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Abstract

The maximum 2-satis5ability problem (MAX-2-SAT) is: given a Boolean formula in 2-CNF,
5nd a truth assignment that satis5es the maximum possible number of its clauses. MAX-2-SAT is
MAX-SNP-complete. Recently, this problem received much attention in the contexts of
(polynomial-time) approximation algorithms and (exponential-time) exact algorithms. In this pa-
per, we present an exact algorithm solving MAX-2-SAT in time poly(L) · 2K=5, where K is the
number of clauses and L is their total length. In fact, the running time is only poly(L)·2K2=5, where
K2 is the number of clauses containing two literals. This bound implies the bound poly(L) ·2L=10.
Our results signi5cantly improve previous bounds: poly(L) · 2K=2:88 (J. Algorithms 36 (2000)
62–88) and poly(L) · 2K=3:44 (implicit in Bansal and Raman (Proceedings of the 10th Annual
Conference on Algorithms and Computation, ISAAC’99, Lecture Notes in Computer Science,
Vol. 1741, Springer, Berlin, 1999, pp. 247–258.))

As an application, we derive upper bounds for the (MAX-SNP-complete) maximum cut prob-
lem (MAX-CUT), showing that it can be solved in time poly(M) · 2M=3, where M is the number
of edges in the graph. This is of special interest for graphs with low vertex degree.
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1. Introduction

Worst-case upper bounds for NP-hard problems: Various NP-hard optimization
problems arise naturally in many areas of computer science while no polynomial-time
algorithms for them are known. For some of these problems, there are polynomial-time
approximation algorithms that give solutions within a factor of some performance ra-
tio � of the optimal solution. However, for those problems that are MAX-SNP-hard
(see, e.g. [1,3,31]), it is known that the performance ratio of a polynomial-time algo-
rithm cannot be better than some constant � (inapproximability ratio) unless P = NP.
For example, for MAX-2-SAT (for formal de5nitions, see below), �= 0:931 [17] and
�= 0:955 [20].
Recently, there was an explosion in proving (exponential) worst-case time upper

bounds for NP-hard problems and, in particular, for the exact solution of MAX-SNP-
hard problems. Most results in the area concentrate around SAT, the problem of sat-
is5ability of a propositional formula in conjunctive normal form (CNF), which can
be easily solved in time of the order 2N , where N is the number of variables in
the input formula. In the early 1980s, this trivial bound was improved for formulas
in 3-CNF (every clause contains at most three literals) by Monien and Speckenmeyer
[29] and independently by Dantsin [10] (e.g., a 2N=1:44 bound 5 was proved). After that,
many upper bounds for SAT [23,27], k-SAT [12,13,26,32,36,37], MAX-SAT [4,28,30],
MAX-2-SAT [4,30], and other NP-hard problems were obtained.
Previous research and our results: Concerning the problems for formulas in CNF,

most authors consider bounds w.r.t. three main parameters:

• the length L of the input formula (i.e., the number of literal occurrences),
• the number K of its clauses, and
• the number N of the variables occurring in it.

The best currently known bounds for SAT are 2K=3:23 and 2L=9:7 [23], while, w.r.t. the
number of variables, nothing better than trivial 2N is known. In contrast, for 3-SAT,
randomized 1:3303N [37] and deterministic 1:481N [12,13] are known, while the bounds
w.r.t. K and L are the same as for SAT.
The maximum satis5ability problem (MAX-SAT) is an important generalization of

SAT. Here, we are given a formula in CNF, and the answer is the maximum number
of simultaneously satis5able clauses. This problem is NP-complete 6 and MAX-SNP-
complete, even if each clause contains at most two literals (MAX-2-SAT; see, e.g.
[31, Theorem 13.11]). MAX-SAT and MAX-2-SAT are well-studied in the context
of approximation algorithms (see, e.g. [2,11,17,20,25,38]). Recently, numerous results
appeared in the domain of worst-case time bounds for the exact solution of MAX-SAT

5 For brevity, we usually omit a polynomial factor in this paper: e.g., if we write 2N=1:44, we mean
poly(|F|) · 2N=1:44, where |F| is the length of representation of the input.

6 A more precise NP-formulation is, of course, “given a formula in CNF and an integer k, decide whether
there is an assignment that satis5es at least k clauses”.
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and MAX-2-SAT [4,11,19,21,22,28,30]. The currently best bounds for MAX-SAT are
2K=2:36 and 2L=6:89 [4]. For MAX-2-SAT, the considerably better bounds 2K=2:88 [30]
and 2K=3:44 (implicit in [4]) follow from MAX-SAT algorithms. In this paper, we
prove a much better 2K=5 bound by giving a direct (and much simpler!) algorithm for
MAX-2-SAT. Our result still holds if K in the exponent is the number of 2-clauses
(i.e., unit clauses are not counted). Therefore, the bound 2L=10 follows, which is the
5rst bound w.r.t. L that is better for MAX-2-SAT than for MAX-SAT.
Using our MAX-2-SAT algorithm, we obtain the bound 2M=3 for the MAX-CUT

problem (given a graph with M edges, 5nd a cut of maximum size in it). This is of
particular interest for graphs with bounded degree: If the maximum vertex degree is 3,
then MAX-CUT can be solved in time 2n=2 (where n is the number of vertices) and,
if the maximum vertex degree is 4, then MAX-CUT can be solved in time 22n=3. For
larger degree d¿ 5, our algorithm does not improve a simple 2nd=(d+1) bound [39]. We
are not aware of previous non-trivial worst-case upper bounds for the exact solution of
MAX-CUT, except for the parameterized bounds given by Mahajan and Raman [28].
Their results are a bound of 22k for the question of whether a given graph has a cut
of size k, and a bound of 24k for the question of whether a given graph with m edges
has a cut of size �m=2�+ k.
Our results w.r.t. K and w.r.t. M also hold for the versions of MAX-2-SAT and

MAX-CUT where each clause (or edge, resp.) is assigned an integer weight. In this
case, K and M in the above bounds denote the total weight of all clauses (resp., edges).
Splitting algorithms: Most of the algorithms corresponding to the bounds mentioned

above, as well as the algorithms presented in this paper, use a kind of Davis–Putnam–
Logemann–Loveland procedure [14,15]. In short, this procedure reduces the problem for
a formula F to the problem for two formulas F[v] and F[ Rv] (where v is a propositional
variable). This is called “splitting”. Before the algorithm splits each of the obtained two
formulas, it can transform them into simpler formulas F1 and F2 using transformation
rules. In a splitting tree corresponding to the execution of such an algorithm, the node
labeled by F has two children labeled by F1 and F2. The algorithm does not split a
formula if it is trivial to solve the problem for it; these formulas are the leaves of the
splitting tree. The running time of the algorithm is within a poly(|F |) factor of the
number of leaves.
Sources of our improvements: Our MAX-2-SAT algorithm is a typical splitting

algorithm, i.e., to describe it we need to specify: a set of formulas corresponding to
the leaves of our tree, a heuristic determining the choice of a variable for splitting, and
transformation rules. Worst-case analysis of such algorithms usually contains a huge
amount of case enumeration. The number of cases we need to consider in our proof
is tremendously smaller than in the current results for general MAX-SAT [4,30]. Our
MAX-2-SAT algorithm makes use of two main ideas.
The leaves of our splitting tree are formulas containing only unit clauses (clearly,

MAX-1-SAT is trivial). Therefore, in the analysis of the running time of our algorithm
we count only 2-clauses. We prove that every variable occurring in at most two 7

7 For simplicity, we give here our ideas in the unweighted case.
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2-clauses (and maybe some 1-clauses) can be eliminated in polynomial time 8 . If there
is a variable occurring in three 2-clauses, then we can make a splitting such that each of
the formulas F1 and F2 has at least 5ve 2-clauses less than F (this situation corresponds
to the recurrence inequality T (K)6 2T (K − 5) for the running time). Clearly, we can
say the same about F containing a variable occurring in at least 5ve 2-clauses. If our
splitting tree contains only formulas of these types, then the running time is at most
2K=5. The remaining case, i.e., only variables occurring in four 2-clauses, corresponds
to the recurrence inequality T (K)6 2T (K − 4).
The second idea is connected to a general point in splitting algorithms for NP-hard

problems: usually, a problem has “bottleneck” instances, i.e., the instances correspond-
ing to the “worst” recurrence inequality. For example, for the algorithm described
above, these are the formulas for which our splitting corresponds to the inequality
T (K)6 2T (K − 4). Usually, this situation is handled by looking to the next level
of splitting and showing that the obtained two instances are not “bottleneck” [23,30]
which gives an inequality with an “intermediate” solution. In this paper, we handle
this situation in a diSerent way. Namely, we show that we can build a splitting tree
such that each branch contains at most one “bottleneck” instance. Therefore, we can
omit the corresponding recurrence inequality from asymptotic analysis.
For the MAX-CUT problem, there is an easy translation of any of its instances with

M edges into a MAX-2-SAT instance with 2M clauses. This would already give us
a 22M=5 bound. However, the formulas given by the translation satisfy a very speci5c
condition. Moreover, this condition is preserved by our transformation rules. For such
formulas, our algorithm runs with small modi5cations in the time 2K=6, i.e., MAX-CUT
can be solved in the time 2M=3.
History of the paper: The present work started from [18,19,21,22], where parts

of the ideas of this paper already appeared. The authors thank DIMACS for 5nancial
support that gave them an opportunity to meet at the DIMACS Workshop “Faster Exact
Algorithms for NP-Hard Problems”, where the ideas from earlier discussions between
them were implemented into better algorithms with signi5cantly better bounds.
Organization of the paper: Our paper is organized as follows. In Section 2, we

give basic de5nitions. In Section 3, we describe the transformation rules we use. In
Section 4, we present our new MAX-2-SAT algorithm and its analysis. Section 5 shows
the application to MAX-CUT. Conclusions, open questions, and comparison to closely
related research are given in Section 6.

2. Background

Let V be a set of Boolean variables. The negation of a variable v is denoted by
Rv. Literals are variables and their negations. If l denotes a negated variable Rv, then Rl
denotes the variable v.

8 In fact, it follows easily that MAX-2-SAT is solvable in polynomial time when every variable oc-
curs in at most two 2-clauses (and maybe some 1-clauses). Note that MAX-2-SAT is NP-complete and
MAX-SNP-complete, even if the number of occurrences of every variable is bounded by three (see, e.g.
[6,34]).
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Algorithms for 5nding the exact solution of MAX-SAT are usually designed for the
unweighted MAX-SAT problem. However, the formulas are usually represented by mul-
tisets (i.e., formulas in CNF with positive integer weights). In this paper, we consider
the weighted MAX-SAT problem with positive integer weights. A (weighted) clause
is a pair (!; S) where ! is a strictly positive integer number and S is a non-empty
5nite set of literals which does not contain, simultaneously, any variable together with
its negation. We call ! the weight of a clause (!; S).
An assignment is a 5nite set of literals that does not contain any variable together

with its negation. Informally speaking, if an assignment A contains a literal l, then the
literal l has the value True in A. In addition to usual clauses, we allow a special true
clause (!;T) which is satis5ed by every assignment. (We also call it a T-clause.)
The length of a clause (!; S) is the cardinality of S. A k-clause is a clause of

length exactly k. In this paper, a formula in (weighted) CNF (or simply formula)
is a 5nite set of (weighted) clauses (!; S), with at most one clause for each S. If a
formula contains only one clause, for short we write this clause instead of the formula.
A formula is in 2-CNF if it contains only 2-clauses, 1-clauses and a T-clause. The
length of a formula is the sum of the lengths of all its clauses. The total weight of all
2-clauses of a formula F is denoted by K2(F) and by K2 when the formula is clear
from the context.
The pairs (0; S) are not clauses: for simplicity, however, we write (0; S)∈F for all

S and all F . Thus, the operators + and − are de5ned:

F + G = {(!1 + !2; S) | (!1; S)∈F and (!2; S)∈G; and !1 + !2 ¿ 0};
F − G = {(!1 − !2; S) | (!1; S)∈F and (!2; S)∈G; and !1 − !2 ¿ 0}:

In other words, + and − denote the union and the diSerence of formulas considered
as multisets of clauses.

Example 1. If

F = {(2;T); (3; {x; y}); (4; { Rx; Ry})}
and

G = {(2; {x; y}); (4; { Rx; Ry})};
then

F − G = {(2;T); (1; {x; y})}:

For a literal l and a formula F , the formula F[l] is obtained by setting the value of
l to True. More precisely, we de5ne

F[l] = {(!; S) | (!; S)∈F and l; Rl 	∈ S}
+ {(!; S \ { Rl}) | (!; S)∈F and S 	= { Rl} and Rl∈ S}
+({(!;T) |! is the sum of the weights !′

of all clauses (!′; S) of F such that l∈ S}:
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(Note that no (!; ∅) or (0; S) is included in F[l], F +G or F −G.) For an assignment
A={l1; : : : ; ls} and a formula F , we de5ne F[A]=F[l1][l2] : : : [ls] (evidently, F[l][l′]=
F[l′][l] for every pair of literals l; l′ with l 	= Rl′). For short, we write F[l1; : : : ; ls]
instead of F[{l1; : : : ; ls}].

Example 2. If

F = {(1;T); (1; {x; y}); (5; { Ry}); (2; { Rx; Ry}); (10; { Rz}); (2; { Rx; z})}
then

F[x; Rz] = {(12;T); (7; { Ry})}:

The optimal value of a maximum weight assignment for formula F is de5ned as
OptVal(F)=maxA{! | (!;T)∈F[A]}, where A is taken over all possible assignments.
An assignment A is optimal if F[A] contains only one clause (!;T) (or does not
contain any clause, in this case != 0) and OptVal(F) = ! (=OptVal(F[A])).
If we say that a literal l occurs in a clause or in a formula, we mean that this

clause (more formally, its second component) or this formula (more formally, one of
its clauses) contains the literal l. However, if we say that a variable v occurs in a
clause or in a formula, we mean that this clause or this formula either contains the
literal v or it contains the literal Rv.
For a literal l, we write #l(G) to denote the total weight of the clauses of a formula

G in which l occurs. We omit G when the meaning of G is clear from the context. We
also write #(k)l to denote the total weight of k-clauses in which l occurs. The weight
of a variable is the total sum of the weights of the 2-clauses the variable occurs in.
A closed subformula G is a subset of a formula F such that none of the variables

occurring in G occurs in F − G. We use this term only for non-trivial subformulas,
i.e. both G and F − G contain at least one variable.

3. Transformation rules

A correct transformation rule replaces a formula F with a “simpler” formula F ′ such
that F has an optimal assignment with weight ! i> F ′ has an optimal assignment
with weight !, i.e., a correct transformation rule preserves OptVal. In this section, we
present the transformation rules we use and show their correctness. Note that these
rules increase neither the weight of any variable nor the total weight of the 2-clauses.
Pure literal: A literal is pure in a formula F if it occurs in F , and its negation does

not occur in F . The following lemma is well-known and straightforward.

Lemma 3. If b is a pure literal in F, then OptVal(F) = OptVal(F[b]).

Rule Tpure replaces F with F[b] if b is a pure literal.
Annihilation of 1-clauses: Rule Tann “annihilates” opposite 1-clauses, i.e., it replaces

F with (F−{(!; {a}); (!; { Ra})})+(!;T) if F contains clauses (!1; {a}) and (!2; { Ra})
and !=min(!1; !2).
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Resolution: In this paper, the resolvent R(C;D) of two 2-clauses C = (!1; {l1; l2})
and D = (!2; { Rl1; l3}) is the formula

{(max(!1; !2);T); (min(!1; !2); {l2; l3})} (1)

if l2 	= Rl3, and it is the formula {(!1 + !2;T)}, otherwise. This de5nition is slightly
non-traditional, but it is very useful in the MAX-SAT context.
The following lemma is a straightforward generalization of a statement about usual

resolution (see, e.g. [35]).

Lemma 4. If F contains 2-clauses C=(!1; {v; l1}) and D=(!2; { Rv; l2}) such that the
variable v does not occur in other clauses of F , then

OptVal(F) = OptVal((F − {C;D}) + R(C;D)): (2)

Rule TDP replaces F with (F − {C;D}) + R(C;D) if F , C, and D satisfy the
conditions of Lemma 4.
Dominating 1-clause: The following fact was observed in [30].

Lemma 5 (Niedermeier and Rossmanith [30]). If for a literal l and a formula F,
#(1)l ¿ #Rl, then

OptVal(F) = OptVal(F[l]): (3)

Rule Tdom replaces F with F[l] in such a case.
Small closed subformula: We can easily compute the optimal value for a closed

subformula G containing at most, say, 12 variables. Clearly,

OptVal(F) = OptVal(F − G) + OptVal(G): (4)

Rule Tsmall replaces F with (F − G) + (OptVal(G);T) in such a case.
Rare variable: Let F be a formula, and let a be a literal such that #(2)a = 2, #(2)Ra =

#(1)a = 0, and #(1)Ra = 1. Consider a 2-clause (!; {a; b}) in F . Rule Trare replaces this
clause with (!;T) and replaces literal a with literal Rb and literal Ra with literal b in all
other clauses.

Lemma 6. Rule Trare is correct.

Proof. Let F ′ be the obtained formula. It is trivial that OptVal(F ′)6OptVal(F). We
now prove the opposite inequality.
Let A be an optimal assignment for F . Let b∈A. Consider F[b]. Note that we can

apply Tdom to the literal Ra in this formula, i.e.,

OptVal(F) = OptVal(F[A])6OptVal(F[b])

= OptVal(F[ Ra; b]) = OptVal(F ′[ Ra; b])6OptVal(F ′):
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Let now Rb∈A. Consider F[ Rb]. Note that we can apply Tann and then Tpure to the literal
a in this formula, i.e.,

OptVal(F) = OptVal(F[A])6OptVal(F[ Rb])

= OptVal(F[a; Rb]) = OptVal(F ′[a; Rb])6OptVal(F ′):

4. A 2K=5-time algorithm for MAX-2-SAT

In this section, we present Algorithm 1 which solves MAX-2-SAT in time poly(|F |)·
2K2=5, where K2 is the total weight of 2-clauses of the input formula (in the case of
unweighted MAX-2-SAT, K2 is the number of 2-clauses) and |F | is the length of
representation of the input. We 5rst present the algorithm and then estimate its running
time and show its correctness using several lemmas.

Algorithm 1. Input: A formula F in weighted 2-CNF.
Output: OptVal(F).

Method: (A1) Apply Tpure, Tann, TDP, Tdom, Tsmall, Trare to F as long as at least
one of them is applicable.
(A2) If F contains only a T-clause, return the weight of this clause.
(A3) If F consists of several closed subformulas, then decompose F into two closed

subformulas H1 and H2, apply Algorithm 1 to each of the formulas H1 + (1; {u; v})
and H2 + (1; {u; v}) (where u and v are new variables) 9 , and return OptVal(H1) +
OptVal(H2)− 2.
(A4) If F contains a variable v of weight at least 5ve, then return max(OptVal(F[v]);

OptVal(F[ Rv])).
(A5) If each variable has weight exactly four, then choose a variable v and return

max(OptVal(F[v]);OptVal(F[ Rv])).
(A6) If F contains only variables of weight three and weight four, and both pos-

sibilities are realized, then choose 10 a variable v and determine correct transforma-
tion rules that modify F[v] and F[ Rv] into formulas F1 and F2 satisfying K2(F) −
K2(Fi)¿ 5 (i = 1; 2) and containing a variable of weight at most three each; return
max(OptVal(F1);OptVal(F2)).
(A7) Choose 11 a variable v such that transformation rules modify F[v] and F[ Rv]

into formulas F1 and F2 satisfying K2(F)−K2(Fi)¿ 5 (i=1; 2); return max(OptVal(F1);
OptVal(F2)).

9 For the ease of presentation, we introduce new variables u and v not occurring in F in order to maintain
the induction hypothesis in the proof of the following Theorem 10. Theorem 10 states our main result
concerning the correctness and running time of Algorithm 1. Note that omitting these new variables here
would not change the behavior of the algorithm, but would make it more involved to prove a bound on the
worst-case running time in Theorem 10.
10 Lemma 8 shows that a variable and transformation rules satisfying the requirements of step (A6) can

be found in polynomial time.
11 Lemma 9 shows that a variable and transformation rules satisfying the requirements of step (A7) can

be found in polynomial time.
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We 5rst formulate the additional straightforward properties of our transformation
rules that we use in our proofs.

Lemma 7. Let F be a formula, and let x be a variable of weight one or two. Then
repeated application of transformation rules to x

(1) eliminates this variable from F ;
(2) decreases the total weight of 2-clauses of F ; and
(3) does not change clauses that do not contain x (in particular, it does not change

the weights of the variables that do not occur together with x in a clause).

The following two lemmas address special cases that will be needed in our main
theorem which states the correctness of Algorithm 1 and proves the claimed running
time. Lemma 8 shows how to 5nd an appropriate variable and transformation rules at
step (A6) of the algorithm. Lemma 9 shows the same for step (A7).

Lemma 8. Let F be a formula such that there are no closed subformulas and all
variables are of weight either three or four, where both these possibilities are realized.
Furthermore, let us assume that no transformation rule is applicable.

Then, we can @nd a variable v and determine correct transformation rules that
modify the formulas F[v] and F[ Rv] into formulas F1 and F2 such that for each
i = 1; 2,

(1) K2(F)− K2(Fi)¿ 5, and
(2) Fi contains a variable of weight exactly one, two, or three.

Proof. Let x be a variable of weight three and let y be a variable of weight four.
Furthermore, let x and y occur together in a clause. Such variables must exist, since
there are no closed subformulas.
As a special case, let us 5rst assume that there is a variable v (v= x is possible) of

weight three that only occurs in the 2-clauses where y occurs. Then, take the variable
z (z = x is possible) that only occurs together with y in a clause of weight one and
look at F[z] and F[ Rz]: In both formulas, all clauses that contain y form a small closed
subformula. Hence, we apply Tsmall to F[z] and F[ Rz], resulting in F1 and F2. In this
way, K2(F)−K2(Fi)¿ 6 for i=1; 2, because we can eliminate all 2-clauses containing
the variables y and z. If claim (2) is violated, i.e., Fi only contains variables that occur
at least four times in 2-clauses, then we replace Fi with Fi−(1;T)+(1; {u1; u2}), where
u1 and u2 are new variables (clearly, this modi5cation is a correct transformation rule).
Note that we can “subtract” (1;T) because we can “spend” one of the T-clauses that
appear due to the last substitution: since we had K2(F)− K2(Fi)¿ 6 before, we have
K2(F)−K2(Fi)¿ 5 after the modi5cation, and claim (1) is still true. Note that u1 now
ful5lls claim (2).
If the previous special case does not apply, then x occurs in F[y] in 2-clauses of

weight one or two. We now produce a formula F1 from F[y] by applying transfor-
mation rules to x in F[y] until x is eliminated. To ful5ll claim (2), we can choose
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any variable z occurring together with y, and occurring also together with a variable
diSerent from x and y. Note that if such z exists, then it has weight at most three in
F[y], but still has at least one occurrence there together with a variable diSerent from
x. Therefore, by Lemma 7(3), after the elimination of x, the variable z still occurs in
the formula and has weight at most three.
Suppose now that such z does not exist. Then it cannot be the case that y occurs

in 2-clauses together with x and at least two other variables, because one of the latter
variables would have an occurrence together with a variable diSerent from x and y.
We now have that y occurs in 2-clauses together with x and only one other variable
z′. Since F contains no closed subformulas, y must occur together with z′ in 2-clauses
of total weight three. Since the special case above does not apply, F should contain
one more occurrence of z′, and this is an occurrence together with x. Let z′′ be the
variable occurring in the remaining 2-clause containing x. If x is eliminated by TDP or
Trare, then z′ still occurs in F1 ful5lling claim (2). If, however, x is eliminated by Tpure

or Tdom, then exactly one 2-clause containing z′′ disappears and therefore z′′ ful5lls
claim (2).
In the same way, we get F2 from F[ Ry].

Lemma 9. Let F be a formula being split at step (A7). Then for any variable v we
can @nd in polynomial time transformation rules that modify the formulas F[v] and
F[ Rv] into formulas F1 and F2 satisfying K2(F)− K2(Fi)¿ 5 (i = 1; 2).

Proof. Note that by Lemma 7 and the conditions of steps (A1)–(A6), at step (A7) the
formula F contains only variables of weight three. Therefore, K2(F)−K2(F[v])=3 and
the formula F[v] must contain two variables u and w such that u has weight exactly
two and w has weight either one or two (note that F does not contain small closed
subformulas). We now show how to 5nd transformation rules that produce from F[v]
a formula F1 such that K2(F1) − K2(F[v])¿ 2. (Modifying the formula F[ Rv] into F2

can be handled identically.)
First apply Tann to F[v] as long as possible. If we can now apply Tpure or Tdom to

u then we are done, since this eliminates 2-clauses of weight two.
Otherwise, we can apply Trare or TDP to u which eliminates 2-clauses of weight

one or two and, if it eliminates a 2-clause of weight only one, then it leaves w oc-
curring in 2-clauses of weight one or two (see Lemma 7). Hence, we can now apply
transformation rules to w that eliminate another 2-clause of weight one.

Using the above lemmas, we are now ready to prove our main result:

Theorem 10. Given a formula F in 2-CNF, Algorithm 1 @nds OptVal(F) in time
poly(|F |) · 2K2=5, where K2 is the total weight of 2-clauses in F and |F | is the length
of representation of the input.

Proof (Running time). Each of the transformation rules Tpure, Tann, TDP, Tdom, Tsmall,
and Trare takes polynomial time and does not increase the total weight of non-T-clauses.
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When the condition of a rule is satis5ed, the rule decreases the total weight of
non-T-clauses. Thus, the transformation rules are executed a polynomial number of
times during step (A1).
After applying transformation rules to F , Algorithm 1 makes two recursive calls for

formulas with smaller total weight of 2-clauses (unless F becomes trivial) in one of
the steps (A3)–(A6), or (A7). Clearly, the total running time of the algorithm is the
total running time of the two recursive calls plus a polynomial time spent to make
these calls. Therefore, the running time is within a polynomial factor of the number
of nodes (or leaves) of the recursion tree. In the following, we show that the number
&(K2) of these leaves for a formula F with K2 2-clauses is O(2K2=5).

First consider a formula F with K2 2-clauses that forces our algorithm to make a
recursive call at step (A3), (A4), (A6), or (A7). The number of leaves in the recursion
tree corresponding to this formula is at most 2&(K2 − 5). If all nodes of our tree for
the input formula would be of this type, then we would have a straightforward 2K2=5

bound on the number of leaves.
However, there may be also recursive calls at step (A5). At 5rst glance, the number

of leaves in a tree corresponding to such a call is bounded only by 2&(K2 − 4). To
avoid worsening our bound, we prove below that, for most such formulas, we still
have 2&(K2 − 5) leaves and a diSerent “odd” formula can occur at most once on each
path from the root to a leaf. They can increase the size of the tree at most by a factor
of 4. Therefore, we get the desired bound.
We now prove this claim about (A5). What may cause the application of (A5) to

a formula F? In principle, F may be the input, F can originate from a transformation
rule in (A1), or from a recursive call at steps (A3)–(A6), or (A7).
If F originated from applying a transformation rule at step (A1), then we have the

desired bound on the number of leaves, since the transformation rule reduces K2 at
least by 1 and (A5) then reduces it by 4 (in both branches).
Note that F cannot originate from (A3), since (A3) adds weight one variables to

each of the two produced formulas. Such F also cannot originate from (A5): Setting
the truth value of a variable clearly implies that, afterwards, another variable has weight
1, 2, or 3, because, at step (A5), F does not have non-trivial closed subformulas. It
also cannot originate from (A7), since at this step the formula contains only variables
of weight three, and weights cannot increase.
If F originated from (A4), then we do not need to worry, because this can happen

only once on each path in the recursion tree from the root to one of its leaves (note
that weights never increase and, thus, none of the successors will have a variable of
weight greater than 4).
Finally, we show that F could not originate from (A6). Assume that it did. Let G

be the formula from which F originated. Then, F would contain a variable of weight
one, two or three which contradicts the assumption that it contains only variables of
weight four.
Correctness: The correctness of transformation rules Tpure, Tann, TDP, Tdom, Tsmall,

and Trare is shown in Section 3. The correctness of steps (A2)–(A5) is trivial. At
steps (A6) and (A7), we can 5nd an appropriate variable v and determine correct
transformation rules by Lemmas 8 and 9, respectively.
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In the case of unweighted 12 MAX-2-SAT, we have L¿ 2K2. This directly implies
the following corollary.

Corollary 11. Given a formula F in unweighted 2-CNF of length L, Algorithm 1 @nds
OptVal(F) in time poly(L) · 2L=10.

Remark 12. Of course, in Corollary 11, only the number of literal occurrences in
2-clauses is essential in the exponent.

Remark 13. Algorithm 1 can be easily redesigned so that it 5nds the optimal assign-
ment (or one of them, if there are several assignments satisfying the same number of
clauses) instead of only OptVal(F).

5. Application to MAX-CUT

Our results can be applied to other NP-complete problems that are easily reducible to
MAX-2-SAT. For instance, we consider the NP-complete graph problem MAX-CUT:
Given an undirected graph G = (V; E) where edges are assigned integer weights, we
ask for a cut of maximum weight, i.e., for a partition of V into V1 and V2 such that we
maximize the sum of weights over those edges (s; t)∈E for which s∈V1 and t ∈V2.
For a survey on MAX-CUT refer to Poljak and Tuza [33]. We can easily reduce
MAX-CUT to MAX-2-SAT. The resulting formulas expose a very special structure.
After presenting the reduction, we formulate, in the following, a condition that tries to
capture this structure. We take advantage of it, and re5ne the analysis of Algorithm 1
when processing these formulas. Thereby, we improve the bounds, compared to the
general case, and derive upper bounds for MAX-CUT.
For the reduction of MAX-CUT to MAX-2-SAT [33], we translate a graph G=(V; E)

into a 2-CNF formula having the vertices as variables and having clause set

C = {(w; {i; j}) | edge (i; j)∈E having weight w}
∪{(w; {Ri; Rj}) | edge (i; j)∈E having weight w}:

In this way, a graph having n vertices and m edges of total weight M results in
a formula having n variables and 2m clauses of total weight 2M . All these clauses
are 2-clauses. The graph G has a cut of weight k iS the formula has simultaneously
satis5able clauses of weight M + k; every optimal assignment to the formula translates
into a maximum cut, namely with all vertices corresponding to satis5ed variables on
one side and all vertices corresponding to falsi5ed variables on the other side. An
assignment satisfying a maximum number of clauses in the resulting formula will
satisfy at least one of the clauses (w; {i; j}) and (w; {Ri; Rj}), which are created for an
edge (i; j) of weight w, but will satisfy both clauses only if the edge is in the cut.

12 In other words, all weights equal 1.
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As we can see, the formulas created by this reduction initially exhibit a characteristic
structure which we call MAX-CUT Condition:

For each 2-clause of weight w containing literals x and y; there

is also a 2-clause of weight w containing literals Rx and Ry:
(MCC)

In the following, we show that the steps applied by Algorithm 1 preserve this structure
of the formulas.

Lemma 14. Let a formula satisfy (MCC). After applying a transformation rule or
after assigning a value to a variable, the formula still ful@lls (MCC).

Proof. For assigning a value to a variable, the claim is trivial; the 2-clauses of the
new formula are exactly those 2-clauses of the old formula that do not contain the
assigned variable. To prove the rest of this statement, we show for all transformation
rules that, applied to a formula satisfying (MCC), they preserve this property. Rule
Trare, however, cannot apply at all to formulas having (MCC). To apply this rule, we
would need a literal x occurring in 2-clauses of weight two without Rx occurring in any
2-clauses. This contradicts (MCC).
When applying rules Tpure and Tdom, we simply assign values to certain variables.

Hence, the above discussion shows that these rules preserve (MCC). Rule Tann does
not aSect the 2-clauses and, thus, does no harm to (MCC). As the statement formulated
in (MCC) is valid or not only within a closed subformula, rule Tsmall also does not
violate the property.
Only regarding TDP, it is not so obvious that the rule maintains (MCC). Let a

variable x have occurrences in 2-clauses only in clauses (w1; {x; l1}) and (w2; { Rx; l2}).
We infer from (MCC) that l2 = Rl1. Therefore, TDP replaces these two clauses with
(w1 + w2;T) and, thus, (MCC) is not violated.

To simplify the following proof of the worst-case time bound, we slightly modify
Algorithm 1: step (A3) now does not add new variables and makes a recursive call
directly for H1 and H2; steps (A4)–(A6) are omitted; and at step (A7), the inequality
now requires K2(F) − K2(Fi)¿ 6 (thus, we cannot use Lemma 9 and will have to
show again how to 5nd an appropriate variables and transformation rules).
We observe that the modi5cations covered in Lemma 14 are exactly those applied

by our algorithm to the input formula while processing it. We conclude that the special
structure of the formula is preserved in every step of the algorithm. Compared with
arbitrary formulas, the number of possible occurrence patterns for a variable is, thereby,
reduced. Using this, we can improve the analysis of Algorithm 1 when the input is a
formula satisfying (MCC).

Theorem 15. Given a formula F in 2-CNF satisfying (MCC), the modi@ed
Algorithm 1 @nds OptVal(F) in time poly(|F |) · 2K2=6, where K2 is the total weight of
2-clauses in F and |F | is the length of representation of the input.

Proof. In the proof of Theorem 10, we have seen that every step of the recursion takes
polynomial time. The size of the splitting tree is now guaranteed by the conditions of
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the steps of the modi5ed algorithm. It remains to prove that an appropriate variable
and transformation rules at the modi5ed step (A7) can be found.
In Lemma 14, we have shown that every step of Algorithm 1 (and also of its

modi5ed version) preserves (MCC). Thus, we can assume that every node of our
splitting tree is labeled by a formula satisfying (MCC). Note that (MCC) implies
that F does not contain variables of odd weights. Also, it does not contain variables
of weight two (Lemma 7(1)), because these are handled by the transformation rules.
Therefore, every formula labeling a node of our splitting tree either contains a variable
of weight at least six (this directly implies the required inequality K2(F)−K2(Fi)¿ 6
for i=1; 2), or each of its variables is of weight exactly four. We now prove that, even
in this case, we can 5nd transformation rules such as to ful5ll the required inequality.
Take any clause of literals a and b corresponding to variables x and y. This clause

has to have weight one: If it would have weight two, (MCC) would imply that there
is also a clause (2; { Ra; Rb}) and, thus, there are no other 2-clauses containing variables
x and y. In this situation, however, Tsmall would apply. Therefore, (MCC) implies that
there is another literal c (corresponding to a variable z) such that there are, besides
(1; {a; b}), also clauses (1; { Ra; Rb}), (1; {a; c}), and (1; { Ra; Rc}). Assigning a value to x
eliminates four 2-clauses and causes Tdom to apply to y and z (again by (MCC)).
This eliminates two more 2-clauses because, otherwise, x; y, and z would form a small
closed subformula of F . Summarizing, we have that we can always ful5ll the modi5ed
inequality of the step (A6).

Theorem 15 gives an upper bound for the running time of the modi5ed algorithm
on 2-CNF formulas derived from MAX-CUT instances. We now translate this result
into numbers of vertices and edges of a graph.

Corollary 16. Given a graph G having n vertices and edges of total weight M, we
can solve (weighted) MAX-CUT in time poly(|G|) · 2M=3, where |G| is the length of
representation of the input. If an unweighted graph has maximum vertex degree three,
then MAX-CUT is solvable in time poly(|G|) · 2n=2, and if the graph has maximum
vertex degree four, it is solvable in time poly(|G|) · 22n=3.

Proof. Generating 2-CNF formulas from MAX-CUT instances, i.e., graphs with n ver-
tices and edges of total weight M , gives 2-clauses of total weight 2M with n dif-
ferent variables. Then, the bound shown in Theorem 15 translates into a bound of
poly(|G|) · 22M=6 = poly(|G|) · 2M=3 with respect to the total weight of the edges. The
other two bounds follow from the inequality m6dn=2 relating n to the number m of
edges and the maximum degree d.

6. Discussion and open questions

Our bounds vs. parameterized bounds: In this paper, we proved the upper bound of
the order 2K2=5 for MAX-2-SAT with positive integer weights, where K2 is the total
weight of 2-clauses of the input formula (or the number of 2-clauses for unweighted
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MAX-2-SAT) and L is the number of literal occurrences. This implies the bound 2L=10

for unweighted MAX-2-SAT. From this, we also derived upper bounds for MAX-CUT.
Our bounds depend neither on the weight of an optimal solution nor on a required

minimal weight of solution. In contrast, beginning from [8,16,28], there has been much
research for parameterized bounds for MAX-SAT, MAX-2-SAT and MAX-CUT: in
terms of k, how much time do we need to 5nd a solution of weight at least k?
For MAX-SAT, Bansal and Raman [4] give the best-known parameterized bound
2k=2:15 which is better than their “unparameterized” bound 2K=2:36 when k ¡ 0:92K ,
where K is the total weight of all clauses. In [19], the parameterized bound 2k=2:73 for
MAX-2-SAT has been proved. However, our present “unparameterized” bound 2K2=5,
where K2 is the total weight of 2-clauses, is better for all reasonable values of k: the
parameterized bound is better only when k ¡ 0:55K2, while an assignment satisfying
0:5K + 0:25K2¿ 0:75K2 clauses can be found in a polynomial time [28,38]. It seems
like the idea of counting only 2-clauses does not work for parameterized bounds.
As �K=2� clauses can be easily satis5ed, Mahajan and Raman [28] propose to ask

in the parameterized version of the problem for an assignment satisfying �K=2 + k ′�
clauses. Taking the parameterized bound shown in [19] and plugging it into the results
by Mahajan and Raman, we can translate it into a bound with respect to this new
parameter k ′; in time 26k

′=2:73 = 2k
′=0:45 one can 5nd an assignment to the variables

that satis5es at least �K=2 + k ′� clauses or one can determine that no such assignment
exists. However, for k ′6 �K2=4�, this question still can be handled in polynomial time.
Comparing for k ′ ¿ �K2=4� the bound 2k

′=0:45 to the bound shown for Algorithm 1, we
see, again, that the parameterized bound is worse for every parameter value.
It would be interesting, however, to consider, for a given k ′′, the parameterized

complexity of the question whether there is an assignment satisfying �K=2+K2=4�+k ′′

clauses.
Possible applications of our ideas: The key idea of our MAX-2-SAT algorithm is

to count only 2-clauses (we can do this, since MAX-1-SAT instances are trivial). It
would be interesting to apply this idea to SAT, for example, by counting only 3-clauses
in 3-SAT (since 2-SAT instances are easy). Also, it would be interesting to apply our
idea of handling “bottleneck” cases to the analysis of other algorithms with such cases
[23,30]. Also, it remains a challenge to 5nd a “less-than-2N ” algorithm for MAX-SAT,
or even for MAX-2-SAT, where N is the number of variables. (Note that for any 5xed
,¿ 0, an assignment satisfying (1 − ,)OptVal(F) clauses of a formula F in k-CNF
can be found in randomized cN time, where c¡ 2 is a constant depending only on k
and , [24].)
In a similar way as we did for MAX-CUT, we can apply our results to the NP-

complete unweighted INDEPENDENT SET problem which also has an easy reduction
to MAX-2-SAT [9]. The problem is, for a given graph G=(V; E), to 5nd the maximum
number of vertices sharing no edge. The resulting bound with respect to the number
of edges m, however, does not improve the bound of 2m=8:77 given by Beigel [5].

From a more practical point of view, it would also be challenging to examine ex-
perimentally the eUciency of our algorithms. Previous results for exact MAX-2-SAT
algorithms having guaranteed worst-case time bounds compared with an exact, heuris-
tic algorithm [7] lacking guaranteed worst-case time bounds have shown encouraging
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results in this direction [18,19]. It is also interesting whether polynomial-time approxi-
mation algorithms (such as [17]) could be used in practice for pruning the search tree
for some formulas; however, it is not clear if it is possible to use such algorithms for
proving better worst-case upper bounds.
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