934 research outputs found

    Performance evaluation of an emergency call center: tropical polynomial systems applied to timed Petri nets

    Full text link
    We analyze a timed Petri net model of an emergency call center which processes calls with different levels of priority. The counter variables of the Petri net represent the cumulated number of events as a function of time. We show that these variables are determined by a piecewise linear dynamical system. We also prove that computing the stationary regimes of the associated fluid dynamics reduces to solving a polynomial system over a tropical (min-plus) semifield of germs. This leads to explicit formul{\ae} expressing the throughput of the fluid system as a piecewise linear function of the resources, revealing the existence of different congestion phases. Numerical experiments show that the analysis of the fluid dynamics yields a good approximation of the real throughput.Comment: 21 pages, 4 figures. A shorter version can be found in the proceedings of the conference FORMATS 201

    Modeling and formal verification of probabilistic reconfigurable systems

    Get PDF
    In this thesis, we propose a new approach for formal modeling and verification of adaptive probabilistic systems. Dynamic reconfigurable systems are the trend of all future technological systems, such as flight control systems, vehicle electronic systems, and manufacturing systems. In order to meet user and environmental requirements, such a dynamic reconfigurable system has to actively adjust its configuration at run-time by modifying its components and connections, while changes are detected in the internal/external execution environment. On the other hand, these changes may violate the memory usage, the required energy and the concerned real-time constraints since the behavior of the system is unpredictable. It might also make the system's functions unavailable for some time and make potential harm to human life or large financial investments. Thus, updating a system with any new configuration requires that the post reconfigurable system fully satisfies the related constraints. We introduce GR-TNCES formalism for the optimal functional and temporal specification of probabilistic reconfigurable systems under resource constraints. It enables the optimal specification of a probabilistic, energetic and memory constraints of such a system. To formally verify the correctness and the safety of such a probabilistic system specification, and the non-violation of its properties, an automatic transformation from GR-TNCES models into PRISM models is introduced. Moreover, a new approach XCTL is also proposed to formally verify reconfigurable systems. It enables the formal certification of uncompleted and reconfigurable systems. A new version of the software ZIZO is also proposed to model, simulate and verify such GR-TNCES model. To prove its relevance, the latter was applied to case studies; it was used to model and simulate the behavior of an IPV4 protocol to prevent the energy and memory resources violation. It was also used to optimize energy consumption of an automotive skid conveyor.In dieser Arbeit wird ein neuer Ansatz zur formalen Modellierung und Verifikation dynamisch rekonfigurierbarer Systeme vorgestellt. Dynamische rekonfigurierbare Systeme sind in vielen aktuellen und zukünftigen Anwendungen, wie beispielsweise Flugsteuerungssystemen, Fahrzeugelektronik und Fertigungssysteme zu finden. Diese Systeme weisen ein probabilistisches, adaptives Verhalten auf. Um die Benutzer- und Umgebungsbedingungen kontinuierlich zu erfüllen, muss ein solches System seine Konfiguration zur Laufzeit aktiv anpassen, indem es seine Komponenten, Verbindungen zwischen Komponenten und seine Daten modifiziert (adaptiv), sobald Änderungen in der internen oder externen Ausführungsumgebung erkannt werden (probabilistisch). Diese Anpassungen dürfen Beschränkungen bei der Speichernutzung, der erforderlichen Energie und bestehende Echtzeitbedingungen nicht verletzen. Eine nicht geprüfte Rekonfiguration könnte dazu führen, dass die Funktionen des Systems für einige Zeit nicht verfügbar wären und potenziell menschliches Leben gefährdet würde oder großer finanzieller Schaden entstünde. Somit erfordert das Aktualisieren eines Systems mit einer neuen Konfiguration, dass das rekonfigurierte System die zugehörigen Beschränkungen vollständig einhält. Um dies zu überprüfen, wird in dieser Arbeit der GR-TNCES-Formalismus, eine Erweiterung von Petrinetzen, für die optimale funktionale und zeitliche Spezifikation probabilistischer rekonfigurierbarer Systeme unter Ressourcenbeschränkungen vorgeschlagen. Die entstehenden Modelle sollen über probabilistische model checking verifiziert werden. Dazu eignet sich die etablierte Software PRISM. Um die Verifikation zu ermöglichen wird in dieser Arbeit ein Verfahren zur Transformation von GR-TNCES-Modellen in PRISM-Modelle beschrieben. Eine neu eingeführte Logik (XCTL) erlaubt zudem die einfache Beschreibung der zu prüfenden Eigenschaften. Die genannten Schritte wurden in einer Softwareumgebung für den automatisierten Entwurf, die Simulation und die formale Verifikation (durch eine automatische Transformation nach PRISM) umgesetzt. Eine Fallstudie zeigt die Anwendung des Verfahren

    Region-Based Analysis of Hybrid Petri Nets with a Single General One-Shot Transition

    Get PDF
    Recently, hybrid Petri nets with a single general one-shot transition (HPnGs) have been introduced together with an algorithm to analyze their underlying state space using a conditioning/deconditioning approach. In this paper we propose a considerably more efficient algorithm for analysing HPnGs. The proposed algorithm maps the underlying state-space onto a plane for all possible firing times of the general transition s and for all possible systems times t. The key idea of the proposed method is that instead of dealing with infinitely many points in the t-s-plane, we can partition the state space into several regions, such that all points inside one region are associated with the same system state. To compute the probability to be in a specific system state at time τ, it suffices to find all regions intersecting the line t = τ and decondition the firing time over the intersections. This partitioning results in a considerable speed-up and provides more accurate results. A scalable case study illustrates the efficiency gain with respect to the previous algorithm

    General distributions in process algebra

    Get PDF

    Modeling and Stability Analysis of Nonlinear Sampled-Data Systems with Embedded Recovery Algorithms

    Get PDF
    Computer control systems for safety critical systems are designed to be fault tolerant and reliable, however, soft errors triggered by harsh environments can affect the performance of these control systems. The soft errors of interest which occur randomly, are nondestructive and introduce a failure that lasts a random duration. To minimize the effect of these errors, safety critical systems with error recovery mechanisms are being investigated. The main goals of this dissertation are to develop modeling and analysis tools for sampled-data control systems that are implemented with such error recovery mechanisms. First, the mathematical model and the well-posedness of the stochastic model of the sampled-data system are presented. Then this mathematical model and the recovery logic are modeled as a dynamically colored Petri net (DCPN). For stability analysis, these systems are then converted into piecewise deterministic Markov processes (PDP). Using properties of a PDP and its relationship to discrete-time Markov chains, a stability theory is developed. In particular, mean square equivalence between the sampled-data and its associated discrete-time system is proved. Also conditions are given for stability in distribution to the delta Dirac measure and mean square stability for a linear sampled-data system with recovery logic

    Simulation Modelling Practice and Theory

    Get PDF
    The influx of data in the world today needs analysis that no one method can handle. Some reports estimated the influx of data would reach 163 zitabytes by 2025, hence the need for simulation and modeling theory and practice. Simulation and modeling tools and techniques are most important in this day and age. While simulation carries the needed work, tools for visualizing the results help in the decision-making process. Simulation ranges from a simple queue to molecular dynamics, including seismic reliability analysis, structural integrity assessment, games, reliability engineering, and system safety. This book will introduce practitioners, researchers, and novice users to simulation and modeling, and to the world of imagination
    corecore