1 = γ2 and update K̂∗ := K̂, S∗ = S, G∗ = G, S̃∗ := S̃ and G̃∗ := G̃;

if (
|γ2

j+1−γ2
j |

γ2
j+1

< tolγ ) then
break;

Set j := j+1.
return (K̂∗,S∗,G∗, S̃∗, G̃∗)
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Remark 26 If β = 1 at the end of Step 2 of Algorithm 3, then we have feasible solutions K̂∗, S∗, G∗,

S̃∗ and G̃∗ to (5.25) and (5.38) for all x0 ∈Fx and so we can use Theorem 5.2.4 online since it is

guaranteed to have a feasible solution. If fewer online computations are required, then Theorem 5.2.3

can be used online with K̂ fixed at K̂∗ and the degrees of freedom in υ̂ can be used to minimize γ for

the given x0 ∈X0. In the case that β > 1 at the end of Step 2 of Algorithm 3, then, with suitable

modifications to the rest of Algorithm 3, Theorem 5.2.4 can still be used as above, although without

a guaranteed feasible solution, but possibly a good initial solution if β is close to 1. Alternatively,

we may sub-divide Fx into smaller sets, find a feasible solution for each of these subsets and use a

look-up table to choose the initial solution depending on x0 in the online implementation.

Remark 27 Recursive feasibility of the proposed schemes can be ensured due to incorporating the

invariant terminal set defined by f̄N . In particular, under the conditions given in [76], using their

notation, the control sequence computed at time k can be shifted and appended with the terminal

control law u fN to yield {u(k+1 | k), · · · ,u(k+N−1 | k),u fN} which remains feasible at next time step

k+1. See [3, 14] for further details.

5.4 Overall Output-feedback RMPC Algorithm Outline

In this section the overall proposed strategy, which combines the control and RMHE schemes dis-

cussed in Section 5.2 and Section 4.3 respectively, is presented and its effectiveness is demonstrated

by a benchmark example.

5.4.1 Implementation Strategy

The proposed output-feedback RMPC scheme relies on the state estimation upper/lower bounds

(x̄k,xk) based on past input/output data. However, at sample time k = 0 there are no past data to

compute the state bounds and the state estimation value. Thus, at the time point k= 0 the a priori

bounds on x0 (x̄0,x0) are assumed to be known and are used to compute the first control sequence

u, where only the first control value u0 is applied to the system. Subsequently, while more data is
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collected from the input/output at each iteration, the estimation horizon Ñe is incremented until it

reaches the pre-specified estimation horizon Ne. During this period the current state bounds xk, x̄k and

the estimated state x̂k are computed by considering all available past data. By the time that Ñe is equal

to Ne the state bounds are calculated by the moving horizon framework presented in Section 4.3. The

overall approach can therefore be outlined as follows.

Algorithm 4: Output-feedback RMPC scheme

Offline calculation:
Create a look-up table for all x0 ∈Fx using Alg.3, where initial feasible solution
Y ∗(S∗,G∗, K̂∗) and Ỹ ∗(S̃∗, G̃∗, K̂∗) are stored.

Online calculation:

(1) Initialization: At sample time k = 0, given y0 calculate the bounds on x0 based on equation
(3), considering the maximum output-disturbance. Then, solve (5.42) and set as control action
uk the first value of the control sequence u.

(2) Data collection: Update the vectors ũ, ỹ with the newly available input/output data from the
previous step.

(3) Estimation scheme: If Ñe < Ne, increment Ñe, else fix Ñe = Ne. Then, using vectors ũ and ỹ
solve the LMI optimization problem stated in Theorem 4.3.1 to compute bounds of the current
state xk.

(4) Control scheme: Set the control action uk to be the first value of the control sequence u by
solving the optimization problem stated in (5.42) and loop back to step (2).

5.4.2 Numerical Example

In this subsection the effectiveness of the proposed algorithms is illustrated by two benchmark ex-

amples taken from the literature. The simulations in both examples are performed using MOSEK

LMI/SDP solver within the CVX package [77], in MATLAB R2019b on a computer with 2.40 GHz

Intel Xeon(R) CPU and 64.0 GB memory.
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Example 1

The first system under consideration is the double integrator example taken from [29] . The system is

affected only by additive disturbances and measurement noise. In particular the discrete-time system

can be described as follows:

xk+1 =

1 1

0 1

xk +

1

1

uk +

1 0

0 1

ηk, yk =

[
1 1

]
xk +νk

The disturbance and measurement noise respectively belong to the sets:

ηk ∈ Z :=
{

η ∈ R2 :−0.1≤ η ≤ 0.1

}
,

νk ∈V :=
{

ν ∈ R :−0.05≤ ν ≤ 0.05

}
.

The input constraints are given by: −3≤ uk ≤ 3, and we consider (tightened) state constraints given

by [−12 −12]T ≤ x≤ [3 3]T . The cost signal is selected as zk := [xk uk]
T and the states and inputs are

equally weighted (Cz = [I 0]T ,Ĉz = I,Dzu = [0 I]T ). The control and estimation horizons are selected

as N = 5 and Ne = 8, respectively. Finally, to remain consistent with [29], the initial state bounds are

set: [−3.02;−8.02]≤ x0 ≤ [−2.98;−7.98].

Since the system is subject to disturbances only, the output-feedback RMPC problem presented in

(5.32) becomes linear and it can express in LMI form as illustrated in Remark 24. In Fig. 5.1 the

state evolution of the system using the proposed robust control approach is presented, where it can

be seen that the system is regulated to the origin. The estimated state trajectory is shown in red dash

line and the actual state trajectory is presented by the blue line. Note that the actual state values

are not available while utilising the suggested algorithm and is presented here simply for reference

purposes. Despite the action of persistent state disturbance and measurement noise, a robust control

performance has been achieved by utilising the presented control algorithm without violating any

state constraints (red area in Fig. 5.1). The Fig. 5.1 also shows the state estimation bounds (cyan

rectangles), computed using the results of RMHE in Section 4.3 and in particular for the uncertainty-

free system of the double integrator through the linear program (see Remarks 14). Comparing the
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Figure 5.1: State evolution history for the double integrator example using the proposed OF-RMPC
algorithm.
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Figure 5.2: Control input history for the double integrator example using the proposed OF-RMPC
algorithm.

actual state with the estimated states based on the bounds, it can be confirmed that the computed

bounds are very accurate (they are in fact tight in this case) and they play an important role on the
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Figure 5.3: Output trajectory for the double integrator example using the proposed OF-RMPC algo-
rithm.

fast regulation performance. Figure 5.2 illustrates the control input evolution, which is also within the

predefined constraints. Note here that the control input at t = 0 is just below the constraint boundary,

which verifies that constraints have indeed been incorporated in the formulation in a non-conservative

manner. Similarly, fig. 5.3 illustrates the output signal evolution, where it tracks the reference signal

and verifies the robust performance of the suggested control algorithm.
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Example 2

To investigate the performance of the proposed OF-RMPC scheme, for this example the benchmark

problem of the control of a paper-making process (see section 4.5) is again considered. To preserve

continuity on this chapter the system description and state-space representation is once more sum-

marised. The system, consists of process states x = [H1 H2 N1 N2]
T , where H1 and N1 denote liquid

level and composition of the feed tank, respectively, and H2 and N2 denote liquid level and compo-

sition of the headbox, respectively. The control input vector is given by u = [Gp Gw]
T , where Gp is

the flow rate of stock entering the feed tank and Gw is the recycled white water flow rate. All vari-

ables are normalized (i.e. they are zero at steady state) and only noisy measurements of H2 and N2

are available. The consistency and composition of white water is a source of uncertainty within the

dynamics, particularly in the state N1 and input Gw.

The discrete-time dynamics (including uncertainty description), sampled at 2 minutes (see [81]), are

given by (5.1) with:

A=



0.0211 0 0 0

0.1062 0.4266 0 0

0 0 0.2837 0

0.1012 −0.6688 0.2893 0.4266



Bu=



0.6462 0.6462

0.2800 0.2800

1.5237 −0.7391

0.9929 0.1507


, Bw=



1 0

1 0

1 0

1 0


, Bp=



0

0

1

0


,

Cq =

[
0 0 0.2 0

]
, Dqu =

[
0 0.2

]

Cy =

0 1 0 0

0 0 0 1

 , Dyw =

0 1

0 1


Moreover, disturbance ηk affects all four states and νk denotes the output measurement noise (see Re-

mark 19 to describe the system as shown in (5.1)). The process disturbance and output measurement
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noise are respectively characterized by the sets:

ηk ∈ Z :=
{

η ∈ R :−0.1≤ η ≤ 0.1

}

νk ∈V :=
{

ν ∈ R :−0.05≤ ν ≤ 0.05

}

The prediction horizon and the estimation horizon for the above set-up are set N = 3 and Ne = 5,

respectively. Similar to Example 5.4.2 the states and inputs are equally weighted (Cz = [I 0]T ,Ĉz =

I,Dzu = [0 I]T ) and the cost signal is defined as zk :=
[
yT

k uT
k

]T .
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Figure 5.4: State evolution for Example 2.

Simulation results for the paper making process example under persist worst-case uncertainty (∆ = I)

and randomly distributed disturbances are shown in figures 5.4-5.7.
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Figure 5.4 presents the state evolution over time, where at each sample time the upper and lower

bound of the unmeasured state (x1 and x3) are computed through the presented estimation scheme.

For comparison, estimation values of the unmeasured states using the algorithm presented in [48]

shown in dash yellow line, where it can be clearly seen that estimation values at initial steps are way

outside our given tight bounds. Although large estimation error, in general, can be lead to either

constraint violation or infeasibility on the control face, in figure 5.3, it can be seen that the proposed

algorithm and the considered algorithm from [48] have similar tracking performance.
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Figure 5.5: Output trajectory for Example 2.

Looking at Figures 5.6 and 5.7, where the control input signal and the cost signal are illustrated re-

spectively, it can be concluded that imprecise estimation values can lead to conservative controllers.

In more detail, utilizing the suggested OF-RMPC scheme the control actions computed by the con-
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troller are more aggressive (at k = 0 touch the constraint) compare to the algorithm presented in [48].

Looking at the figure 5.7 it can be verified that the suggested OF-RMPC scheme minimises the cost

function faster than the algorithm in [48].
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Figure 5.6: Computed Control input for Example 2 using the proposed OF-RMPC algorithm.
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Figure 5.7: Cost signal for Example 2.
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5.5 Synopsis

In this work, a new algorithm based on LMI’s is proposed for the formulation of an OF-MPC of linear

discrete-time systems subject to norm-bounded model-uncertainties, additive state disturbances and

measurement noise.

The novelty lies in the fact that the algorithm computes, online, both the output-feedback gain and a

control perturbation through an LMI optimization. A significant reduction in the computational com-

plexity of the control problem is achieved by a proposed algorithm that solves a single LMI for han-

dling the constraints in the RMPC problem. Moreover, unlike most output-feedback MPC schemes

from the literature which use a fixed (linear) state observer, the presented algorithm, in order to re-

duce conservativeness, uses a past input/output data window - in a manner similar to Moving Horizon

Estimation - to compute (tight) bounds on the current state which are then used within the control

scheme. Note that, the suggested control approach requires initial feasible solutions to the nonlinear

matrix inequalities, which however can be obtained offline without compromising the performance of

the controller.

The effectiveness of the proposed techniques, in terms of robust control performance as well as esti-

mation accuracy, is demonstrated through numerical examples taken from the literature. The natural

follow-up for the proposed robust control scheme is to be implemented and tested in an industrial-

scale application.



CHAPTER 6

Tracking Control for Directional Drilling Systems Using Robust

Model Predictive Control

6.1 Introduction

The oil and gas industry has constantly searched for more economic and efficient technologies to

exploit hydrocarbon energy resources. The process for obtaining and extraction of energy resources

such as oil and gas, which remain the major fuels for powering today’s society, has two major diffi-

culties. Firstly, access to energy resources most of the times requires boreholes with complex curves,

which is not a simple task to achieve. Secondly, deep-seated and offshore hydrocarbon explorations

commonly take place under an unpredictable environment and extreme working conditions while tar-

geting resource locations in the crust of the Earth [84]. In many cases these challenges are being

addressed by the introduction of Rotary Steerable Systems [85]. This steering mechanism is a tool

placed close to the drilling bit of a bottom hole assembly (BHA) as illustrated in Fig. 6.1. In this

project we study a push-the-bit RSS that controls the direction of borehole propagation via force ac-

95
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tuated pads mounted close to the bit. At the early stages, when the RSS tool was used, the control

actuator commands are operated with major communication delays by professionals, where they are

located at the surface close to the drilling rig, using complex data sets, such as location of the reser-

voir, rock layer geometry, mud phase telemetry and etc. Human errors and communication delays

could be minimized by automating the steering commands by developing a closed-loop controller

using real-time data from sensors located in the drill string.

Figure 6.1: Directional drilling system [88].

The main difficulties of developing an automated RSS system are, firstly the unpredictable and harsh

working environment, secondly, key parameters vary whilst drilling and lastly the poor communi-

cation between surface and downhole. Previous research studies considered empirical or numerical

kinematics models using the assumption that the curvature of the BHA is directly linked to the force
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applied by the RSS [86], however, these models could not fully reflect the dynamic behavior and

variations of the system especially during transients. Downton et. al. suggested various novel RSS

dynamic models described by linear spatial delay equations based on reasonable simplifications and

assumptions [87, 88]. Based on the directional drilling model presented in [87], an L1 adaptive con-

troller alongside state prediction is presented in [89]. Recently, Kremers et. al. investigated the

behaviour of RSS system in directional drilling applications and have proposed a three-dimensional

analytical model using non-linear delay differential equations [90]. However, in this approach it is

assumed that all parameters remain constant while drilling, which is not generally a realistic assump-

tion in drilling. Analytical models of RSS have been very promising since they can characterize the

behavior of the system with minimum error.

By using the framework of RSS analytical modeling, the aim of this study is to develop an appropriate

closed-loop feedback control law that can guarantee robustness and stability in the presence of the

aforementioned uncertainties and disturbances. Since what is involved is a relatively slow dynamic

system, and physical and design constraints which are very important for drilling operation safety,

MPC type schemes are very suitable for designing controllers for this application [91, 92].

The contribution of this work can thus be divided as follows. Firstly, a dynamic model of the di-

rectional drilling system is proposed in terms of ordinary differential equations by a closed-form

state-space representation, unlike conventional representations in the literature that utilize either less

accurate kinematics system models [92], or with comprehensive dynamic models that are presented in

terms of delay differential equations [88]. Very importantly, the present model is validated success-

fully against a high-fidelity industry grade finite element model developed by Schlumberger. Sec-

ondly, the present work advances the control solutions available in the literature and to industry for

directional drilling automation by proposing a robust control strategy that can handle disturbances and

uncertainties. The overall proposed control algorithm for this case study is synthesized based on the

OF-RMPC control algorithm presented in Chapter 5, which makes it the first time that these strate-

gies are applied successfully to a complex industrial level problem. The particular methodologies

employed are OF-RMPC scheme, which is further combined with a Robust Positive Invariant (RPI)

sets generated feedback control strategy [14,20], to overcome the difficulties alluded to above regard-
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ing automating RSS systems, while minimizing the trajectory tracking error during drilling. Although

the proposed combined strategy requires high-performance computation, it provides an optimal so-

lution at each sample time with limited conservatism in the formulation while safety constraints are

preserved, unlike other works (see for example [91] which ignores disturbances).

The chapter is organized as follows. In Section 6.2, the analytical model of the directional drilling

system is introduced and a simplified discrete-spatial uncertain system is suggested. In Section 6.3, in

order to further reduce the computational burden of the controller while ensuring stability, an offline

controller based on RPI set problem is presented. Following that, the overall control architecture that

combines online OF-RMPC and the RPI-based offline controller applied to the directional drilling

application is summarised. A case study in directional drilling using the proposed control approach

is illustrated in Section 6.4, in which robustness and tracking performance of the controller is demon-

strated by simulations. Finally, a summary of the findings is given in Section 6.5, along with potential

future work. The formulation and results presented in this chapter are mainly based on the result

presented in [26].

6.2 Directional Drilling System

The directional drilling system can be presented as a mechanical structure, where the centerline of the

borehole can be expressed with respect to actuator stimuli by a quasi-polynomial transfer function. In

this study, the complex push-the-bit RSS drilling model presented by [88] is used, where the average

direction of drilling is normally assumed to be tangential to the m-axis, shown in Fig. 6.2. This

assumption allow us to use a small angle approximation for displacements and angles in the system.

The propagation of the BHA centerline can be computed by the lateral displacement rate (dH(m)
dm ) with

respect to distance drilled (m) as determined by:

dH(m)

dm
= tan(α + tan−1(

LWOR
WOR

Kanis)), (6.1)



6.2. Directional Drilling System 99

where α indicates the angle of the bit’s rotation axis with respect to the m-axis (indicated by the

slope of the blue line in Fig. 6.2), Kanis is the anisotropy of the bit which measures the rock removal

capability ratio of the two axis (axial and lateral), and WOR and LWOR is the axial and lateral load

on the rock, respectively. In this work the lateral displacement H(m) is considered as the dependent

variable and the distance drilled m as the independent variable.

By using the assumption that the deformation inside the borehole is small, the BHA can be statically

treated as an Euler-Bernouli beam. Therefore, the general expression of a beam element under load

for small angles is given by:

∂ 2

∂ l2 (EI(
∂y2

∂ l2 ))+
∂

∂ l
(P(

∂y
∂ l

)) = w, (6.2)

where y is the beam’s lateral displacement, l is the length along the beam which is considered as

the independent variable, EI is the bending stiffness, P is the axial-load along the beam and w is the

beam’s load per unit length.

The method of dividing the drilling string into smaller segments [93], according to the position of the

stabilizers on the BHA, is followed. In this case, a BHA with four stabilizers is considered, with the

parameters L1, L2, L3 and L4 defined as the distance of the first stabilizer from the bit and stabilizer

i from stabilizer i− 1, respectively (as shown in Fig. 6.2). As a result, four independent beam

equations arise that are influenced by self-weights and applied load and moments for each element,

with continuity constraints at the joints between any two beams.

After extensive algebra using these four equations, the parameter LWOR is expressed in terms of the

forces and moments applied on the BHA. By substituting this in (6.1) and assuming constant terms

for Kanis, end-moments (M1 and M2) and weight on the bit (WOB), as well as, that all stabilizers

are located on the centerline of the borehole (vi = 0 for i = 2, . . . ,5), the final expression for lateral

borehole propagation is given by the delay differential equation (DDE):
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Figure 6.2: Generic BHA drilling system formulation based on lateral displacement H(m) with respect
to the drilled distance m expressed in a locally tangent coordinate system [88]. The black dashed line
represents the centerline of the borehole, while the blue line is the actual shaft shape and the dash
blue line is the slope of the shaft. F1 is the force applied by the steering mechanism (RSS) and is
considered as the input of the system. F2 up to F4 and v2 up to v5 model the forces applied by the
stabilizers to the sidewall of the borehole and the lateral displacement of each stabilizer with respect
to the centerline, respectively. F2 to F4 and v2 to v5 are assumed zero for the present case study.

dH(m)

dm
=−

(
nstb

∑
i=1

(Ai ·H(m− τi))+
nbeam

∑
i=1

(Bwi ·wi)

+
2

∑
i=1

(BMi ·Mi)+
n f orce

∑
i=1

(BFi ·Fpad(m)i)

)
,

(6.3)

where Ai, Bwi , BMi and BFi are the coefficient vectors computed by the BHA configuration, τi denotes

the distance of stabilizer i with respect to the bit (e.g. τ3 = L1 +L2 +L3), nstb is the number of stabi-

lizers under consideration, nbeam = nstb−1, and n f orce is the number of (control and reaction) forces

applied to the system. Fpad is the force applied to the sidewall of the borehole by the steering mecha-

nism (shown as F1 in Fig. 6.2). In this study we consider only one RSS system located at distance λ

away from the bit and the effective stabilizers are the first four on the BHA (Fig. 6.2 shows up to the

fourth stabilizer). Ideally, the supervisory trajectory control system should be embedded in the BHA

to minimize communication delays. However, this method requires a high-performance processor
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with insignificant size due to the limited space on the BHA, that can work efficiently at extreme en-

vironments with minimum power consumption. Also, it is important to note that the drilled distance

measurement (m) is available only at the surface of drilling, which implies that the control unit at

present must be considered to be located at the surface, since drilled distance (m) is the dependent

variable in the control scheme.

For the purposes of this work, the sensors are assumed to be located at some distance from the bit,

close to the rear stabilizers of the BHA. The sensors measure the tilt of the beam, which is related

to the inclination, dH(m)/dm, instead of lateral displacement, H(m), at the drill bit. Therefore, the

borehole propagation DDE in (6.3) can be modified as follows:

dH(m)

dm
=−

(
nstb

∑
i=1

(Ai ·
dH(m− τi)

dm
· τnstb−i)+

nstb−1

∑
i=1

(Bwi ·wi)

+
2

∑
i=1

(BMi ·Mi)+BF ·Fpad(m)

)
,

(6.4)

in which also the sum in the last term has been dropped, since in the present work only one steering

mechanism (applying force Fpad) is considered.

6.2.1 Simplified Model

The general expression for lateral borehole propagation is transformed into an ODE and then reduced

to a low order system in order to be computationally efficient for closed loop control formulation. The

first step is to transform the DDE presented in (6.4) into state space form by considering the lateral

displacement and inclination at the drill bit as the states of the system:

x(m) =

x1

x2

=

H(m)

dH
dm

 , ẋ(m) =

ẋ1

ẋ2

=

 dH
dm

d2H
dm2

 ,
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ẋ(m) =

0 1

0 −A1G1


x1(m)

x2(m)

+
0 0

0 −A2G2


x1(m− τ1)

x2(m− τ1)


+

0 0

0 −A3G3


x1(m− τ2)

x2(m− τ2)

+
0 0

0 −A4G4


x1(m− τ3)

x2(m− τ3)


+

0 0

0 E


x1(m− τ4)

x2(m− τ4)

+
 0 0

BW BF


W

uF

 ,
(6.5)

y(m) =

[
0 1

]x1(m)

x2(m)

 , (6.6)

where ẋ2 =
d2H
dm2 represents the rate of inclination (curvature of the borehole trajectory calculated by

differentiating (6.4)), G1, G2, G3, and G4 are constant coefficients depending on the structure of the

BHA, and the parameter E is given by E = A1G1 +A2G2 +A3G3 +A4G4. BW and W represent the

column vectors of Bwi and of the spatial derivatives of wi for i = 1 . . .nstb−1, respectively, and uF is

the spatial derivative of Fpad . M1 and M2 are assumed constant and therefore do not appear in (6.5).

In the second step, the state space form of the directional drilling system with delays (6.5) is trans-

formed into an ODE by a rational approximation method. In this project the Páde approximation

method is utilized [94]. The accuracy of this method can be improved by increasing the order of

the approximation, however, doing so also increases the number of states of the ODE, which is not

desirable in terms of computational efficiency of the RMPC method that will be employed. In or-

der to minimize the approximation error while keeping the system’s state number low, several values

of the approximation order were evaluated. In the particular system under study a 9th order Páde

approximation method is chosen, since it keeps the approximation error low while the number of

states is not excessive (38 states). However, using a RMPC scheme with a system of this order, the

online computational time is extremely high. Therefore, model reduction by balanced truncation is

employed to reduce the number of states [95], from 38 states to an ODE with 3 states, for the specific

BHA configuration studied in this work. The error of transforming the DDE system to a reduced

order ODE is presented in Fig. 6.5 at Section 6.4. In order to compensate such approximations and

unmodeled dynamics which may be left out either at the design process or after delays approximation
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and model reduction, the directional drilling system is reformulated as a linear discrete-time system

subject to feedback uncertainties and additive disturbances (see Section 2.5 and [15]), as shown in

(6.7). It is assumed that the sample distance, λ , which is chosen to discretize the system, is equal

to the distance between the bit and the RSS actuator, as shown in Fig. 6.2. An assumption of fully

measurable states is not practically realistic since the states of the simplify model, after approximation

and model reduction of the system, do not represent any physical quantities which can be measured.

Using the available measurements (inclination angle (dH(m)/dm) and distance drilled (m)), the esti-

mation strategy presented in Chapter 4 is employed followed by linear transformations to provide the

state’s value of the simplify model with a minimum error.



xk+1

qk

yk

fk

zk


=



A Bu Bw Bp

Cq Dqu Dqw 0

Cy Dyu Dyw Dyp

C f D f u D f w D f p

Cz Dzu Dzw Dzp





xk

uk

wk

pk


, pk = ∆qk,


qN

fN

zN

=


Ĉq 0

Ĉ f D̂ f p

Ĉz D̂zp


xN

pN

 , pN = ∆qN ,

(6.7)

where xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny , wk ∈ Rnw , fk ∈ Rn f , zk ∈ Rnz , pk ∈ Rnp and qk ∈ Rnq are the state,

input, output, disturbance, constraint, cost, and input and output uncertainty vectors, respectively, and

where N is the prediction horizon. Similar to the previous chapters, ∆k∈B∆∆∆ where ∆∆∆⊆Rnp×nq is a

subspace that captures the uncertainty structure. All the coefficient matrices can be computed from

the configuration of the BHA and its reduced order model approximation already explained. The

constraints are imposed by physical factors, such as input actuator limits, or design preferences (see

Section 6.4 for more details).
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6.3 Tracking Control Approach

In this section, the overall RMPC methodology employed for the directional drilling tracking control

problem is briefly summarized. To avoid repetition, the algebraic formulation of the estimation and

control scheme presented in the previous chapters are not presented here. See Chapters 4 and 5 for

full details on the robust moving horizon estimation and robust model predictive control schemes. On

the other hand, the state feedback law based on an optimal RPI set problem [20], which is used to

provide stability in the overall control algorithm, is briefly explained. The main advantages of using

a combination of these controllers are insuring stability while robust properties are preserves with

minimum of computation burden. At the end of this section an algorithm is presented to summarize

the control strategy that is followed in the directional drilling application.

6.3.1 Offline controller using optimal RPI set

RPI sets found great success in robust analysis and synthesis of uncertain systems. In the case of

RMPC, state feedback law based on RPI sets guarantees stability in uncertain systems and reduction

of the computation time, since the feedback gain and the volume of the invariant set are computed

off-line. A set is defined as an RPI set if the following statement is satisfied [96]:

Definition 6.3.1 The set Z ⊂ Rn is a Robust Positively Invariant set of a system (6.7) if, by applying

state-feedback control law u = KZx, then A∆Z⊕B∆KZZ⊕BwW ⊆ Z is satisfied for all ∆, where ⊕

denotes the Minkowski sum. The definition A∆ = A+Bp∆Cq, B∆ = Bu +Bp∆Dqu are used to simplify

the notation and they represent the model feedback uncertainties of a system.

Consequently, if the current state is inside the set Z, by applying the state feedback control law

u = KZx all the future states lie in the set Z in the presence of model uncertainties caracterised by A∆,

B∆, and disturbances wk ∈W . In this framework, a multi-objective problem is considered where the

target is to maximize the volume of the polytopic invariant set Z of the form,

Z = {x ∈ Rn :−1≤ Ex≤ 1}, (6.8)
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where E is a matrix with appropriate dimension (E ∈ Rn×n) and 1 is column vectors with all entries

one (1 ∈ Rn). The problem can be expressed as an optimization problem as follows:

max
KZ ,Z

Volume(Z)

sub ject to


Z ⊆XI

KZZ ⊆UI

A∆Z⊕B∆KZZ⊕BwW ⊆ Z

(6.9)

where UI := {u ∈ Rnu : uI ≤ u ≤ uI} and XI := {x ∈ Rnx : xI ≤ x ≤ xI} define the input and state

constraints sets, respectively.

By considering the dynamic system (6.7), the invariant set constraint condition for the polytopic set

(6.8) can be rewritten as:

−eT
i 1≤ eT

i E ((A∆ +B∆KZ)x+Bww)≤ eT
i 1. (6.10)

Since the polytopic invariant constraint is assumed to be symmetric, the relevant invariant conditions

are computed using only the upper bound:

eT
i E ((A∆ +B∆KZ)x+Bww)− eT

i 1≤ 0.

Using the extended S-procedure (for further details refer to 2.4), the problem can be expressed as a

convex LMI optimization problem, similar to the presentation in [20].
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Following the description that is given for both offline and online controllers, the RMPC strategy that

is proposed in this tracking control problem is summarized as follows:

Algorithm 5: RMPC controller strategy

Offline calculation:

(1) Compute the polytopic RPI set Z and the corresponding gain matrix
KZ , by solving the optimization problem described in Section 6.3.1.

(2) Create a look-up table for all x0 ∈Fx using Alg.3, where initial feasible solution
Y ∗(S∗,G∗, K̂∗) and Ỹ ∗(S̃∗, G̃∗, K̂∗) are stored.

Online calculation:

(1) Initialization:
At sample time k = 0, given y0 calculate the initial bounds on x0 as well as estimated state
x̂0 based on equation 5.1, considering the maximum output-disturbance (see Remark 17).

(2) Control scheme:
If (the estimated state x̂k lies inside the RPI set Z)

Switch to offline control and apply the state feedback controller u = KZ x̂k.
Else

Solve LMI optimization problem for the output feedback RMPC express by equation
(5.42) using upper and lower state bounds, and set as control action uk the first value
of the control sequence u(K,v)(definition given at equation (5.8)).

end

(3) Data collection:
Update the vectors ũ, ỹ with the newly available input/output data from the previous step.

(4) Estimation scheme:
If Ñe < Ne, increment Ñe, else fix Ñe = Ne. Then, using vectors ũ and ỹ solve the LMI
optimization problem stated in Theorem 4.3.1 to compute bounds of the current state xk.

(5) Termination:
Using the state bounds from step (3), check if the state satisfy pre-specify terminal

conditions. If so exit scheme, otherwise loop back to step (2).
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6.4 Case Study

In this section a directional drilling application with an industrial BHA configuration is considered.

Simulation results are presented to demonstrate the effectiveness of the proposed control strategy for

directional drilling. At first we validate that the chosen BHA configuration is successfully described

by the DDE model in (6.5). Validation is presented in Fig. 6.3 using curvature steady state values

from a finite element industrial model provided by Schlumberger, which accurately describes the

borehole’s propagation with respect to distance drilled. In both models the same normalized input

force (Fpad) is applied. As it can be seen, the steady-state curvature predicted by the DDE model

converges to the curvature values calculated by the industrial model.

Figure 6.3: Open-loop response of curvature versus measured drilled distance predicted by the DDE
model (6.5) and industrial model. The normalized Fpad input force applied to both models is also
shown.

In order to test the model approximation strategy presented in Section 6.2.1, the same input signal

(Fpad shown in Fig. 6.3) is also applied in an open-loop manner to the DDE and simplified ODE

models. As shown in Figs. 6.4 and 6.5, the open-loop inclination responses for the two systems

are very similar and the error between them remains below 0.3 degrees. Therefore, it is sufficient to

steer the directional drilling system with minimum error, by developing closed-loop control using the

simplified model and considering uncertainties on the model.
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Figure 6.4: Open-loop inclination response versus measured drilled distance predicted by the DDE
model (6.5) and the ODE simplified model. The normalized input force applied to both models is as
shown in Fig. 6.3.

Figure 6.5: Inclination error between the responses of the DDE model (6.5) and the ODE simplified
model, for the input force shown in Fig. 6.3.
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Figure 6.6: Block diagram of directional drilling closed-loop control and simulation scheme.

For the closed-loop control problem, the drilling system (DDE model in (6.5)) is required to track an

inclination reference, while satisfying BHA bending limitations, which can be approximately trans-

lated to input constraints. Furthermore, it is assumed that the system is affected by disturbances at

its input and output denoted by ηk and νk, respectively. Input disturbance ηk aims to characterize

the discrepancy between the desired and actual input value provided by the actuator due to physical

losses and inability to measure the input directly by a sensor, and also to capture relevant signal noise.

The disturbance signal ηk is assumed to be bounded by 10% of the maximum input constraint value

(umax) that is chosen by design at the RPMC formulation. Therefore, the distribution of ηk is assigned

as white noise with zero mean and an appropriate standard deviation (std= 0.1·umax
3 ), such that 97% of

the disturbance stays within the 10% of umax. The output (inclination) disturbance νk is due to inertial

sensors accuracy and it is also white noise with zero mean and 0.33 standard deviation, such that 97%

of the disturbance stays within 1 degree. The main design uncertainties arise from the knowledge

that the WOB and Kanis values fluctuate during drilling. Therefore, to demonstrate that our proposed

control scheme can successfully steer the system to the reference trajectory under the presence of

uncertain variables that describe the system, we assign the parameters WOB and Kanis as uniformly

varying through out the simulation while staying inside the following sets: 5000 ≤WOB ≤ 15000
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(lbf) and 0.018≤ Kanis ≤ 0.043. The bounded sets that describe the uncertainty of WOB and Kanis are

selected based on past experimental data obtained by Schlumberger for a given rock formation set and

known bit design [97]. The block diagram in Fig. 6.6 shows the closed-loop scheme of the controller

(utilizing the simplified ODE model) and plant (complex DDE model in (6.5)), used for closed-loop

simulations.

Figure 6.7: Closed-loop system inclination response versus drilled distance for a predefined inclina-
tion reference trajectory and various levels of normalized control input constraints, using the proposed
closed-loop RMPC controller.

Figure 6.7 shows the inclination response of the closed-loop system, while tracking a given reference

value, for various constraint levels of the control input, to assess the performance of the proposed

control scheme. It can be seen that the inclination response is stable and the reference is tracked

well despite the controller only uses a simplified model of the plant, and despite the presence of

disturbances and constraints. It can also be seen that by tightening the input constraints, there is

slower convergence to the steady-state value, as would be expected by the more limited flexibility of

the BHA. Figure 6.8 shows the normalized control input for the case when its bounds are between

[-3,3], demonstrating that constraints are satisfied.

Looking into details when the normalized input constraint limits are [-3,3], in figure 6.9 it can be seen

that the tracking performance when the response is inside the RPI set Z (close to steady-state values)



6.4. Case Study 111

Figure 6.8: Normalized control input evolution versus drilled distance using the proposed closed-loop
RMPC controller, when the normalized input constraint limits are [-3,3].

is decreased due to the offline computed controller, however robust performance is guaranteed due to

the RPI set properties. The 2-D simulated drilling trajectory is also displayed in figure 6.10, where

the blue line indicate the BHA trajectory and the two red lines define the constrains.

Figure 6.9: Closed-loop system inclination response versus drilled distance for a predefined inclina-
tion reference trajectory using the proposed closed-loop RMPC controller, when the input constraint
limits are [-3,3].
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Figure 6.10: Simulated Drilling reference trajectory in 2D.

In terms of comparison of the proposed method with other MPC based control methods, a conven-

tional MPC scheme has also been tested for the same closed-loop task shown in Fig. 6.6. However,

the inclination response is found to diverge from the reference trajectory due to the systems mismatch

(ODE and DDE) caused by the presence of disturbances and uncertainties. Consequently, the prob-

lem’s constraints are violated and the solver is not able to provide a feasible solution to the problem.

By comparing the online RMPC proposed in the present work with tube-based MPC described in [98],

the tube-based MPC can effectively reduce the computing time of the optimization problem, however

the main drawback of this approach is the additional conservatism on the optimization solution due to

the state-observer estimation error that is calculated offline. Due to time limitations, comparison with

tube-MPC is left for future work.
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6.5 Synopsis

In this chapter, an effective way to simplify a directional drilling model which characterizes inclina-

tion and lateral displacement borehole assembly behavior is presented. On this basis, a robust model

predictive control scheme is utilised that can effectively control the complex rotary steerable system

using an uncertain system description, while system stability is preserved by the proposed robust pos-

itive invariant set. The work provides a promising method for effectively automating the inclination

tracking control process in directional drilling applications, to replace the currently employed manual

human-in-the-loop control processes.

Future work will focus on extending this work in 3-dimensional space by azimuth control, considering

time delays on the steering input force, and spatial delay on the output signals at the formulation of

the problem.
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Conclusions

In this chapter, we summarize the contributions of the thesis and also suggest some future research

directions.

7.1 Summary of Thesis Achievements

The main objective of this research has been on the development of efficient algorithms - based on

convex/LMI optimizations using Semidefinite Relaxation - for robust estimation and control subject to

constraints, for norm-bounded structure feedback uncertain systems (presented in Subsection 2.5.2).

Moreover, a particular interest of this thesis is the implementation of the robust algorithms developed

in this research framework into the industrial application of the directional drilling tracking control

problem. In this regard, the main contributions of the thesis are summarized below:

In Chapter 3, two strategies are proposed to reduce the computational complexity of state-feedback

RMPC for linear-time-invariant discrete-time systems, subject to structured uncertainty and bounded

114
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disturbances. In more details, a novel linearization procedure, based on the Elimination Lemma and

S-Procedures, is developed to tackle the nonlinearity and nonconvexity associated with state-feedback

RMPC, with minimal conservatism whilst resulting in a substantially lower computational burden as

compared to similar methods in the literature. The approach requires initial feasible solutions to the

nonlinear matrix inequalities, which however can be obtained offline. Further reduction in the com-

putational complexity is achieved by the second developed algorithm that solves a single LMI for

handling all the constraints in the RMPC problem. Through numerical examples, it has been demon-

strated that the proposed algorithms improve the scalability of the control scheme to fast dynamic

system due to its less demanding computational burden, without compromising its performance or

robustness properties.

In Chapter 4, an investigation of the estimation problem based on past input/output data of linear

discrete-time systems subject to model-uncertainties and bounded disturbances is presented. An on-

line algorithm that computes estimates of the state along with tight bounds is suggested, while con-

servativeness is reduced and computation complexity is maintained low. Importantly, the proposed

robust moving horizon estimation algorithm is formulated in a convex form and optimality is guaran-

teed at every sample time by solving an LMIs optimization problem. Finally, the effectiveness and

superior performance of the proposed MHE algorithm as compared to state-of-the-art algorithms in

the literature is demonstrated by an industrial process example. As shown in Chapter 5, the state

bounds given by the Robust MHE scheme provide valuable information to develop an MPC based

output-feedback control scheme with reduced conservativeness.

In Chapter 5 following similar steps as in Chapter 3, an OF-MPC algorithm based on LMIs is for-

mulated for linear discrete-time systems subject to norm-bounded model-uncertainties, additive state

disturbances and measurement noise. The novelty lies in the fact that the algorithm computes, online,

both the output-feedback gain and a control perturbation through an LMI optimization. A significant

reduction in the computational complexity of the control problem is achieved by a proposed algo-

rithm that solves a single LMI for handling the constraints in the RMPC problem. Moreover, unlike

most output-feedback MPC schemes from the literature which use a fixed (linear) state observer, the

presented algorithm, in order to reduce conservativeness, uses a past input/output data window - in a
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manner similar to Moving Horizon Estimation - to compute (tight) bounds on the current state which

are then used within the control scheme. Note that the suggested control approach requires initial

feasible solutions to the nonlinear matrix inequalities, which, however, can be obtained offline with-

out compromising the performance of the controller. The effectiveness of the proposed techniques, in

terms of robust control performance as well as estimation accuracy, is demonstrated through numeri-

cal examples taken from the literature.

Lastly in Chapter 6, an effective way to simplify a directional drilling model which characterizes

inclination and lateral displacement borehole assembly behavior is presented. On this basis, a robust

model predictive control scheme is utilised that can effectively control the complex rotary steerable

system using an uncertain system description, while system stability is preserved by the proposed

robust positive invariant set. The work provides a promising method for effectively automating the

inclination tracking control process in directional drilling applications.

7.2 Future Research Directions

Based on the findings presented in this thesis, potential future contributions can be achieved by ex-

tending the theoretical framework involving uncertain systems or by its implementation to advance

industrial applications. A list of potential research directions are outline here.

• Theoretical extension

1. The focus of this research has been on developing robust algorithms using LMI opti-

mization for LTI discrete-time systems subject to norm-bounded model uncertainties and

additive input/output disturbances. However, it would be useful to extend these results

for continues-time systems, systems subject to time/spatial delays (as shown in the direc-

tional drilling system in Chapter 6), and linear time-varying systems. In the case of an

LTV system, the uncertainty matrix ∆ becomes ∆k and can be varied over time. However,

the challenge is to convexify these problems in a minimally conservative manner.
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2. Throughout this thesis, we have considered the uncertainty set ∆ as a norm-bounded

model-uncertainty. In theory, it should be possible to extend the results to formulate fault-

tolerant RMPC schemes. In that case ∆ can be taken to be a diagonal matrix where the

diagonal elements can be considered as binary variables. So ∆ii = 0 could correspond to

system faults such as an actuator failure or loss of signals. Research in this direction could

yield some interesting results.

3. Computational complexity, as well as feasibility and stability of the overall control scheme,

can be significantly improved by the use of RPI terminal sets, particularly in the context

of RMPC. There exists a vast amount of literature for the computation of such sets in the

case when all states are measured (see e.g. [99, 100] and the references therein). How-

ever, relatively few contributions have been made for the case when only noisy output

measurements are available (see e.g. [101–103]). To the best of our knowledge, there are

no algorithms in the literature for the computation of these so-called output-feedback RPI

sets for systems subject to both norm-bounded uncertainty and disturbances. Therefore,

a study on output-feedback RPI sets for uncertain systems could potentially lead to some

interesting outcomes.

• Application developments

1. The case study presented in Chapter 6 mainly concentrates on the 2-dimensional (2-D)

directional drilling problem, where the reference signal is defined by the inclination of the

drilling bit. Future work will focus on extending this project to a more realistic 3-D space

by the combination of inclination and azimuth control.

2. Following a very promising simulated result utilizing the developed robust control and

estimation scheme in the directional drilling application, an ideal follow-up would be to

embed these methods into a hardware component and test its performance on a full-scale

prototype.
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