14,231 research outputs found

    A Systematic Framework for the Construction of Optimal Complete Complementary Codes

    Full text link
    The complete complementary code (CCC) is a sequence family with ideal correlation sums which was proposed by Suehiro and Hatori. Numerous literatures show its applications to direct-spread code-division multiple access (DS-CDMA) systems for inter-channel interference (ICI)-free communication with improved spectral efficiency. In this paper, we propose a systematic framework for the construction of CCCs based on NN-shift cross-orthogonal sequence families (NN-CO-SFs). We show theoretical bounds on the size of NN-CO-SFs and CCCs, and give a set of four algorithms for their generation and extension. The algorithms are optimal in the sense that the size of resulted sequence families achieves theoretical bounds and, with the algorithms, we can construct an optimal CCC consisting of sequences whose lengths are not only almost arbitrary but even variable between sequence families. We also discuss the family size, alphabet size, and lengths of constructible CCCs based on the proposed algorithms

    Large Zero Autocorrelation Zone of Golay Sequences and 4q4^q-QAM Golay Complementary Sequences

    Full text link
    Sequences with good correlation properties have been widely adopted in modern communications, radar and sonar applications. In this paper, we present our new findings on some constructions of single HH-ary Golay sequence and 4q4^q-QAM Golay complementary sequence with a large zero autocorrelation zone, where H≥2H\ge 2 is an arbitrary even integer and q≥2q\ge 2 is an arbitrary integer. Those new results on Golay sequences and QAM Golay complementary sequences can be explored during synchronization and detection at the receiver end and thus improve the performance of the communication system

    Good Code Sets from Complementary Pairs via Discrete Frequency Chips

    Full text link
    It is shown that replacing the sinusoidal chip in Golay complementary code pairs by special classes of waveforms that satisfy two conditions, symmetry/anti-symmetry and quazi-orthogonality in the convolution sense, renders the complementary codes immune to frequency selective fading and also allows for concatenating them in time using one frequency band/channel. This results in a zero-sidelobe region around the mainlobe and an adjacent region of small cross-correlation sidelobes. The symmetry/anti-symmetry property results in the zero-sidelobe region on either side of the mainlobe, while quasi-orthogonality of the two chips keeps the adjacent region of cross-correlations small. Such codes are constructed using discrete frequency-coding waveforms (DFCW) based on linear frequency modulation (LFM) and piecewise LFM (PLFM) waveforms as chips for the complementary code pair, as they satisfy both the symmetry/anti-symmetry and quasi-orthogonality conditions. It is also shown that changing the slopes/chirp rates of the DFCW waveforms (based on LFM and PLFM waveforms) used as chips with the same complementary code pair results in good code sets with a zero-sidelobe region. It is also shown that a second good code set with a zero-sidelobe region could be constructed from the mates of the complementary code pair, while using the same DFCW waveforms as their chips. The cross-correlation between the two sets is shown to contain a zero-sidelobe region and an adjacent region of small cross-correlation sidelobes. Thus, the two sets are quasi-orthogonal and could be combined to form a good code set with twice the number of codes without affecting their cross-correlation properties. Or a better good code set with the same number codes could be constructed by choosing the best candidates form the two sets. Such code sets find utility in multiple input-multiple output (MIMO) radar applications

    A Direct Construction of Prime-Power-Length Zero-Correlation Zone Sequences for QS-CDMA System

    Full text link
    In recent years, zero-correlation zone (ZCZ) sequences are being studied due to their significant applications in quasi-synchronous code division multiple access (QS-CDMA) systems and other wireless communication domains. However, the lengths of most existing ZCZ sequences are limited, and their parameters are not flexible, which are leading to practical limitations in their use in QS-CDMA and other communication systems. The current study proposes a direct construction of ZCZ sequences of prime-power length with flexible parameters by using multivariable functions. In the proposed construction, we first present a multivariable function to generate a vector with specific properties; this is further used to generate another class of multivariable functions to generate the desired (pt,(p−1)pn,pn+t+1)(p^t,(p-1)p^n,p^{n+t+1})-ZCZ sequence set, where pp is a prime number, t,nt,n are positive integers, and t≤nt\leq n. The constructed ZCZ sequence set is optimal for the binary case and asymptotically optimal for the non-binary case by the \emph{Tang-Fan-Matsufuji} bound. Moreover, a relation between the second-order cosets of first-order generalized Reed-Muller code and the proposed ZCZ sequences is also established. The proposed construction of ZCZ sequences is compared with existing constructions, and it is observed that the parameters of this ZCZ sequence set are a generalization of that of in some existing works. Finally, the performance of the proposed ZCZ-based QS-CDMA system is compared with the Walsh-Hadamard and Gold code-based QS-CDMA system

    Two-Dimensional Z-Complementary Array Quads with Low Column Sequence PMEPRs

    Full text link
    In this paper, we first propose a new design strategy of 2D ZZ-complementary array quads (2D-ZCAQs) with feasible array sizes. A 2D-ZCAQ consists of four distinct unimodular arrays satisfying zero 2D auto-correlation sums for non-trivial 2D time-shifts within certain zone. Then, we obtain the upper bounds on the column sequence peak-to-mean envelope power ratio (PMEPR) of the constructed 2D-ZCAQs by using specific auto-correlation properties of some seed sequences. The constructed 2D-ZCAQs with bounded column sequence PMEPR can be used as a potential alternative to 2D Golay complementary array sets for practical applicationsComment: This work has been presented in 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwa

    The Construction and Performance of a Novel Intergroup Complementary Code

    Get PDF
     On the basis of the analyses for intergroup complementary (IGC) code and zero correlation zone complementary code, a novel IGC code has been proposed to adapt M-ary orthogonal code spreading spectrum system or quasi-synchronous CDMA system. The definition and construction methods of the new IGC codes are presented and an applied example is given in this paper. Theoretical research and simulation results show that the main advantages of the novel IGC code are as following: The code sets of the novel IGC code is more than IGC code under the same code length. The zero correlation zone length is longer than the intergroup IGC code, but shorter than the intergroup IGC code. Under the same code length, the auto-correlation performance of the novel IGC code is better than that of the IGC code, and both are of similar cross-correlation performance
    • …
    corecore