1,947 research outputs found

    Integrated chaos generators

    Get PDF
    This paper surveys the different design issues, from mathematical model to silicon, involved on the design of integrated circuits for the generation of chaotic behavior.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a 1FD97-1611(TIC)European Commission ESPRIT 3110

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    A system-on-chip digital pH meter for use in a wireless diagnostic capsule

    Get PDF
    This paper describes the design and implementation of a system-on-chip digital pH meter, for use in a wireless capsule application. The system is organized around an 8-bit microcontroller, designed to be functionally identical to the Motorola 6805. The analog subsystem contains a floating-electrode ISFET, which is fully compatible with a commercial CMOS process. On-chip programmable voltage references and multiplexors permit flexibility with the minimum of external connections. The chip is designed in a modular fashion to facilitate verification and component re-use. The single-chip pH meter can be directly connected to a personal computer, and gives a response of 37 bits/pH, within an operating range of 7 pH units

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    A new nonlinear time-domain op-amp macromodel using threshold functions and digitally controlled network elements

    Get PDF
    A general-purpose nonlinear macromodel for the time-domain simulation of integrated circuit operational amplifiers (op amps), either bipolar or MOS, is presented. Three main differences exist between the macromodel and those previously reported in the literature for the time domain. First, all the op-amp nonlinearities are simulated using threshold elements and digital components, thus making them well suited for a mixed electrical/logical simulator. Secondly, the macromodel exhibits a superior performance in those cases where the op amp is driven by a large signal. Finally, the macromodel is advantageous in terms of CPU time. Several examples are included illustrating all of these advantages. The main application of this macromodel is for the accurate simulation of the analog part of a combined analog/digital integrated circui

    Analysis and Design of a Two Stage CMOS OP-AMP with 180nm using Miller Compensation Technique

    Get PDF
    With the continuous growing trend towards the reduced supply voltage and transistor channel length, designing of high performance analog integrated circuits such as operational amplifier in CMOS (complementary metal oxide semiconductor) technology becomes more critical. In this paper the two stage CMOS Operational amplifier (op-amp) has been designed using miller compensation technique which operates at 2.5V. Miller compensation technique has been employed with two approaches, first is using single miller compensation capacitor whereas second approach uses single miller compensation capacitor in series with nulling resistor. To achieve increased phase margin which indicate stability of a system, new design has been proposed with the help of second approach. The simulation was performed using TSMC 180nm CMOS process and design has been carried out in tanner EDA tool. DOI: 10.17762/ijritcc2321-8169.160410

    The Analogue Computer as a Voltage-Controlled Synthesiser

    Get PDF
    This paper re-appraises the role of analogue computers within electronic and computer music and provides some pointers to future areas of research. It begins by introducing the idea of analogue computing and placing in the context of sound and music applications. This is followed by a brief examination of the classic constituents of an analogue computer, contrasting these with the typical modular voltage-controlled synthesiser. Two examples are presented, leading to a discussion on some parallels between these two technologies. This is followed by an examination of the current state-of-the-art in analogue computation and its prospects for applications in computer and electronic music
    • 

    corecore