80 research outputs found

    ์ƒˆ๋กœ์šด ์†Œ์‹ค ์ฑ„๋„์„ ์œ„ํ•œ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ ๋ฐ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ๋ฐ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ LDPC ๋ถ€ํ˜ธ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๋…ธ์ข…์„ .In this dissertation, three main contributions are given asi) new two-stage automorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes and existing LRCs, and iii) new constructions of high-rate generalized root protograph (GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered. First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure channel. Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes in the erasure channel was introduced, which has good erasure decoding performance with low decoding complexity. In this research, I propose new TS-AGDs for cyclic codes in the erasure channel by modifying the parity check matrix and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect decoding in the erasure channel, that is, the same decoding performance as the maximum likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check matrix and the submatrix inversion are also proposed and analyzed. Second, I propose new constructions of binary and ternary LRCs using cyclic codes and existing two LRCs for distributed storage system. For a primitive work, new constructions of binary and ternary LRCs using cyclic codes and their concatenation are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and 6 are optimal in terms of the upper bounds. In addition, the similar method of the binary case is applied to construct the ternary LRCs with good parameters. Also, new constructions of binary LRCs with large Hamming distance and disjoint repair groups are proposed. The proposed binary linear LRCs constructed by using existing binary LRCs are optimal or near-optimal in terms of the bound with disjoint repair group. Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic block interference and anti-jamming PR LDPC codes for follower jamming. The proposed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric channel with block interference and Nakagami-mm block fading. In these channel environments, GRP LDPC codes have good performance approaching to the theoretical limit in the channel with one block interference, where their performance is shown by the channel threshold or the channel outage probability. In the proposed design, I find base matrices using the protograph extrinsic information transfer (PEXIT) algorithm. Also, the proposed new constructions of anti-jamming partially regular LDPC codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS). For a channel environment, I suppose follower jamming with random dwell time and Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) modulation. For a coding perspective, an anti-jamming LDPC codes against follower jamming are introduced. In order to optimize the jamming environment, the partially regular structure and corresponding density evolution schemes are used. A series of simulations show that the proposed codes outperforms the 802.16e standard in the presence of follower noise jamming.์ด ๋…ผ๋ฌธ์—์„œ๋Š”, i) ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ , ii) ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ(LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•, ๋ฐ iii) ๋ธ”๋ก ๊ฐ„์„ญ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ๊ณ ๋ถ€ํšจ์œจ์˜ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„(generalized root protograph, GRP) LDPC ๋ถ€ํ˜ธ ๋ฐ ์ถ”์  ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ํ•ญ์žฌ๋ฐ ๋ถ€๋ถ„ ๊ท ์ผ (anti-jamming paritally regular, AJ-PR) LDPC ๋ถ€ํ˜ธ๊ฐ€ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ ํ˜น์€ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๋“ฑ์˜ ์‘์šฉ์œผ๋กœ ์ธํ•ด ์†Œ์‹ค ์ฑ„๋„์—์„œ์˜ ์˜ค๋ฅ˜ ์ •์ • ๋ถ€ํ˜ธ ๊ธฐ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๋ณตํ˜ธ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋†’์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๊ธด ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์‹ค์šฉ์ ์ด์ง€ ๋ชปํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‚ฎ์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋Š” ์ˆœํ™˜ ๋ถ€ํ˜ธ์—์„œ ์ด๋‹จ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒจ๋ฆฌํ‹ฐ ๊ฒ€์‚ฌ ํ–‰๋ ฌ์„ ๋ณ€ํ˜•ํ•˜๊ณ , ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ณตํ˜ธ๊ธฐ๋Š” perfect ๋ถ€ํ˜ธ, BCH ๋ถ€ํ˜ธ ๋ฐ ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ ๋ถ„๋ฆฌ (maximum distance separable, MDS) ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด์„œ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ˆ˜์น˜ ๋ถ„์„์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ๋ณตํ˜ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ณด๋‹ค ๋‚ฎ์€ ๋ณต์žก๋„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ช‡๋ช‡์˜ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ตœ๋Œ€ ์šฐ๋„ (maximal likelihood, ML)๊ณผ ๊ฐ™์€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์ž„์„ ๋ณด์ธ๋‹ค. MDS ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ, ํ™•์žฅ๋œ ํŒจ๋ฆฌํ‹ฐ๊ฒ€์‚ฌ ํ–‰๋ ฌ ๋ฐ ์ž‘์€ ํฌ๊ธฐ์˜ ํ–‰๋ ฌ์˜ ์—ญ์—ฐ์‚ฐ์„ ํ™œ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ (LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋กœ์„œ, ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์—ฐ์ ‘์„ ํ™œ์šฉํ•œ ์ด์ง„ ๋ฐ ์‚ผ์ง„ LRC ์„ค๊ณ„ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ตœ์†Œ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ๊ฐ€ 4,5, ํ˜น์€ 6์ธ ์ œ์•ˆ๋œ ์ด์ง„ LRC ์ค‘ ์ผ๋ถ€๋Š” ์ƒํ•œ๊ณผ ๋น„๊ตํ•ด ๋ณด์•˜์„ ๋•Œ ์ตœ์  ์„ค๊ณ„์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋น„์Šทํ•œ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ข‹์€ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์‚ผ์ง„ LRC๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ์™ธ์— ๊ธฐ์กด์˜ LRC๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํฐ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด LRC๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ LRC๋Š” ๋ถ„๋ฆฌ๋œ ๋ณต๊ตฌ ๊ตฐ ์กฐ๊ฑด์—์„œ ์ตœ์ ์ด๊ฑฐ๋‚˜ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, GRP LDPC ๋ถ€ํ˜ธ๋Š” Nakagami-mm ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ธ”๋ก ๊ฐ„์„ญ์ด ์žˆ๋Š” ๋‘ ์ƒํƒœ์˜ ์ด์ง„ ๋Œ€์นญ ์ฑ„๋„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œ GRP LDPC ๋ถ€ํ˜ธ๋Š” ํ•˜๋‚˜์˜ ๋ธ”๋ก ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ, ์ด๋ก ์  ์„ฑ๋Šฅ์— ๊ฐ€๊นŒ์šด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก  ๊ฐ’์€ ์ฑ„๋„ ๋ฌธํ„ฑ๊ฐ’์ด๋‚˜ ์ฑ„๋„ outage ํ™•๋ฅ ์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„์—์„œ๋Š”, ๋ณ€ํ˜•๋œ PEXIT ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์ดˆ ํ–‰๋ ฌ์„ ์„ค๊ณ„ํ•œ๋‹ค. ๋˜ํ•œ AJ-PR LDPC ๋ถ€ํ˜ธ๋Š” ์ฃผํŒŒ์ˆ˜ ๋„์•ฝ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ฑ„๋„ ํ™˜๊ฒฝ์œผ๋กœ MFSK ๋ณ€๋ณต์กฐ ๋ฐฉ์‹์˜ ๋ ˆ์ผ๋ฆฌ ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ฌด์ž‘์œ„ํ•œ ์ง€์† ์‹œ๊ฐ„์ด ์žˆ๋Š” ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์žฌ๋ฐ ํ™˜๊ฒฝ์œผ๋กœ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ๋ถ€๋ถ„ ๊ท ์ผ ๊ตฌ์กฐ ๋ฐ ํ•ด๋‹น๋˜๋Š” ๋ฐ€๋„ ์ง„ํ™” (density evolution, DE) ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋œ๋‹ค. ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ ๋ถ€ํ˜ธ๊ฐ€ 802.16e์— ์‚ฌ์šฉ๋˜์—ˆ๋˜ LDPC ๋ถ€ํ˜ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 1.1 Background 1.2 Overview of Dissertation 1.3 Notations 2 Preliminaries 2.1 IED and AGD for Erasure Channel 2.1.1 Iterative Erasure Decoder 2.1.1 Automorphism Group Decoder 2.2. Binary Locally Repairable Codes for Distributed Storage System 2.2.1 Bounds and Optimalities of Binary LRCs 2.2.2 Existing Optimal Constructions of Binary LRCs 2.3 Channels with Block Interference and Jamming 2.3.1 Channels with Block Interference 2.3.2 Channels with Jamming with MFSK and FHSS Environment. 3 New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel 3.1 Some Definitions 3.2 Modification of Parity Check Matrix and Two-Stage AGD 3.2.1 Modification of the Parity Check Matrix 3.2.2 A New Two-Stage AGD 3.2.3 Analysis of Modification Criteria for the Parity Check Matrix 3.2.4 Analysis of Decoding Complexity of TS-AGD 3.2.5 Numerical Analysis for Some Cyclic Codes 3.3 Construction of Parity Check Matrix and TS-AGD for Cyclic MDS Codes 3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes . 3.3.2 Proposed TS-AGD for Cyclic MDS Codes 3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix for Cyclic MDS Codes 3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes . . 4 New Constructions of Binary and Ternary LRCs Using Cyclic Codes and Existing LRCs 4.1 Constructions of Binary LRCs Using Cyclic Codes 4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes 4.3 Constructions of Binary LRCs with Disjoint Repair Groups Using Existing LRCs 4.4 New Constructions of Binary Linear LRCs with d โ‰ฅ 8 Using Existing LRCs 5 New Constructions of Generalized RP LDPC Codes for Block Interference and Partially Regular LDPC Codes for Follower Jamming 5.1 Generalized RP LDPC Codes for a Nonergodic BI 5.1.1 Minimum Blockwise Hamming Weight 5.1.2 Construction of GRP LDPC Codes 5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes 5.2.1 Asymptotic Analysis of LDPC Codes 5.2.2 Numerical Analysis of Finite-Length LDPC Codes 5.3 Follower Noise Jamming with Fixed Scan Speed 5.4 Anti-Jamming Partially Regular LDPC Codes for Follower Noise Jamming 5.4.1 Simplified Channel Model and Corresponding Density Evolution 5.4.2 Construction of AJ-PR-LDPC Codes Based on DE 5.5 Numerical Analysis of AJ-PR LDPC Codes 6 Conclusion Abstract (In Korean)Docto

    On the Shape of the General Error Locator Polynomial for Cyclic Codes

    Get PDF
    General error locator polynomials were introduced in 2005 as an alternative decoding for cyclic codes. We now present a conjecture on their sparsity, which would imply polynomial-time decoding for all cyclic codes. A general result on the explicit form of the general error locator polynomial for all cyclic codes is given, along with several results for specific code families, providing evidence to our conjecture. From these, a theoretical justification of the sparsity of general error locator polynomials is obtained for all binary cyclic codes with t <= 2 and n < 105, as well as for t = 3 and n < 63, except for some cases where the conjectured sparsity is proved by a computer check. Moreover, we summarize all related results, previously published, and we show how they provide further evidence to our conjecture. Finally, we discuss the link between our conjecture and the complexity of bounded-distance decoding of the cyclic codes

    Quadratic Residue Code

    Get PDF
    The algebraic decoding of binary quadratic residue codes can be performed using the Peterson or the Berlekamp-Massey algorithm once certain unknown syndromes are determined or eliminated. The technique of determining unknown syndromes is applied to the nonbinary case to decode the expurgated ternary quadratic residue code of length 23

    Loop transversal codes

    Get PDF
    This dissertation discusses the performance of loop transversal codes (LT codes), linear error correcting block codes constructed with attention to the syndrome function rather than to the code itself. LT codes are compared to lexicodes. Binary lexicodes which are linear are shown to be identical to those LT codes which are constructed by a greedy syndrome construction algorithm. Proofs by Conway and Sloane, and Brualdi and Pless, that binary lexicodes and greedy codes in the white-noise case are linear are generalized to the binary non-white-noise case. Using this result, we prove that those binary LT codes which are constructed by the greedy syndrome construction algorithm for a given set of errors (white or non-white noise) are always identical to the lexicode designed to correct the same set of errors. The proof of this generalization uses a metric d[subscript]E which is a generalization of the Hamming metric for any set of errors E such that 0 โŠ‚ E and E is closed under negation. This metric has the property that, if E is the set of errors corrected by a code C, then decoding is identical to minimum distance decoding under the metric d[subscript]E.;Those LT codes which are constructed by the greedy algorithm are shown to be maximal among linear codes, and in the case that the set of errors is closed under scalar multiplication, LT codes so constructed are shown to be maximal among all codes, linear and non-linear.;Data for ternary LT codes are shown to compare well--in both white-noise and non-white-noise cases--to the best linear codes known and also to lexicodes, which in non-binary cases are not generally linear. The ternary LT code constructed by the greedy algorithm for random single and double errors produces the (perfect) ternary (11, 6, 5) Golay code, a (43, 34, 5) code (1 dimension better than previously known for n = 43 and d = 5), a (44, 35, 5) code, and a (45, 36, 5) code, each 2 dimensions better than any previously known

    Ensuring message embedding in wet paper steganography

    Get PDF
    International audienceSyndrome coding has been proposed by Crandall in 1998 as a method to stealthily embed a message in a cover-medium through the use of bounded decoding. In 2005, Fridrich et al. introduced wet paper codes to improve the undetectability of the embedding by nabling the sender to lock some components of the cover-data, according to the nature of the cover-medium and the message. Unfortunately, almost all existing methods solving the bounded decoding syndrome problem with or without locked components have a non-zero probability to fail. In this paper, we introduce a randomized syndrome coding, which guarantees the embedding success with probability one. We analyze the parameters of this new scheme in the case of perfect codes

    On Decoding of Quadratic Residue Codes

    Get PDF
    A binary Quadratic Residue(QR) code of length n is an (n, (n+1)/2) cyclic code over GF(2m) with generator polynomial g(x) where m is some integer. The length of this code is a prime number of the form n = 8l + 1 where l is some integer. The generator polynomial g(x) is defined by g(x)=โˆ_(iโˆˆQ_n) (x-ฮฒi ) where ฮฒ is a primitive nth root of unity in the finite field GF(2m) with m being the smallest positive integer such that n|2m-1 and Qn is the collection of all nonzero quadratic residues modulo n given by Qn={iโ”‚iโ‰กj2 mod n for 1โ‰คjโ‰คn-1}. Algebraic approaches to the decoding of the quadratic residue (QR) codes were studied in [2], [3], [4], [5], [6] and [13]. Here, in this thesis, some new more general properties are found for the syndromes of the subclass of binary QR codes of length n = 8m + 1 or n = 8m - 1. A new algebraic decoding algorithm for the (41, 21, 9) binary QR code is presented by having the unknown syndrome S3 which is a necessary condition for decoding the (41, 21, 9) QR code
    • โ€ฆ
    corecore