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ABSTRACT 

MODELING AND STABILITY ANALYSIS OF 
NONLINEAR SAMPLED-DATA SYSTEMS WITH 

EMBEDDED RECOVERY ALGORITHMS 

Heber Herencia-Zapana 

Old Dominion University, 2008 

Director: Dr. Oscar R. Gonzalez 

Computer control systems for safety critical systems are designed to be fault tolerant 

and reliable, however, soft errors triggered by harsh environments can affect the per

formance of these control systems. The soft errors of interest which occur randomly, 

are nondestructive and introduce a failure that lasts a random duration. To mini

mize the effect of these errors, safety critical systems with error recovery mechanisms 

are being investigated. The main goals of this dissertation are to develop modeling 

and analysis tools for sampled-data control systems that are implemented with such 

error recovery mechanisms. First, the mathematical model and the well-posedness 

of the stochastic model of the sampled-data system are presented. Then this mathe

matical model and the recovery logic are modeled as a dynamically colored Petri net 

(DCPN). For stability analysis, these systems are then converted into piecewise de

terministic Markov processes (PDP). Using properties of a PDP and its relationship 

to discrete-time Markov chains, a stability theory is developed. In particular, mean 

square equivalence between the sampled-data and its associated discrete-time system 

is proved. Also conditions are given for stability in distribution to the delta Dirac 

measure and mean square stability for a linear sampled-data system with recovery 

logic. 
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CHAPTER I 

INTRODUCTION 

A sampled-data system consists of a continuous-time plant connected with a discrete-

time controller. A very important result is the equivalence between a sampled-data 

and its discretized version, where equivalence means that under some conditions 

the sampled-data is stable if and only if its discretized version is stable. When 

the discrete-time controller is subject to stochastic upsets a recovery mechanism 

is considered such that, these upsets randomly switch the control law between a 

nominal control algorithm and a recovery algorithm. This class of systems will be 

called sampled-data system with stochastic upsets. Since the upsets can randomly 

switch the control law between a nominal control algorithm and a recovery algorithm, 

the effect of the random switching on the stability of the closed-loop system needs to 

be understood. To analyze these effects an objective of this dissertation is to develop 

an appropriate mathematical model of the random switching, the discrete-time jump 

linear controller and the nonlinear continuous-time plant. A second objective is 

to determine if an equivalence between the stability of sampled-data system with 

stochastic upsets and its discretized version still holds1. 

In [40,48] models of sampled-data system with stochastic upsets were derived. 

The stochastic upsets were modeled with a homogeneous discrete-time Markov chain 

(DTMC) and the random switching process between the nominal and recovery al

gorithms with a dynamical transformation of this DTMC. The transformation was 

realized either as a finite state machine (FSM) or as a stochastic FSM (SFSM). To 

simplify the analysis of the discrete-time closed loop system, a joint process, con

sisting of the state of the FSM or SFSM and the DTMC was formed. It was shown 

that this joint process was afeo a homogeneous DTMC and the transition probability 

matrix was derived. It was observed in applications of this theory that the matri

ces needed in the analysis could have very large dimensions, which could introduce 

serious numerical issues. Tlis possible problem motivated the work presented here: 

to derive an alternate model and analysis methodology, where the matrices needed 

for analysis are not as large. In particular, it is necessary that the dimension of the 
1The format in this dissertatisn follows IEEE Transactions. 
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FIG. 1: A simplified block diagram of a closed-loop system switched by the output 
of a stochastic finite state machine with a Markov process input. 

on the recovery algorithm duration. Another open problem that will be studied is 

the relation between stability of a sampled-data system with stochastic upsets and 

its discrete-time version. 

A piece-wise deterministic Markov process (PDP) is a stochastic process that 

study the behavior of a continuous-time system subject to stochastic jumps. In 

particular PDP give a relation between a continuous-time system and the dynamics 

of its stochastic jumps. To model a continuous-time system with a recovery algorithm 

that is randomly trigged, a Dynamically Colored Petri Net, (DCPN) is introduced. A 

DCPN is a bipartite directed graph with two types of nodes: places and transitions. 

Directed arcs connect the places to transitions and the transitions to nodes. A very 

useful DCPN property is that it can be mapped into a PDP [20] for which several 

analysis tools are available. Therefore, two main problems are going to be studied 

in this dissertation. First, establish the relation between the stability properties of a 

sampled-data system with stochastic upsets and its associated discrete-time version 

using results from the theory of PDP. Second, develop the tools to study the stability 

of sampled-data system with stochastic upsets that use smaller dimension matrices 

than in other techniques.. 
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1.1 LITERATURE SURVEY AND MOTIVATION 

A motivation for this dissertation is that safety critical control systems operating in 

harsh environments are affected by common mode faults [25,48]. When the safety 

critical control systems have error recovery mechanisms, it is important to study the 

effect of the stochastic switching triggered by these faults. To study the stability and 

performance of closed-loop safety-critical systems, a closed-loop model that includes 

the interference of the error recovery logic driven by common-mode faults is needed. 

In [40] the closed-loop model was modeled as a jump linear system driven by a FSM 

with a DTMC input. In [48], the FSM was replaced with a SFSM as shown in 

FIG. I to investigate the effects of the following recovery logic: As long as there 

is no upset, the system operates in the normal mode; as soon as an upset occurs, 

the recovery logic switches to the recovery mode. The closed-loop system remains 

in the recovery mode for a random number of sample periods or frames, and then 

returns to the normal mode. During recovery, the control input is held constant 

and detection of new faults is disabled. This simple recovery logic was based on 

a series of simulated neutron irradiation experiments of a prototype flight control 

computer with error recovery capabilities conducted at the NASA Langley Research 

Center. In these experiments, 80% of the recovery periods lasted six frames and 20% 

lasted five frames. For analysis, these systems have been represented as discrete-

time Markovian jump linear systems. Thus, their stability and performance can be 

analyzed by generalizing the theory, for example as in [12,13,15,40,48]. The main 

stability result is a necessary and sufficient condition for the mean square stability 

of a discrete-time Markov jump linear system. This stability result requires the 

calculation of the spectral radius of a specific transition matrix. The dimensions 

of this matrix increase as the duration of the recovery increases. To reduce the 

dimensions of this matrix, dynamically colored Petri net models will be investigated. 

To date, DCPN models have not been applied to fault tolerant sampled-data 

systems. But other models have been used to study interconnected digital and 

continuous-time systems. Sampled-data switching systems, where the digital sys

tem drives the switching at discrete transitions, depending on whether a condition 

on the continuous or discrete states holds or not, were analyzed in [1,34,42,45]. 

Continuous-time systems switched by a digital system driven by a Markov process 

over the sampling interval were studied in [5,32]. An application where continuous-

time dynamics are controlled by a digital device in biological systems was developed 
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in [9,31]. 

1.2 DISSERTATION OUTLINE 

The dissertation is organized as follows. A mathematical descriptions of sampled-

data system with stochastic upsets is introduced in Chapter II. In this chapter 

it is also shown the equivalence between the stability of the sampled-data systems 

and their discretized version. In Chapter III, a sampled-data system including the 

recovery logic is modeled as a stochastically and dynamically colored Petri net. For 

simplicity this model is switched by a continuous-time process. This model is then 

mapped to a PDP. In particular, the PDP is used to characterize the switching 

process produced by the recovery logic. In Chapter IV a model of the sampled-data 

system with stochastic upsets as a PDP is presented that is switched at the sampling 

instants by a discrete-time process. An associated discrete-time system of the PDP 

model is presented for stability analysis. Specifically, a testable sufficient condition 

for the convergence to the delta Dirac measure is given. Finally, in Chapter V, the 

conclusions and future research directions are given. 
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C H A P T E R II 

MODELING AND ANALYSIS OF SAMPLED-DATA 

SYSTEMS W I T H STOCHASTIC U P S E T S 

II . 1 INTRODUCTION 

This chapter analyzes the stability of a sampled-data system consisting of a determin

istic, nonlinear, time-invariant, continuous-time plant and a stochastic, discrete-time, 

jump linear controller. To analyze stability, appropriate topologies are introduced for 

the signal spaces of the sampled-data system. These topologies are used to form mea

surable spaces and to show that the ideal sampling and zero-order-hold operators are 

measurable maps. This chapter shows that the known equivalence between the sta

bility of a deterministic, linear sampled-data system and its associated discrete-time 

representation, as well as between a nonlinear sampled-data system and a linearized 

representation, holds even in a stochastic framework. The equivalence between the 

stability of a deterministic sampled-data system and its associated discrete-time sys

tem when the continuous-time plant is linear time-invariant (LTI), linear time-varying 

(LTV), or nonlinear is well known (see, for example, [24,30,33]). In this chapter it 

is shown that a similar equivalence is possible when the plant is a deterministic LTI 

continuous-time system and the controller is a stochastic jump linear system, that 

is, the stochastic stability of the sampled-data system is equivalent to the stochastic 

stability of its associated discrete-time jump linear system. In addition, when the 

plant is nonlinear and the underlying stochastic process has finite states, it is shown 

that if the origin of the linearized sampled-data system is 2nd-moment stable then 

the origin of the nonlinear sampled-data system is also 2nd-moment stable. The re

sults in this dissertation enable the design of sampled-data jump linear controllers 

by considering only the associated discrete-time representation of the plant. Thus, 

the known results in the discrete-time jump linear system literature such as [8,12,22] 

are given the appropriate foundation to validate their application in the analysis and 

design of sampled-data systems. 

The following notation is similar to that which appears in sampled-data papers 

such as [7,35,44]. Let ' denote transposition. Cn denotes the subspace of continuous, 

Rn-valued functions that map the nonnegative reals, R+ = [0, oo), into R" and are 
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bounded on compact subsets of R+ and right continuous at the origin. Similarly, let 

VCn denote the subspace of piecewise-continuous, R"-valued functions that map R+ 

into R™, are bounded on compact subsets of R+, are continuous from the right, and 

have limits from the left on half-open intervals of the form [to,h) (to,h € R, where 

t0 > 0 and t\ could be finite or infinite). Let Sn denote the space of bounded Un

valued sequences that map the non-negative integers, Z+ , into R". The arguments of 

functions in C™ or VCn will be denoted between parentheses and those in <Sn between 

square brackets. A continuous, real-valued function T belongs to class K if T € C, 

T(0) = 0, and T is strictly increasing on R+. A continuous, real-valued function T 

belongs to class Koo if T G K and limr—oo T(r) = oo. 

II.2 A STOCHASTIC SAMPLED-DATA SYSTEM 

The sampled-data system under consideration is shown in FIG.2, where the A/D 

and D/A conversions are performed by ideal sampling and zero-order-hold opera

tors, respectively. Quantization is not considered. Let (Q, J7, Pr) be the underlying 

probability space, and let {0[k]; k € Z+} be a finite-state, discrete-time random pro

cess that drives the switching of the jump linear controller. The continuous-time 

plant is represented by 

xp(t) = f(xp(t))+Bpu(t) 

y(t) =Cpxp{t), 

where / : V -> Rn*p, V C Mn*» a ball centered at the origin, /(0) = 0 6 Rn*», 

Bp G R«*PX">C, Cp G Rm*>x"**, and t > 0. The deterministic initial condition is 

x(0) = XQ. Assuming that / is continuously differentiable on T>, then the linearized 

state equation of the plant around x = 0, u = 0 is 

xp(t) = ApXp{t) + Bpu(t), 

y(t) = CpXp(t), 

where Ap = [-$£;}Xp=QtU=l0 and g(xp(t)) = f(xp(t)) - Apxp(t). The jump linear 

discrete-time controller is represented by 

xc[k + 1] = A0[k]Xc[k} + Be[k]r][k] 

il>[k] = FcxM 



Plant 

j£r 

vm Jump Linear 
Controller 

> 
W] 

' 

*r 

m 

FIG. 2: A sampled-data system with ideal sample and zero-order-hold operators, <ST 
and Hr, respectively. 

A0[k] € R"*<= *"*<=, B m € R"*cXmP ) a n d Fc e R m « x n , C ] T h e g a m p l e p a t h g o f t h e 

plant's output are sampled at uniformly spaced sampling instants, T, by the sampling 

operator 

<ST : C
m" —> Sm" 

y , — > v = STy= lim y(t), 
t—>(fcT)_ 

where Sm" = {K\K : N -» M.m"} and Cm" = {x\x : R+ -> Rm»}. The sample paths 

of the plant's input are a zero-order-hold transformation of the controller's output 

sequence. The zero-order-hold operator is given by 

%1 . smc — • VCmc 

if) i—• u = HTip, 

where VCmc = {u\u : R+ -» Rm c}, u(£) = ip{k] for all « e [fcT, (k + 1)T), A: e 

Z + . Now the state-space representations of the closed-loop sampled data system 

result in hybrid representations that include both continuous-time and discrete-time 

dynamics. For example, in [24,35] the hybrid systems are given in terms of periodic 



system representations. One such hybrid nonlinear system representation is 

*P(*) 1 = [ f{xp(t))+BpHTFcxc[k} 

xc [k + 1]J \Be[k\SiCvxp(t) + Ae\k\xc [k]_ 

\xp(t)] 
y(t) = cp o xc[k] 

(1) 

xp(i) 
_xc[k + 1]_ 

y(t) = 

Ap BpHiFf. 

Bo[k]SrCp A0[k] 

Cp 0 
xp(t) 

_xc[k}_ 

xp(t) 

_xc[k}_ 

where k € Z+ and kT < t < (k + 1)T. The hybrid system representation linearized 

around x„ — 0, u = 0 is 

(2) 

For simplicity, two sampled-data system modes of operation are considered, nominal 

and upset, as defined next. 

Definition 1. A nominal mode, represented by E#, is a closed-loop system intercon

nection of the continuous-time plant and the nominal controller. A recovery mode, 

denoted by £#, is a closed-loop system interconnection of the continuous-time plant 

and the upset control law. 

The next section presents a framework to guarantee that suitable probability 

measures are properly induced throughout the closed-loop system. 

II.3 THE RANDOM ELEMENTS OF SAMPLED-DATA SYSTEMS 

WITH STOCHASTIC UPSETS 

In this section the hybrid system representation introduced for deterministic, discon

tinuous systems in [46,47] and extended to the stochastic setting in [29] will be used. 

To guarantee that probability measures can be induced throughout the closed-loop 

system, the signals in the sampled-data system will be assumed to be in specific 

measurable spaces, and it will then be shown that this choice results in the sampling 

and zero-order-hold operators being measurable maps. 

The sampled-data system has one source of randomness: the upset process 0[k\. 

The sampled-data system is well posed in the probabilistic sense if all the induced 

probability measures are well defined. A probability measure is well defined on a 
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measurable space if it is a finitely additive measure satisfying the usual properties 

[41]. To present the a-algebras, where the elements of the sampled-data system 

with stochastic upsets have very well defined probability measures, the following 

definitions are needed. 

Definition 2. Let (£, d) be a metric space, where d is a metric on the set £. The 

intersection of all a-algebras generated by open sets in the metric topology is the 

smallest a-algebra containing them. It is called a Borel a-algebra and it is denoted 

by /?„(£). 

The following definition introduces a key mathematical concept used throughout 

this dissertation. 

Definition 3. Let (0,JT) and (E,/30(E)) be measurable spaces. A function X de

fined on Q, and taking values in E is said to be a random element if {u> € Q,: X (u) € 

B} € T for every B € (30(E). X is also said to be a Jr//?0(£')-measurable function. 

Random elements induce well defined probability measure as shown next. 

Lemma 1. Let (fl, J7) and (E,(30(E)) be measurable spaces. If Pr is a probability 

measure in (O, !F) then the probability measure induced by X is 

Pvx(B) = Pr(w : X(w) € B) 

for all B € 0O(E). 

Proof. See [41], Theorem 7, pp. 196-197. • 

Thus, to guarantee that the induced probability measures are well defined, it is 

necessary and sufficient to check that the transformations of the sampled-data system 

with stochastic upsets are random elements. To define the measurable spaces, Borel 

(T-algebras are introduced for each signal space. 

Definition 4. The measurable space for the signal space of sequences is («Sn, /30(<S")), 

where /30(iS") is the smallest a-algebra generated by the open sets Bt(x, y) = {y € 

Sn : GUX,2/) < e} and d^y) - £ £ 1 2-k\x[k] - y[k]\. 

Definition 5. The measurable space for the signal space of continuous functions 

is (Cn,/30(C
n)), where (30(C

n) is the smallest a-algebra generated by the open sets 

Be(x,y) = {y € Cn : d(x,y) < e} and dx{x,y) = X^Li 2~nmin (sup0<t<n \x(t) -
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Definition 6. The measurable space for the signal space of piecewise continuous 

functions is (VCn, (30(PCn)), where f30(VCn) is the smallest a-algebra generated by 

the open sets Be(x, y) = {y e VCn : d2(x, y) < e} and d2(x, y) is the Skorohod metric 

[2,18]. The Skorohod metric is defined as follows: Let E be the collection of increasing 

functions T mapping [0, oo) onto [0, oo) (in particular T(0) = 0, limt—oo T(t) = oo 

and T is continuous). Let E be the subset of Lipschitz continuous functions E c E 

such that 7(T) = sups>t>0 | log T 'Z^ I is well defined. The Skorohod metric is 

defined as: d2(x, y) = infTe:5 max{7(T), J0°° e~ud(x, y, T, u)du}, where d(x, y, T, u) = 

supt>0 min{|x(min{t, u}) - y(min{T(t), u})\, 1}. 

The elements of the er-algebras (30{VCn) and j30(C
n) are sets of functions. A very-

important property is that these sets of functions can be represented as a projection 

of the functions as indicate in the following lemmas. 

Lemma 2 ( [18], pp. 127). For each t > 0, define Ut : VCn —• Mn by Ut(x) = x{t). 

Then (30{VCn) = a(x(t) : x{t) = Ut(x), t€ D andxe VCn), where D is any dense 

subset of [0, oo), and a(Ut : t € D) is the smallest o-algebra generated by the random 

variables Ilt(a:). 

Lemma 3 ([41], pp. 150). For A G /30(C
n) there is a countable set of points {t\, t2, •••} 

and a set B G P0{Sn) such that 

A^{xeCn:(xtl,xt2,...)€B}e(30(C
n). 

These lemmas show that the er-algebras (30(VCn) and f30{Cn) are equal to the a-

algebras generated by the countable projections il( of the coordinate random variables 

in each space. Hence, any event in (30(VCn) and /30(C
n) can be characterized by 

countable specifications in time. With this characterization of the measurable spaces 

and associated cr-algebras, the next lemma shows that the sampling and zero-order-

hold operators are random elements. 

Theorem 1. The sampling operator, ST, and zero-order-hold operator, HT, are ran

dom elements between the following measurable subspaces: 

ST : (Cm",0o(C
m^)) —• (Sm",(30{Sm")) 

HT : {Sm°,0o(S
m*)) —» {VCm%[30{VCm')). 

Proof. The sampling operator is a random element if the inverse image of any event 

in A,(<Sm") is an event in p0(C
m"), that is, {y e Cm" : S^y € B} € f30{Cm>>) for every 
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B E P0(S
mp). From Lemma 3, it is known that every event in f30(C

mp) is determined 

by restrictions imposed on the functions y € Cmp on at most a countable set of 

points. Thus, {y E Cm" : Sjy E B} is an event in f30(C
m"), since every element of 

{y € Cm" : <STy E B} has restrictions given by the countable sequence STy. 

The zero-order-hold operator is a random element if the inverse image of any event 

in /30(VCmc) is an event in po(S
m<), that is {4> E Sm- : Hrf> E B} E (30(S

m°),B € 

P0(PCmc). From Lemma 2, if D = <Q+ then every event in (30{VCmc) is determined 

by restrictions imposed on the functions Hjip on at most a countable set of points. 

Since the action of the zero-order-hold operator is to keep constant the value for each 

t E [fcT, (k + 1)T) when k E Z+ , this means that its restrictions are in (30(S
m°). But 

the countable restrictions of H^ij) are ?/>, this implies that {ip E Sm° : Hjtf) E B} is 

an event in A>(<Sm<=). • 

It is assumed that the state and output of the plant and the jump linear controller 

are random elements, in the following sense. The state xp and the output y of 

the plant are random elements from {9,, J7) to (Cn*",/?0(C
n*»>)) and (Cm»,P0(C

m")), 

respectively. The state xc and the output rp of the jump linear controller are random 

elements from (fi,^) to (£"*<=, A>(<Snxc)) a n d (5mc,/30(5mc)), respectively. Now, since 

the composition of random elements is a random element and applying Theorem 1, 

it follows that the input to the plant, Hrip = HTFXC, and the input to the controller, 

STJJ = SiCxp, are random elements. Thus, it follows directly that all the signals in 

sampled-data systems with stochastic upsets are random elements. 

A random process is a set of random variables. Random processes allow one to 

define the dynamics of the variables of the sampled-data system subject to stochas

tic upsets. These random variables can be modeled as solutions of differential or 

difference equations. The main conclusion of Lemmas 2 and 3 is that every random 

element defined from (Q,F) to (VCn, (30{VCn)) and from (Q,JF) to (Cn,/50(C
n)) is a 

random process. This demonstrates then that the random elements of the sampled-

data system are random processes. This allows one to study the dynamics of a 

sampled-data system with stochastic upsets as developed in the next section. 



12 

II.4 THE DYNAMICS OF SAMPLED-DATA SYSTEMS WITH 

STOCHASTIC UPSETS 

In the previous section, it was shown that the states of the plant and the controller 

are random elements, which are random processes with sample paths in Cnxp and 

<S™Ic, respectively. Stacking them gives a hybrid state vector [ a ^ ) x'c[k]] for the 

sampled-data system. Since the stochastic processes are families of random variables, 

stability of the closed-loop can be analyzed from the coordinate random variables 

[x'p(t) x'c[k]]' € X C Rn-p+n-c, where k £ Z+ and kl < t < (k + 1)T. Since these 

random variables take values X, a subset of M.nxp+nxc, a p-novm can be used to 

analyze stability. The next subsections introduce concepts similar to those in [29] for 

the sampled-data system in (1). 

II.4.1 Stochastic Motions in Sampled-data Systems 

The purpose of this subsection is to characterize the dynamics of the nominal, Ejv, 

and upset, £#, modes of the sampled-data system. Because the variables involved 

are random processes, it is possible to define the random process 

z(t,z[k],e[k})^[x'p(t)x'c[k}}'ex 

with the initial condition z[k] = [x'p[k] x'c[k]] , where 9[k\ is a discrete-time Markov 

chain with finite state space, k e Z+ , xc[k] = asc[fcT], and kT < t < (k + 1)T. The 

random process z(t, z[k],0[k\) depends of the initial conditions z[k] and 0[k\. The 

following definitions from [29] will be used to characterize the modes. 

Definition 7. Let (X, || • \\p) be a p-normed space with X C R"*»+n*c. Let z[k] € 

A C X be an initial state of the system at the initial time kT. A stochastic process 

z(t, z[k],0[k]), t G [kT, (k + 1)T) taking values in X is called stochastic motion if 

z(kT,z[k],B[k]) = z[k] for all w € ft. 

Definition 8. Let S be a family of stochastic motions taking values in X such that 

S C {z(t,z[k},e[k}) : z(kT,z[k],8[k]) = z[k], VA; € Z+,oo e Sl,t € [kT, (k + 1)T)}. 

Then § is called a stochastic dynamical system. 

The stochastic motions z(t, z[k],0[k]) model the sample response of the closed-

loop system. A characterization of stochastic motions for a sampled-data system 

with stochastic upsets is given in the following theorem. 
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Theorem 2. The dynamics of the stochastic motions of the hybrid system (1) are 

given by 

z{t,z[k], 0[k]) = N{kT, t)z[k] + m(t), (3) 

and those of (2) are given by 

z(t,z[k],0[k]) = N{kT,t)z[k], (4) 

where z(t,z[k],0[k]) = [x'p{t) x'c[k)]', k € 1+, kT < t < (k + 1)1, N(kT,t) is the 

nonsingular and bounded matrix 

N(kT,t) = 

and 

m(t) 

eAP(t-kj) ft eMt->)daBpFc 

J^eMt-Dg^^ds 

0 

Proof. In (1), the sample path responses of the hybrid system due to any initial 

states z[k] and 0[k], k 6 Z + result in the following usual convolution response for the 

random process [xp(t), kT < t < (k + 1)T} 

xp(t) = eA"^k^xp(kT) + f eA^-sUs Bpu(s) + f eA»^g(xp(s))ds. 

Because u(s) = HTFcxc[k] it follows that 

Xp(t) = eA^-k^xp{kl) + f eA"^ds BpFcxc[k] + / eA"{t-s^g(Xp{s))ds. 
Jkl Jkl 

xc[k\ = XC[K\. 

The desired result follows by expressing these equations in matrix form. • 
The stochastic motion z(t, z[k],6[k]) has as initial conditions z[k] and 0[k], for 

every k € N, and evolves according to the equations (3) or (4). 

To analyze the stability of the hybrid linearized system (2), its associated discrete-

time system needs to be characterized. It is characterized by interconnecting the 

jump linear discrete-time controller to the zero-order-hold equivalent model of the 

plant as seen from the input/output channels of the controller. The dynamics of the 

associated discrete-time system {z[k}; k € Z+} are given by the following theorem. 
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Theorem 3. The associated discrete-time system, {z[k];k 6 Z + } , for (1) is 

z[k + 1} = M0[k]z[k] + m[k], 

and the associated discrete-time system for (2) is 

z[k + 1] = M0[k]z[k], 

r I ' 
where z'[k] = x'p[k] x'c[k] , 

(5) 

(6) 

M, e[k] 

and 

m[k] — 

eApT Jo' eA*V-sHsBpFc 

Be[k]Gp Ae\k\ 

^eMkT+T-s)g{Xv{s))ds 

0 

Proof. The solution of the differential equation of the continuous-time plant for t € 

[fcT, (k + 1)T) is 

xp(t) = eA"{t-k^xp(kT) + f eA^-s)ds BpFcxc[k] + f eA*(t-s)g{xp{s))ds. 

Jkl Jkt 

The sampling operator gives xp[k] = limt_>(j:T)- xp(t). Thus, 

/•(fc+l)T /-(fe+l)T 
xp[fc + 1] = e^Ta;p[fc] + / eA^kx+T^ds BpFcxc[k] + / eA^kT+7-^g(xp(s))ds. 

Jkl JkT 

The desired result follows by expressing this equation and the expression xc[k + 1] = 

4̂e[fc]#c[fc] + Bg[k}Cpxp[k] in matrix form. • 

Now that the dynamics of the motions of the sampled-data have been defined, 

the pth-moment stability of the sampled-data system can be analyzed. 

II.4.2 Stochastic Motions and pth-moment Stability 

In this section the equivalence between pth-moment stability of the stochastic motion 

representation of the linearized hybrid stochastic system (4) and the pth-moment 

stability of the discrete stochastic system in (6) is shown. The following additional 

definitions from [29] are needed. 
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Definition 9. Let S be a stochastic dynamical system. A set M C M.Uxp+nx° is said 

to be invariant with respect to § if Vfc € Z+ , z[k] — a G M implies that 

Pr (z(t, z[k\ = a, 0[k]) EM,\fte [fcT, (k + 1)T)) = 1 

for all 0[fc]. 

Definition 10. The vector a S M.nxp+nx° is called an equilibrium of the stochastic 

dynamical system § if the set {a} is invariant with respect to S. 

Notice that the origin of Mn*p+na:<: is an equilibrium of the stochastic dynamical 

system (2) since z(t,z[k] = O,0[k]) = 0, Vfc € Z+, t € [fcT, (fc + 1)T), and Vw € SI. 

Thus, Pr(z(i, z[fc] = 0, d[k\) = 0, t 6 [fcT, (A; + 1)T)) = 1 VA; € Z + . The pth-moment 

stability of the equilibrium state at the origin is described next. 

Definition 11. The equilibrium state 0 € M.n*p+nxc of the stochastic dynamical 

system S is stable in the pth-moment if Ve > 0, 3 6 = S(e, k) > 0 such that ||.?[0]|| < 5 

implies £{||z(i,;s[A;],0[A;])||p} < e VA; e Z+ , t 6 [A;T, (fc + l)T). The origin is said 

to be asymptotically stable in the pth-moment if in addition to being stable in the 

pth-momeQt, E{\\z(t, z[k], 6[k])\\p} -»• 0 as k -* oo, t € [fcT, (fc + 1)T). 

The following theorem shows the equivalence between the pth-moment stability of 

the stochastic motions, z(t, z[k],0[k]), and its associated discrete-time system z[k\. 

Theorem 4. The origin of the stochastic dynamic system representation, (4), of a 

sampled-data system with stochastic upsets is asymptotically stable in the pth-moment 

if and only if the origin of the discrete-time system (6) is asymptotically stable in the 

pth-moment. 

Proof. Let the origin of the discrete stochastic system (6) be asymptotically stable 

in the pth-mornent. The stochastic motions (4) satisfy the following inequalities for 

fc € Z+ , te [fcT, (fc + 1)T), and u € ft: 

\\z(t,z[k},0[k]W < \\N{kl,t)\\pMk]\\p 

E{\\z(t,z[k},o[k})\n < \\N(kT,t)\\pE{\\m\n 
Since N(kT,t) is bounded, there exist TV G E + such that ||iV(A;T,i)||p < N for all k 

andi, and therefore, £{||z(i,z[fc],0[fc])||p} < /V£{||z[fc]||P}. Thus, if £{||z[fc]H -* 0 

then £J{||z(i,z[fc],0[fc])||p} —* 0. A similar proof follows when it is assumed that the 
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origin of the stochastic motions (2) is asymptotically stable in the pth-moment. Since 

JV(A;T, t) is nonsingular VA; G Z+ and t G [fcT, (k + 1)T), the following inequalities are 

satisfied: 

\\z[kW < \\N-\K,m'-\\z{t,z[k],0[k])\\p 

E{\\x[k)\n < \\N~\kT,t)\\P-E{Ht,z[k},e[k])\n. 

Thus, if E{\\z(t,z[k},9[k})\\P} - • 0 then £{||z[fc]||»'} -» 0, since N-^klJ) is 

bounded. • 

Therefore, to determine pth-moment stability of the hybrid system (2), it is nec

essary and sufficient to check the pth-mornent stability of the associated discrete-time 

system (6). 

II.4.3 Mean Square Stability of Markovian Nonlinear Sampled-data Sys

tems 

Stability of the nonlinear sampled-data (2) is analyzed when the stochastic process, 

6[k], is a discrete-time Markov chain. Definition 12 defines a Markov chain [6]. 

Definition 12. Let (Cl, T, Pr) be a probability space with a nondecreasing family 

(Tn) of cr-algebras, To Q T\ C • • •. A stochastic process, 6[k], taking values in a 

measurable space (E, E) is called a Markov chain with respect to the measure Pr if 

Pr(0[fc] G B\Tm) = Pr(0[fc] G B\0[m]), 

for all k > m and every event B € E. 

The theory of Markov processes shows that a fundamental role is played by the 

one-step transition probabilities Pr(0[fc+1] € J3|#[fc]) and by the functions pk+i(B\x). 

The latter are called transition functions and are defined such that for every x G E, 

Pk+i('\x) is a probability measure on (E,K) and for every event B G E, pk+i(B\-) is 

a measurable function on E. The relationship between the transition probabilities 

and the transition functions is 

Pr(0[fc + 1] G B\0[k]) = pk+1(B\0{k]) almost everywhere. 

If the transition functions have the following property 

p2(B\d[l\) = pz(B\6\2}) = • • • = pk+1(B\9[k)), k > 1, 



17 

then the corresponding Markov chain is called a time homogeneous Markov chain. 

When E is a finite set, the transition functions are denoted by 7iy = p{0[k + 1] = 

j\0[k] = i), and the matrix II = [fly] is called the transition probability matrix. 

In this section, it is assumed that the stochastic process 0{k] that drives the 

discrete-time controller is a homogeneous, discrete-time Markov chain with initial 

distribution TT(0), transition probability matrix II = [fly], and finite state space 

{1,... ,rjg}. Under this assumption, it is possible to show that the 2nd-moment 

stability of the origin of (2) implies the 2nd-moment stability of the origin of (1). 

First, Theorems 5 and 6 are introduced. They are special cases of known results. 

Theorem 5. [29] Let § be a stochastic dynamical system with an equilibrium at the 

origin and sample paths of the stochastic motions given by z(t, z[k], 0[k}) = z(t, k) € 

X C Rn*p+n*«, k € Z+ , t € [kT, (k + 1)2). The origin ofS is 2nd-moment stable if 

there exists a function V : X —> M+ satisfying: 

(a) ci||z(i,A:)||2 < V(z(t,k)) < c2\\z(t,k)\\2 for all z € X and t e M+ where 

d €M + , i = 1,2; 

(b) E{V(z[k + l])}-E{V(z[k})}<0 fork = 1,2,...; and 

(c) there exists a continuous real positive function h with h(0) = 0 such that: 

E{V(z(t, k))} < h (E{V(z[k])}) for keZ+ andte [kT, {k + 1)7). 

Theorem 6. [12] The origin of (6) is 2nd-moment stable if and only if for any given 

set of complex positive definite matrices {Wi,i = 1,2,...,%}, there exists a set of 

complex positive definite matrices, {Li, i = 1,2,..., rjo}, satisfying 

Ve 

Li-^2niiM'iLjMi = Wi. (7) 

Now, the main result of this section is given. 

Theorem 7. Let 0[k] be a homogeneous, aperiodic, discrete Markov chain. If the 

origin of the linearized hybrid system (2) is 2nd-moment stable then the origin of the 

nonlinear hybrid system (1) is 2nd-moment stable. 

Proof. Mean square stability of the origin of (1) will be shown using Theorem 5. 

Consider the following function V(z(t, k)) = z'(t, k)Lg^z{t, k) for k € Z+ , t G 

[fcT,(fc + l)T), 6[k] € {1,2,...,%} and L* > 0 for i 6 {1,2, . . . ,rje}. The three 

properties of V in Theorem 5 will now be verified. 
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To show the first property notice that for each positive definite Li, i € 

{1,2 , . . . , rie} there exists Aj, A* 6 (0, oo) satisfying 

Ai||z(i,fc)||2 < z'{t,k)Liz{t,k)<\i\\z(t,k)f. 

Thus, 

v» ne 

Yj\\W,k)\\2l{e\k]=i} < 53v(z(t,0)l{«[*]=i} 
i= i t=i 
ne Ve 

^A'||z(i,fe)||2l{e[fc]=i} > J^V(z(t,k))l{e[k]=i}. 

This shows that property (a) is satisfied with C\ — mhij{Aj} and ci = maxj{A*}. 

Now consider the difference 

AV{z, k) = E{V(z[k + 1])} - E{V(z[k})} 

= E{z'[k + l]Le[k+1]z[k + 1]} - E{zf[k]Lmz[k]}. 

The difference expands using Theorem 5 to the following four terms 

AV(z,k) = E{z'\k}{M'mLe[k+i]Me[k] - Le[k])z[k}} 

+ E{z'[k}M'mL9[k+1]m[k]} (8) 

+ E{m'[k)Le[k+i}M0[k]z[k}} + E{m'[k}Le[k+1]m[k]}. 

Each of the four terms on the right hand side (RHS) of (8) can be simplified as follows. 

Since the linearized hybrid system (2) is 2nd-moment stable then by Theorem 4 the 

associated discrete-time system (6) is also 2nd-moment stable. By Theorem 6 the set 

of positive definite matrices {Li, i = 1,2,..., r]g} is a solution of (7) for a given set 

of positive definite matrices {Wi, i = 1,2,..., % } . Thus, the first term on the RHS 

can be shown to be -£] i= i -E{V[/c]Wiz[A;]l{e[fc]=j}}. Arbitrarily choosing Wi = I 

for every i = 1,2, ...,r)g simplifies this first term to —J57|| ̂ ^ [A;] ||2- The next three 

terms on the RHS of (8) can be simplified with the following argument. Since / 

in (1) is continuously differentiable on a neighborhood of the origin, it follows that 

lim||a:p||_o "iffi11 = 0. Alternatively, Ve > 0 3 6 > 0 such that ||xp|| < 6 implies 

||ff(^p)|| < e11rep11. Thus, the second and third terms on the RHS of (8) are less than 

ae£'||z[A;]||2, where a G R+. The fourth term on the RHS can be shown to be less 

than /3e2E||z[fc]||2, where p € R+. Hence, AV{z,k) < - ( 1 - 2ae - (3e2)E\\z[k}f, 

which is less than zero for appropriate e. So property (b) is satisfied. 
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The proof of the third property is based on the following inequality that 

holds almost everywhere ||xp(t)|| < (||#P[fc]|| + ||a:c[fc]||)ifieH2, where Ht,i = 1,2 

are positive constants [30]. In this stochastic framework, for each k € Z + and 

t € [fcT, (k + 1)T) the inequality is ||jcp(i)|| < (H^MII + j|ajc[fc]IDi^xe^2. Since 

IkWII2 ~ \\xp[k]\\2 + ||a5c[fc]||2 the previous expression simplifies to ||xp(£)||2 < 

2i/2e2i/2||z[fc]||2. Combining this inequality with the first property yields: 

V{z(t, k)) < max*{A'} (||xp(i)||2 + ||xc[fc]||2), that is, 

V(z{t, k)) < maxfA'} (2ff1
2e2ft + l) \\z[k]f, 

where ||z[fc]||2 < X$g-y Therefore, 

UUUi\Aif 

Thus, property (c) is satisfied. Since a function V" was found that satisfied the three 

properties of Theorem 5 for (1) then the origin of (1) is MSS. • 

The proof for Theorem 7 also has shown the following corollary. 

Corollary 1. If the origin of the linearized discrete-time system (6) is 2nd-moment 

stable then the nonlinear hybrid system (1) is 2nd-moment stable. 

The summary and main contributions of this chapter are given next. 

II.5 C H A P T E R SUMMARY 

This chapter has introduced a mathematical framework that makes the sampling 

and zero-order-hold measurable mappings, thus making it possible to induce proba

bility measures throughout a closed-loop sampled-data system. Equivalence was then 

shown between the pth-moment stability of a stochastic, linearized hybrid dynamical 

system and the pth-moment of its corresponding discrete-time representation. This 

equivalence also holds for two more stability definitions: stability in the mean and in 

the mean square sense. In addition, for stochastic, nonlinear, hybrid systems with an 

underlying Markovian process, 2nd-moment stability of the linearized discrete-time 

system was shown to imply 2nd-moment stability of the nonlinear system. 
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CHAPTER III 

DYNAMICALLY COLORED PETRI NET (DCPN) 

REPRESENTATION OF SAMPLED-DATA SYSTEMS 

WITH EMBEDDED RECOVERY ALGORITHMS 

III.l INTRODUCTION 

To study the stability and performance properties of a closed loop system, an ap

propriate mathematical model of the recovery logic, the discrete-time jump linear 

controller, the nonlinear continuous-time plant and the stochastic upsets is needed. 

It is important to characterize the switching between the nominal and upsets modes, 

while taking into account the uncertainty in the number of recovery cycles and un

certainty in the switching time between nominal and upset modes. In [48] a model of 

a discrete-time version of a sampled-data system was studied. The theoretical model 

was a stochastic finite state machine (SFSM) modeling the recovery mechanism and 

a discrete-time Markov chain (DTMC) modeling the faults induced in the controller. 

Basically the theoretical model was a SFSM with a DTMC as an input. Using this 

model the switching mechanism was modeled as a DTMC, and its transition matrix 

was derived. A problem with this approach is that as the number of recovery cycles 

increases the size of the transition matrix increases significantly. To avoid possible 

numerical problems associated with large matrices, a goal of this chapter is to in

troduce a model such that the dimension of the transition probability matrix of the 

switching process does not depend on the number of recovery cycles. The idea is to 

model the mathematical description of the sampled-data system in Chapter II and 

the recovery logic as a dynamically colored Petri net (DCPN), where the possibil

ity of inducing a failure in the controller is modeled as a continuous-time Markov 

chain (CTMC). This model is intuitively more appealing than a DTMC because in 

real systems the faults can occur at any time. In this chapter, the recovery logic in 

Definition 13 from [48] is assumed. 

Definition 13. Basic Error Recovery Algorithm As long as there is no upset, the 

sampled-data closed-loop system operates in the nominal mode, Sjy. As soon as 

an upset occurs, the error recovery logic switches the operation of the closed-loop 
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system to the recovery mode, HR, where it remains for a random number of sample 

periods, na or rib, with probability pna and pnb = 1 — pna, respectively. At the end of 

the random chosen duration, the nominal dynamics are restored. The arrival of any 

additional upsets events during a recovery is disregarded. 

The effect of random upsets is interference on closed-loop performance produced 

by the recovery logic. During an upset state, a recovery takes place such that the 

control input is held constant and the detection of new faults is disabled. A recovery is 

modeled with a different difference equation then for the nominal mode. This simple 

recovery logic is based on a series of simulated neutron irradiation experiments of a 

prototype flight control computer with error recovery capabilities conducted at the 

NASA Langley Research Center. In these experiments, 80% of the recovery periods 

lasted six frames and 20% lasted five. For analysis, this class of closed-loop systems 

with error recoveries triggered by random upsets was represented as discrete-time 

Markovian jump linear system [40,48]. Thus, their performance and stability was 

analyzed using the theory developed, for example, in [14]. The main stability result 

is a necessary and sufficient condition for the mean square stability of a discrete-time 

Markov jump linear system, which requires the calculation of the spectral radius of 

a specific matrix. In this chapter another way to model this problem is investigated. 

The interconnection of the recovery logic and the closed-loop system is represented 

using a type of Petri net called a Dynamically Colored Petri Net (DCPN) [4,20]. A 

Petri net (cf. [6]) is a type of graph, consisting primarily of places (possible conditions 

or discrete modes) and transitions (possible switches). Each place can have zero or 

more tokens. At each time instant, the number of tokens in each place defines the 

state of the Petri net. A vector that indicates the number of tokens in each place is 

called the marking of the Petri Net. In a DCPN, at each time instant, the tokens 

have a value corresponding to the solution of a differential equation. It is a simple 

extension to let the tokens have a value corresponding to the solution of a difference 

equation or a system of difference equations. The transitions in a DCPN can be 

partitioned into three classes: immediate, delay and guard transitions. 

The main goal of this chapter is to model a closed-loop sampled-data system, 

where the controller is implemented in a computer with error recovery capabili

ties that are triggered by stochastic upsets, as a DCPN. Since the dynamics of the 

sampled-data are represented with motions, consisting of augmented differential and 
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FIG. 3: A sampled-data system with a stochastic upset process u[k}. 

difference equation solutions, the resulting DCPN will be referred to as a sampled-

data DCPN. It will then be shown that stability can be determined by mapping the 

sampled-data DCPN into a Piecewise Deterministic Markov Process (PDP) [16,17,20] 

using the results from [28]. 

A general block-diagram of the sampled-data system of interest is shown in FIG. 3. 

The random process 6[k] is the output of the recovery logic. The upset generator, 

v[k\i is a discrete-time Markov chain with two states, which models the upset or no 

upset conditions. 

The main concepts of a DCPN are presented in Section III.2. In Section III.3, 

the sampled-data system with a recovery algorithm will be represented as a DCPN. 

In Section III.4 the PDP model of the sampled-data will be presented. Finally, the 

summary is given in Section III.5. 

III.2 DCPN 

This section first presents the definition and basic properties of DCPNs [4,20]. The 

following definition introduces the basic concept and notation of a DCPN. 

Definition 14. A DCPN is an 11-tuple, (V,T,A,Af,S, C,z,gT,V,F,l), together 
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with firing rules RQ—R^. The 11-tuple consists of a set of places V, a set of transitions 

T, a set of arcs A, a node function N, a set of color types <S, a set of token color 

functions C, a set of motions z, a set of transition guards G, a set of delay transition 

enabling rate functions V, a set of firing measures F, and an initialization function 

J , respectively. 

The firing rules are going to be presented after the description of the DCPN 

elements. The firing rules Ro — R4 are used to resolve firing ambiguities. A brief 

description of the DCPN elements together with definitions of the notation is given 

next. 

• V is a finite set of places. The places are labeled as follows V — {Pi,..., P\p\}, 

where \P\ is the number of places. Each place can have a nonnegative number 

of tokens. In this dissertation it is assumed that each place has no more than 

one token. A token denotes which places are active. 

• T is a finite set of transitions. T is partitioned into the set of guard transitions, 

TQ, the set of immediate transitions, 7}, and the set of delay transitions, T&. 

• A is a finite set of arcs connecting a place to or from a transition. The endpoints 

of an arc are referred to as the nodes of the arc. In addition to the ordinary or 

simple arcs, there are enable arcs, which do not reduce the number of tokens 

in their input places. 

• The node function is a mapping, M : A —> (V x T) \J(T x V), that maps 

each arc A 6 A to an ordered pair. The place associated with an arc is 

denoted by P(A). The transition associated with an arc A is denoted by T(A). 

If P(A) is a source node, N{A) = (P(A),T(A)), and if it is a sink node 

N(A) = (T(A), P(A)). Also, let A(T) = {A € A : T(A) = T} C A with the 

partition A(T) = Aia(T)\JAout(T), where Ain(T) and Aout(T) denote the sets 

of input and output arcs of T, respectively. By composition, P(A(T)) is the 

set of places connected to T by the set of arcs A(T). 

• The finite set of Euclidean spaces associated with each place is S, that is, 

S = {W11,.. .,mn\-p\}, where nu i = 1 , . . . , \V\, is the dimension of the i-th 

place, and R° — 0 . Each Euclidean space is called a color type. 
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• The color function is a mapping C : P —> «S that assigns to each place a 

specific color type. For example, C(P(A-m(T))) is the color type of the input 

places of the transition T. If P(AiD(T)) contains more than one place, suppose 

m places, then C{P(Ain(T))) = C(Ph(AUT))) x • • • x C{Pim(Am(T))), where 

ii < ... <im. The color types identify the Euclidean spaces of the solutions of 

the differential or difference equations associated with the tokens in each place. 

• In each place P, a map is defined whenever a token exists as follows: z\t : 

R+ x R+ x C(Pi) —• C(Pi), where, at time t the value is z^(«*), and z* is the 

initial condition at time s, satisfying zl
ss(z

l) = zl. This map has the following 

property zl
st{z%) — zx

ut{zl
su(z

%)), 0 < s <u <t. This map is called a motion token 

function. This could be the solution of a differential or difference equation. It 

is assumed to exist and to be unique. 

• Associated with each T G TQ there is an open set GT C C(P{Am,ov{T))). For 

this case suppose that there is only one input place, where Amt0E(T) is the 

set of input enable, (E), and ordinary arcs, (O). Associated with each T £ TQ 

there is also an indicator function QT : C(P(AilitoE(T))) —> {0,1} such that 

GTMZ)) = 0 for all zst(z) € GT and QrMz)) = 1 for all zst(z) e dGT. dGT 

denote the boundary of an open subset GT for s, t € R+ . GT is an open subset 

of C{P(AmtOE(T))). If C(F(Ain,oE(T))) = 0, GT and dGT will also be empty. 

• The set of delay transition enabling rate functions is defined as follows: T> = 

{5T :TeTD} and ST : C(P(Ain,OE(T))) -> R+, where R+ is the set of non-

negative real numbers. When there is only one input place, the rate function ST 

is a mapping that specifies the parameter of an exponential distribution of the 

delay time random variable DT{T). If zTS(z) G C(P(Am>oE(T))) then a sample 

of delay time, DT{T), is given by DT{T) = mi{t\e~^5T^r,(z))ds < u^ where 

u is a uniform random number. If the color type is empty, ST is a constant 

function. It is the parameter of a exponential distribution. 

• The set of firing measures is F = {FT :TET}. For each transition T the firing 

measure Fj" is a transition kernel. 

• The initialization function specifies the initial marking of the DCPN. It specifies 

the initial number of tokens in each place and a color or a Euclidean space point 

associated with each token. It is a mapping, J : V —* N'p ' x C(V)ms, where 
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N denotes the natural numbers, and C(P)ms selects a specific Euclidean space 

point for each token in each place according to the dimension of the color types 

in each place. 

Next, to define the state of a DCPN, the token and color states are introduced. 

At time t the numbers of tokens in each place is denoted by the marking vector 

G(t) = (v\(t),..., v\-p\(t)) of length l^l, where Vi(t) denotes the numbers of tokens in 

place Pi. This dissertation considers only the case of a 0 or 1 token. This vector will 

be called the token state. The value taken by the vector 6(t) will be denoted by 

9j, where j G {1,2, . . . , 2'pl}, or simply by 9. The colors associated with each token 

are determined by the token color functions associated with each place. Suppose 

that each place only has one token and that the last transition fired at time s. Then 

let z\t(zi) G C(Pi) be the token color function associated with the i-th place P,. 

The token color functions for t > s are aggregated into a single object denoted by 

xs(t) = (z\t(zi),... ,zJ,t'(,S|-p|)), which will be called the color s tate. The value of 

xs(t) will be denoted by x. Now, the state space of the DCPN is (9, xs(t)) taking 

values in the space 

|J { { f l j j x l * ' } , 

where n(0,) ± £ £ l Vi x m, 6j = (vi,..., V\T>\), and n, is the color dimension of the i-th. 

place. The cr-algebra defined on this space is denoted by f3{\Jje2w\ {{#?} x R n ^ } ) . 

This state space together with its cr-algebra will be called the measurable space of 

the DCPN. 

When a transition fires, it takes a token from its input place or places and puts 

it into the transition's output place or places. These transformations, called firing 

measures, are characterized for each transition with a transition kernel. The set of 

firing measures is F = {FT(0', C\0,X) : T € T} . For each transition T the firing 

measure FT(9', C\9,x) is a transition kernel, that is, 

• for every event (<?',C) G /3{\Jje2m {{8j} * M"(ej)}), FT(9',C\-, •) is a nonnega-

tive measurable function on \Jje2w\ {{#?} x M n ^ } , and 

• for each (6,x) € \Jj&2m {{9j} x RB<*'>}, FT(-,-\9,x) is a probability measure 

on/3(\Jj€2m{{8j}xR^}). 
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Thus, this transition kernel, FT, gives a probability to the event (#', C) given that 

the state of the DCPN is (8,x). Note that the entries of (8, x) are the token and 

color states that pre-enabled the transition T. The entries (8', C) are the new token 

and color states of the output places of transition T. A transition T is pre-enabled 

if it has at least one token per incoming arc in each of its input places. 

For modeling purposes the elements of the DCPN help to get the model devel

opment. To determine if a DCPN model captures the desired behavior of a system, 

the execution of a DCPN needs to be described. But first, the following definitions 

are needed, the time when T is pre-enabled is denoted by 

rfre = inf{£|T is pre-enabled at time t}. 

A transition T is enabled if it is pre-enabled and a second requirement holds. 

For an immediate transition the second requirement holds immediately. For the 

delay transition, the second requirement holds £)(rfre) units after rfre. For guard 

transitions the second requirement holds when £/Qp(zrp>-e((,z)) = 1, whenever zTp™t(z) e 

OGT- If the transition T is enabled, then the transition T fires. This means that 

T moves token and color states from its input places, (8, x), to its output places 

according to its firing measure FT(-, -\8, x). 

Now the firing rules are introduced: 

RQ: Immediate transitions fire with a higher priority than guard and delay tran

sitions. 

R%: If one transition becomes enabled by two or more sets of input tokens at 

exactly the same time, and the firing of any one set will not disable one or more of 

the other sets, then it will fire these sets of tokens independently, at the same time. 

i?2: If one transition becomes enabled by two or more sets of input tokens at 

exactly the same time, and the firing of any one set disables the other sets, then 

the set that is fired is selected randomly. Each set of inputs tokens has the same 

probability of firing. 

R3: If two or more transitions become enabled at exactly the same time, and the 

firing of any of one transition will not disable the other transitions, then they fire at 

the same time. 

R4: If two or more transitions become enabled at exactly the same time and the 

firing of the transitions disables another transition, then the transition that will fire 

is selected randomly. The transitions have the same probability of firing. 



27 

For the application considered in this dissertation it is only necessary to illustrate 

the execution when only one delay condition and one guard condition are pre-enabled. 

The execution in this case is as follows. 

(a) Using the initialization function, X, the token and color states, (0(0), x(0)), of 

the DCPN at time To = 0 are chosen and as well as the motions related to the 

token distribution 0(0). 

(b) With these initial tokens and colors states, a set of transitions are pre-enabled 

and the motions are evolved. 

(c) Suppose that a delay transition To and a guard transition TQ are pre-enabled. 

Using the exponential distribution suppose T\ is chosen, and at time T2 the 

motion reach the guard condition. 

(d) Now, without loss of generality, suppose T\ < T2. Then the motion xTo(t) 

evolves from To to T-,-, and To is enabled and fires using the firing measure 
FTD(-,-\0(rr),xw(T^)), where 6»(rf) = 0(0) and X(T{~) = l im t_n xTO(t). With 

this firing measure the new token and color states, (9(TI),XTI(T{)), are chosen. 

(e) At time T\ suppose that the pre-enabled transitions are T'D and To, and that 

the guard transition is enabled at time T2 before the delay transition T'D is 

enabled. 

(f) At time r2 the transition TQ fires using the firing measure 

Fro(v|0(T2-),xn(r2-)). 

(g) Finally, the process repeats from the beginning. 

From the execution of the DCPN the following elements are generated: the stop

ping times Tk and states of the DCPN (0(t), xn(t)), where 9(t) — 0(rfe_i). x^^t) is 

the value of the color at time t with initial condition xTk_x(Tk-i) and t € [Tk-i,Tk). 

Each execution of the DCPN generates a sample path which is generated randomly 

by the exponential distribution of the delay transitions and firing measures of the 

transitions. Next, the nature of the stochastic process corresponding to these sample 

paths is presented. 
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III.2.1 The Stochastic Process Nature of a DCPN 

The execution of a DCPN generates a sample path from a stochastic process which 

is uniquely defined as follows. The process state at time t is defined by the numbers 

of tokens in each place and the colors of these tokens. To make this characterization 

of a DCPN equivalent to a stochastic process, define the set of random vectors as 

follows. 

Definition 15. The stochastic process generated by the execution of a DCPN is the 

set of random vectors (0(t),xs(t)) indexed by s,t € M+ such that 

(0(t),*.(*)) : f i - |J { { ^ } x l « } . 

The sample of random variable 0{t) at time t is 6(t) = (vi(t),...,V\p\(t)) and the 

sample of random variable xs{t) is x„(t) = (z*t(zi),..., rst \z\-p\)). 

For analysis, it is important to characterize the stochastic nature of a DCPN. In 

particular, its probability measure, Pr(0(£),sca(<)), needs to be characterized. There 

is no compact representation of this probability measure. It is determined through 

the delay time, guard condition and the transition kernel Qt. The transition kernel, 

Qt, is characterized using the reachability graph of a DCPN. The reachability graph is 

a graph with two elements, the nodes, which are the token states 0, and the arrows, 

connecting the nodes. These arrows are labeled by the transitions that allow the 

transfer between nodes. 

The transition kernel Qt(9',C\9,x) has the following two properties: 

• For each event (ff,C) e /3(Uje2iPi {{fy} x K n f t ) }) , Qt{9',C\-,-) is a non-

negative measurable function on \Jj€2\r\ {{#?} x R " ^ } . 

. For each (0,x) € \Jj&m {{**} x ^n(0j)}, <3t(v |M) 
is a probability measure 

<*0(Uieai*i{{0,}xR»W}). 
The transition kernel Qt is characterized in terms of the DCPN, (V,T,A,M,S, 

C, z, Q, V, F, J ) , as follows. 

(a) Determine the set of pre-enabled transitions. For every state (6(t), xs(t)) 

determine the set of transitions that are pre-enabled using the reachability 

graph. The possible transitions from a node 6 are given by the labels of the 

output arrows, which correspond to the pre-enabled transitions. Let Be denote 

the set of this pre-enabled transitions for each 9. 

file:///z/-p/
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(b) Determine the probability that the pre-enabled transitions become 

enabled. All the immediate transitions in Bg, that is, those in BgHTj, become 

enabled with probability one. Let 

59
Gi{fleB$\ WeBenTG, xs(t) edGT}. 

If Bf is a unitary set then the probability that the guard transition becomes 

enabled and fires, PB(9,X), is equal to one when the guard condition is true. 

If Bf = 0 then only delay transitions can be pre-enabled in (9, x). Consider 

the set B$ = {B € Be\VT e Bl>TD}. If B € B$ consists only of one delay 

transition, then the probability that it becomes enabled and fires is equal to 

, .<,, ,)* *&e>L. (9) 
TeB° 

In this dissertation, the cases where Bf and B® have more than one elements 

are not considered. 

(c) Determine for each pre-enabled transition whether its firing can lead 

to token state 9'. In the reachability graph, consider the possible ways of 

going from 6 to 9'. First, the firing of only one transition takes 9 to 6'. Second, 

the firing at the same time of m transitions, T\, T2, • • • , Tm, take 9 to 9'. This 

is denoted by Ti + T2 + • • • + Tm. It is assumed that guard and delay transitions 

do not fire at the same time. Third, the firing of one or more transitions, 

T\ + T2 H \-Tm, enables an immediate transition, T, which when fired takes 

9 to ff. This is denoted by 7\ + T2 + • • • + Tm o T. The set of transitions that 

allow one to move from 9 to & is denoted by Cop. 

(d) Characterization of Qt. The transition kernel Qt is given by 

Qt(9', C\9, x) = J2 PO',C\O,X,L(9', C\9, X, L) X pmx(L\0, x) (10) 
Lecee> 

for every Cge>, where: 

• The probability of enabling a transition L, pL\e,x(L\9, x), is found as follows 

PwAWx) = J,dd,X) . if Cev C Be. (11) 
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Now if L\ is an immediate transition and L o L t then 

PLl0L\e,x(Li o L\6, x) = Pz,|0,x(L|0, X). 

The others cases are not consider in this dissertation. 

• The firing measure of transition L, p$>,c\e,x,L(6'', A\d, x, L), is defined as 

follows 

vv,c\o*A&, A\o, *, L) = FL(e', c\e, x). (12) 

If the transitions L\, L2 fire simultaneously, denoted by L\ + L2, then 

P0',C|0,z,Li+L2(#'> C|^> x> -̂ 1 + £2) -

J l{e>,c){e'y,e2,CuC2)FLl(0i,dl^,x)Fi2(02,C2|0,x)d(0i,^)d(d,C2), 

where l(0',c)(0'i!02>Ci>C2) takes the value of one if {0[,6'2) = 0' and 

(Ci, C2) € C otherwise zero. 

If more than one pair of transitions fire simultaneously the procedure is 

the same. If the firing of transition L± enables the immediate transition 

L, denoted by Li o L, then 

Pe>,c\9,x,Lx°L(8', C\6, x, Lx o L) = 

I 7L{9',C\a)YLl{a\6,x)d{a). 
Ajje2|J>|{{<?3-}xKn(V} 

Next, an example is given where a DCPN model of a continuous-time Markov 

chain is developed and its transition matrix Qt is obtained. First, a continuous-time 

Markov chain (CTMC) is defined. 

Definition 16. Let {x(t),t > 0} be a stochastic process defined on a probability 

space (fi, T, Pr) with states in a set E. Then for every set of times to < t\ < • • • < 

tk < tk+i the following equality holds: 

Pr(x(tk+1) = xk+1\x{tk) =xk,x(tk-i) = xk-i,...,x(t0) = xQ) = 

Pr(aj(*fc+i) = xk+i\x(tk) = xk), k>0. 

In order to characterize the probability measure of the continuous-time Markov 

chain, it is necessary to have an initial state probability measure VQ(X), X € E and a 



31 

FIG. 4: DCPN model of a CTMC. 

transition matrix P(i), where the (i,j) entry, pXiXj{t) = Pr(x(t) = Xj|a;(0) = Xj), is 

the probability of transition from Xi to Xj within time interval of duration t. Finally, 

the transition matrix, P(t), is a solution of the Chapman-Kolmogorov equation P = 

P(t)A, where A is the transition rate matrix, that is P(i) = eAt. The following 

example shows how to model a continuous-time Markov chain as a DCPN. 

Example 1. Consider the continuous time Markov chain (CTMC) with two states 

-Ai Ax 

A2 — A2 
{ni,ri2}, transition rate matrix A 

matrix 

P(*) = 

Ai, A2 € M+, and transition 

A 2 + A i e - ' ^ i + A 2 > 
A1+A2 

_ A 2 A 1 + A 2 

-Ai e
-t(\1+\2)_1 

Ai+A2 

A i + A 2 e - ' ( A i + A 2 ) 
A1+A2 

Its DCPN model, shown in FIG. 4, consists of two places, V = {711,712}, and two 

delay transitions T = {Ti,T2}. Since there are no motions associated with the 

CTMC states, the set of colors is empty; the initialization function is only the initial 

distribution v, which assigns a token to either place ni or n.2', the transition enabling 

rate functions are <5Tl : C(P(Ain(Ti))) -* R+, <% : C(P(Ain(T2))) -> M+, which give 

the parameters ^ ( 0 ) — Ai and ST2($) = A2 of the exponential distributed random 

variables DTX and DT2, respectively. There is not a color state. The token state, 6, 
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is just the marking of each place, i.e., 6(t) = («i(£), v2(£)). Note that the token state 

at each time t takes values in {(1,0), (0,1)}. Let 6>j = (1,0) and 02 = (0,1). The 

measurable space of the DCPN model of the Markov chain is ({81,62}, /3({#i, #2})) • 

The transitions fire according to the following transition kernels 

FT:{e1,e2}xp({e1,e2}) - [0,1], 

where i = 1,2. At time t, the state 9(t) enables the transition T. In particu

lar, for transitions Tj and T2, FTMW)) - P»i«,(*) a n d F i i W a ( t ) ) ~ Pn2ni{t), 

respectively, where p„ini(<) = ^ Y i + V " ' ' Pm^W - * ~ PmrnW* Pn2m(<) -

-A2
e~t(

A
A

1
1^2

2
)~1, and p„2„2(£) = 1 -p„2f l l(£). 

The execution of the DCPN model of the continuous-time Markov chain is as 

follows: 

(a) A random number is generated with the initial distribution v to place a token 

in «i or n2. Suppose that the token is given to place n\. 

(b) The token distribution is 61 and transition T\ is pre-enabled. 

(c) Using the exponential distribution with parameter Xi a time ax is chosen. 

(d) The token state remains at 9i until n = o\ when the transition T\ is enabled. 

Using the measure FT 1 (^ | ^ I (TI ) ) = Vnxmiji)-, the token state is chosen. Suppose 

62 is chosen. 

(e) The transition T2 is pre-enabled, and using the exponential distribution with 

parameter A2 a time a2 is chosen and r2 = T\ + <r2. 

(f) At time r2 the transition T2 is fired with firing measures FT2(#i|#2(<7"2)) = 

p„2ni(<72), and the execution repeats from the beginning. 

TABLE I is used to form the transition kernel Qt : {0i,92} x P({0i,62}) —> [0,1] as 

follows: 

(a) Determine which transitions are pre-enabled. The pre-enabled transi

tions depend on the token state. Since there are two possible states, there are 

two pre-ena,bled delay transitions B^ = {T\} and B^ — {T2}. 
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01 

02 

01 
Tx 

T2 

02 
Tx 

T2 

TABLE I: Reachability table for a CTMC 

(b) Determine the probability that the pre-enabled transitions becomes 

enabled. Let J3# = {Tx} and Bg = {T2}. Then using Equation (9) the 

probabilities are 

2_j *r(0) A l 

andpr2(02) - 1. 

(c) Determine for each pre-enabled transition whether its firing can pos

sibly lead to a token state. Since from 0j and 02 it is possible to reach 6x 

and 02, then C6iei = C01e2 = {Ti} and £02ei = Ce2e2 = {T2}. 

(d) To characterize Qt, use the previous two steps and the set of firing 

measures. Using Equation (10) and the fact that there is no color, it follows 

that 

Qt(0i\ej)= ]T ve^LWhV'PwAWi)-

Using Equation (11), the probabilities pL\e.{L\dj) for the L elements of the set 

are 

n (T\ft\ PTx^i) PTM T 
2 ^ PB(0I) PTAOI) 

PT2\e2{T2\82) = 1. 

Using Equation (12), the probabilities pgt\e.iL(6i\9j,L) are 

A2 + Aie-*(Al+Aa) 
Pe^rM^Ti) = F7i(fl1|6»1(0)=pniB1(0 = 

Pfalfli.Tx^l^i.Ti) = l - p ^ n W i . T i ) 
Ax + A2 
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I _ e-*(Ai+A2) 
Pfli|fe,ib(^i|^,r2) = FTa(0i|02(t)) = Pn2ni{t) = A 2 —r-— and 

Ai + A2 

Using these probabilities, it follows that 

Qt = [QtWj)] = 
A2+Aie- t < A i+ x 2) _ \ e " t < A i + A 2 ) - l 

A1+A2 A l A1+A2 
X e - ' ^ i + ^ 2 ) - l Ai+A2e-«<*i+A2> 

A 2 Aj+Aa Ai+A2 

This example provides a DCPN representation of a continuous-time Markov chain. It 

shows a stochastic process characterization of the DCPN, including the methodology 

for obtaining the transition matrix of a continuous-time Markov chain. 

Next a DCPN model for a sampled-data system will be presented. 

III .3 D C P N REPRESENTATION OF SAMPLED-DATA SYSTEMS 

W I T H RECOVERY ALGORITHMS 

The DCPN representation of the stochastically switched sampled-data system in 

FIG. 3 is analyzed in this section, The advice from [3,19] was very important for the 

development of this section. The closed-loop system is formed by a continuous-time 

plant interconnected with a discrete-time controller. Because the system is in a harsh 

environment, the controller is subject to fail, and when the controller fails, it is in an 

upset mode. This behavior is modeled by a DCPN as shown in FIG. 5. This DCPN 

has the following elements: 

(a) The set of places V = {ni ,n 2 ,S^ ,E R } model the upset, no upset, nominal 

mode and upset modes, respectively. 

(b) The set of transitions T = { T G , T I , T 2 , T 3 } , where TQ is a guard transition, 

modeling the recovery frames, Tt, i — 1,2 are delay transitions, modeling the 

time when an upset or no upset occurs, and T% is an immediate transition, 

modeling the jump from nominal to upset mode. 

(c) The set of arcs, A, and the set of nodes functions, Af, are shown in FIG. 5. 

(d) The set of colors is <S = {Rn^+n^+i ^nXp+nXc+2^ 0 ^ w n e r e n ^ a n ( j n^ a r e the 

dimensions of the state of the plant and the state of the controller, respectively. 
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(e) The color function C : V —> S is defined as follows: To the place Y.N assign the 

color flj"*p+n*c+i) to the place E# assign the color M.nxp+nxc+2, and the places 

n\ and n2 have no colors. 

(f) The motions are defined as follows: 

C(EAT) H-> zJt(z) € M"*p+"*c+i 

where zjt(z) is the motion modeling the nominal closed-loop system in a cross 

product with a sojourn time a € M+. Zgt(z) is the motion modeling the upset 

closed-loop system in a cross product with two sojourn times as follows. z2
st(z) 

take the values of z(s,na),z(s,rib) or z(s,0), which model the motions of the 

recovery closed-loop system with two sojourn times (na,a), (rib, a) a n d (0, ff), 

respectively. z2
t(z) take the values of z2

st(z(s, na)) or z2
st(z(s,rib)), which model 

the motions of the recovery closed-loop system with initial conditions z(s, na), 

z(s, rib) and with two sojourn times (na — (t — s),a — (t — s)), and (rib — (t — 

s),a — (t — s)), respectively. The sojourn time a is a sample of a exponential 

distribution with parameter Ai or A2, the sojourn times na,rib are the number 

of recovery cycles. Finally the places nx and n^ have no motions. 

(g) The guard condition is defined as follows: QTG : C(P(Am(TG))) = R"*P+"*C+2 _> 

{0,1}, QTG (z2
t) evaluates to 1 if z% e 8GTG = {(y' t)'\y € R"*P+"*C+I and t = 0}, 

and GTa = {(y' t)'\y € Kn*P+n*c+i and t e M+}. In others words, when the 

sojourn time reach zero the guard condition is true. 

(h) The transition enabling rate functions are 5TX • C(P(A-m(Ti))) —> M+, 5T2 • 

C(P(Aia(T2))) -> R+, where 5Tl($) 4 \1 and 5T2($) 4 A2, respectively. 

(i) The initialization function 2" puts a token in the places Ê v and rii, and the 

colors are C(Ejv) = z^(;z) and C(rii) — 0. 

The token state is 0(t) = {v\(t), V2(t), Vs(t), V4(t)}, where 9(t) denotes the tokens 

in places m,7i2, Ejv, and E,R, respectively. The possible values of 6(t) are 0\ = 

(1,0; 1,0), 02 = (1,0; 0,1), 03 = (0,1; 1,0) and <?4 = (0,1; 0,1). The color state is 

x(t) = (zlt,z
2
st), where z\t € Rn*P+n*c+i a n cj z ^ € RnXp+nxc+2_ z ^ c a n t a k e t n e v a m e s 

*(*. na), z(s, nb), z(s, 0), z2
st(z(s, na)), and z^(z(s, n6)). 
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FIG. 5: DCPN model of a sampled-data system. 

The measurable space of the DCPN is ( | J t i { W x Kn ( 0 i )}, /3(Uti { W x 

Rn<'*>})), where n(0i) = n(03) = nXp + nXc + 1, n(02) = n(04) = nXp + n Ic + 2 and 

the a-algebra defined on this space is denoted as /?(U i=1 {{0«} x R " ^ } ) . From the 

description of the sampled-data system with recovery algorithm, it follows that the 

states of the DCPN are as follows: 

• No upset and nominal closed-loop system is denoted by ax = (8i,zlt(z)). 

• Upset, recovery closed-loop system and sojourn time na is denoted by a-i = 

(94,z(s,na)). 

• Upset, recovery closed-loop system and sojourn time rib is denoted by 03 = 

(04,z(s,n6)). 

• No upset, recovery closed-loop system and sojourn time evolving from rib to 

zero is denoted by a4 = (d2,z2
at(z(s,nb))). 
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• No upset, recovery closed-loop system and sojourn time evolving from na to 

zero is denoted by a5 = (&2,z2
st{z{s,na))). 

• Upset, recovery closed-loop system and sojourn time evolving from na to zero 

is denoted by a^ == (04,z%t(z(s,na))). 

• Upset, recovery closed-loop system and sojourn time evolving from nj to zero 

is denoted by 07 = (#4, z2
st(z(s, rib))). 

• No upset, recovery closed-loop system and 0 sojourn time is denoted by ag = 

(02,z(s,Q)). 

• Finally, upset, recovery closed-loop system and 0 sojourn time, ag == 

(64,z(s,0)). 

Now that DCPN states have been identified the firing measures are described as 

follows. If the token states are #i and #2, then the firing measure of T\ is defined as 

follows 
4 4 

FT, : \J{{0i} x Rn<fl«>} x / ? ( ( J{W * K" (0 i )» ~> [°-1] 
1=1 »=i 

FT^ZUZWUZKZ) 4 Pnv(T), 

F T l (^ , Z 2 t | ^ ,4 ( r ) ) 4 P n i . ( r ) , 

where Z2(T) take values ZgT(2:(s, na)) and z2
T(z(s, rib)), a n d X^=iPnmi (r) = 1. When 

the token state is 64, then the transition is T2 with firing measure given by 

FT 2 :U{W x ^'}^(LJ{W x r ( 9 i ) } ) -* M 

FTa(«2,4)1^4, «2(r)) ^ p„2ni(r) 

F r2(^4,z^)|^,22(r)) 4 p„2„2(r), 

where p„2m(r) +Pn2n2(T") = 1, Z2{T) takes the values z(T,na), z(T,nb),z
2

ST(z(s,na)), 

and z^T(x(s,nb)). When the token state is #3, the pre-enabled transition is T3. Its 

firing measures is 

4 4 

FT3 : U{{*i} x Rnm} x #( LK W X R" ( e < )» ^ (°' ̂  

FT3(^4, z{T,nb)\d3,zlT(z)) = p„6, 
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where pna +pnb = 1. Finally, when the token states are 92 and 64, the pre-enabled 

transition is To- Its firing measure is 

4 4 

FTa:\J{{ei}xmn^}xP((J{{9i}xRn^}) - [0,1] 
t=i t=i 

FTo(ei,z^(z)|(92^(r,0)) 4 1, 

Next the execution of the DCPN model of the sampled-data system is presented. 

III.3.1 DCPN Execution of Sampled-data Systems with Recovery Algo

rithms 

The execution of a DCPN yields a series of increasing stopping times. The token 

and color states are as follows. 

• The initialization function X with probability one gives a token to the places 

SJV and n\. This means that the initial DCPN state is ai = {0i,z\t{z(Q))). 

• Because the DCPN is in state a\, the delay transition 7\ is pre-enabled. 

• Using the exponential distribution with parameter Aj, a time T\ is chosen. 

• The DCPN remains at state a\ until t = T\, when the transition T\ is enabled 

and fires using the measure FX 1 (^ ,Z^ IJ(2) |^ 1 ,ZQT I (^(0))) . Suppose the state 

(0i,zllt(z)) is chosen. 

• At time T\ the delay transition 7\ is pre-enabled, and using an exponential 

distribution with parameter Ai a time o\ is chosen. 

• The DCPN remains at state a\ until r^ = T\ + o\, when the transition T\ is 

enabled and fires with firing measure YTl(0j,z\2t{zi)\6i,z}nT2{z)). Suppose 03 

is chosen. Then the immediate transition T3 is enabled and fires with firing 

measure FT3(04, zfa, -)\&3, z^r2(zi))- Suppose that the state a2 = (04,z(T2,na)) 

is selected. 

• At this moment To and T2 are pre-enabled. The transition To is enabled 

after na sojourn times, and T2 is enabled after a2, which is chosen using the 

exponential distribution with parameter A2. 
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• The DCPN remains at state a2 until r3 = T2 + <J2, when the delay transition T2 

is enabled and fires with firing measure FT2{0j,C\d4,zl2T3(z(T2,na))). Suppose 

a$ is chosen. 

• This process go on until time r2 + na, when the guard transition is enabled 

and fires with firing measures FTo(0i,z\n^)t(z)\e2,z^{vt+na)(z(T2,na))) = 1 or 
z(T2+na)t(z)l^4'ZT2(T2+na)(2(T2'na))) ~~ ^ w^c^ depends on whether the 

DCPN state is in 02 or 04. 

• Finally, the process repeats from the beginning. 

Now that a sample has been defined, the transition matrix, Qt, can be character

ized as follows: 

(a) When the token states are 8i for i = 1,2,3,4, the following transitions are 

pre-enabled 

Bex = {T{\, Be2 — {Ti,TG}, BQ3 = {T2,TS}, Bgt = {T2,TG}-

(b) Determine for each pre-enabled transition the probability with which it is en

abled and fires. Let Bg = {7\}, Bg = {T\}, Bg = {T2} and Bg = {T2}. 

Using Equation (9), the probabilities are then 

PTM) = T = 1, PrM = PrM = PTM) = 1-

Let Bg = 0 , Bg = {TG : z(s,0) € dGTo}, Bg = 0, Bg = {TG : z2(s,0) € 

9GTG}- Using the fact that these guard condition became true, it follows that 

PTG(62,Z(S,0)) = 1, PTG(84,Z(S,0)) = 1. 

(c) Determine the sets of pre-enabled transitions that lead to another token state. 

A w i — {Ti}, £0x02 = 0, £0103 — $> £0104 = {̂ 3 ° T\), 

£0201 = {TG}I £026*2 = {^i}) A>203 = 0> £«204 — {^i}> 

£0401 = 0) £0402 = {^2}) £0403 = 0) £0404 = {^2,73 O TQ}. 

(d) To characterize QT, use the previous two steps, the set of firing measures and 

Equation (10). According to the execution, it is possible to go from the state 
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ai to the states ai,a2 and a3. Using Equation (10), it follows that 

xPLleuZiT(L\euzlT) 

QT(0i,zlt\6i,zlr) = •Pei,zit|e1,2iT,Ti(^i)zrtl^i'zSr.ri) x ^ri|ei,zjT(Ti\0i,z*T) 

Qr(^l,4(t)l^l)z«r) = FTi (̂ 1) zrt 1̂ 1 >Z*T) X h\a\ l\ 

QT^I .Z^I^ I .ZJ , . ) = p„ i n i(r) 

(04,*(r,no)|01,zir>:T3oT1) 

Qr(^4,22(r, na)|0i, z*r)) = FT3(04, 22(T, no)|03, z^T)FTl (03, z^u ZL) 

^ ( 0 ! , ^ ) 
Q T ^ . ^ ^ n a J I U i . Z ^ ) = PnaPnin2(T) 

QT(0i,z2(T,nb)\6i,zlT) = p„ tpni„2(r). 

It is possible to go from state a2 to either as or a6. Similarly, it is possible to 

go from 03 to either a4 or aj. Thus, 

Q T ( 0 2 , Z ^ | 0 4 , * 2 ( T ) ) = Pd2iZitleiMT)tT2(d2,z
2

Tt\94,z2(T),T2) 

xPr2|e4,22(r)(r2|^4,22(r)) 

Q T (0 2 ,Z^ |0 4 , ,Z 2 (T) ) = FT2(02,z
2

rt\e4,z2(T))=pn2ni(T), 

QT(e4,z
2

Tt\e4,z2(T)) = FT2(e4,z
2

Tt\
e^z2(T))=pn2n2(T), 

and it is possible to go from state a6 either a5 or a$. Similarly, it is possible to 

go from a7 to either a5 or a7. Therefore, 

QT(02,z
2

Tt\04,z2(r)) = P^ t , f l 4 , „ ( T ) l 3 i ( e 2 , 4 | ^ , ^ ( r ) ,T a ) 

x-PT2|e4^(r)(r2|^4,22(r)) 

QT(02,z^|04,z2(r)) = F3 b(e2 ,4 |e4 ,22(r))=p^„1(T), 

Qr(^4,^tl^4,«2(r)) = FT2(04,z^|04,2;2(r))=pn2n2(T), 

where 22(r) take the values Z(T, na),z(T, rib),z2
T(z(s, na)) and z2

T(z(s, rib)). 
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It is possible to go from state a5 to either 05 or a&. 

QT{92, z
2
Tt\92, z

2
ST(z(s, na))) = Pe2,zitlo2,zU*(s,na)),Ti (02,z2

Tt\92, z
2

ST(z{s, na)), Ti) 

xi5r1|fla4r(*(«.n.))(rild2.4-(«(s»no))) 

QT{92,z
2

Tt\92,z
2

ST{z(s,na))) = FTl(e2,z
2

Tt\62,z
2

ST{z(s,na))) =Vnini{r) 

Qr(6>4, z
2

rt\62, z
2

ST(z(s, na))) = Pe^^zU^na)),^ (#4, 4t\e2, z2
ST{z(s, na)), Tj) 

xPTl {Tx\02,zlMs,na))) 

QT(dA,zlt\e2,zlT{z{s,na))) = FTl (04, z ^ , z^.(,z(s, n„))) =p n i „ 2 ( r ) . 

Similarly, for going from 04 to either 04 or 07, it follows that 

QT(92,z
2

Tt\92,z
2

ST(z(s,na))) = pninAT), 

QT(94,z
2

Tt\e2,z
2

ST{z(s,na))) = pni«2(r). 

It is possible to go from ag to a\. Thus, 

QT(^, 4,1612, z(r, 0)) = Pei,4tle2Ar,o),TG(Oi, 4*1*2, z(r, 0),TG) 

xPTGl02MTfl)(TG\92,z(T,O)) 

PTa(y2,Z(T,i))) 

Finally, it is possible to go from ag to either a2 or a$. Therefore, 

Q T ( 0 4 , * ( T , na)|(?4, ^(r, 0)) = Pe4,2(r,no)|e4,2(r,O),T3oTG(04, * ( T , n a ) | 0 4 , Z(T, 0) , T3 O TG) 

XPTG|«4,,(r,O)(rG|04,2(f,O)) 

Qr(04, Z(T, no)|04, z(r, 0)) = Fn{94, Z{T, na)\93, z(r, O))FT G(03 , Z(T, O)|04, Z(T, 0)) 

Qr{94,z(T,na)\94,z(T,0)) = pna 

Qr(0A,z(T,nb)\94,z(T,0)) = pnb. 

From this it is possible to define a matrix QT whose elements are QT(a,j\a,i), where 

a,, dj are the states of the DCPN. 

III.4 M A P P I N G A D C P N INTO A PIECEWISE DETERMINISTIC 

MARKOV PROCESS (PDP) 

Next the DCPN model is mapped into a piecewise deterministic Markov process 

(PDP). First a PDP is defined as in [16,17]. Let K be a countable set denoting the 
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possible modes of operation and consider a mapping d : K —> N. If {Eg C RdW : 0 e 

K} is a collection of open subsets then the state space of the PDP is defined by 

E±\J{{0}xEe}. 
0eK 

For each 9 G K there is a flow $ e : R+ x £# —• Ee with initial condition $0(0, w) = a;, 

a; e E^, satisfying the semigroup property $g(t + s,u>) = $#(£, $e(s,w)) for every 

0 < t + s < oo. For each 6 £ K and $e(t, u>) € Eg there is a function 

A : | J {{6} x Eg} -• R+ 

(0,*e(t,a/)) H-+ A ( ^ 4 i , w ) ) e M + . 

Let /^(UeeA: { W x E$}) denote the u-algebra defined on \JeeK {{0} x Eg}. For 

each 0 e K and $e(i,o;) € £# there is a transition kernel 

Rt: U { W x E 4 x / 3 ( U { W x ^ } ) -> [0.1] 

where ( ^ e ^ ^ x ^ } ) . 

To start the definition of the PDP consider the following random variables 

{Tfc}fceN> where Tk is a mapping from (O,^7, Pr) to (R+ ,#(R+)) , and random 

vectors {(0(rk),u:(Tk))}k&N, where (0(rfc),a;(Tk)) is a mapping from (£1,?, Pr) to 

(LtaeiC { W x ̂ e } > 0 ( UeeK { W x -^ } )) • These two sets of random variables and vec

tors are defined in two iterative steps: Define r 0 = 0 and let for k = 0, (0(TO), a»(T0)) 

be the initial state. Then for k > 1: The random variables r^ are recursively defined 

as Tfc = Tfc_i + <Tfe, where the random variables <Tfc : Q, —• R+ have the following 

density function 

1 e ~ ^ - » A ( e ( T f e ~ l ) , 0 e ( T f c - i ) ( s _ T ' b - 1 ' ^ ' r ' c - l ) ' ) d s 

( t - i i - i < i . ( 9 ( T i - i ) M ' - w ) ) ) 

wi th ^.-v.^^.o^-i)))take t h e value of x i H ~ Tfe-1 < ^ f o - i M 7 * - ! ) ) . 
0 other cases and £,(0(Tfc_i),w(TA;_i)) = inf{* > 0 : $eTt_i(t,w(rfc_i)) G dEg^} and 

dEgkl is the boundary of the set .Ee^. 
The transition measure for going from (0(rfc_i),$e(Tt;„i)(s — Tfc, ̂ (^fc-i))) to 

(0(Tfc),C)is 
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Now that the random variables TV ( 0 ( T ^ ) , w(rfc)) and their probabilities are defined, 

the PDP definition is given next. 

Definition 17. [17] A stochastic process (6(t),u(t)) mapping from (CI, T) to 

(Ue {{^} x ^ } > ^ ( U e {{$} x Eo})) is a piecewise deterministic Markov process 

(PDP) if and only if 

0(t) = 0(7*_i) and u>(t) = $«(,•*_!)(* - 7]b-i, w(Tfc_i)) 

for every t 6 [Tfc_i, T^), where r^ = r^- i + <7jfc, cfc has a density function 

1 e - ^ * - 1 A ( e ( r f c - 1 ) '* 8 ( r fc- i )^ - 7 l - 1 ' a ' ( T i f e - l ^)' f a 

and the transition measure from (0(Tk-i),^6k_1(s — Tk,u}(Tk-i))) to (0(7*), C) is 

The elements $e(t — T,w), A(0, $0) and Rt(-|0, <&#) are called the ZocaZ characteristics 

of the PDP. 

Describing a process as a PDP also implies the following standard conditions. 

(a) If \<&e(t — T, w(r))| —> oo as time £ —+ too, then ^ is called explosion time. The 

explosion time of a PDP is equal to oo whenever t*(0, #) = oo. 

(b) The function X(9, $e(t, w)) is a measurable function and integrable in the vari

able t € [0,?), where ^ is a time depending on 0 and $o(t,uj). 

(c) Rt is a transition kernel such that Rt(0, {$}\0, $) = 0 for each (0, $) e E. 

(d) The number of jumps is finite, which means that for each t € M+ 

A very useful concept associated with a PDP is its execution. The execution of 

a PDP is defined as follows. The initial state is £(0) = (d(0),tv(0)) at initial time 

r0 = 0. If no jump occurs, the process state at time t is given by £(£) = (6(t),u(t)) = 

(6(0), $0(O)(t,u;(O))). The density function for the time of the first jump is given by 

W ( 0 ) , < - T D — l(t-r0<t.(6l(0,w(0))) • e To 

The value of the state to which the jump is made is generated by using the tran

sition kernel R(. The algorithm to determine a sample path for the PDP (9(t), uf(t)) 
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starting with initial state (0(0), w(0)) is as follows: Define To = 0 and let for k = 0 

£(rfc) — (0(rfc)>w(rfc)) be the initial state. Then for A; € N : 

Step 1: Draw a sample o^ using the density function G{(rfcl) i t_Tfel. Then the time 

Tfc of the fcth jump is T& = Tk-x + <7fc. The sample path up to the fcth jump is given 

by 

CM = (&(Tk-i),^e(Tk^)(t - Tk.i,i<j(TW))) for t € [rfc_i,rfc). 

Step 2: Select the sample £(T&) using the transition measure 

^(•^( ' fc-O.^^-oCTfc - 7fc_i,w(rfc_i)). (13) 

The PDP definition is illustrated with the following example. 

Example 2. Let the general probability space be {0.,^F, Pr), 0i = (1,0) and 02 = 

(0,1). The random variables 0(t) : ft -> {0i, 02} and u>(«) : 0 -> K+ define the PDP 

(&(t),w(t)) : 0 —• U i = 1 {{0*} x M+} with the following local characteristics: 

2 

A:|J{{0i} xR+} ~* R + 

»=i 

(0i, **(*,<?!)) -» A(e1 ,* f l l(*-r,ei)) = A1 

(02, $e2(i, ft)) H+ A(02, $e2(« - r, g2)) = A2 

(t -T,Q) *-* $0i(t - r, ^ ) = QS -(t-r), 

where r € M+ is the initial time, and Qj is a sample of the exponential distribution 

with parameter Xj for j = 1,2. This will be denoted by Qj ̂  exp(Aj). Finally the 

transition kernels are as follows: 

A2 
R<(0i,0i|0i,O) = , Q\ ^ exp(Ai) 

Ax + A2 

R«(02,fe|0i,O) = \ , g2 " exp(A2) 
Ax "r A2 

A2 

Rt(0i,0i|02,O) = , Qx ^ exp(Ax) 
Ax -+- A2 

R-t(02, 02102,0) = - -̂—•, £l2 ^ exp(A2). 
Ai + A2 

The execution of this PDP is described next. Suppose at time To = 0 the initial 

state is 0(0) = 0x, and a sample Qi is chosen with an exponential distribution with 
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parameter Ai. Then the next stopping time is T\ = TO + QI, and for t € [TO,TI) the 

state of the PDP is (d(t) = 6i,w(t) — Qi — t). Observe that at time T\, the state of 

the PDP is (#i,0). Two possible events can be chosen with the measure Rt(-|0i,O): 

(01)02)) where 2̂ is chosen with an exponential distribution having parameter A2, 

and (62,02), where Qi is chosen with an exponential distribution having parameter 

Ai. Suppose ($1, Q2) is chosen then r2 = T\ + Q2, and for every t G [ri, r2) the state of 

the PDP is (6(t) = 6i,w(t) = Q2 — t + T\), and the execution follows as the beginning. 

• 

Having defined the execution of the DCPN and PDP, it is now possible to present 

the following theorem. 

Theorem 8. [21] For the execution of a stochastic and dynamically colored Petri net 

satisfying RQ through R4, there exists an equivalent process, which is the execution of 

a PDP if the following conditions are satisfied: 

Dl) There are no explosions, i.e., the time at which a token color equals +00 or 

—00 approaches infinity whenever the time until the first guard transition enabling 

moment approaches infinity. 

D2) After a transition firing (or after a sequence of firings that occur at the same 

time instant), at least one place must contain a different number of tokens, or the 

color of at least one token, must have jumped. 

D3) In a finite time interval, each transition is expected to fire a finite numbers of 

times, and as t —> 00, the number of tokens remains finite. 

DA) In the initial marking, no immediate transition is enabled. 

Proof. The proof is in [20,21]. • 

In order to represent the DCPN as a PDP, the elements K, d(6), u(0), Qg(t—T, u), 

dEe, A, Qt and the PDP conditions C\ — C4 need to be characterized in terms of the 

DCPN [4,20]. This is done below. 

(a) K: The set K are the nodes of the reachability graph 6. The nodes are vectors 

6(t) = (v\(t),..., v\-p\(t)), where Vi(t) equals the number of tokens in place Pt at 

time t. 

(b) The color of a token in a place P is an element of C(P) — M.n<-P\ therefore 

d(6) = Ei=i«i x n(Pt) with 6 = («!, ...,vm) G K. 
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(c) The initial distribution #(0) and w(0) are obtained from the initialization func

tion of the DCPN. 

(d) The map $g(t — T,W) for each mode 6 is a vector formed by the color of the 

places that are pre-enable in 9. 

(e) For each token distribution 9, the boundary dEg of subsets Eg is determined 

from the transition guards that under token distribution 9 are pre-enable. For 

the case where the state 9 has only one guard transition pre-enabled, it follows 

that dEg = 8ETG. The other cases are not consider in this dissertation. 

(f) For each token distribution, 0, the jump rate X(9, •) is determined from the 

transition delays under which the token distribution, 9, is pre-enabled. In 

other words, if the transition 7\ is pre-enabled then X(9, •) — <5TI(-)- The other 

cases are not considered in this dissertation. 

(g) The transition kernel, Rt(9',C\9,x), of the PDP is equal to the transition 

kernel, Qt(9',C\9,x), of the DCPN. 

The mapping from the sampled-data DCPN to the PDP is developed next. 

III.4.1 A P D P Model of Sampled-Data Systems 

In this section, the mapping from the sampled-data system DCPN to a PDP is 

developed. It is possible to see that the DCPN model of the sampled-data system 

meets the conditions of Theorem 8 as follows. Condition D\ holds because the 

dynamics of the nominal and recovery system do not approach to infinity in a finite 

time. Condition D2 holds because after a transition fires, the state of the DCPN 

always change from sojourn time zero to the value CT&. Condition D3 holds because 

the transitions Ti, T2 and T3 fire a finite number times in a finite interval, and the 

numbers of tokens is always equal to two. Finally, DA holds because the system 

begins in a nominal mode with no upset, which means that no immediate transition 

is enabled. Now the elements of the PDP model of the sampled-data are obtained 

from the DCPN model as follows. 

(a) The set, K, of modes of operation of the PDP is {#1,02, #4}, where 9i, i = 1,2,3 

are the token states of the DCPN. 

(b) The map d is defined as d{9\) = nXp+nXc +1 and d(92) = d{9i) = nXp + nXc + 2. 
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(c) The initial distribution, with probability one, gives a token to the places EJV, 

rai and the color Rn*P+"*c+i to T,N. 

(d) The map $g(-,-) has two states. The nominal closed-loop system, represented 

by ^g1 = z1, and the recovery closed-loop system represented by $o2 = <3>04 = z2. 

(e) The boundary for the modes are dEgx = 0 and dEg2 = dEg4 = 8GTG • 

(f) The jump rates are A(01; %x) = A(02, $e2) = ^1 a n d A(04, $e4) = A2. 

(g) In Section III.3.1, the transition kernel, Qt, of the DCPN was obtained. Now 

this transition kernel is also the transition kernel, Rt, of the PDP. The transition 

kernel has the following matrix notation 
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0 
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Pn2ni (t) 
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0 

(t) 
0 

0 

Pnin2(^) 

Pn2n2 (t) 
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0 
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Pn\n2\t) 
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0 
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0 
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0 

0 

0 

0 

0 

0 

0 

where the entries Rf(aj|oj) represent the probability of going from the DCPN 

state aj to DCPN state a, for i,j = 1,2,...,9, pnini(t) = Aa+A^+^1+*! '), 

Pni ,n 2 (*) = 1 -Pnini(t), Pn2ni (*) = - A 2
e ~ ' ^ ^ ~* ' a I l d P " 2 , n 2 W = 1 - P n 2 n i ( * ) -

This shows that the sampled-data DCPN can be mapped to a PDP. Having the 

PDP model, in the next section the execution of the PDP model is characterized. 

III.4.2 Execution of the PDP Model of Sarapled-Data Systems 

The initial state of the sampled-data system is (6(0), x(0)) = a,i, which represents 

the nominal closed-loop system and the no upset state. The distribution function 

for the time of the first jump does not have a guard condition. It has an exponential 

distribution with parameter Ai, which is used to choose T\ . At time T\ the new state is 

chosen using the transition measure RTl (40(0), $0(0)(TL— TO, X(0)). The possible states 

are a2 or a3. Suppose f (ri) = a2 is chosen, then the density function for the jump is 

l(t-Ti<n0)' e~X3^~n\ This density function is used to choose a2. At time r2 = ri +<T2, 
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ax 

a2, a3, a4, a5, a6, a7, a8, a9 

Nominal closed-loop system Y,N 

Recovery closed-loop system HR 

TABLE II: Switching rule of the nominal and recovery closed-loop system. 

using the transition measure RT2(-\6(Ti),$e(n)(T2 — TI,W(TI))), the state as or a6 is 

chosen. Suppose £(r2) = a5 is chosen. For this state, the density function for the 

jump is l(t_7v2<7la_CT2) • e_Al't~T2'. This density function is used to choose a3. At time 

T3 = r2 + 03, the state is chosen with the measure RT3(-\0(T2),$e(T2)(
T3 ~ T2,W(T2))), 

the only possible states are as or a6. This process go on until the density function for 

the time is l(t_Tno<o) • e~T-^'~'r''o\ where j could be 1 or 2. At time rno, the indicator 

function is zero and the system jumps to the nominal closed-loop system, and the 

execution of the PDP repeats from the beginning. The stochastic process generated 

by this execution is 

£(*) = (0Tt_1,*e(Tfc_1)(*-'r*-i>w("'-fc-i))), 

where t 6 [Tk-i, Tk) and r^ is chosen using the exponential distribution with parame

ter Ai or A2. The samples of £(t) taking values in at with i € {1,2,3,..., 9} were chosen 

using the transition kernel Rt evaluated at r^—T^-I and the $0(r/el)(i—Tfc_1,o;(rfe_1)). 

$e(Tfc) is the dynamic of the nominal closed-loop system or the recovery closed-loop 

system according to the values of the state £(t), as shown in the TABLE II. From [4], 

it is known that the stochastic process £(£) is a continuous-time Markov chain, and 

£(rfc) is a discrete-time Markov chain with transition matrix Rn._Tl_1. 

III.5 CHAPTER SUMMARY 

In this chapter, the problem of modeling a continuous-time plant in closed-loop with 

a discrete-time controller subject to random upsets was addressed as follows: The 

theory of DCPNs model was briefly reviewed. Then a DCPN model of the sampled-

data system was obtained. For analysis purposes, this DCPN model was mapped 

to a PDP. This PDP characterization of the system shows the Markov property of 

the system. More importantly, a transition kernel that models the behavior of the 

system was obtained. This transition kernel will play a very important role in the 

next chapter. 
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CHAPTER IV 

SAMPLED-DATA PIECEWISE DETERMINISTIC 

MARKOV PROCESS 

IV. 1 INTRODUCTION 

The purpose of this chapter is to study the stochastic nature of the switching between 

nominal and recovery modes when the sampling time is T. Prom Section III.4.1, it is 

known that the interconnection of recovery system and disturbances in the sampled-

data system is a PDP. This will be called the sampled-data PDP model. It only 

takes into account stopping times generated by the disturbances and the recovery 

algorithm. Now the objective is to also take into account the sampling instances 

kT, k € N in the sampled-data model. The main objective of this chapter is to 

characterize the state process of this sampled-data PDP. 

The PDP model of the sampled-data is an abstraction of the behavior of the 

system. It does not take into account the sampling instants kT. It will be shown 

that in order to include the sampling instants in the PDP model, the PDP model 

needs an appropriate time scale, i.e. This is a time scaling operation. A particular 

concern for the time scaling operation is preserves the Markov property of a PDP 

model. It will also be important to determine the relationship between the transition 

matrix of the Markov chain representation of the PDP model before and after the 

time scaling operation is applied. 

This chapter also gives initial results on the stability analysis of the PDP model 

representation of sampled-data systems with a jump linear controller. The jumps 

are modeled as a Markov chain, where the jumps are related to the real time of 

the sampled-data system. In addition, results of the PDP literature will be used to 

establish a relation between the invariant measures of sampled-data systems driven 

by a stochastic process and the invariant measures of the associated discrete-time 

representation. As an application, when the plant is linear with no external input, 

a sufficient testable condition is given for the convergence in distribution to the 

invariant delta Dirac measure. 

There are two specific objectives in this chapter. In Section IV.2, a methodology 

to embed the sampling instants, kT, in the PDP model in such a way that the 
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Markov property is preserved is presented. In addition, the transition matrix of this 

embedded Markov chain is given. In Section IV.3, the sampled-data PDP which is 

a stochastic model of the PDP model that takes into account the sampling instants 

kl, is provided and then used in stability analysis. 

IV.2 PIECEWISE DETERMINISTIC MARKOV PROCESS 

Piecewise deterministic Markov processes are a class of continuous-time stochastic 

models that have found wide applicability since they were introduced in [16] and 

thoroughly investigated in [17]. PDP's are a class of stochastically switched systems 

consisting of a family of Markov processes with motions between random jump times. 

The definition of PDP's as presented in [16,17] is given next. Let K be a countable 

set denoting the possible modes of operation. If {Eg C RdW : 9 € K, d(9) 6 N} is a 

collection of open subsets then the state space of the PDP is denned by 

E±{J{{9}xEe}. 
eeK 

For each 9 € K there is a flow $ e : R+ x Eg —• Eg with initial condition $e(0, u) = u>, 

UJ € Eg that satisfies the semigroup property $$(t + s,u) = $g{t, $g(s,u)) for every 

0 < t + s < oo. For each 9 € K and $g(t,u)) € Eg there is a function 

A : ( J {{9} x Eg} -+ R+ 

0eK 

(9,*e(t,u)) ~ A ( ^ « ( t , w ) ) e R + . 

Denoted by f3(\JeeK {{9} x Eg}) the a-algebra defined on \JeeK {{9} x Eg}. For 

each 9 € K and <feg(t,u) € Eg there is a transition kernel 

R* : | J {{6} x Eg} xp{\J {{9} x Eg}) - [0,1] 
eeK eeK 

((e,*e(t,u)),&C)) ^ Rt(9,C\9,<J>g(t,u)), 

where (9, C) € /3({JeeK {{9} x Eg}). 

Now the definition of PDP is given next. 

Definition 18. [17] A stochastic process (0(t), w(t)) mapping (Q, J7) to ([je {{9} x 

Eg},(3({J6K {{9} x Eg})) is a piecewise deterministic Markov process if and only if 

0(t) = 0(rfc_i) and w(t) = ^e^^t - Tfc_i,t»(rfc_i)) 
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for every t G [rfc_i,Tfc). The elements <&e(t — T,w), X(8,^e) and Qt(-\9,$e) are called 

the local characteristics of the PDP, because these are enough to characterize a PDP. 

Describing a process as a PDP will also imply the following standard conditions. 

(a) There is an explosion if \$e(t — T,W(T))\ —> oo as time t —»• too. In this case 

too is called the explosion time. The explosion time of a PDP is equal to oo 

whenever £*(#, $0) = oo. 

(b) The function X(6, $$(t, w)) is a measurable function and integrable in the vari

able t G [0, c), where c G K.+ is a time that depend on 8 and $e(i, w). 

(c) R t is a transition kernel such that Rt(-, -\6, <£) = 0 for each (8, <E>) € E. 

(d) £{Efc€N kt>rk)} < oo for each t € M+. 

Next the strong Markov property of a PDP is presented. Let D® denote the 

set of right-continuous functions on K+ with values in E = \JeeK {{8} x Eg}. Let 

H® = 0(h(s) : s < t) denote the natural filtration generated by the function h(t) 

of h G DE- The PDP can be interpreted as a random measure ^(e,*) : f2 —> DE 

for every initial condition (8, $) G E. These random elements induce the probability 

measures P(e,$)(A) = Pr(<j : \&(e,*)(u;) G A), which are used to form a family of 

measures {-P(e,$), (0, $) G E}. Now, let W^ be the completion of W° and define 

^ t = fWw(E) ^ n where W(E) is the set of probability measures on E. The Tit-

stopping times Tfe, k G N on a filtered probability space are random variables taking 

values in M.+ such that (r& < i) £ H t . Thus, given Tit one knows whether T/t has 

happened by time t or not. The following theorem shows that a PDP is a strong 

Markov process [17]. 

Theorem 9. The process (6(t),w(t)) is a homogeneous strong Markov process, i.e, 

for any (8, <3>) G E, the Tit-stopping time r^ satisfies for any bounded measurable 

function f 

E(eMf(e(Tk + s),w(rk + s))\HTk} = E(e(Tk)MTk)){f(e(s),w(s))} 

where 22(9,*) denotes integration with respect to the measure P(e,^)-
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Prom the construction of a PDP and Theorem 9, the stochastic process 

{(0{Tk),w(Tk))}kefi is a Markov process with stationary transition probability 

P(C\e,w) £ P^jWTO.wCTiJeC) 

./o 
+e-A{t'{e'w)>e^Rt(C\e, $e(U(0, w), w)), (14) 

where A(t,d,w) = f*\(0,$g(s,w))ds and t*(9,w) = inf{i > 0 : <&,?(£ - r,w) 6 

dEg}. Equation (14) gives the transition matrix of the discrete-time Markov chain 

associated with a PDP. The next example calculates the discrete-time Markov chain 

associated with the PDP of Example 2. 

Example 3. Consider the PDP in Example 2. Note that t*(0, w) = oo because there 

is no boundary condition. The discrete-time Markov chain, (Ofa), wfa)), associated 

with this PDP, (0(t),w(t)), has the following transition probability 

/

oo 

R t(e1)(7|(91 ,0)A(^,$ f f l(« )«;))e-^^1 '* 't^»*dt 

A2 

Ai + A2' 

The resulting transition probability matrix is 

A1+A2 A1+A2 

A1+A2 A1+A2. 

D 

Example 3 shows the procedure to obtain the discrete-time Markov chain asso

ciated with a PDP. Next, a procedure to construct a CTMC from a discrete-time 

Markov chain is presented. The construction uses the set of nonnegative real num

bers go — {Qo(s), S € E}, which associate with each state 5 6 E a real number 

qo(s), a stochastic matrix W0 = {W0(s'\s), s',s € E} and a probability distribution 

f(s). To start the construction, define the random variables t„ mapping (CljJ7, Pr) 

to (R+,#(IR+)) and the random variables yn mapping (Q,^-, Pr) to (E,f3(E)) such 

that the stochastic process {yn} is a discrete-time Markov chain with transition ma

trix WQ and initial distribution v, and the random variables tn, n > 0 are mutually 

Q± 
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independent. Assume each t„ has an exponential distribution with parameter qo{yn), 

and yn is a sample of yn. Define a stochastic process x(t) which take values in a 

finite state space E as follows 

*(t) = yNt, (15) 

where Nt = sup{n > 0 : YA=O *» — 0 an(^ -^* < °°- The following theorem shows 

that x(t) is a CTMC [27]. 

Theorem 10. The stochastic process {x(t), t > 0} in (15) is a time-homogeneous 

CTMC with initial distribution v. The transition matrix W for the embedded jump 

chain is given by W(s'\s) = WQ(S'\S)/(1 — W0(s\s)) for s',s € E with s' ^ s. The 

infinitesimal generator matrix A = [A(s'|s)]S's6jg of the CTMC is 

k{s'\s) = q0(s){l-W0(s\s))W{s'\s), fors^s' 

A(s|s) = -q0(s)(l-W0(s\s)). 

In Example 3, the associated discrete-time Markov chain associated with the PDP 

(0(t),w(t)) was obtained. Now Example 4 will show how to get a CTMC from the 

discrete-time Markov chain (0(rfc),o;(rfc)) using Theorem 10. 

Example 4. Consider the Markov chain 0(t) taking values in {9i,62} from Example 

3 with transition matrix Q and initial distribution v. Also, consider the random 

variables tn exponentially distributed with parameters qo{9\) or qo(02). Then the 

stochastic process 0(t) = 0Nt, where Nt = sup{n > 0 : ^ = 0 U < t} is a CTMC 

and 

W{d2\d1) 
QVM ^ 

i-Q($M 1 A1+A2 

win \t) \ - Q(0i\fo) _ 1 
w(eM - i-Q(e2\e2)~

l-

The entries of the infinitesimal generator matrix A are 

M&M = -Qo(0i) 

M&M = oo(0i) 

A1 + A2 

Ai 

Ax + A2 

A(62\62) = -q0(62) 
A2 

A(0i\92) = q0(62) 

A1 + A2 

A1 + A2 
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If the parameters are qo(9i) = 90(̂ 2) = Ai + A2 then 

A2 — A2 

This shows that 6(t) is a CTMC with infinitesimal generator matrix A and stopping 

times chosen by the exponential distributions with parameters Ai and A2. Note that 

an important step in deriving a CTMC from a discrete-time Markov chain is the 

relation qo(0i) = 10(62) = Ai + A2, the motivation of this example came from [26]. D 

Now a methodology for converting a CTMC into a DTMC is presented. This 

methodology is called uniformization of a Markov chain, [6, 37]. Let a CTMC 

x(t) take values in a finite set E with infinitesimal generator matrix A = [Ay]. If 

maxj{—Ajj} < 00, the CTMC is said to be uniformizable, which means that it is possi

ble to get an associated DTMC. The methodology is as follows. Fix q > supj{—A^}. 

The probability distribution Pr(£) of the random variable x{t) then satisfies the 

Chapman-Kolmogorov equation 

^ r - Pr«>A 

= -Pr(()<;[;-n], 

where II == [14- -A]. The transition matrix is 

Pr(t) = Pr(0) ^ e - ' « - ^ - r T \ 
k=0 

The transition matrix II and the initial distribution Pr(0) induce a DTMC x(k). 

The probability distribution Pr(fc) of x(k) is Pr(fc) == Pr(0)nfe. Consider the Poisson 

process K(t) with rate q and independent of the chain x(k). The probability distri

bution of the Poisson process is Pr(K"(t) = k) — ̂ re~tg. Let Tk be the first time 

that K(t) = k. Then it is possible to define the following process 

x(t)4x(fc)V«€[T f c )T f c_i). 

Note that {Tk — Tfe_i}fc<=N are iid random variables with probability density Pr(Tfe — 

Tk-x = *) = qe~qt since Tk - Tk-i are exponentially distributed. The CTMC, x(t), 

can be interpreted as a DTMC, x(k), where its stopping times are chosen according 

to a exponential distribution with parameter q. To see that the processes {x(t)}t€R+ 
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and {a:(A;)}fceN have the same probability distribution in each k € N, observe by 

Bayes's rule that for every n € N the following holds 

Pr(a;(fc) = s) = Pr(x(t) = s) 
oo 

= J ^ Pr(x(i) = s) Pv(K(t) = i) 

i=0 

i=0 

= Pr(x(t) = s). (16) 
This methodology is illustrated in the following example. 

Example 5. Consider the CTMC 0(t) in Example 4 with infinitesimal generator 

matrix A. If q = \\ + A2 then the transition matrix of the DTMC 0(k) is 

n = 1 + 

n 

- A i Ai 

A2 — A2 

A1+A2 A1+A2 
A2 xl 

_Ai+A2 Ai+A2_ 

This gives a DTMC with stopping times chosen according to a exponential distribu

tion with parameter q — \\ + A2. • 

These two techniques to convert a DTMC to a CTMC and vice-versa yield what 

are known in the literature as subordinated processes, [10,23]. Next, the DTMC of a 

sampled-data PDP model is going to be obtained. 

IV.3 SAMPLED-DATA P D P 

The PDP model of a sampled-data system captures the stochastic nature of the 

switching rule, but the switching rule evolves in continuous-time. Since the mode 

switches occur at specific sampling time instants kT, k € N, the sampled-data PDP 

parameters Ai and A2 need to be properly selected. Thus, the relationship between 

the switching rule modeled as a PDP and the sampling times kT is analyzed in this 

section. Recall that the interconnection of the upset generator and the recovery logic 

was modeled as a DCPN from which a PDP model was obtained. The execution of 

the PDP model gives the stopping times and the mode of operation for all time. So 

the relationship between the stopping times from the PDP model and the sampling 
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times needs to be determined. From Chapter III it is known that at the stopping 

times the state of the sampled-data system has the Markov property. It is desired 

that at sampling times the state of the sampled-data PDP also has the Markov 

property. It is also important to determine the transition matrix for the Markov 

process. This is one of the main objectives of this section. 

IV.3.1 P D P Model of the Switching Rule of Sampled-Data Systems 

In Section III.4.1 the mapping from a sampled-data system DCPN to a PDP was 

developed, where the PDP (#(£)> ̂ 0Cfc-i)(* — Tk-i,w(rk-i))) has the state space 

E^ 1J {{OJxEkt}. 
t=l,2,4 

The set of modes is K = {6i,92,64}. The collections of open subsets of the Rn*P+n*c 

space are E6l C R"*p+n*c) E02 C R"*P+"*c and E0t C M.n*p+n*c. The motions associ

ated with each mode are 

$ 0 l : R+ x Edi -* E$1 x R+ 

{a, z) i-> z*fcit(<r, z) = &$1 (t - Tfc-i, a, z) 

$0 i : M+ x M+ x E0i -+ E6i x R+ x R+ 

(n0,a, z) i-> z2
3t(na,a, z) = &$i(t - rfc_i, <r,na, z) 

(nb,a,z) H-> z2
st(nb,cr,z) = $ei{t-Tk-i,<T,nb,z), 

where i = 2,4 (Section III.4). For each mode 9t and flow $^ there exists the following 

function 

A: | J {{6t}xEei} - E+ 

t=l,2,4 

(0i,$Ol) ^ A(fl1,*fll) = A1 

(02 ,$ eJ ,-» A(a2,$e2) = Ax 

(02,<%) - • A(04,$04) = A2. 

The transition kernel is 

Rt: (J {{^}xEei}x/3( (J { { ^ x ^ D ^ t C l ] . 
i=l,2,4 j=l,2,4 

The transition probability matrix associated with Rt is 
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Qt = 

Pnmi 

0 

0 

0 

0 

0 

0 

1 

0 

. A2 
A1+A2 

PnaPniri2 

0 

0 

0 

0 

0 

0 

0 

Pna 

> Pnin? = = 

PnbPnw2 

0 
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0 

0 

0 

0 

0 

Pnb 

A1+A2' p™2 

0 

0 

Pn^ni 

Pnin\ 

0 

0 

0 

0 

0 

0 

P«2«l 

0 

0 

Pnmi 

Pnin\ 

Vnin\ 

0 

0 

0 

P«2"2 

0 

0 

Pnw2 

Pn^ni 

0 

0 

0 

0 

0 

Pnyni 

Pnw2 

0 

0 

Pn,2ri2 

0 

0 

"1 ~~ A1+A2' a I 1 ^ P"2,"2 — A 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1+A2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

j 

. The entries where p„ i n i 

Qt(ai\a,j) are the transition probabilities for going from cij to a*, for i,j = 1,2, ...,9. 

The PDP ( ^ ( i ) , ^ ^ ^ ^ — Tk-i,w(Tk-i))) has a discrete-time Markov chain 

(0(rfe),«;(Tft_1)). The transition probabilities of this Markov chain are obtained 

using the following equation 

p(C\9,w) 4 P^deir^wir^eC) 
ft,(6,w) 

Qt(C\6, $e(t, w))X{e, *e(t, w))e~^e^dt 
/o 
+e-A{u(e'w)MQt(C\6, Mt*(0, w)tw)), 
f 
Jo (17) 

where C is an event, A(t,8,w) = f0 \(6,$g(s,w))ds and t*(6,w) = inf{£ > 0 : 

$e(t,w) e dEe}. For the nine DCPN states, U(8,w) = U(ai) yields. 

t»(ai) = inf{i > 0 

U(a2) = M{t > 0 

U(a3) = va£{t > 0 

U(a8) = inf{t > 0 

U(a9) = inf{i > 0 

$fll {t - r, a, w) € d£ e i } = +00 

$&,(£ - r, a, na, w) e dE6i} = na 

$04(t - r, or, n6, a;) € ^E1^} = n6 

$e2 (t - T, a, nb,ui) € d£<j2} = 0 

$ 9 4 ( f - r , ( 7 , n 5 , w ) 6 a E 8 4 } = 0 ) 

and ^(04) — t^aj) = n& and t*(a5) = £*(a6) = na. The parameter of the exponential 

distributions corresponding to the states are 

A(ai) = A(a4) = A(a5) = A(o8) = Al5 

A(a2) = A(o3) = A(a6) = A(a7) = A(a9) = A2. 
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The transition probabilities of the DTMC, (6(Tk),w(Tk-i)), are obtained using Equa

tion (17) as follows 

f°° t 
p ( a i M = / Qt(oi|o1)A(oi)e-J"o^)«farft, 

Jo 
/»oo 

/ p'' 
Jo 

n m i " l ^ f t — Vn\n\-

Similarly, 

p{a2\ax) = Pnapnin2 and p(a3|ai) = p„j>mn2, 

while the probabilities for going from a\ to the other states are zero. Prom the state 

<x2 it is possible to go to a5, a§, a2 and a3. 

p(a5\a2) = / Qt(o6|a2)A(o2)e-J'oM«9)<*.dt + e-/o
noA(o9)<j.Qt(a5|ag)j 

Jo 
/•Ho 

= / Pn2nx A2e-A2tdi = P n a m (1 - e~x^), 
Jo 

p(a6|a2) = pn2„2{l-e-X2na), 
rna 

p(a2\a2) = / Qt(a2 |a2)e-A2f^ + e/o""^Q4(a2 |a9)-e-"<»A2pno, 
Jo 

P(a3|a2) = /" " Qt{a3\a2)e-X2tdt + e^a X2dtQt(a3\a9) = e-n°A2pnb. 
Jo 

Prom the state a3 it is possible to go to a^, o7, a2 and a3 and again using Equation (17) 

follows. 

p(a4|a3) = / Qt(a4 |a3)A(a3)e-/o^)*dt + e--«,BA(08>gt(o4|o9), 
Jo 

= / p„2niA2e-A2'di = p „ 2 m ( l - e - A ^ ) , 
Jo 

p(a7\a3) = pn a„ a(l-e~n*A a) , 
rnb 

p(a2\a3) = / g t(a2 |a3)e-A 2 t^ + e - ^ 6 ^ g t ( a 2 | a g ) ) 

Jo 
= e-f°bx*dtQt(a2\a9) = e-x*n>pna, 

p(a3\a3) = e-X2nbpnb. 
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Similarly from a4 it is possible to go to a4, a7 and ay. 

fnb 

p(a4\a4) = / Q t(a4|a4)e-Altdi + e-^' ,( ,AldtQ t(a4|a8), 
Jo 

Jo 
p{a7\a4) = p m n 2 ( l - e - A l " i ' ) , 

p(ai|o4) = / Qt(a1|a4)e-Al*dt + e - ^ Q t M a s ) = e-Al"6Qt(a1|a8) = e~Airi>. 
Jo 

Prom a5 it is possible to go to a5, o6. 

p(a5\a5) = / g t(a5 |a5)e-Al 'di + e-Ain»Qt(a5|a8), 
Jo 

flla 
== I Piling (M = Pmn\\^ ^ )i 

Jo 
p(a6|a5) = p B i n a ( l - e - A l B " ) , 

/•n„ 
p(oi|a5) = / Qt(oi|a5)e-Al*dt + e-

Al"»Q t(a1|a8) = e-Ain°Q t(a!|a8) = e~Ain<\ 
Jo 

Prom the state a§ it is possible to go to as, CLQ, a2 and a3. 

p{a5\a6) = / Q t(a5 |a6)A2e-A2^ + e~n°X2 Qt(a5\a9), 
Jo 

rna 

= / P ^ m A a e - ^ d t ^ P n ^ l - e - * 3 " - ) , 
Jo 

p(a6la6) = p„2n2( l-e_ A 2 n°), 

p{a2\a6) = / Qt(a2|a6)A2e-A2*di + e-n<"A2Qt(a2|a9) = e-"»A2pna, 
Jo 

p(a3\a6) = e-n°x*pnb. 

From a7 it is possible to go to as, a7, a2 and 03. 

Cnb 

J fnb 
' <2t(a5|a7)A2e-A2*dt + e-"bA2Q t(a5 |a9), 
0 

= / p„2niA2e-A2tdt = ^ , ( 1 - e-A2n»), 
Jo 

p(a7|a7) - p„2„2(l-e-A 2"6) , 

p(a2|a7) = / Qt(a2|a7)A2e-A2'di + e-ri6A2g((a2|a9), 
Jo 

= e-""A2Qt(a2|a9) = e~n>>^pna, 

p(a3\a7) = e-"6A2pn(j. 
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Prom ag it is possible to go to a\. 
r-o 

P(ai|a8)= / <3t(a1|a8)A1e-Al*di + e-/o°AldsQ((a1|a8) = l. 
Jo 

From ag it is possible to go to a2 and a3. 

f° o 
p(a2 |a9)= / Qt(a2\a9)\2e-X2tdt + e-f°x*dsQt(a2\a9)=pna, 

Jo 
f° 

P(a3 |a9)= / Qt(a3\a9)X2e-^tdt + e-^^^Qt(a3\a9)=pnb. 
Jo 

The transition matrix of the DTMC (Ofa), w(Tk)) associated with the sampled-data 

PDP is II = \p{ai\aj)}iti where i,j 6 {1,2, ...,9}. 

n = 

P n i n i 

0 

0 
. - T l b A i 

— T l n ^ l 

0 

0 

1 

0 

p 
e~ 

e~ 

n a P n i n 2 

- n a ^ 2 T > 

- n ( , A 2 p n 

0 

0 

0 

0 

0 

Pna 

P 
e~ 

e~ 

nbPnin2 

••Pr*,, 

"nbX*Pnb 

0 

0 

0 

0 

0 

Pn>, 

Pn 

P n 

0 

0 

2 « 1 

1 » 1 

0 

0 

0 

0 

0 

c2 

dl 

0 

P n 2 « i C X 

0 

0 

pn\n\d« 

Pn2ni 

Pn-2,n\ 

0 

0 

0 

P n 2 n 2 ^ 1 

0 

0 

Pniti2f*^ 

Pn2U2 

0 

0 

0 

0 

0 

P n 2 T i 2 C * 

P n x ' r t a ^ l 

0 

0 

Pn-zn^ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

where cl = 1 - e~n-A2, c2 = 1 - e^"6*2, dl = 1 - e~"<>Al and d2 = 1 - e-"°Al. 

In a sampled-data system, the upset times and the recovery durations are an 

integer multiple of the sample period. The DTMC associated with the sampled-

data PDP has stopping times which are exponentially distributed with parameters 

Xi and A2. Next the relationship between the sample period and the parameters 

of the exponential distribution is developed. A CTMC is first constructed from 

the DTMC (0(Tk),w(Tk)). TO start the construction, define the random variables 

Vn - (0(Tn), W(T„)) mapping (Q, T, Pr) to fljLiM' P{ U i U K } ) ) a n d *» mapping 

the space (fi, T, Pr) to (K+, B(R+)). The stochastic process {yn}nen is a DTMC with 

transition matrix II = [p(oj|aj)]i,j, where i,j € {1,2,..., 9}, with arbitrary initial 

distribution v. The random variables {t(n)} are mutually independent and each 

t(n) has an exponential distribution with intensity qo(yn), where yn is a sample of yn. 

Define the stochastic process @(t) 4 yNt, where Nt = sup{n > 0 : £ ^ 0 *(*) ^ *} 

and Nt < oo. From Theorem 10 it follows that ®(t) is a CTMC with infinitesimal 

generator 

A(%|oi) = q0(ai)p(aj\ai) for every i ^ j , 

Mai\ai) = -9o(a»)(l - p(flik))-
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Now that the CTMC has been characterized, the uniformization technique is used 

to obtain a DTMC, ®[k], as follows. Let q = max{-A(Oi|ai); i = 1,2, ...,9}. The 

transition matrix of the DTMC is 

n = / + -A, 
Q 

where 

IL, = i-^il(i_p(a ,K)) 
Q 

IUj = % p{a,j\ai), for every i ^ j . 

The continuous-time Markov chain, ®(t), is characterized by the parameters go(o«)-

The discrete-time Markov chain, 0[fc], is characterized by the parameter q. One way 

to related the time behavior of the upset and recovery algorithm with the sample 

instant so that the Markov property is preserved is to choose <?o(a») = Ax + A2 for 

every i = 1,2,..., 9. This implies 

Uu = 1 - — — ( 1 - p(ai\ai)) = P(aik) , 

tty = -^-^-p(aj\ai)=p(aj\ai), 

where q == A = Aj + A2. Prom this one obtains the transition matrix, II = 

[ny-]ije{i,2,...,9}, of a DTMC, @[k], observed at the time instants {0, T, 2T,...}. This 

DTMC takes values a,, where each a, indicates the mode of operation of the sampled-

data system as shown in Table II. The main conclusion of this section is that the 

switching rule between the nominal and recovery closed-loop system can be mod

eled as a DTMC, &[k], with transition matrix II. Now that the switching rule is 

characterized, the PDP model of the sampled-data is described next. 

IV.3.2 P D P Model of Sampled-Data Systems 

Since the switching rule is characterized by the Markov chain &[k], the sampled-data 

system associated with a jump linear controller in FIG. 3 can be represented as a 

PDP in several ways depending on the problem of interest. For sampled-data systems 

with a jump linear controller, however, it is possible to define a single sampled-data 

PDP that is useful for analysis. This PDP consists of the closed-loop system's hybrid 

stochastic process Xt — (®[&]> xp{t)i xc[k]) which aggregates the continuous states of 
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the plant, xp(t), and the discrete states of the controller, a;c[A;], with the states of the 

switching rule &[k] taking values in {a, : i = l,2,. . . ,9}. The sample paths of the 

aggregated plant and controller states take values in an open subset E C R"*P+"*<=. 

Thus, the state space of the sampled-data PDP is E = \fi=\ { { a J x E} w r t n the 

following local characteristics: 

(a) The stochastic motion for t € [kT, (k + 1)T) corresponding to the mode @[k] 

with initial condition given by (z[k] = [x'p[k],x'c[k]]') is z(t, z[k],@[k]) — 

N(kT,t)z[k} + m(t) (c.f. Equation (3), Chapter II). 

(b) Since the sampled-data PDP state can only jump at t = £;T, k € 

Z+ , the distribution of the jumping times can be trivially modeled by 

F(t;Q[k],Xp[k),xc[k]) — l{t<(fc+i)T} for t > kT. Observe that the jump rate 

A is set to zero so A(t; @[k], (xp[k], xc[k])) = 0. 

(c) The transition measure ~D{A\Q,xp, XC) has the properties that for each event 

A € /KUiU {{ai}xE}), D(J4|-) is measurable on U^=1 {{aJxE1}, and for each 

(0,xp ,xc) e ULi {iai} X ^}> D(-|e,xp,a;c) is a measure on /?(ULi { ( a J x 

E}). 

Now that the sampled-data PDP has been defined, it is important to determine 

the local characteristic D. This will be resolved in the remainder of this section. D 

is characterized using a Feller semigroup, which is introduced next. The hybrid state 

space of the stochastic motion of the sampled-data system with stochastic upsets is 

E. Assume that E is a locally compact separable metric space with respect to one 

of the suitable topologies, and let E = E U {A} be the one point compactification 

of E, where A is the point at infinity. The a-algebra defined on E is denoted by 

23(E). Let Co(E) be the space of continuous functions h : E —> M. with h(Q —* 0 as 

£ approaches oo, using a suitable metric. The space (Co(E), || • ||) is a Banach space 

if \\h\\ = sup,> |/i(C)|> ( € E. This is the Banach space of continuous functions on 

E that vanish at infinity. Let £(C0(E)) = £(C0(E),Co(E)) be the space of bounded 

linear operators. The following definitions help to induce a Markov process using 

bounded linear operators [36, pp 314]. 

Definition 19. The family of bounded linear operators {Ln} = {Ln € £(Co(E)) : 

n € Z+} is said to be an operator semigroup if the composition of the operators 

satisfies 
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where Lo = I is the identity operator. The family of bounded linear operators 

is called a contraction semigroup if | |Ln | | < l,Vn > 0, and it is called a positive 

semigroup if Vn > 0, V( € E, Ln(h(Q) > 0 whenever h(() >0,he C0(E). 

Definition 20. The family of bounded linear operators {Ln} on C0 = £(C0(E)) is 

a Feller semigroup if {£„} is a positive contraction semigroup of operators with the 

following properties: 

(a) LnC0 cC0,n> 0, 

(b) Lnh(() - • h(() as n -> 0, V/i € C0, V( € E. 

Definition 21. A mapping // : E x i?(E) —» K+ is called a stochastic kernel if the 

function n(s,B) is measurable for every event B € <B(E), and it is a probability 

measure for every s 6 E. 

Under certain conditions, the existence of a Feller semigroup {Ln} implies the 

existence of a family of Markov processes. The following lemma provides such a 

necessary and sufficient condition [36, Theorem 7.4 and Proposition 17.14]. 

Lemma 4. For every Feller semigroup {Ln} and for any probability measure K on 

E there exists a Markov process XK with initial distribution K and Markov transi

tion kernels [in on E satisfying Lnh(() = J h(y)fin(C, dy), V/i € Co, VC 6 E, and 

/Un(A,{A}) = l V n e Z + . 

It is now possible to introduce the operator L € Co for the sampled-data PDP. 

This definition is adapted from [39]. 

Definition 22. The family of operators {Ln} is defined recursively by L0h = h and 

Ln+\h = L(Lnh), n > 0, where L is the following bounded linear operator in Co 

Lh(Q,xp,xc) = h(Q,Xp,xc)p(dxp\xc,Xp)p(dxc\Q,xc)p(d@\Q), (18) 

Jt 

where the transition kernels in the integrals are characterized by the following prob

abilities: 

P(d&\e[k)) = n(e[fc +1] e de|e[A;]) 
p(dxc\Q[k], xc[k]) = Pr(xc[k + 1] € dxc\Q[k], xc[k}) 

p(dxp\xc[k], xp[k]) — Pr(xp[k + 1] 6 dxp\xc[k],Xp[k]). 
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This family of operators is a Feller semigroup. The following theorem shows that 

(0[fc],a5p[fc],xc[fc]) is a Markov chain. 

Theorem 11. The Feller semigroup {Ln} in Definition 22, equation (18), induces 

a unique Markov process satisfying 

Lnh(Q:xp,xc) = £ ( e '^X c ) / i (0[n],x>],x c[n]) 

~ J tl[KJ, Xp, XCJ * /Zn^v7, Xp, Xc'f Ctty, uXp, CtXcJ, 

w/iere E^e'Xj"Xc)/i(0[n],Xp[n],xc[ri]) is the expected value with respect to the measure 

Proof. Because the family of operators {Ln} with L in (18) is a Feller semigroup, 

it is possible to apply Lemma 4. This implies the existence of a Markov chain 

(©[A;], xp[k], xc[k]) with initial distributions on E. • 

One very important consequence of this theorem is the existence of a discrete-

time Markov process (©[&], ajp[fc],ajc[A;]) with transition kernel L1A(Q,XP,XC) = 

JAp(dxp\xc,Xp)p(dxc\Q,xc)p(dQ\Q), where A 6 B(E). Obviously this is a proba

bility measure for every (9, xp, xc) and a measurable function for every event A. The 

following theorem gives a characterization of the sampled-data PDP. 

Theorem 12. The sampled-data PDP has the following local characteris

tics: the closed-loop dynamics for each sample period T € M+ are given by 

z(t,z[k),Q[k\) = N{kT,t)z[k) + m(t) for t <E [kT,(k + 1)7), the survival func

tion is F(t,Q[k],Xp[k},xc[k}) = l{t<(fc+i)r} fort > kT, and the transition kernel is 

D(A\B,xp,xc) = LlA(Q, xp,xc). 

Proof. The only task is to characterize the kernel D(/4|0, xp, xc) of the sampled-data 

PDP. Since the operator L in (18) is defined on E, from Theorem 11 it follows that 

D(A|9,xp,xc) = L1A(@,XP,XC) = JAp(dxp\xc,xp)p{dxc\Q,xJp(dQ\@). O 

The PDP derived in Lemma 12 is a sampled-data PDP as defined in [28]. Now 

that the sampled-data PDP is characterized, it is possible to consider the invariant 

measure of the sampled-data with stochastic upsets. This is developed next. 
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IV.4 STATIONARY DISTRIBUTIONS 

Knowing that the sampled-data system has a PDP representation, it is possible to 

use some of the known PDP results, such as the existence and uniqueness of an 

invariant measure. This is helpful in stability analysis. 

Definition 23. Let (W, W) be a measurable space, and consider a stochastic kernel 

p{A\x), such that for every x G W, p{A\-) is a measurable function, and for every 

event A G W, p(-\x) is a probability measure. A measure v is an invariant measure 

if for every event A 

u{A) - / p(A\x)v{dx). 
Jw 

In this section a relationship is presented between the sets Upop and UMc of 

invariant measures for the processes (@[k],xp(t), xc[k}) and the embedded Markov 

chain (0[A;],Xp[A;],xc[A;]), respectively. Let Ti*MC be the set of finite invariant mea

sures n G UMC- The relationship between the invariant measure [i for the process 

(®[k},xp(t),xcm) and the invariant measure IT for the chain (©[&],aij,[A;],a:c[A;]) is 

given by the following theorem from [11, Theorem 2], [17, Theorem 34. 31]. 

Theorem 13. If n £ H*MC then fi belongs to TIPDP, with 

JEtiix)e-^)dtn(dx) 

where t*(x) = mi{t > 0 : $e(t,w) G OEQ] and n(dx) denotes that the integration is 

over the variable x using the measure n. 

For the case of the sampled-data PDP consider the follow theorem. 

Theorem 14. The invariant measure /z of (&[k],xp(t),xc[k]) for the sampled-data 

PDP is 

, AS ftf0
TiA(e,z(t,zik},e[k}))dtv(de )n(dxp, dxc) 

T hu(&> xp,xc)7](dxp,dxc) 

where r\ is an invariant measure of(xp[k],xc[k]), and the invariant measure TT G II*V/C 

with respect to the stochastic kernel v(dQ, xp, xc) satisfies 

jr(Ae,AXp,AXc) = / u(Ae,Xp,xc)i){dxp,dxc), 
JAXpxA.Cr 

where A0 G (3{{at : i = 1, 2,..., 9}), Ax G B(Wl*p), and AXc G B{Rn^). 
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Proof. Since A(t,x) = jQ A(z(s, z[k], Q[k]))ds — 0, implies that i»(0,xp, xc) = T, 

then from Theorem 13 it follows that 

M ' ftT-ir(de,dxp,dxc) 

Observing that w(dQ, dxp, dxc) = v(dQ, xp,xc)7](dxp, dxc) completes the proof. • 

Theorem 14 gives a formula to obtain an invariant measure of (©[&], xp(t), xc[k\) 

from an invariant measure of (a?p[A;],xc[fc]). In the next section, a condition is given 

to obtain the invariant measure of (a5p[fc],a:c[A;]). 

IV.5 STABILITY ANALYSIS OF SAMPLED-DATA SYSTEMS AS A 

PIECEWISE DETERMINISTIC MARKOV PROCESS 

IV.5.1 Invariant Measure of Sampled-Data Systems 

Stability analysis of a sampled-data system can be performed by analyzing the con

vergence of the distributions over time to an invariant measure. From Theorem 14, 

it was concluded that an invariant measure /x of (0[fc], xp(t),xc[k}) can be recovered 

from an invariant measure of (xp[k},xc[k}). In this section the invariant measure of 

(xp[fc],xc[A;]) is analyzed. In Chapter II, Theorem 3 the difference equation for the 

linearized discrete-time system z'[k] = [x'p[k] xc[k]\ was shown to be 

z[k + l] = Melk]z[k], (19) 

A0T 

where M&tk} = &[k] 
e"«" J0

T eA»V-*dsBpFt 
The function Me[fc] is a measur-JO 

P@[k)Cp A&[k] 

able mapping between (E,/3(E)) and (Rn^+n^,/?0(Rn*p+n^)) called the random 

transformation of system (19). To study the evolution of the probability mea

sure of (0[fc],z[A;]), it is necessary to define the inner product (g(z),nn(uj, •)) = 

Ji°° / s f f ^ M n ^ j ^ M d u ; ) , where g € C, C is the set of continuous functions from 

M"*P+
n*c to R with compact support, 1N = {at : i = 1,2,..., AT} (here N = 9), 

E C 2ft x R»*P+n'C, Zft 4 XN x IN X • • • 2jv (n times), 1% 4 XN x JN x • • •, u € Iff, 

and /j,n € M, with M denoting the set of locally finite measures on E. Finally, Let 

Me\k) be a random transformation of system (19), and let A/Wii_, • • • M^z) denote 

the composition Muln_l o • • • o Muo(z). The following definitions are taken from [38]. 
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Definition 24. The operator P : M —• M given by (g(z),Pfin(u,-)) = 

(g(MUJn(z)),iin(u!,-)) is called the Foias operator corresponding to the dynamical 

system (19). 

The following lemma characterizes the evolution of the Foias operator P in terms 

of a random transformation Afe[fc] • 

Lemma 5. The Foias operator corresponding to the dynamical system (19) satisfies 

the following property 

/ / g{x)Pnno(dx)v(dw)= / / g(Mu^_1..MuJx))Aio(<kM<M. 
Jiff JVLnxl> + nxc Jiff J&nxP+"xc 

for every n > 1, initial distribution /̂ o and g € C. 

Proof. The proof is by mathematical induction. First, prove that is true for n = 1. 

Using the definition of the Foias operator its follows that 

/ / g{x)Pfi0(dx)u(duj) = / / g(x)fii(u0,dx)u(dw) 
Jiff JR"*P+"1= Jiff jR"xP+nx<: 

= / / g{Mu0{x))n0{dx)v{<Ljj). 
Jiff jRnxP+nx>-

Now, prove it is true for n = 2: 

/ / g(x)P'2no(dx)v(du}) 
Jiff J».nxP + "Xc 

= / / g(x)Pni(uJo,dx)v(duj) 
Jiff jR"-Tp+"xc 

= 1 1 g(x)fi2{uo,vi,dx)v(du;) 
Jiff jRn*P+n*c 

= 9(MWi{x))ni(u>o,dx)i>{du)) 
Jiff J R " 1 ? 1 " " 

= / / g(Mu!lMu)0(x))iJ,0(dx)u(dui). 
Jiff JM.n*p+nxc 

The above analysis twice applied the Foias operator definition. Now suppose the 

claim is true for n — 1. Then 

I f g{x)Pn-ito{dx)v{dw)= I [ g(Mu;n_2---M^(x))^(dx)u(cLj). 
J iff JR"XP+"X^ Jiff jRnxPi-"xc 
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One needs to prove for n that 

f f g(x)Pnfio(dx)v(dLj) 
Jiff J&nxP+nxc 

= / / g(x)fin(ujQ,.,LUn^i,dx)u(duj) 
Jiff Ju"xP+nx'--

= / / g{MUn._l{x))iin-l(ujQ,.,ujn-.2,dx)v{<kj) 
Jiff iK"*p+nic 

= / / g(MUJn^(x))¥n-l^(dx)u(<ko) 

= 1 1 g(MUn_1---MUlMUo{x))no(dx)u(dw). 
Jiff Jl&nxP+n*<: 

Again the Foias operator definition was applied n times. Hence, the identity holds 

for all n > 1. • 

This result can be interpreted as follows. The mean of the random variable g(z[n]) 

is equal to the mean of g o MUn_l o . . . o Afwo(z[0]). In other words, even if we do 

not know the measure of the random variable z[n], one can compute the mean of 

<7(z[n]) from the initial distribution [i0 and the distribution of the jumps 0 . Now 

the definition of an invariant measure is given in terms of the Foias operators. 

Definition 25. A measure /J„ € M. is called invariant with respect to the Foias 

operator P if (g(z),P[i*) — (g(z),^i„) for every g EC. 

The next theorem shows that system (19) has an invariant measure [28], The 

delta Dirac measure defined by: 5(A) — 1 if 0 € A and 6(A) = 0 if 0 ^ A for every 

event A E p0(R
nxr+nx<). 

Theorem 15. If AIQ^} is a random transformation of system (19) having the Foias 

operator P and Mj(0) = 0 for every j E IN, then the delta Dirac measure is invari

ant. 

Proof. Consider 

/ f g(z)Pn6(dz)u(duj) = 1 1 g(ALn._l---\'LxMUJa(z))5(dz)u(du) 

g(MUn_1---MullMu*(0))u(<Lj). 
•)ii 

Since MWi (0) = 0 it follows that 

/ / g(z)¥n5(dz)u(duj)= I g(0)v(<Lj) = g(0). 
Jiff JMnxP+nxc Jlf 
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Hence, Pn5 = 6 for every n > 0. • 

The stability analysis of the sampled-data PDP is studied using the following 

definition of stability in terms of the Foias operator. 

Definition 26. The dynamical system (19) is weakly asymptotically stable to the 

invariant measure ^„ if for every initial measure n0 it follows that 

lim (g(z),PniJ,o) = (0(2),/i.) 
n—HX> 

for every g £ C. 

The next two lemmas are used in the proof of Theorem 16 and can be found 

in [38, pp. 422]. 

Lemma 6. Let P be a Foias operator of system (19). The dynamical system (19) is 

weakly asymptotically stable if it has an invariant distribution and if 

l i m ( 5 , P > 0 - P n K o ) = 0 (20) 
n—KX 

for g 6 C and K0, fx0 £ M. 

Lemma 7. Let C* C C be a dense subset. If condition (20) holds for every g £ C» 

and no, K0 with bounded supports, then it is satisfied for arbitrary g £ C and «o> Mo € 

M. 

The next theorem gives a sufficient condition for the weak convergence of the 

dynamical system (19) to the delta Dirac measure. 

Theorem 16. Let ¥ be a Foias operator corresponding to the dynamical system (19). 

If ®[k] is a Markov chain with transition probability matrix II taking values in IN, 

JWj(O) = 0, ||Mj(z) — Mi(w)\\ < k\z — w\ for every i £ IN, and the matrix 

l\Ii\i • • • IN^IN 

_ l\ft\2 • • • IN^2N 

h^-iN ' ' ' INTINN 

has spectral radius less than 1 then the dynamical system (19) 'is weakly asymptotically 

stable to the delta Dirac measure, where 11^ are the transition probabilities of the 

Markov chain &[k]. 
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Proof. Observe that 

(fl(MUn_1---Mutt(z)),/i0) = / / fl(M1Jn_1---Mu)|)(z))/zo(d«M^) 
Jiff JvinxP+nxc 

where the mean value theorem guarantees the existence of ~z € J5. This implies that 

for any two initial measures the following is satisfied 

(g(z),PyQ) - (g(z),PnK0}\ 

f 3(MWB_1---A/U0(z1)Mdw)- / g{MWn_l---Mm(z2))u(tLj) 
JZff JlN 

< I \g{MUn_l'-'MU0(z1))-g(MUn_l---MU0(z2))\v(du), 
77-00 

where the existent of z\ and z<i are guarantee by the mean value theorem. Now 

consider a subset of Lipschitz functions C* of C. If g € C» then it follows that 

\(g(z),Pn»0)-(g(z),-pnK0)\ 

< v [ \\MUn_x • • • MM - M^ • • • A U ^ H d w ) 

= Utf { H M ^ • • • A4JZ!) - A/^., • • • A/^(«2)||} 
AT 

< U X ) £{IIM„, 1 - - -M i 0 ( , 1 ) -M^ 1 - - -A4(z 2 ) | | 
«0,-",«n-l = l 

' A[(Jo=tO>- , ^ n - l = i n - l ] J 

AT 

< w ]jP {/io • • • /*„_,|zi - z2\ Pr(w0 = flio,' • • . w„_i = o ^ . J } 

< «[/! • • -ZATlr-^Cl) • ••P0(N)}'\Z1 - 2a|, 

where v > 0, tJ € R is the constant value obtained from the Lipschitz continuity 

of g € C. This implies that limn_»00(gf, Pn/io — Pn«o) = 0 for every g satisfying 

the Lipschitz condition. By Lemma 7, the dynamical system (19) is then weakly 

asymptotically stable to the delta Dirac measure. D 

The main result of this section is the stability analysis of the sampled-data system 

with a stochastic upset. Now using the sufficient condition for convergence to the 

delta Dirac for (a;p[fe], asc[fc]) and the relationship of the invariant measures developed 

in Section IV.4 for (&[k\, xp(t), xc[k}) and (©[/:], xp[k], xc[k}), the following result for 
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convergence to the invariant distribution of the sampled-data system with stochastic 

upsets is given. 

Theorem 17. / / the matrix 

A = 
|Afi||IIi2 

||A/W||IIJVI 

IIAfjvllUa 

jIA/aiinuv ••• \\MN\\IINN 

has spectral radius less than 1 then the sampled-data PDP (@[k],xp(t),xc[k}) of a 

linear time invariant plant with stochastic upsets converges in distribution to the 

invariant measure (5(0,0,0), where 

Mi 
'eA"T f*eA^T-sUsBpFa 

5(0,0,0) = <5(0,0)<5(©) takes value one for (0,0, Q) and zero for other cases. The 

Uij 's are the transition probabilities of the Markov chain Q[k] with transition matrix 

U=[Uij\. 

Proof. Since A has spectral radius less than one, it follows from Theorem 16 for 

(xp[k],xcm) that the system (19) converges to the invariant measure 5(0,0). By 

Theorem 14, the invariant measure of the sampled-data PDP is 

__ JE SO 1A(&, z(t, z[k], G[k]))dti/(xp, xc, dO)S(dxp, dxc) 
fE U(Q, xp, xc)v(xp,xc, dQ)6(d,Xp, dxc) 

where 6(dxp, dxc) is equal to one for xp — xc = 0, and at this point z(t, z[k], S[k])) — 

0. This implies that 

ffilA(Q,Q)dtv(0,0,dQ) 
fi(A) 

j'Tu(Q,0,de) 

/T-u(e,o)t/(o,o,(ie) 
/T-i / (0,0,d9) 

fiA(e,o)v(o,o,dG) 
J i/(0, 0, dQ) 

5(0,0,9), 

where A = (9. AXp, AXc) G 5(E). • 
The main idea of Theorem 17 is that it provides a testable sufficient condition 

for convergence to the delta Dirac distribution of the sampled-data PDP. 
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IV.6 CHAPTER SUMMARY 

One of the main objectives of this chapter was to give a methodology for embedding 

the sampling instants in a PDP model. This methodology had two main parts. First, 

the subordinated Markov chain technique was used to obtain a CTMC model from 

the associated DTMC of the PDP model. Second, the uniformization technique was 

used to obtain a DTMC at each sampling instant kT. If | = Ai + A2 then it was 

shown that the DTMC at each sampling instant has the same transition matrix as 

the DTMC model associated with the PDP model. Also, this chapter gives some 

initial results on the representation of sampled-data stochastic systems as piecewise-

deterministic Markov processes. Using known PDP properties, relationships between 

the invariant measures of (@[k],xp(t),xc[k}) and (0[A:],a;p[fc], xc[k}) were given. Us

ing the PDP representation of the sampled-data system with stochastic upsets, a 

sufficient condition for the stability in distribution to the delta Dirac distribution 

was obtained. 
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH 

V . l C O N C L U S I O N S 

The main contributions of this dissertation are the development of models of sampled-

data systems with stochastic upsets; the establishment of the equivalence between 

these models and their discretized versions; and the development of tools to analyze 

the stability of these systems that may avoid the numerical issues encountered with 

other techniques. 

The sampled-data systems of interest were introduced in Chapter I. Models to 

analyze them were presented in Chapters II, III and IV. In Chapter II, in particular, 

the appropriate framework to analyze these stochastic sampled-data systems was 

presented. This made it possible to establish the equivalence between the sampled-

data systems and their discretized version. In Chapter III, the sampled-data system 

with stochastic upsets was modeled as a dynamically colored Petri net (DCPN), 

where the possibility of inducing a failure to the controller is modeled as a continuous 

time Markov chain (CTMC). This model is intuitively more appealing than a DTMC, 

because the faults can happen at any time. On the other hand, this model has the 

following problem. In a sampled-data system, the upset times and the recovery 

durations are an integer multiple of the sample period. 

In Chapter IV, the embedding of the sampling instants in the PDP model was 

accomplished in two steps. First, using DCPN formalism the recovery duration was 

modeled as taking values on M+. It was modeled using a guard transition. The fail

ures were modeled using delay transitions. These transitions give a family of stopping 

times that model the random process of the occurrence or not of a fault and recovery 

times. Intuitively, at these stopping times, the state of the sampled-data system is 

subject to a major change and between the jumps the state evolves in a smooth way. 

At these stopping times, the DCPN jumps from one state to another from which 

a reachabilty graph is constructed. Basically, the reachability graph gives a parti

tion of a DCPN state into classes. For analysis with the PDP model, a transition 

matrix for the switching process is derived. This is called the transition kernel of a 

PDP. Second, from the first step a family of stopping times and a transition kernel 
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of a PDP were obtained. Using the associated DTMC of a PDP it is possible to 

obtain a DTMC taking values in the classes of the DCPN state and stopping times 

as discrete-times. But because the recovery frames take values at integer multiples 

of the sample period T, it is necessary to take a subsequence of a stopping times tha t 

only considers the recovery frames at, integer multiples of the sample period. More 

important is to obtain the Markov chain associated with this subsequence. This was 

developed using the subordinated process and the uniformization techniques. Prom 

these two steps a transition matrix of a DTMC model of the switching between the 

nominal and recovery mode was obtained. This transition has two main characteris

tics. First, the dimension of the matrix only depends on the number of classes tha t 

result from the partition of the DCPN state space. Second, the number of recovery 

cycles is related to the elements of the transition matrix and not to its size, showing 

an advantage of the DCPN model over the SFSM model. 

Now, having characterized the switching between nominal and upset mode, the 

sampled-data PDP was presented where the local characteristics were obtained using 

stochastic motions, DCPN-PDP models and Feller semigroups. A stability analysis 

for the sampled-data PDP was presented and more importantly a mean square sta

bility equivalence between the sampled-data PDP and its associated discrete-version 

was obtained. The discrete-time version was shown to be a Markov jump linear 

system. 

V .2 F U T U R E R E S E A R C H 

From the description of the results of the dissertation, there are two techniques 

developed for a specific case that can be generalized. First, the abstraction procedure 

for the state space of a DCPN. Using the reachability graph it is possible to induce 

a partition of the DCPN state space. Basically the classes are recognized through 

firing the delay and guard transitions and observing the jumps from one state to 

another. Using the DCPN-PDP relation a transition kernel for going from one class 

to another can be obtained. Second, using the associated DTMC of a PDP, it is 

possible to generate a DTMC of a system modeled as a DCPN. This Markov chain 

has as a state space the partition of the state space of a DCPN. 

From the software point of view there is another possible extension. Smart [43] 

is a tool that given a formal description of a system as a Petri net, so Smart can 

generate the state space and attempts to recognize the system as a DTMC and 
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perform formal verification of a system. It will be interesting to develop the same 

idea when the system is formally described as a DCPN and to use this DCPN as. 

an input to Smart. This could be implemented using the state space abstraction 

and time discretization proposed in this dissertation. Having a Smart with DCPN 

formalism as an input could help to develop analysis and verification of temporal logic 

properties of a system with the following characteristics: systems that are subject 

to stochastic failures and have fault tolerant capabilities. With the DCPN models 

of systems with stochastic failures and fault tolerant capabilities, it is possible to 

interconnect these DCPN models and obtain one DCPN model which could be used 

as an input to Smart. 

Finally, runway safety monitor (RSM) is a protocol playing a key role in acci

dent avoidance, which detect incidents then alerts the pilot, one application of the 

abstraction described in this dissertation could be to model the RSM as a DCPN 

when the RSM is subject to communication failures and have a recovery mechanism. 

Because Smart operates on discrete systems, the abstraction technique and time 

discretization proposed will help to discretize the continuous variables of RSM with 

fault tolerant mechanism and under stochastic upsets. 
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