6 research outputs found

    Approximation d'ensembles horn strong backdoor par recherche locale

    Get PDF
    Dans ce papier, nous proposons une nouvelle approche pour calculer un strong backdoor pour des formules mises sous forme normale conjonctive (CNF). Elle est basée sur une utilisation originale d'une méthode de recherche locale qui fournit un renommage maximisant la sous-formule horn-renommable d'une CNF donnée. Plus précisément, à chaque étape, on choisit de renommer la variable qui fait le plus diminuer le nombre de clauses non-horn. S'il ne reste plus de clauses strictement positives (ou strictement négatives) ou de clauses non-horn dans la formule, notre méthode répond au problème de satisfaisabilité de la formule originale; sinon, on utilise la plus petite sous-formule qui ne soit pas de horn pour en extraire un ensemble de variables (strong backdoor) tel qu'une fois ces variables instanciées, le reste du problème appartient à une classe polynômiale. Les premiers résultats expérimentaux montrent que notre approche est prometteuse sur un grand nombre d'instances SAT

    Improved Exact Algorithms for Mildly Sparse Instances of Max SAT

    Get PDF
    We present improved exponential time exact algorithms for Max SAT. Our algorithms run in time of the form O(2^{(1-mu(c))n}) for instances with n variables and m=cn clauses. In this setting, there are three incomparable currently best algorithms: a deterministic exponential space algorithm with mu(c)=1/O(c * log(c)) due to Dantsin and Wolpert [SAT 2006], a randomized polynomial space algorithm with mu(c)=1/O(c * log^3(c)) and a deterministic polynomial space algorithm with mu(c)=1/O(c^2 * log^2(c)) due to Sakai, Seto and Tamaki [Theory Comput. Syst., 2015]. Our first result is a deterministic polynomial space algorithm with mu(c)=1/O(c * log(c)) that achieves the previous best time complexity without exponential space or randomization. Furthermore, this algorithm can handle instances with exponentially large weights and hard constraints. The previous algorithms and our deterministic polynomial space algorithm run super-polynomially faster than 2^n only if m=O(n^2). Our second results are deterministic exponential space algorithms for Max SAT with mu(c)=1/O((c * log(c))^{2/3}) and for Max 3-SAT with mu(c)=1/O(c^{1/2}) that run super-polynomially faster than 2^n when m=o(n^{5/2}/log^{5/2}(n)) and m=o(n^3/log^2(n)) respectively

    Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT

    Get PDF
    AbstractThe maximum 2-satisfiability problem (MAX-2-SAT) is: given a Boolean formula in 2-CNF, find a truth assignment that satisfies the maximum possible number of its clauses. MAX-2-SAT is MAX-SNP-complete. Recently, this problem received much attention in the contexts of (polynomial-time) approximation algorithms and (exponential-time) exact algorithms. In this paper, we present an exact algorithm solving MAX-2-SAT in time poly(L)·2K/5, where K is the number of clauses and L is their total length. In fact, the running time is only poly(L)·2K2/5, where K2 is the number of clauses containing two literals. This bound implies the bound poly(L)·2L/10. Our results significantly improve previous bounds: poly(L)·2K/2.88 (J. Algorithms 36 (2000) 62–88) and poly(L)·2K/3.44 (implicit in Bansal and Raman (Proceedings of the 10th Annual Conference on Algorithms and Computation, ISAAC’99, Lecture Notes in Computer Science, Vol. 1741, Springer, Berlin, 1999, pp. 247–258.))As an application, we derive upper bounds for the (MAX-SNP-complete) maximum cut problem (MAX-CUT), showing that it can be solved in time poly(M)·2M/3, where M is the number of edges in the graph. This is of special interest for graphs with low vertex degree
    corecore