25 research outputs found

    From multiscale biophysics to digital twins of tissues and organs: future opportunities for in silico pharmacology

    Full text link
    With many advancements in in silico biology in recent years, the paramount challenge is to translate the accumulated knowledge into exciting industry partnerships and clinical applications. Achieving models that characterize the link of molecular interactions to the activity and structure of a whole organ are termed multiscale biophysics. Historically, the pharmaceutical industry has worked well with in silico models by leveraging their prediction capabilities for drug testing. However, the needed higher fidelity and higher resolution of models for efficient prediction of pharmacological phenomenon dictates that in silico approaches must account for the verifiable multiscale biophysical phenomena, as a spatial and temporal dimension variation for different processes and models. The collection of different multiscale models for different tissues and organs can compose digital twin solutions towards becoming a service for researchers, clinicians, and drug developers. Our paper has two main goals: 1) To clarify to what extent detailed single- and multiscale modeling has been accomplished thus far, we provide a review on this topic focusing on the biophysics of epithelial, cardiac, and brain tissues; 2) To discuss the present and future role of multiscale biophysics in in silico pharmacology as a digital twin solution by defining a roadmap from simple biophysical models to powerful prediction tools. Digital twins have the potential to pave the way for extensive clinical and pharmaceutical usage of multiscale models and our paper shows the basic fundamentals and opportunities towards their accurate development enabling the quantum leaps of future precise and personalized medical software.Comment: 30 pages, 10 figures, 1 tabl

    Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements.

    Get PDF
    Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales

    The Timing of Vision – How Neural Processing Links to Different Temporal Dynamics

    Get PDF
    In this review, we describe our recent attempts to model the neural correlates of visual perception with biologically inspired networks of spiking neurons, emphasizing the dynamical aspects. Experimental evidence suggests distinct processing modes depending on the type of task the visual system is engaged in. A first mode, crucial for object recognition, deals with rapidly extracting the glimpse of a visual scene in the first 100 ms after its presentation. The promptness of this process points to mainly feedforward processing, which relies on latency coding, and may be shaped by spike timing-dependent plasticity (STDP). Our simulations confirm the plausibility and efficiency of such a scheme. A second mode can be engaged whenever one needs to perform finer perceptual discrimination through evidence accumulation on the order of 400 ms and above. Here, our simulations, together with theoretical considerations, show how predominantly local recurrent connections and long neural time-constants enable the integration and build-up of firing rates on this timescale. In particular, we review how a non-linear model with attractor states induced by strong recurrent connectivity provides straightforward explanations for several recent experimental observations. A third mode, involving additional top-down attentional signals, is relevant for more complex visual scene processing. In the model, as in the brain, these top-down attentional signals shape visual processing by biasing the competition between different pools of neurons. The winning pools may not only have a higher firing rate, but also more synchronous oscillatory activity. This fourth mode, oscillatory activity, leads to faster reaction times and enhanced information transfers in the model. This has indeed been observed experimentally. Moreover, oscillatory activity can format spike times and encode information in the spike phases with respect to the oscillatory cycle. This phenomenon is referred to as “phase-of-firing coding,” and experimental evidence for it is accumulating in the visual system. Simulations show that this code can again be efficiently decoded by STDP. Future work should focus on continuous natural vision, bio-inspired hardware vision systems, and novel experimental paradigms to further distinguish current modeling approaches

    From Multiscale Biophysics to Digital Twins of Tissues and Organs: Future Opportunities for in-silico Pharmacology

    Get PDF
    With many advancements in in silico multiscale biology in recent years, the paramount challenge is to translate the accumulated knowledge into exciting industry partnerships and clinical applications. Historically, the pharmaceutical industry has worked well with in silico models by leveraging their prediction capabilities for drug testing. However, the needed higher fidelity and higher resolution of models for efficient prediction of pharmacological phenomenon dictates that in silico approaches must account for the verifiable multiscale biophysical phenomena, as a spatial and temporal dimension variation for different processes and models. Our paper has two main goals: 1) To clarify to what extent detailed single-and multiscale modeling has been accomplished thus far, we provide a review on this topic focusing on the biophysics of epithelial, cardiac, and brain tissues; 2) To discuss the present and future role of multiscale biophysics in in silico pharmacology as a digital twin solution by defining a roadmap from simple biophysical models to powerful prediction tools. Digital twins have the potential to pave the way for extensive clinical and pharmaceutical usage of multiscale models, and our paper shows the fundamentals and opportunities for their accurate development, enabling the quantum leaps of future precise and personalized medical software

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    The speed of visual processing of complex objects in the human brain. Sensitivity to image properties, the influence of aging, optical factors and individual differences.

    Get PDF
    Visual processing of complex objects is a feat that the brain accomplishes with remarkable speed – generally in the order of a few hundred milliseconds. Our knowledge with regards to what visual information the brain uses to categorise objects, and how early the first object-sensitive responses occur in the brain, remains fragmented. It seems that neuronal processing speed slows down with age due to a variety of physiological changes occurring in the aging brain, including myelin degeneration, a decrease in the selectivity of neuronal responses and a reduced efficiency of cortical networks. There are also considerable individual differences in age-related alterations of processing speed, the origins of which remain unclear. Neural processing speed in humans can be studied using electroencephalogram (EEG), which records the activity of neurons contained in Event-Related-Potentials (ERPs) with millisecond precision. Research presented in this thesis had several goals. First, it aimed to measure the sensitivity of object-related ERPs to visual information contained in the Fourier phase and amplitude spectra of images. The second goal was to measure age-related changes in ERP visual processing speed and to find out if their individual variability is due to individual differences in optical factors, such as senile miosis (reduction in pupil size with age), which affects retinal illuminance. The final aim was to quantify the onsets of ERP sensitivity to objects (in particular faces) in the human brain. To answer these questions, parametric experimental designs, novel approaches to EEG data pre-processing and analyses on a single-subject and group basis, robust statistics and large samples of subjects were employed. The results show that object-related ERPs are highly sensitive to phase spectrum and minimally to amplitude spectrum. Furthermore, when age-related changes in the whole shape of ERP waveform between 0-500 ms were considered, a 1 ms/year delay in visual processing speed has been revealed. This delay could not be explained by individual variability in pupil size or retinal illuminance. In addition, a new benchmark for the onset of ERP sensitivity to faces has been found at ~90 ms post-stimulus in a sample of 120 subjects age 18-81. The onsets did not change with age and aging started to affect object-related ERP activity ~125-130 ms after stimulus presentation. Taken together, this thesis presents novel findings with regards to the speed of visual processing in the human brain and outlines a range of robust methods for application in ERP vision research
    corecore