6 research outputs found

    Integrated Special Event Traffic Management Strategies in Urban Transportation Network

    Get PDF
    How to effectively optimize and control spreading traffic in urban network during the special event has emerged as one of the critical issues faced by many transportation professionals in the past several decades due to the surging demand and the often limited network capacity. The contribution of this dissertation is to develop a set of integrated mathematical programming models for unconventional traffic management of special events in urban transportation network. Traffic management strategies such as lane reorganization and reversal, turning restriction, lane-based signal timing, ramp closure, and uninterrupted flow intersection will be coordinated and concurrently optimized for best overall system performance. Considering the complexity of the proposed formulations and the concerns of computing efficiency, this study has also developed efficient solution heuristics that can yield sufficiently reliable solutions for real-world application. Case studies and extensive numerical analyses results validate the effectiveness and applicability of the proposed models

    Modeling, Control, and Impact Analysis of The Next Generation Transportation System

    Get PDF
    This dissertation aims to develop a systematic tool designated for connected and autonomous vehicles, integrating the simulation of traffic dynamics, traffic control strategies, and impact analysis at the network level. The first part of the dissertation is devoted to the traffic flow modeling of connected vehicles. This task is the foundation step for transportation planning, optimized network design, efficient traffic control strategies, etc, of the next generation transportation system. Chapter 2 proposes a cell-based simulation approach to model the proactive driving behavior of connected vehicles. Firstly, a state variable of connected vehicle is introduced to track the trajectory of connected vehicles. Then the exit flow of cells containing connected vehicles is adjusted to simulate the proactive driving behavior, such that the traffic light is green when the connected vehicle arrives at the signalized intersection. Extensive numerical simulation results consistently show that the presence of connected vehicles contributes significantly to the smoothing of traffic flow and vehicular emission reductions in the network. Chapter 3 proposes an optimal estimation approach to calibrate connected vehicles\u27 car-following behavior in a mixed traffic environment. Particularly, the state-space system dynamics is captured by the simplified car-following model with disturbances, where the trajectory of non-connected vehicles are considered as unknown states and the trajectory of connected vehicles are considered as measurements with errors. Objective of the reformulation is to obtain an optimal estimation of states and model parameters simultaneously. It is shown that the customized state-space model is identifiable with the mild assumption that the disturbance covariance of the state update process is diagonal. Then a modified Expectation-Maximization (EM) algorithm based on Kalman smoother is developed to solve the optimal estimation problem. The second part of the dissertation is on traffic control strategies. This task drives the next generation transportation system to a better performance state in terms of safety, mobility, travel time saving, vehicular emission reduction, etc. Chapter 4 develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. The algorithm is implemented and tested with a network containing 18 signalized intersections from a microscopic traffic simulator. Chapter 5 develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only values in {-1, 0, 1}. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. Further, it shows that traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control. The third part of the dissertation moves on to the impact analysis of connected vehicles and autonomous vehicles at the network level. This task assesses the positive and negative impacts of the system and provides guidance on transportation planning, traffic control, transportation budget spending, etc. In this part, the impact of different penetration rates of connected vehicle and autonomous vehicles is revealed on the network efficiency of a transportation system. Chapter 6 sets out to model an efficient and fair transportation system accounting for both departure time choice and route choice of a general multi OD network within a dynamic traffic assignment environment. Firstly, a bi-level optimization formulation is introduced based on the link-based traffic flow model. The upper level of the formulation minimizes the total system travel time, whereas the lower level captures traffic flow propagation and the user equilibrium constraint. Then the bi-level formulation is relaxed to a linear programming formulation that produces a lower bound of an efficient and fair system state. An efficient iterative algorithm is proposed to obtain the exact solution. It is shown that the number of iterations is bounded, and the output traffic flow solution is efficient and fair. Finally, two numerical cases (including a single OD network and a multi-OD network) are conducted to demonstrate the performance of the algorithm. The results consistently show that the travel time of different departure rates of the same OD pair are identical and the algorithm converges within two iterations across all test scenarios

    Network Maintenance and Capacity Management with Applications in Transportation

    Get PDF
    abstract: This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective of managing maintenance activities and the attendant temporary network capacity reductions is to schedule the required segment closures so that all maintenance work can be completed on time, and the total flow cost over the maintenance period is minimized for different types of flows. The goal of optional network capacity reduction is to selectively reduce the capacity of some links to improve the overall efficiency of user-optimized flows, where each traveler takes the route that minimizes the traveler’s trip cost. In this dissertation, both managing mandatory and optional network capacity reductions are addressed with the consideration of network-wide flow diversions due to changed link capacities. This research first investigates the maintenance scheduling in transportation networks with service vehicles (e.g., truck fleets and passenger transport fleets), where these vehicles are assumed to take the system-optimized routes that minimize the total travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize heuristic developed. This research also investigates the maintenance scheduling in networks with multi-modal traffic that consists of (1) regular human-driven cars with user-optimized routing and (2) self-driving vehicles with system-optimized routing. An iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic assignment resulting from a maintenance schedule. The genetic algorithm with multi-point crossover is applied to obtain a good schedule. Based on the Braess’ paradox that removing some links may alleviate the congestion of user-optimized flows, this research generalizes the Braess’ paradox to reduce the capacity of selected links to improve the efficiency of the resultant user-optimized flows. A heuristic is developed to identify links to reduce capacity, and the corresponding capacity reduction amounts, to get more efficient total flows. Experiments on real networks demonstrate the generalized Braess’ paradox exists in reality, and the heuristic developed solves real-world test cases even when commercial solvers fail.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Optimizing and Simulating Evacuation in Urban Areas

    Get PDF
    Diese Doktorarbeit beschäftigt sich mit der Evakuierungsplanung in städtischen Gebieten. Nach einem Literaturüberblick zu Beginn der Arbeit wird das Cell-Transmission model verwendet, um ein grundlegendes mathematisches Optimierungsmodell zur Evakuierungsplanung mit Fahrzeugen zu formulieren. Anschließend werden eine erweiterte Version dieses Optimierungsmodells sowie mehrere heuristische Lösungsverfahren zur Lösung der Optimierungsmodelle vorgestellt. Darüber hinaus werden Erweiterungen der Optimierungsmodelle zur Berücksichtigung von Rettungskräften und Fußgängern in der Evakuierungsplanung betrachtet.This doctoral thesis deals with evacuation planning in urban areas. After a literature review at the beginning of the thesis, the Cell-Transmission model is utilized to formulate a basic mathematical optimization problem for evacuation planning with vehicles. Afterwards, an extended version of this basic optimization problem as well as several heuristic solution procedures to solve the optimization models are presented. Moreover, enhancements of the optimization models in terms of integrating rescue teams as well as pedestrians in evacuation planning are considered
    corecore