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ABSTRACT 

This research develops heuristics to manage both mandatory and optional network 

capacity reductions to better serve the network flows. The main application discussed 

relates to transportation networks, and flow cost relates to travel cost of users of the 

network. Temporary mandatory capacity reductions are required by maintenance 

activities. The objective of managing maintenance activities and the attendant temporary 

network capacity reductions is to schedule the required segment closures so that all 

maintenance work can be completed on time, and the total flow cost over the maintenance 

period is minimized for different types of flows. The goal of optional network capacity 

reduction is to selectively reduce the capacity of some links to improve the overall 

efficiency of user-optimized flows, where each traveler takes the route that minimizes the 

traveler’s trip cost. In this dissertation, both managing mandatory and optional network 

capacity reductions are addressed with the consideration of network-wide flow diversions 

due to changed link capacities. 

This research first investigates the maintenance scheduling in transportation 

networks with service vehicles (e.g., truck fleets and passenger transport fleets), where 

these vehicles are assumed to take the system-optimized routes that minimize the total 

travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize 

heuristic developed. This research also investigates the maintenance scheduling in 

networks with multi-modal traffic that consists of (1) regular human-driven cars with 

user-optimized routing and (2) self-driving vehicles with system-optimized routing. An 

iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic 

assignment resulting from a maintenance schedule. The genetic algorithm with multi-

point crossover is applied to obtain a good schedule. 
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Based on the Braess’ paradox that removing some links may alleviate the 

congestion of user-optimized flows, this research generalizes the Braess’ paradox to reduce 

the capacity of selected links to improve the efficiency of the resultant user-optimized 

flows. A heuristic is developed to identify links to reduce capacity, and the corresponding 

capacity reduction amounts, to get more efficient total flows. Experiments on real 

networks demonstrate the generalized Braess’ paradox exists in reality, and the heuristic 

developed solves real-world test cases even when commercial solvers fail.  
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Chapter 1 

INTRODUCTION 

 Overview 

A network is a collection of connected nodes and arcs, which are used to store, 

distribute and convey various kinds of entities. These nodes, arcs and entities represent 

disparate things in various applications. For example, in power transmission networks, 

nodes are power plants, substations, households and factories; arcs are power lines; and 

entity transmitted is power. In transportation networks, nodes are origins and 

destinations, arcs are the roads, and entities transported can be vehicles, people, 

commodities etc. Although the flow of entities in different networks obey different physical 

rules, normally the basic demand-supply relation among nodes, the flow conservation 

conditions and the capacity constraints on nodes and/or arcs are common. 

Network maintenance is the activity conducted on nodes and/or arcs to restore 

or improve flow-related attributes like capacity, surface roughness (in transportation 

networks), outage duration (in power transmission networks), etc. so as to elevate the 

overall network performance. Just like decision problems of other large systems, the 

planning of network infrastructure maintenance can be categorized as strategic, tactical 

or operational.  

Strategic planning of network maintenance mostly focuses on network-wide 

design to maintain the overall performance of the network over the long term. At this high 

level of planning, the impact of network capacity reduction caused by maintenance activity 

is negligible, because the maintenance activity usually takes place over a very small portion 

of the planning horizon.  
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Tactical planning of network maintenance usually is the medium-term 

scheduling of maintenance work on the nodes and/or arcs with a network-wide 

perspective. Since the length of time period when the network is under maintenance is 

comparable to the tactical planning time horizon, network capacity reduction caused by 

maintenance work is an important factor to consider for maintenance scheduling.  

As to operational planning of network maintenance, it considers short-term 

repair effects on a node and/or an arc when a network component is under repair during 

the maintenance operations. At this level of maintenance planning, the dynamics and 

specific maintenance procedures have substantial impact on the network entities. For 

example, barriers, traffic cones and heavy vehicles (i.e., pavers) will occupy a segment of 

road in transportation network for resurfacing work. Plans on the length of the sub-

segments for the resurface work and the time to start each sub-segment directly impact 

the traffic flow during the resurfacing. 

This dissertation specifically investigates the network maintenance planning for 

arcs at the tactical level, where the arc capacity reduction caused by maintenance activity 

is considered. Since scheduling arc repairs is essentially scheduling the arc capacity 

reductions, the tactical planning of network maintenance is a network capacity 

management problem, which manages mandatory network capacity changes to optimally 

fulfill flow demand. The type of network considered in this research are transportation 

networks which have straightforward flow diversions in reaction to arc capacity reductions. 

The optimal scheduling of work zones for arc maintenance is one problem addressed in 

this research. Another type of network capacity management problem studied is to 

selectively reduce the capacity of some arcs so as to reach better user equilibrium 

(Wardrop, 1952) states. This type of network capacity management problem is also 

studied in the research presented.  
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In transportation literature, term “link” is used more frequently to represent the 

actual road segments, while in classic mathematics literature on networks, term “arc” is 

used for the connection between nodes. In this proposal, terms arc(s) and link(s) are used 

interchangeably.  

 Background and Research Focus 

Network maintenance planning can be formulated as multi-objective network 

design problems, with complex constraints based on the spatial and temporal scope of the 

maintenance planning. Despite the various factors, such as link/node downtime, 

congestion, and budget, that need to be considered in these problems, the ultimate goal of 

network maintenance is to improve the overall capability of the network so as to better 

serve the flows from the origins (O) to their destinations (D). Hence, the major concern in 

the research conducted is the performance of the network on fulfilling the flow demand 

during the maintenance, which can be translated into minimizing the temporal or 

monetary costs (such as total flow cost, total travel time, total time delay), by scheduling 

the network capacity changes during the maintenance period. 

Maintenance work on the network can cause network topology changes (e.g., link 

capacity change, closed link, and/or disconnected node). For a feasible schedule of the 

maintenance projects within the planning time horizon, the network topology changes 

every time the status of an individual maintenance project is changed (for example, 

maintenance of a lane segment is started or completed). And each time when the network 

topology changes, the routing of the flows change accordingly so as to minimize the 

individual/total flow cost. Hence, there is a total flow cost over the planning time horizon 

associated with each feasible schedule. In summary, maintenance work zones interact 

with flows; the optimal scheduling of the maintenance work zones means deciding the 
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optimal sequence to carry out the projects, so that the network topology change patterns 

achieve the minimum total flow cost over the planning horizon, among all the feasible 

schedules. 

The primary objectives of the dissertation are (1) to develop optimization models 

that schedule network maintenance and manage network capacity changes considering 

the interaction between maintenance work and the flows, and (2) to design efficient 

solution approaches to solve them. Different network flows models will result in different 

maintenance schedules that are optimal to the specific network flows model. To give an 

example, the optimal maintenance schedule for a network with multi-commodity flows 

that take system optimized routing to minimize the total cost of all flows, will most likely 

be different from the optimal schedule for the same network but with flows that take user 

optimized routing to reach user equilibrium (Wardrop, 1952). Hence, this research studies 

network maintenance schedule for different types of network flows models. Also, it is 

possible that flows with different routing objectives share the same network. This results 

in not only the interaction between the flows and the maintenance schedule but also the 

interaction among flows of different types. And thus, the investigation of scheduling 

maintenance in networks with various flow types also falls into the scope of this research. 

This research uses terminology “directed links” to represent roads, each of which 

consists one or more lanes. An incident on a link segment blocks one or more lanes, 

thereby decreasing the flow capacity for some lanes and thus of the link segment. 

Congestion effects of incidents is well researched (Chung, 2011; Corthout et al., 2009; 

Jeong et al., 2010; Lund and Pack, 2010; Sheu et al., 2004 and 2001), one focus of 

minimizing these effects is to detect the incident as quickly as possible (Baiocchi et al., 

2015; Cheng et al., 2015; Kinoshita et al., 2015; Li et al., 2013; Liu et al., 2014; Lu et al., 

2012a and 2012b; Wang et al., 2015; Xiao et al, 2014; Xiao et al., 2012; Zhang et al., 2015; 
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and Zheng et al., 2013), and subsequently send response vehicles as fast as possible to 

clear the incident (Hou et al., 2013; Huang and Pan, 2007; Kim et al., 2014; Lei et al., 2015; 

Lou et al., 2011; Ma et al., 2014a; Ma et al. 2014b; Pal and Bose, 2009; Zhu et al., 2012;  

and Zografos et al., 2002) and/or to quickly apply traffic controls like traffic signal phase 

adjustments, ramp meters activation, and traffic barricades to manage the congestion 

(Ahmed and Hawas, 2015; Gang and Yong, 2011; Liu et al., 2013; Long et al., 2012; Lu et 

al., 2015; Shen et al., 2007; Sheu, 2007; Sheu et al., 2003; and Zhang et al., 2011). Well-

planned and scheduled maintenance could minimize the congestion impacts of 

maintenance activities even without the help of additional traffic controls. 

The impairment of roads, the installation of new traffic management 

infrastructures (e.g., high occupancy vehicle lanes, tolled lanes, and ramp meters), and 

adding/improving links require the scheduling of the corresponding maintenance work. 

In general, maintenance activities change the topology of the transportation network and 

change the cost of the routes for origin-destination (OD) demands. Since traffic flows are 

composed of individual vehicles that make their own routing decisions, and with the 

extensive usage of navigation systems with real-time traffic information, OD demands are 

able to reactively re-route based on the changed network topology and the resultant cost 

of candidate routes. Traffic flows consist of different types of network users (i.e., 

commercial trucks, commuter cars, and motorcycles). These users, besides interacting 

with each other, react to network topology changes differently because of their distinct 

routing objectives and flow cost attributes. This makes the transportation network an ideal 

real-world application for methodology developed on the maintenance scheduling of flow 

networks. 

Maintenance activities of transportation networks result in work zones, where 

some lane segments of links are out of commission for a predicted period of time until the 
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work is completed. The extent of the congestion impacts of a work zone, induced by the 

traffic that normally uses the lanes affected by the work zone, depend on the volume and 

mix of traffic. When a lane is blocked in a link segment, the “capacity”, in terms of vehicles 

per hour, of the link deceases for the duration of the work zone. If the volume of traffic 

using the work zone is very small, especially if there are many alternatives of equally good 

routes, then the congestion impacts are negligible. On the other hand, if the traffic volume 

is moderate to high then congestion impacts would not be negligible. Temporary link 

capacity reductions because of lane closures can result in significant delays for commuters 

and transport service vehicles. FHWA (2013) estimate that Americans lose 3.7 billion 

hours and 2.3 billion gallons of fuel every year sitting in traffic jams. Work zones are 

estimated to cause about 10% of overall congestion which translates into annual fuel loss 

of over 700 million US dollars.  

The large majority of traffic using a road network consists of (1) commuter traffic, 

and (2) the traffic of service vehicles that includes trucks and vans delivering goods. The 

primary effect of a work zone on commuter traffic is a change in traffic equilibrium of the 

flows, because in a few days after the start of the work zone the traffic flows will equilibrate 

to a new user equilibrium according to the well-known Wardrop’s first principle (Wardrop, 

1952). So one main idea of this research is to optimally schedule the planned work zones 

so that the resulting traffic delays for commuter traffic is minimized. When the network is 

normally not congested, the commuter traffic equilibrium would change little. But work 

zones could have significant impacts on the equilibrium pattern if the network is normally 

congested. On the other hand, traffic of service vehicles will be affected when a link that is 

used by many shortest delivery routes is impacted by the work zone. 

It should be noted that for the work zone operations in practice, road 

construction companies and transportation management agencies do a reasonable job of 
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coordinating work zone activities after the work zone is initiated through appropriate task 

scheduling and work staging of day-to-day and week-to-week operations. These 

companies’/agencies’ goal is to contain the overall cost, while safety and traffic congestion 

is not overly affected during peak periods. In current practice, the state departments of 

transportation have work zone standards for single maintenance projects on state/local 

roads. These standards provide detailed guidelines and requirements for contractors to 

prepare bids, obtain the contract for the maintenance project, and conduct the 

maintenance work. However, the requirement on traffic control is often very vague. For 

example, the requirement document on traffic control for New Hampshire focuses more 

on the traffic safety and traffic control installations, and only briefly discusses about 

minimizing traffic interruption by avoiding maintenance work during peak hours, and by 

avoiding frequent and abrupt road capacity changes (e.g., lane narrowing, dropped lanes, 

lane shifting). (New Hampshire Department of Transportation, 2012). Also it does not 

discuss about the impact of work zones on the traffic in the neighborhoods, which may not 

be negligible since the temporary link capacity reduction caused by the work zones on the 

link being repaired will probably cause some traffic that was originally on the link to divert 

to other links.  

In practice, for a single maintenance project along a highway stretch or a local 

arterial, the typical project cycle starts with the advertisements by a transportation agency. 

Contractors interested in the project prepare bid documents and submit the bids to the 

transportation agency to compete for the project. The agency evaluates the bids received 

on various criteria, especially on the proposed budget, and awards the contract to the 

contractor with the most competitive qualifying bid. The winning contractor then works 

on the maintenance project. In summary, the standards and work scope are only 

concerned with a single maintenance project on a highway stretch or a local arterial. 
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Consideration of coordinating multiple maintenance projects that may be located close to 

each other, is often ad-hoc. 

Most past research conducted on maintenance scheduling in transportation 

networks fall into either the strategic planning of long-term network rehabilitation, or 

operational level of planning that decides the work zone length and short-term scheduling 

of activities for a single maintenance project. Little research has been done on the tactical 

level of planning that coordinates maintenance projects based on a network-level 

perspective and that considers the impact of maintenance work on traffic flows at the same 

time. More details on related past research are covered in the literature review in Chapter 

2. While a single, or few widely scattered concurrent work zones, will not have a large effect 

upon daily traffic patterns, several work zones that are spatially and temporally close 

together, and which affect large flows of traffic, may result in traffic patterns that are both 

costly to commuters and vehicle-based services.  

The maintenance of the transportation network is not the only cause for work 

zones. Work related to infrastructures (e.g., power transmission cables, street/highway 

lights, sewage pipes, communication cables/fibers) that are close by or under the roads 

may also result in work zones. The more the work zones that are spatially close to each 

other and with partially or entirely overlapping planning time horizon, the more critical it 

is to coordinate the active periods among the projects. A reduction of negative impacts can 

be expected through proper scheduling of work zones with respect to the spatial locations 

in the network and the time periods of the work zones. 

Depending on the underlying network flows model adopted, the improvement of 

network capability to better serve the flow demand does not always mean to increase the 

capacity of some road segments.  As stated in the well-known Braess’ paradox (Braess et 
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al., 2005), with the adoption of the user equilibrium (UE) flows model (Wardrop, 1952), 

where each unit of flow finds its own optimized route, and all the flows eventually reach 

the equilibrium where no flow cost reduction can be achieved through unilateral route 

change,  so that increasing the capacity on part of the network may cause a redistribution 

of the flows ending with higher total flow cost, while reducing the capacity might result in 

a flow redistribution that costs less. A real-world example of the Braess’ Paradox is that 

the closing of 42nd Street in New York City in 1990 decreased the congestion in the area 

(Kolata, 1990). Therefore, network capacity management does not only include the 

scheduling of mandatory link capacity reductions that maybe required by maintenance 

activities, but also encompasses the development of optional link capacity reduction 

mechanisms to improve the efficiency of traffic flows. In traffic networks, this selective 

link capacity reduction can be achieved by traffic control methods like variable speed 

limits, ramp metering, and coordinated traffic light phasing. 

Thus, this dissertation addresses the network capacity management problem for 

the following three cases: (1) scheduling mandatory network capacity changes to minimize 

the total flow cost of service vehicles (e.g., delivery trucks) from multiple origins to 

destinations in the case of uncongested networks, (2) designing optional network capacity 

changes to reduce the total travel time of commuter vehicle flows at equilibrium, and (3) 

scheduling mandatory network capacity changes to minimize the total travel time for 

multi-modal traffic flows. The maintenance scheduling and capacity management in 

transportation networks is just one of the many areas where apply the methodological 

results of this research maybe applied. With few changes reflecting network dynamics and 

maintenance activity characteristics, the optimization models formulated can be adopted 

to the modeling of maintenance scheduling and capacity management of other types of 

networks.  
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 Summary of Chapters 

Chapter 2 starts with the review of network flows problems, whose optimization 

models and solution methods can be integrated into the network capacity management 

problem studied in this dissertation. Maintenance scheduling models for networks other 

than the transportation network (e.g., power transmission networks, water pipe networks, 

bridge networks, and railroad networks) are also reviewed, so as to obtain the general 

understanding on how systematic maintenance planning is approached for different types 

of flow networks. This is followed by a detailed review on maintenance planning 

specifically for transportation networks. At the end of Chapter 2, three types of network 

flows management approaches are reviewed, which include ramp metering, toll 

imposition, and variable speed limit enforcement. These traffic management mechanisms 

can be employed to maintain and improve network performance when network flows are 

characterized by traffic equilibrium models. 

Chapter 3 investigates the maintenance scheduling in networks of service 

vehicles (MS-NSV). In Chapter 3, it is assumed that if there are too many trucks traveling 

on a link, there will be a qualitative change of the relation between the link travel cost and 

the number of trucks traveling on the link. This change is captured by modeling the link 

travel cost as a piece-wise linear function of the number of trucks using the link.  The 

problem studied is formulated as a mixed-integer linear program, and is solved by a 

randomized fix-and-optimize heuristic (RFO) developed. In contrast to solving the 

problem solely with a commercial solver (e.g., CPLEX), test results demonstrate a 

significant reduction in computation times when RFO is applied. 

Chapter 4 designs the mechanism that improves the efficiency of commuter 

traffic in network level by selectively reducing the capacity of some links (OCREC). Since 
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commuter traffic are UE flows, OCREC studies the generalized Braess’ paradox where 

reducing the capacity of some links could improve the efficiency of UE flows. A heuristic 

is developed to identify the links whose capacity reduction may decrease the total travel 

time at UE, and find the desired amount of capacity reduction for the links identified. The 

heuristic developed successfully solves real network test cases and confirms that the 

generalized Braess’ paradox does exist in reality. As a comparison, nonlinear commercial 

solvers (e.g., MINOS) fail to solve test cases of moderate size. 

Chapter 5 extends the research in Chapter 3 to study maintenance scheduling in 

networks with multi-modal traffic flows (MS-MMN). Two travel modes are considered in 

MS-MMN and they are regular cars and autonomous vehicles. Every traveler driving a 

regular car takes the route that minimizes his/her own travel time to reach user 

equilibrium (UE), and travelers riding self-driving vehicles choose the route that 

minimizes the total travel time of all travelers to achieve system optimum (SO). The 

stationary flow assignment of this multi-modal traffic is the flow assignment that has 

regular car flows at UE and self-driving vehicle flows at SO. This stationary flow 

assignment is proven to exist and it can be obtained by the iterative UE-SO assignment 

algorithm developed. Due to the non-convexity of MS-MMN, the genetic algorithm is 

applied to obtain good maintenance schedules. 

Chapter 6 summarizes the research conducted and outlines research 

opportunities for future work, which include various stochastic extensions to the problems 

studied in Chapter 3, 4 and 5.  
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Chapter 2 

LITERATURE REVIEW 

The network maintenance planning has been studied with two major modeling 

approaches: network reliability modeling and network flows modeling. In research that 

adopt network reliability modeling approach, the deterioration process of links/nodes is 

modeled and the objective is to minimize the overall link/node failures (e.g., Bocchini and 

Frangopol, 2011; Hu et al., 2015; Marquez et al., 2013). The network flows modeling 

approach aims at managing the network capacity changes to better fulfil flow demands. 

This modeling approach uses network flows models (e.g., maximum flows model) to 

evaluate the networks for a specific maintenance schedule, so as to evaluate their 

optimality (e.g., Boland et al., 2012; Boland et al., 2015; Tawarmalani and Li, 2011). There 

also exists research that combines these two modeling approaches by associating the 

deterioration process with the amount of flows on the link (e.g., Hajibabai et al., 2014), or 

by modeling the link capacity as a function of the link states in the deterioration process 

(e.g., Chu and Chen, 2012).  

Although research on network maintenance planning with the network reliability 

modeling approach is covered in the review, it is more focused on previous research that 

adopted the network flows modeling approach, since the research presented emphasizes 

the interaction between flows and network capacity changes caused either by maintenance 

activities or by traffic controls. And thus, the literature review starts with the review of 

several basic network flow models in Section 2.1, which can be used as the part of the 

optimization models developed that evaluates the optimality of a maintenance schedule 

or a traffic control mechanism. Section 2.2 reviews maintenance planning in general 

networks that can be the abstract of any virtual or physical networks. Research that 
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specifically studies transportation related networks (e.g., traffic networks, logistics 

distribution networks, and bridge networks) is reviewed in section 2.3. Section 2.4 reviews 

traffic control mechanisms that selectively reduces the capacity or increase the cost of 

some links to alleviate congestion and drive traffic flows toward more efficient flow 

patterns network-wide. 

 Related Network Flows Models 

Based on the physical types and functions of the networks in application, various 

network flows models are used to evaluate the network capability of fulfilling flow demand. 

For example, maximum flow model and traffic equilibrium model are two of the models 

integrated in studying the impact of maintenance work on flows with a network-wide 

perspective (Boland et al., 2012; Boland et al., 2015; Lee, 2009; and Zheng et al., 2014). 

Section 2.1.1 to 2.1.4 review these network flows models and briefly discuss their 

applications. 

2.1.1 Maximum Flow Model.  The maximum flow problem tries to send as much flow 

as possible between two special nodes, the source node 𝑠  and the sink  𝑡 , through a 

capacitated network without exceeding the capacity of any link (Ahuja et al., 1993). In a 

directed network with node set 𝑁 and link set 𝐸, let 𝑢𝑖𝑗 be the capacity of link (𝑖, 𝑗) ∈ 𝐸, the 

linear programming formulation of this problem is: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣         (2.1.1a) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑠. 𝑡. ):  

∑ 𝑥𝑖𝑗{𝑗:(𝑖,𝑗)∈𝐸} − ∑ 𝑥𝑗𝑖{𝑗:(𝑗,𝑖)∈𝐸} = {
𝑣 𝑖 = 𝑠                  
0 ∀𝑖 ∈ 𝑁 − {𝑠, 𝑡}
−𝑣 𝑖 = 𝑡                  

   (2.1.1b) 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗        ∀(𝑖, 𝑗) ∈ 𝐸       (2.1.1c) 
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Constraint (2.1.1b) is the flow conservation constraints enforcing all nodes other 

than the source node and sink node to send out the same amount of flows as they receive, 

and the sink node to receive the amount of flows sent out by the source node. (2.1.1c) is 

the set of link capacity constraints that ensure the amount of flow on each link not exceed 

its capacity. A vector 𝑥 = {𝑥𝑖𝑗}  satisfying (2.1.1b) and (2.1.1c) is a feasible flow and the 

corresponding value of the scalar variable 𝑣 is the value of the flow. 

The maximum flow problem is an easy problem to solve since there exist 

algorithms that can solve it in polynomial time (e.g., shortest augmenting path algorithm, 

Dinic’s algorithm, and generic preflow-push algorithm). It has been applied to the 

modeling of both physical networks to maximize the throughput, and virtual networks 

which are the abstracts of problems in other areas like assignment problems and 

scheduling problems. It is also a fundamental network flows model that occurs as a 

subproblem in the solution of more difficult network problems. 

2.1.2 Minimum Cost Flow Model.  The minimum cost flow problem finds the 

cheapest way of sending given amount of flow from a node (or a set of nodes) to another 

node (or another set of nodes) through a network, where each link has its capacity and 

unit flow cost. Let 𝐺 = (𝑁, 𝐸) be a directed network with a positive cost 𝑐𝑖𝑗 and a capacity 

𝑢𝑖𝑗 associated with every link (𝑖, 𝑗) ∈ 𝐸. Each node 𝑖 ∈ 𝑁 is associated with a number 𝑏(𝑖) 

which indicates its supply or demand depending on whether 𝑏(𝑖) > 0 or 𝑏(𝑖) < 0. If 𝑏(𝑖) >

0, then node 𝑖 is a supply node; and if 𝑏(𝑖) < 0, then node 𝑖 is a demand node. Variable 𝑥𝑖𝑗 

is the amount of flow on link (𝑖, 𝑗). With these parameters and variables, the minimum 

cost flows problem can be formulated as (Ahuja et al., 1993): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗)∈𝐸       (2.1.2a) 

𝑠. 𝑡.:  
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∑ 𝑥𝑖𝑗{𝑗:(𝑖,𝑗)∈𝐸} − ∑ 𝑥𝑗𝑖{𝑗:(𝑗,𝑖)∈𝐸} = 𝑏(𝑖) ∀𝑖 ∈ 𝑁     (2.1.2b) 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗        ∀(𝑖, 𝑗) ∈ 𝐸       (2.1.2c) 

Objective (2.1.2a) calculates the total cost of all the flows on all links. Constraint 

(2.1.2b) is the set of flow conservation constraints that make sure supply (demand) nodes 

send (receive) the exact amount it can supply (receive), and all the nodes other than the 

supply and demand nodes will send out the amount of flows the same as the amount they 

receive. Constraint (2.1.2c) is the capacity constraints limiting the amount of flow on each 

link to be less than or equal to the link’s capacity. 

Polynomial algorithms are also available to solve the minimum cost flow problem. 

As a category of problems that are pervasive in practice, minimum cost flow problems arise 

in almost all industries, including agriculture, communications, energy, manufacturing, 

medicine, retailing, transportation etc. It is also lays the foundation for more complex 

network flows problems like the multi-commodity flow problem. 

2.1.3 Multi-Commodity Flow Model.  In many application contexts, several types of 

entity flows share common network facilities and have their own origins and destinations. 

For example, in transportation networks vehicles from different origins travel to different 

destinations using the same transportation infrastructure. And each road has a capacity 

that restricts the total flow of all the vehicles using that road, regardless of their origins or 

destinations. To find an optimal flow in these cases, the problem needs to be solved in 

concert with all types of commodity flows (Ahuja et al., 1993). Thus arises the multi-

commodity flow problem.  

Let 𝐾  be the number of commodity types,  𝑥𝑖𝑗
𝑘  be the amount of flows of 

commodity 𝑘 on link (𝑖, 𝑗) , and 𝑏𝑘(𝑖) be the supply/demand of commodity 𝑘 at node 𝑖. 
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With other notations used in Section 2.1.2, the node-link formulation of multi-commodity 

flow problem is shown below: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ 𝑐𝑖𝑗(∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 )(𝑖,𝑗)∈𝐸       (2.1.3a) 

𝑠. 𝑡.:  

∑ 𝑥𝑖𝑗
𝑘

{𝑗:(𝑖,𝑗)∈𝐸} − ∑ 𝑥𝑗𝑖
𝑘

{𝑗:(𝑗,𝑖)∈𝐸} = 𝑏𝑘(𝑖)  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾  (2.1.3b) 

0 ≤ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ≤ 𝑢𝑖𝑗           ∀(𝑖, 𝑗) ∈ 𝐸  (2.1.3c) 

The formulation above is very similar to the minimum flow cost model in Section 

2.1.2, except that the total flow of all commodities on link (𝑖, 𝑗)  are accounted in the 

objective (2.1.2a) and the link capacity constraint (2.1.1c), and the flow conservation 

constraints (2.1.2c) need to be defined for each commodity.  

There is a wide variety of application contexts, such as vehicle fleet planning and 

production planning, which uses the multi-commodity flow problem. Since it is a strongly 

NP-hard problem (Even et al., 1975), there is no algorithm available that can solve it in 

polynomial time. But methods like Lagrangian Relaxation, column generation, and 

Dantzig-Wolfe decomposition can solve it within tolerable amount of time in some cases. 

In the multi-commodity flow problem discussed in this section, the unit flow cost of each 

link is a constant that is independent of the amount of flows on the link. In the cases where 

the link unit flow cost increases as the amount of flows that are using the link increase, the 

multi-commodity flow problem evolves to the traffic assignment problem.  

2.1.4 Traffic Assignment Model.  In the modeling of networks with traffic flows (e.g., 

road networks, fiber networks, and power transmission networks), the congestion effect 

is commonly considered. And that means the cost of using a link does not only depend on 
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the capacity of the link, but also depends on the amount of flows using the link. The graph 

below illustrates the cost-flow relationship for a long link:  

 

Figure2.1.4-i: Cost-Flow Relationship 

The horizontal axis represents the amount of flows using the link, and the vertical axis is 

the corresponding unit flow cost. 𝑓0 is the base cost for a unit of flow traveling through the 

link when the link is not used by other flow units, and 𝑢 is the link capacity. 

In the context of traffic flow in transportation networks, Wardrop (1952) 

postulated two general principles to determine the distribution of traffic flows on the 

routes between each origin-destination (OD) pair, and they are: 

(1) Wardrop’s First Principle: The travel time between an origin-destination (OD) 

pair is the same on all routes used, and it is less than those which would be 

experienced by a single vehicle on any unused route. 

(2) Wardrop’s Second Principle: The trips or movements are routed so that the 

sum of the travel time for all the movements is a minimum. 

These two alternative principles are applied widely to the modeling of traffic 

flows where traffic congestion effect is considered. In research literature on transportation 
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networks, the term “traffic assignment” is used for both system optimal traffic flows 

problem (multi-commodity flow problem with nonlinear flow-dependent cost) and user 

optimal traffic flows problem (user equilibrium).  

Following the notation in Section 2.1.3, the traffic assignment problem is 

formulated as:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ 𝑓𝑖𝑗(∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ) ∗ (∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 )(𝑖,𝑗)∈𝐸     (2.1.4a) 

𝑠. 𝑡.:  

∑ 𝑥𝑖𝑗
𝑘

{𝑗:(𝑖,𝑗)∈𝐸} − ∑ 𝑥𝑗𝑖
𝑘

{𝑗:(𝑗,𝑖)∈𝐸} = 𝑏𝑘(𝑖)  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾  (2.1.4b) 

0 ≤ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ≤ 𝑢𝑖𝑗           ∀(𝑖, 𝑗) ∈ 𝐸  (2.1.4c) 

The traffic assignment model is almost the same as the multi-commodity flow 

model shown in last section, except that 𝑐𝑖𝑗  is replaced by the unit flow cost 

function 𝑓𝑖𝑗(∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ) in objective (2.1.4a). In research related to traffic flows, 𝑓𝑖𝑗(∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ) 

is designed to be a convex increasing function of ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾 , which is the total amount of 

flows traveling through link (𝑖, 𝑗). Branston (1976) reviewed cost-flow functions proposed 

by researchers at that time, which had been being used in research until today. Among 

those cost-flow functions the most widely used is: 

 𝑓𝑖𝑗 (∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

) = 𝑓𝑖𝑗
0(1 + 𝛼 (

∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

𝑢𝑖𝑗
)

𝛽

) 

 where 𝑓𝑖𝑗
0 is the base cost, 𝛼 and 𝛽 are parameters that usually take values of 0.15 and 4 

respectively.   

Sometimes the upper bound of the link capacity constraint (2.1.4c) is removed, 

since the link capacity information can be integrated into the unit flow cost function, such 
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that the unit flow cost increases to infinity as the amount of flows on the link approaches 

its capacity. To give an example, Boyce et al. (1981) designed the cost-flow function as: 

𝑓𝑖𝑗 (∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

) = 𝑓𝑖𝑗
0(1 + 𝐽 (

∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

𝑢𝑖𝑗 − ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

)) 

where 𝐽 is a parameter reflecting the delay characteristics along a link. 

As a complex nonlinear programming problem, the traffic assignment problem 

was commonly solved with nonlinear programming solution procedures, which are often 

combined with some type of decomposition method. Lin et al. (1997) applied the projected 

Jacobi method for the master problem and a dual Newton-type method to solve the multi-

commodity flow quadratic subproblems. Commodity decomposition and arc 

decomposition were implemented in the dual Newton-type method designed respectively. 

Goffin et al. (1997) designed a potential reduction algorithm to solve the master problem 

with column generation technique, which defines a sequence of primal linear 

programming subproblems. Each subproblem generated finds a minimum cost flow 

between an origin-destination (OD) pair in a network with infinite link capacities. 

Lawphongpanich (2000) devised a simplicial decomposition procedure that used Dantzig-

Wolfe decomposition for each subproblem. Lotito (2006) developed a disaggregated 

simplicial decomposition method with a column generation method, which solves a large 

number of quadratic knapsack subproblems with a Newton-like method. Other nonlinear 

solution procedures without decomposition include primal-dual interior-point method 

(Torres et al., 2009), modified analytic center cutting plane method (Babonneau et al., 

2009), and alternating linearization bundle method (Kiwiel, 2011) have also been 

proposed to solve the traffic assignment problem. 
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Despite the intricacy of the traffic assignment problem, there exists significant 

research that has studied the problem as a network flows problem, and solve it with 

available network flows algorithms. Petersen (1975) proposed a primal-dual algorithm 

which constructed the dual problem for the linear approximation of the primal problem. 

The solution to the dual problem were the node potentials for each commodity. The node 

with the largest potential among all commodities is selected and the corresponding 

minimum cost flow problem for the commodity is solved. The solution obtained for that 

commodity replaces its solution in the primal problem, and the dual problem based on the 

updated primal solution is constructed for next iteration. Ouorou et al. (2000) designed a 

minimum mean cycle cancelling algorithm which made descent steps that involved 

altering the flow vector of one commodity and the vector of total flows around a cycle. And 

the cycle was identified with minimum mean directed cycle algorithms in residual 

networks related to the commodities. These studies, instead of treating the traffic 

assignment as an application of the nonlinear optimization problem and solving it with 

generic nonlinear programming solution procedures, focused on analyzing the structure 

of the traffic assignment problem, and developed algorithms which were evolutions of 

similar network flows algorithms designed for simpler network flows problems. 

The traffic assignment problem discussed so far assumes the origin-destination 

(OD) demand 𝑏𝑘(𝑖) does not change over time, and thus it is often referred as the static 

traffic assignment problem. In the cases where time-varying demand and/or the dynamic 

evolution of network traffic flows are considered, the problem escalates to the dynamic 

traffic assignment problem, which is studied particularly in the context of transportation 

networks. Hence in the following part of the review until the end of Section 2.1.4., “unit 

flow cost” is substituted by “travel time” and “flow units” is replaced with “vehicles”.  
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The dynamic traffic assignment problem keeps track of the status of all the 

links (i.e., number of vehicles currently on a link and the associated travel time) and 

vehicle flows at each point of time, and routes the vehicles that travel through the network 

over the planning time horizon so that the total travel time of all the vehicles is minimized. 

In the problem, routing decision needs to be made every time when a vehicle or a platoon 

of vehicles exit a link or a link segment, and link travel time is updated accordingly. In 

previous research, as the essential part of the dynamic traffic assignment modeling, the 

dynamic evolution of link traffic flow was described by four major types of models: 

(1) Lighthill-Whitham-Richards (LWR) model (kinetic wave model) 

(2) Point-Queue (PQ) model 

(3) Spatial-Queue (SQ) model 

(4) Cell transmission (CTM) model 

Lighthill and Whitham (1955) and Richard (1956) modeled traffic flow as a 

compressible fluid of density 𝑑  and fluid-velocity  𝑉  (a function of  𝑑 ), and gave the 

fundamental equation of flow conservation in continuous time as: 

𝜕𝑑

𝜕𝑡
+
𝜕(𝑉𝑑)

𝜕𝑥
= 0 

where 𝑡 was the time point, 𝑥 was the position along a link, and 𝑑 was a function of 𝑡 and 

𝑥 . This kinetic wave model is commonly referred as the Lighthill-Whitham-Richards 

(LWR) model. It facilitated the modeling of the dynamic traffic assignment problem as 

optimal control problems, which were solved with augmented Lagrangian method (Wie et 

al., 1994; Wie, 1998), and heuristics based on marginal delays (Ghali and Smith, 1994).  

Point-Queue (PQ) model is a deterministic queuing model. It assumes every link 

(𝑖, 𝑗) consists a free-flow segment with travel time 𝜏𝑖𝑗, and a queuing segment with capacity 

𝑢𝑖𝑗 that restricts the number of vehicles exiting the link. A vehicle entering a link will first 



 

22 
 

travel through the free-flow segment and then join the queue waiting for its turn to exit 

the link. Denote 𝜆𝑖𝑗
𝑡  as the total number of vehicles in the queue to leave link (𝑖, 𝑗) at the 

beginning of time period 𝑡,  𝑙𝑖𝑗
𝑡  as the number of vehicles leaving link (𝑖, 𝑗) at the end of 

time period 𝑡, and 𝑒𝑖𝑗
𝑡  as the number of vehicles entering link (𝑖, 𝑗) at the beginning of time 

period 𝑡. With the presumption that there is no vehicle traveling in the network at the 

beginning of time 𝑡 = 0, 𝜆𝑖𝑗
𝑡  is updated as: 

𝜆𝑖𝑗
𝑡 = {

0,                                 

𝜆𝑖𝑗
𝑡−1 + 𝑒

𝑖𝑗

𝑡−𝜏𝑖𝑗 − 𝑙𝑖𝑗
𝑡−1,

       ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 0,… , 𝜏𝑖𝑗 − 1

∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 𝜏𝑖𝑗, … , 𝑇
, 

and 𝑙𝑖𝑗
𝑡  is updated as: 

𝑙𝑖𝑗
𝑡 = 𝑚𝑖𝑛{𝑢𝑖𝑗 , 𝜆𝑖𝑗

𝑡 }, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 0,… , 𝑇. 

P-Q model limits the number of vehicles leaving link (𝑖, 𝑗) to be at most 𝑢𝑖𝑗 and assumes 

vehicles stack up vertically so that the queue won’t occupy physical length of the link. And 

thus there is no restriction on the number of vehicles (𝑒𝑖𝑗
𝑡 ) that can enter a link.  

Spatial-Queue (SQ) model updates the number vehicles waiting to leave a link 

(𝜆𝑖𝑗
𝑡 ) the same as the PQ model, but it is a more realistic model since it considers the fact 

that vehicle queue will occupy the physical space of the link. If the entire storage space of 

link (𝑖, 𝑗), denoted as 𝐻𝑖𝑗, is taken, then no more vehicles can enter the link. Consequently, 

with the presumption that there is no vehicle traveling in the network at the beginning of 

time 𝑡 = 0, 𝑒𝑖𝑗
𝑡  is updated as: 

𝑒𝑖𝑗
𝑡 = {

𝑚𝑖𝑛{𝐻𝑖𝑗, 𝑢𝑖𝑗},                                 

𝑚𝑖𝑛{𝐻𝑖𝑗 − (𝜆𝑖𝑗
𝑡−1 − 𝑙𝑖𝑗

𝑡−1), 𝑢𝑖𝑗},

       ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 0,… , 𝜏𝑖𝑗 − 1

∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 𝜏𝑖𝑗 , … , 𝑇
. 

Unlike LWR, PQ and SQ which are whole-link models, the cell transmission 

model (CTM) divides each link (𝑖, 𝑗) into 𝑀𝑖𝑗 cells with equal length of 𝑉𝑖𝑗𝜓, where 𝑉𝑖𝑗 is 
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the free-flow speed of link (𝑖, 𝑗) and 𝜓  is the unit time interval. Daganzo (1994, 1995) 

showed that if the relationship between traffic flow (𝑞) and density (𝑑) is characterized by 

equation: 

𝑞 = 𝑚𝑖𝑛{𝑉𝑖𝑗𝑑, 𝑞𝑚𝑎𝑥 , 𝑏(𝑑𝑗𝑎𝑚 − 𝑑) }, ∀0 ≤ 𝑑 ≤ 𝑑𝑗𝑎𝑚 

in which 𝑞𝑚𝑎𝑥 is the maximum flow (or capacity), 𝑏 is the backward propagation speed, 

and 𝑑𝑗𝑎𝑚  is the jam density, then the LWR model can be approximated by a set of 

difference equations with current conditions which are updated at every time interval. And 

the numbers of vehicles entering and leaving a link are updated according to the vehicle 

flow status of the first and last cells of the link. Hence, CTM is the discrete solution scheme 

of the LWR model and it captures the congestion evolution within a link as LWR model 

does. 

Let 𝑦𝑖𝑗(𝑘,𝑘+1)
𝑡  be the number of vehicles transferred from the 𝑘𝑡ℎ cell to the 𝑘 + 1𝑡ℎ 

cell on link (𝑖, 𝑗) during time 𝑡, 𝑥𝑖𝑗(𝑘)
𝑡  be the number of vehicles staying in the 𝑘𝑡ℎ cell on 

link (𝑖, 𝑗), 𝐻𝑖𝑗(𝑘) be the storage space of the 𝑘𝑡ℎ cell on link (𝑖, 𝑗), and 𝛿 be the percentage 

of vehicles in a congested cell that can leave the cell during a unit time interval. The flow 

dynamics on link (𝑖, 𝑗) can be described using the following equations: 

𝑥𝑖𝑗(𝑘)
𝑡 =

{
 
 

 
 

0                                      ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 = 1,… ,𝑀𝑖𝑗 , 𝑡 = 0    

𝑥𝑖𝑗(𝑘)
𝑡−1 + 𝑒𝑖𝑗

𝑡 − 𝑦𝑖𝑗(𝑘,𝑘+1)
𝑡            ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 = 1, 𝑡 = 1,… , 𝑇                      

𝑥𝑖𝑗(𝑘)
𝑡−1 + 𝑦𝑖𝑗(𝑘−1,𝑘)

𝑡 − 𝑦𝑖𝑗(𝑘,𝑘+1)
𝑡 ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 = 2,… ,𝑀𝑖𝑗 − 1, 𝑡 = 1,… , 𝑇

𝑥𝑖𝑗(𝑘)
𝑡−1 + 𝑦𝑖𝑗(𝑘−1,𝑘)

𝑡 − 𝑙𝑖𝑗
𝑡−1            ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 = 𝑀𝑖𝑗, 𝑡 = 1,… , 𝑇                 

,  

𝑦𝑖𝑗(𝑘,𝑘+1)
𝑡 = 𝑚𝑖𝑛{𝑥𝑖𝑗(𝑘)

𝑡 , 𝑢𝑖𝑗 , 𝛿[𝐻𝑖𝑗(𝑘+1) − 𝑥𝑖𝑗(𝑘+1)
𝑡 ]},   ∀(𝑖, 𝑗) ∈ 𝐸, 𝑖 = 1,… ,𝑀𝑖𝑗 −

1, 𝑡 = 0,… , 𝑇 

𝑒𝑖𝑗
𝑡 = 𝑚𝑖𝑛{𝑢𝑖𝑗, 𝛿(𝐻𝑖𝑗(1) − 𝑥𝑖𝑗(1)

𝑡 )},  ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 0,… , 𝑇 

𝑙𝑖𝑗
𝑡 = 𝑚𝑖𝑛 {𝑢𝑖𝑗 , 𝑥𝑖𝑗(𝑀𝑖𝑗)

𝑡 },   ∀(𝑖, 𝑗) ∈ 𝐸, 𝑡 = 0,… , 𝑇 
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Because of its realistic modelling on link traffic flow and relative simple model 

structure, CTM has facilitated the research on dynamic traffic assignment problem 

extensively, especially in single destination networks. Ziliaskopoulos (2000) proposed a 

linear programming model for dynamic traffic assignment problem in single-destination 

networks, and proved that the necessary and sufficient condition for system optimal 

dynamic traffic assignment is that every unit of flow follows the time-dependent least 

marginal cost path to the destination. Based on that research, Zheng and Chiu (2011) 

developed an augmenting path algorithm to solve the single destination dynamic traffic 

assignment problem. Shen and Zhang (2008) concluded the PQ, SQ and CTM models gave 

the same optimal minimal system cost based on the numerical examples tested. And as a 

step further, Shen and Zhang (2014) mathematically proved the conclusion drawn in Shen 

and Zhang (2008), and designed a solution procedure that fitted all three models for the 

dynamic traffic assignment problem in single-destination networks. As to research on 

dynamic traffic assignment on general networks, Waller et al. (2013) proposed a CTM 

based model that considered demand uncertainties. Qian and Zhang (2012) designed a 

path-based model that adopted PQ and LWR for link flows. And a path marginal cost 

based algorithm was developed to solve the model formulated. 

Besides the four models discussed above, there are other dynamic link traffic flow 

models proposed in previous research, which are discrete-time models that assume the 

travel time for each link updates at the beginning of every time period, and stays the same 

until next time period begins. These models also assume that links can accept any amount 

of vehicles coming in regardless of the vehicles that are already on the link, and links have 

first-in-first-out vehicle flows. Lafortune et al. (1993) developed a dynamic programming 

model, in which the link travel time was a step function of the amount of flows in the time 

period, and the link flow states were propagated with state transition functions, which 
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scheduled future events based on current link flow status. Linear programming models 

were also developed through approximation schemes for the nonlinear objective function 

(Nahapetyan and Lawphongpanich, 2007), or through linearization of the link congestion 

function (Carey and Subrahmanian, 2000), or by modeling the travel time as piece-wise 

linear functions of the number of vehicles on the link (Kaufman et al., 1998). 

Traffic assignment model is commonly applied to the modeling of networks with 

central controls on the traffic flows like railway networks. However, in networks without 

central control where flow units can choose their routes based on their individual 

objectives, a network flows model that adopts Wardrop’s first principle is needed, and that 

is, the traffic equilibrium model. 

2.1.5 Traffic Equilibrium Model.  If all the users of the network travel to their 

destinations non-cooperatively, that is, each user chooses the route that minimizes his/her 

own travel cost, then the equilibrium state in which no single user can reduce his/her 

travel cost through unilateral route change, will be eventually reached as described in 

Wardrop’s first principle. In traffic assignment problems, it is possible that some travelers 

are assigned to routes with higher cost than those assigned to others for the same OD pair, 

so as to achieve lower system wide total cost. This kind of flow pattern will not happen in 

traffic equilibrium problems. 

As far as the literature reviewed, the existing traffic equilibrium models can be 

categorized with respect to the following aspects: 

(1) whether to model the dynamic evolution of link traffic flow or not – dynamic 

traffic equilibrium vs static traffic equilibrium; 

(2) whether to model the elasticity of demand or not – traffic equilibrium with 

elastic demand vs traffic equilibrium with inelastic demand; 
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(3) whether to consider users’ perception errors on path cost or not – stochastic 

traffic equilibrium vs deterministic traffic equilibrium; 

(4) whether to consider the multi-class composition of traffic flow or not – traffic 

equilibrium with heterogeneous flows vs traffic equilibrium with homogeneous 

flows. 

The simplest traffic equilibrium model would be the one that does not consider 

the dynamic evolution of link traffic flow (static), and presumes users have perfect 

knowledge on the cost of all the routes (deterministic), demand does not change with route 

cost (inelastic demand), and the traffic flow only contains one class of users (homogeneous 

flow). Denote 𝑂𝐷 as the set of origin-destination demand, 𝐷𝑘 as the demand of OD pair 𝑘, 

𝑥𝑖 as the total flow on link 𝑖 from all OD pairs, 𝑦𝑖𝑘 as the flow from OD pair 𝑘 on link 𝑖, and 

𝑓𝑖(𝑥𝑖) as the flow-dependent unit flow cost (link travel time) function of link 𝑖, this basic 

traffic equilibrium model is formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ ∫ 𝑓𝑖(𝜔) ∗ 𝑑𝜔
𝑥𝑖
0

 𝑖∈𝐸       (2.1.5a) 

𝑠. 𝑡.:  

𝐷𝑘 = ∑ 𝑦𝑖𝑘{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}   ∀𝑘 ∈ 𝑂𝐷  (2.1.5b) 

𝐷𝑘 = ∑ 𝑦𝑖𝑘{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸}   ∀𝑘 ∈ 𝑂𝐷  (2.1.5c) 

∑ 𝑦𝑖𝑘{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} , ∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

+ ≠ 𝑙} (2.1.5d) 

𝑥𝑖 = ∑ 𝑦𝑖𝑘{𝑘∈𝑂𝐷}     ∀𝑖 ∈ 𝐸                (2.1.5.e) 

0 ≤ 𝑥𝑖 ≤ 𝑢𝑖           ∀(𝑖, 𝑗) ∈ 𝐸    (2.1.5f) 

where 𝐸𝑖
− is the head node of link 𝑖, 𝐸𝑖

+ is the tail node of link 𝑖, and 𝑂𝐷𝑘
− and 𝑂𝐷𝑘

+ are the 

origin node and destination node of OD pair 𝑘 respectively. Constraints from (2.1.5b) to 

(2.1.5d) are flow conservation constraints, and constraints (2.1.5e) ensures the total link 
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flow is the summation of flows from all OD pairs on the link. Like in traffic assignment 

models, the link capacity constraint (2.1.5f) is usually omitted by modelling 𝑓𝑖(𝑥𝑖) as a 

convex function that increases to infinity as 𝑥𝑖 approaches 𝑢𝑖.  

Comparing to the link-based formulation presented above, a more 

straightforward formulation of the basic traffic equilibrium problem is the route-based 

formulation since the equilibrium condition is defined on route cost. Let 𝐿𝑘 be the route 

set of OD pair 𝑘, 𝑟𝑙𝑘 be the flow on route 𝑙 of OD pair 𝑘, and 𝛿𝑖𝑙𝑘  be the binary parameter 

indicating whether link 𝑖 is part of the route 𝑙 for OD pair 𝑘 or not, the route-based model 

is formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ ∫ 𝑓𝑖(𝜔) ∗ 𝑑𝜔
𝑥𝑖
0

 𝑖∈𝐸       (2.1.5a) 

𝑠. 𝑡.:  

𝐷𝑘 = ∑ 𝑟𝑙𝑘{𝑙∈𝐿𝑘}     ∀𝑘 ∈ 𝑂𝐷    (2.1.5g) 

𝑥𝑖 = ∑ ∑ 𝑟𝑙𝑘𝛿𝑖𝑙𝑘{𝑙∈𝐿𝑘}{𝑘∈𝑂𝐷}   ∀𝑖 ∈ 𝐸                (2.1.5.h) 

0 ≤ 𝑥𝑖 ≤ 𝑢𝑖           ∀(𝑖, 𝑗) ∈ 𝐸    (2.1.5f) 

𝑟𝑙𝑘 ≥ 0     ∀𝑙 ∈ 𝐿𝑘, ∀𝑘 ∈ 𝑂𝐷   (2.1.5i) 

where constraint (2.1.5g) makes sure the demand of each OD pair is satisfied and 

constraint (2.1.5h) calculates the total amount of flow on a link from all OD pairs. The 

disadvantage of the route-based formulation is that it requires explicit enumeration of 

paths between every OD pair to obtain the route set 𝐿𝑘 and the binary parameter set 𝛿𝑖𝑙𝑘. 

With these two parameter sets, the multi-commodity flow problem and traffic assignment 

problem reviewed in previous two subsections can also be formulated as route-based 

models. 

With the route-based formulation, Sheffi (1984) demonstrated that the first-

order conditions of the Lagrangian relaxation with respect to constraint (2.1.5g) were 
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essentially the user equilibrium conditions, and subsequently proved that the user 

equilibrium conditions were satisfied at the optimal point. Sheffi (1984) also proved the 

optimal point was unique by showing the feasible region and the objective function were 

convex.  

The link-based traffic equilibrium problem can be efficiently solved with Frank-

Wolfe algorithm (1956). Based on an initial set of feasible link flows, the algorithm 

repeatedly solves a linear programming problem to obtain auxiliary link flows, and 

performs a line search for the optimal convex combination of the auxiliary flows and the 

current link flows. Since the traffic equilibrium problem has a unique optimal solution, 

the convergence of Frank-Wolfe algorithm is assured because all search directions of line 

search are descent directions and all steps are descent steps. Besides line search, the 

method of successive average, which assigns weights of 1 −
1

𝑛
 and 

1

𝑛
 to the current flow and 

the auxiliary flow respectively, is also used to obtain the convex combination of flows. The 

convergence of Frank-Wolfe algorithm with successive average method was proven by 

Powell and Sheffi (1982). Even though the Frank-Wolfe algorithm with either line search 

or successive average method converges, the converging process is considered slow. To 

accelerate the convergence, Patriksson (1994) proposed a simplicial decomposition 

approach which stores all the auxiliary flow vectors generated in previous iterations and 

obtain the optimal convex combination of all these flow vectors as the resulting flow of 

current iteration.  

If the OD demand is not fixed but considered as a decreasing function of the 

traveling cost between the OD pair, then the elastic demand is modeled in the traffic 

equilibrium problem. Let 𝑄𝑘
−1(𝜔) be the inverse of the demand function associated with 



 

29 
 

the travel cost of OD pair 𝑘, the route-based traffic equilibrium problem with elastic 

demand is formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ ∫ 𝑓𝑖(𝜔) ∗ 𝑑𝜔
𝑥𝑖
0

 𝑖∈𝐸 − ∑ ∫ 𝑄𝑘
−1(𝜔)𝑑𝜔

𝐷𝑘
0

 𝑘∈𝑂𝐷    (2.1.5j) 

𝑠. 𝑡.:  

𝐷𝑘 = ∑ 𝑟𝑙𝑘{𝑙∈𝐿𝑘}     ∀𝑘 ∈ 𝑂𝐷    (2.1.5k) 

𝑥𝑖 = ∑ ∑ 𝑟𝑙𝑘𝛿𝑖𝑙𝑘{𝑙∈𝐿𝑘}{𝑘∈𝑂𝐷}   ∀𝑖 ∈ 𝐸                (2.1.5.h) 

0 ≤ 𝑥𝑖 ≤ 𝑢𝑖           ∀(𝑖, 𝑗) ∈ 𝐸    (2.1.5f) 

𝑟𝑙𝑘 ≥ 0     ∀𝑙 ∈ 𝐿𝑘, ∀𝑘 ∈ 𝑂𝐷   (2.1.5i) 

𝐷𝑘 ≤ 𝐷𝑘̅̅̅̅      ∀𝑘 ∈ 𝑂𝐷    (2.1.5l) 

where 𝐷𝑘̅̅̅̅  is the upper bound of the demand that can be generated from OD pair 𝑘. It 

should be noted in the formulation above is that 𝐷𝑘  now is a variable instead of a 

parameter, and that is also why constraint (2.1.5l) is included to define the value range of 

𝐷𝑘. Sheffi (1984) constructed the Lagrangian of the problem with respect to constraint 

(2.1.5k), and proved the route-based formulation had unique optimal solution, and the 

optimal solution satisfies the user equilibrium condition with elastic demand.  

With initial link traveling cost based on the presumption that there is no flow, 

and through iterative calculation of the path cost, corresponding demand, auxiliary link 

flows, and link traveling cost, method of successive averages can be adapted to solve the 

traffic equilibrium problem with elastic demand (Bell and Lida, 1997). Simple changes in 

the representation of the problem, such as the zero-cost overflow formulation and the 

excess-demand formulation, can also make the problem amenable for solution with fixed-

demand equilibration algorithms (Sheffi, 1984).  

The basic traffic equilibrium model and the model with elastic demand discussed 

above assume users have perfect information on route travel cost (e.g., travel time) over 
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the entire network, and thus are referred as the deterministic models. In contrast to that, 

the stochastic traffic equilibrium models assume travelers do not know the actual 

cost of routes, and their perceived route cost is the actual route cost plus a random error 

term. Travelers choose the routes with the minimum perceived travel cost and eventually 

will reach the stochastic user equilibrium state, which is described as: no travelers can 

improve his or her perceived travel cost by unilaterally changing routes.  

Denote 𝑃𝑙𝑘 as the probability that route 𝑙 of OD pair 𝑘 is chosen among all the 

routes connecting this OD pair, 𝐶𝑙𝑘  as the random variable representing the perceived 

travel cost on route 𝑙 of OD pair 𝑘, and 𝒇 as the given set of measured travel costs (actual 

travel cost for each route), in the case that demand is inelastic, the stochastic user 

equilibrium (SUE) conditions can be characterized by the following equations: 

𝑟𝑙𝑘 = 𝐷𝑘𝑃𝑙𝑘       ∀𝑘 ∈ 𝑂𝐷, ∀𝑙 ∈ 𝐿𝑘 

𝑃𝑙𝑘 = 𝑃𝑙𝑘(𝒇) = 𝑃(𝐶𝑙𝑘 ≤ 𝐶𝑙′𝑘 , ∀𝑙
′ ≠ 𝑙, 𝑙′ ∈ 𝐿𝑘 , 𝑙 ∈ 𝐿𝑘|𝒇 )  ∀𝑘 ∈ 𝑂𝐷, ∀𝑙 ∈ 𝐿𝑘 

The route choice probability is interpreted as the probability of perceived travel cost of the 

chosen route being the least among all the routes between the OD pair. Therefore, at 

stochastic user equilibrium, the cost on all used paths is not going to be equal but will 

conform the SUE conditions listed above. 

To describe the route choice probability function  𝑃𝑙𝑘(𝒇), various route choice 

models were proposed in previous research, and among them the multinomial logit (MNL) 

and multinomial probit (MNP) were the two earliest models. The multinomial logit model 

assumes the random error terms of the perceived travel cost are independently and 

identically distributed Gumbel variables, and derives the route choice probability as: 

𝑃𝑙𝑘 =
exp(𝑓𝑟𝑙𝑘)

∑ exp (𝑓𝑟𝑙′𝑘)𝑙′∈𝐿𝑘
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where 𝑓𝑟𝑙𝑘  is the measured travel cost of route 𝑟𝑙𝑘 . Even though the multinomial logit 

model gives the route choice probability in a nice closed form, it has two major deficiencies 

(Sheffi, 1984). First, it lacks sensitivity to network topology and this results in assigning 

too much flow to partially overlapped routes. Second, it calculates route choice 

probabilities solely based on route cost differences, and does not consider the dependence 

of the perception variance on the measured route cost. Many extensions of the 

multinomial logit model, such as the C-logit, implicit availability/perception logit, path-

size logit, paired combinatorial logit, cross-nested logit, generalized nested logit, and logit 

kernel (mixed logit), were developed to fix the deficiencies while preserving the analytical 

tractability of the logit-type model. Prashker and Bekhor (2004) gave a comprehensive 

review on these models and integrated them into the modeling of stochastic traffic 

equilibrium problem. 

The multinomial probit model assumes the random error terms are normal 

random variables with zero mean, and consequently the joint density function of the error 

terms is a multivariate normal function. The variance-covariance matrix usually is 

constructed based on the measured route cost and the cost of overlapped part of two routes 

(Sheffi, 1984; Yai et al., 1997). The multinomial probit model does not have the two 

deficiencies as the logit model and thus generates flow patterns that are more reasonable. 

However, it requires high computational cost when there are more than two alternative 

routes, because the route choice probability function, which is the cumulative distribution 

function of a multinomial random variable, does not have a closed form. To evaluate the 

route choice probability, analytical approximation methods like numerical integration 

algorithms and successive approximation method, and Monte Carlo simulation were 

adopted in previous research, which were reviewed by Sheffi (1985) and Rosa and Maher 

(2002).  
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More recently, Castillo et al. (2008) used Weibull distribution to model the 

random perception error terms, and proposed a multinomial weibit (MNW) route choice 

model to capture the route-specific perception variance. The MNW model has advantages 

over the MNL and MNP models because it has a closed-form route choice probability 

function, and it is able to model perception variance as an increasing function of the 

measured route cost. Based on this, Kitthamkesorn and Chen (2013) designed a path-size 

weibit model which resolved the route overlapping issue with the introduction of a path-

size factor. This path-size factor adjusts choice probabilities for routes with strong 

couplings so as to prevent too much flow being assigned to overlapping routes.  

Without the integration of specific route choice models, Sheffi (1984) formulated 

the general stochastic traffic equilibrium problem as an optimization problem with the 

objective: 

min
𝒙
𝑧(𝒙) = − ∑ 𝐷𝑘  (𝐸 [min

𝑙∈𝐿𝑘
{𝐶𝑙𝑘}|𝒄𝒌(𝒙)])

𝑘∈𝑂𝐷

+∑𝑥𝑖𝑓𝑖(𝑥𝑖) −∑∫ 𝑓𝑖(𝜔)𝑑𝜔
𝑥𝑖

0𝑖∈𝐸𝑖∈𝐸

 

where 𝒙 is the set of route flows for all the OD pairs, 𝒄𝒌(𝒙) is the actual cost of the routes 

connecting OD pair 𝑘, and 𝐸 [min
𝑙∈𝐿𝑘

{𝐶𝑙𝑘}|𝒄𝒌(𝒙)] is the expected perceived travel cost for OD 

pair 𝑘 . Represent the expected perceived travel cost function 𝐸 [min
𝑙∈𝐿𝑘

{𝐶𝑙𝑘}|𝒄𝒌(𝒙)]  by 

𝑆𝑘[𝒄𝒌(𝒙)], since 
𝜕𝑆𝑘(𝒄𝒌)

𝜕𝑐𝑙𝑘
= 𝑃𝑙𝑘 and 

𝜕2𝑆𝑘(𝒄𝒌)

𝜕𝑐𝑙𝑘
2 =

𝜕𝑃𝑙𝑘(𝑐𝑙𝑘)

𝜕𝑐𝑙𝑘
≤ 0 because routes with higher actual 

cost should have smaller probability of being perceived as the route with least perceived 

cost, 𝑆𝑘[𝒄𝒌(𝒙)] is concave with respect to 𝒄𝒌(𝒙). With the properties of 𝑆𝑘[𝒄𝒌(𝒙)] regarding 

its first and second partial derivatives on  𝒄𝒌(𝒙) , Sheffi (1984) showed the first-order 

conditions of the optimization problem coincided with the SUE conditions and proved the 

optimal solution was the stochastic user equilibrium. Since 𝑓𝑖(𝑥𝑖)  is monotonic, the 
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inverse 𝑥𝑖(𝑓𝑖) exists. And thus the objective 𝑧(𝒙) can be transformed as a function of link 

traveling cost 𝒇 (which is 𝑧(𝒇)) rather than link flows 𝒙 (which is𝑧(𝒙)). This means 𝑧(𝒇) 

and 𝑧(𝒙) are monotonic transformation to each other, and each point of 𝑧(𝒙) corresponds 

to one and only one point of 𝑧(𝒇). With this property of 𝑧(𝒇) and 𝑧(𝒙), Sheffi (1984) proved 

𝑧(𝒇) had a unique minimum by showing its Hessian matrix was positive definite, and 

proved 𝑧(𝒙) also had a unique minimum which was the stochastic user equilibrium. 

Based on the route choice models adopted in the stochastic traffic equilibrium 

problem, various solution approaches have been developed. Stochastic traffic equilibrium 

with logit-type route choice models can be solved with Powell-Sheffi algorithm (Powell 

and Sheffi, 1982), modified Frank-Wolfe algorithm (Akamastu, 1996), path-based partial 

linearization method (Chen et al., 2012), and self-adaptive gradient projection algorithm 

(Zhou et al., 2012). For stochastic equilibrium models based on MNP, the most commonly 

used approaches are based on Monte Carlo simulation (Sheffi, 1984; Clark et al., 2002). 

As to weibit stochastic user equilibrium models, Kitthamkesorn (2014) developed a link-

based solution algorithm which obtained a search direction by solving a convex auxiliary 

problem (i.e., the first-order approximation of the objective function), and performed line 

search based on the search direction to calculate the step size and solution of current 

iteration.  

Recent research also studied the modeling and solution methods for stochastic 

traffic equilibrium with elastic demand. Most of the research reviewed adopted logit-type 

route choice models (Ryu et al., 2014; Sun et al., 2015; Xu et al., 2013; Yu et al., 2014); 

only Meng et al. (2012) studied the problem with multinomial probit route choice model. 

Solution approaches proposed have been quite similar to those developed for the problem 
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with inelastic demands. But there were also new solution methods like the predictor-

corrector interior point algorithm designed by Yu et al. (2014). 

Most of the research on stochastic traffic equilibrium assumes the actual link and 

route travel costs at free-flow conditions are deterministic. However, this assumption is 

not realistic since the free-flow travel cost will be different in different weather and road 

conditions, and will be affected by non-routine traffic delays. Mirchandani and Soroush 

(1987) relaxed that assumption and proposed a generalized stochastic traffic equilibrium 

model where the free-flow travel cost on a link is probabilistic, introducing another level 

of randomness besides the random perception errors on travel cost. They studied the 

problem with linear, exponential and quadratic disutility functions, and solved it with a 

generalized incremental loading assignment technique. 

Like the dynamic traffic assignment problem, in the cases where time-varying 

demand and the dynamic evolution of link traffic flows are considered in the traffic 

equilibrium study, the dynamic traffic equilibrium problem arises. To model the 

dynamic evolution of link traffic flows, research on dynamic traffic equilibrium has used 

LWR model (Bellei et al., 2005; Kachroo and Ozbay, 1998;), point-queue model (Gawron, 

1998; Han, 2003; Tong and Wong, 2010; Iryo, 2015), spatial queue model (Balijepalli et 

al., 2014), cell-transmission model (Balijepalli et al., 2014; Golani et al., 2004; Levin et al., 

2015a; Meng and Khoo, 2012; Qian and Zhang, 2013; Waller and Ziliaskopoulos, 2006), 

and various other models with combinations of link performance functions and flow 

conservation functions (Carey, 2009; Kachroo and Ozbay, 2005; Li et al., 2013a; 

Papageorgiou, 1990; Varia and Dhing 2004; Wie et al., 1990; Yang et al., 2012).  

Similar to the original version of Wardrop’s first principle that describes the static 

traffic equilibrium, the dynamic generalization of Wardrop’s first principle is stated as: 
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“If, at each instant in time, for each origin-destination pair, the instantaneous 

expected unit travel costs for all the paths that are being used are identical and 

equal to the minimum instantaneous expected unit path cost, the 

corresponding time-varying flow pattern is said to be user optimized.” (Wie et 

al., 1990) 

The generalized Wardrop’s first principle applies to the dynamic deterministic traffic 

equilibrium problem, which assumes every user has perfect knowledge on the path 

cost throughout the time horizon.  

 Based on the link traffic flow models adopted, the dynamic deterministic traffic 

equilibrium problem may have different solution properties. Szeto et al. (2006) gave a 

detailed comparison between point-queue models and spatial-queue models on route cost 

properties and solution properties. They showed that dynamic user equilibrium existed in 

point-queue models but might not exist in spatial-queue models, and both of these two 

types of models might have multiple equilibria. For point-queue models, the existence of 

dynamic equilibrium was mathematically proven by Mounce (2007), and multiple 

equilibria was shown by Iryo (2011). However, the solution properties of dynamic 

equilibrium solutions with the prevalent cell-transmission model have not been 

thoroughly investigated.  

The dynamic deterministic traffic equilibrium problem has been studied with 

solution approaches from three disciplines: control theory, nonlinear programming, and 

simulation. Research that studied the dynamic user equilibrium as control problems 

commonly applied nonlinear optimal control methods (Papageorgiou, 1990) or feedback 

methodologies (Papageorgiou, 1990; Kachroo et al., 1998; Kachroo et al., 2005). In 

literature where dynamic user equilibrium was formulated as nonlinear programming 

problems, and combinatorial solution procedures have been proposed to solve the 
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problem (Golani et al., 2004; Janson, 1991; Waller et al., 2006). Due to the convenience 

of describing the dynamic evolution of traffic flows, simulation methods have been the 

most popular approach to the dynamic equilibrium problem. It either is used as a platform 

to develop new and efficient traffic equilibrium assignment algorithms (Gawron, 1998; 

Levin et al., 2015; Varia et al., 2004; Yang et al., 2012) and mechanisms that improve the 

efficiency of existing algorithms (Balijepalli et al, 2015; Levin et al., 2015; Tian et al., 2014), 

or provided results for solution procedures developed to compare with (Li et al., 2013). 

Besides solution approaches from those three disciplines, Carey (2009) proposed a bi-

level dynamic user equilibrium framework, which separated the loading of flows on the 

time-space network from the modeling of flows and trip times of individual links. 

 The stochastic version of the dynamic traffic equilibrium problem relaxes the 

presumption that every user has perfect knowledge about route cost, and assumes users 

perceive route cost with a random perception error and choose the route with the 

minimum perceived cost at each time instant. Hence, at dynamic stochastic traffic 

equilibrium, for each OD pair and at each instant in time, no user can reduce his or her 

perceived route travel cost by unilaterally changing routes. Iryo (2015) showed the 

existence and uniqueness of dynamic stochastic equilibrium in a simple loop network with 

point-queue model for link traffic flows. Solution properties of dynamic stochastic 

equilibrium with other link flow models and route choice models have not been 

investigated yet.  

The handful of papers found on the dynamic stochastic traffic equilibrium 

adopted either the basic multinomial logit model (Bellei et al., 2005; Han, 2003; Qian et 

al., 2013) or the multinomial probit model (Meng et al., 2012; Zhang et al., 2008) for the 

route choice probability function. The solution methods proposed include method of 

successive average (Han, 2003; Meng et al., 2012; Zhang et al., 2008), pure network 



 

37 
 

loading (Qian et al., 2013; Han, 2003), diagonalization method (Han, 2003), quadratic 

interpolation (Han, 2003), Bather’s method (Bellei et al. 2005) and Ishikawa algorithm 

(Meng et al., 2012). Chong et al. (2014) modeled the dynamic route choice as the 

conditional joint distribution of route traffic given that the network was in dynamic 

stochastic equilibrium, and developed a Metropolis-Hastings sampling scheme to solve 

the dynamic stochastic equilibrium problem. 

Little research is available on models and solution approaches for dynamic traffic 

equilibrium with elastic demand (Guo et al., 2015). Because the dynamic traffic 

equilibrium problem has an additional temporal dimension than the static traffic 

equilibrium problem, it is natural to include more flexibility in demand modelling than 

merely accounting for the demand elasticity. Research has studied the demand variability 

by defining departure times as variables to be optimized, and to minimize route travel 

times at equilibrium (Han et al., 2011; Heydecker et al., 2005; Huang et al., 2002; Huang 

et al., 2002; Li et al., 2008; Lim et al., 2005; Long et al., 2015; Mahmassani et al., 1984; 

Mun, 2011). These research formulated the dynamic traffic equilibrium problem with 

departure time choices as nonlinear optimization problems, and proposed various 

heuristics and meta-heuristics (e.g., genetic algorithm) to solve the models developed. 

Traffic equilibrium models discussed so far assume traffic flow is homogeneous. 

In transportation networks, flow homogeneity means all the vehicles or travelers are the 

same in all aspects (e.g., vehicle type, link travel time function, route choice behavior, etc.) 

except for their origins and destinations. However, it is common sense that traffic flow is 

composed of vehicles in different physical sizes and drivers with different driving 

behaviors. Hence, to model traffic equilibrium more realistically, it is necessary to 

consider the heterogeneity of traffic flow. 
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Numerous research studied the modelling of traffic equilibrium with 

heterogeneous flows in transportation networks. To deal with flow heterogeneity, these 

research divided travelers/vehicles into a number of classes, and assigned each class of 

users with different utility functions (Konishi, 2004), or value of time (Han and Yang, 

2008; Huang and Li, 2007; Jiang et al., 2011; Lu and Mahmassani, 2008; Lu and 

Mahmassani, 2009), or link travel cost/time (Bliemer and Bovy, 2003; Mahmassani and 

Mouskos, 1988; Scrimali, 2014; Wu et al., 2006), or toll amounts (Ye, 2010). 

Numerous research studied the modelling of traffic equilibrium with 

heterogeneous flows in transportation networks. To deal with flow heterogeneity, these 

research divided travelers/vehicles into a number of classes, and assigned each class of 

users with different utility functions (Konishi, 2004), or value of time (Han et al., 2008; 

Huang et al., 2007; Jiang et al., 2011; Lu et al., 2008; Lu et al., 2009), or link travel 

cost/time (Bliemer et al., 2003; Mahmassani et al., 1988; Scrimali, 2014; Wu et al., 2006), 

or toll amounts (Ye et al., 2010). 

In stochastic equilibrium problems, flow heterogeneity was also captured in route 

choice models, so that the routing behaviors of users in different classes were described 

by route choice models with different parameter values. For example, for logit-based route 

choice models, different classes of travelers have different dispersion parameters (Miwa 

et al., 2010) or different variances for route cost perception errors (Jaber et al., 2009). And 

for probit-based route choice models, travelers in different classes have different variance-

covariance matrices (Connors et al., 2007; Lee, 2008; Zhang et al., 2013). Di et al. (2008) 

proposed a travel time budget model that differentiated travelers based on their risk-

taking preferences. In that paper, travelers were categorized into three classes (i.e., risk 

averse, risk prone and risk neutral) and each class was assigned with a distinct travel time 

risk, which was the probability that a trip could not be completed within a certain amount 
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of time given the probability density function of the trip time. The risk-based route 

disutility was calculated as the summation of the expected perceived trip time and a risk-

factored term, which was the product of normalized quantile of completing the trip with 

class-specific risk value, the weight for route travel time variance, and the variance of the 

perceived route travel time. Based on the model proposed by Di et al. (2008), Nie (2011) 

modeled the perceived trip travel time as the convolution of flow-dependent perceived link 

travel time and proposed a link-based model. Wu et al. (2013) devised an efficient gradient 

projection algorithm to solve the model proposed in Nie (2011), which avoided path 

enumeration through a column generation procedure based on a reliable shortest path 

algorithm. With the same classification of travelers based on the risk-taking preference, 

Xu et al. (2014) designed a mean-excess travel time model that did not only consider travel 

budget but also accounted for demand elasticity. 

The multi-class traffic equilibrium problem has been studied in dynamic settings 

as well (Bliemer et al., 2003; Lee, 2008; Lu et al., 2008; Lu et al., 2009; Scrimali, 2014; 

Zhang et al., 2013). Compared to the static models, the dynamic models proposed 

described the traffic flow with more details. These models assumed overtaking behaviors 

could happen among vehicles in different classes, and vehicles in the same class still 

obeyed the First-In-First-Out rule while they were traveling in a link. The class-specific 

link flow status was updated and link travel cost was calculated based on the aggregated 

flow on the link for each class.  

The equilibrium states of various models with heterogeneous traffic flows (i.e., 

static or dynamic, deterministic or stochastic, and elastic demand or inelastic demand) 

can be described similarly to the counterpart models with homogeneous flows. The 

solution approaches developed are also quite similar to the homogeneous flow cases 
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except for specific considerations for class-specific travel cost calculation and route 

assignment. 

As a conclusion for this subsection, the traffic equilibrium problem is a big topic 

with a broad scope. Traffic equilibrium is not only studied in the context of traffic flow 

modeling in transportation networks, but also in other subjects like the power 

transmission in power distribution networks and packets routing in fiber networks. This 

subsection only reviewed fundamental and major equilibrium models that have been 

extensively studied in previous research. Other types of traffic equilibrium models, such 

as the model considering link interactions in which travel cost of a link also depends on 

the flows on other links, and the equilibrium modeling of modal split where travel demand 

can split and take different modes of transportation (e.g., cars, buses, and light rails), are 

not covered in this review. 

 General Network Maintenance Planning 

Network maintenance planning has been studied with applications in various 

industries. Among the rich literature found, some researches have investigated this 

problem with a network-wide perspective. They schedule the maintenance of network 

components to achieve maximum overall network performance or minimum total 

maintenance cost. Criteria that evaluate the maintenance plan on its impact on system-

wide network performance, such as network reliability, network operating cost, and 

network flows disruption, have been adopted in previous research. This section reviews 

the maintenance planning for networks other than the transportation network, 

emphasizing the general modeling approaches adopted in literature. 

The reliability modeling approach has been widely applied in the research of 

maintenance planning for bridge networks (Bocchini and Frangopol, 2011; Bocchini and 
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Frangopol., 2013; Frangopol and Liu, 2007; Hu et al., 2015; Liu et al., 2005; Liu et al., 

2006; Morcous et al., 2005), power generation and transmission networks (Marquez et 

al., 2013; Usberti et al., 2015), water distribution pipe networks (Luong et al., 2005), and 

railroad networks (Zhang et al., 2013).   With Markovian models (Luong et al., 2005; 

Morcous et al., 2005; Orcesi et al., 2010) or reliability index profiles which are functions 

of time and repair effectiveness (Bocchini et al., 2011; Bocchini et al., 2013; Hu et al., 2015; 

Liu and Frangopol, 2005; Liu and Frangopol, 2006; Marquez et al., 2013; Usberti et al., 

2012; Zhang et al., 2013b), the reliability modeling approach models the deterioration 

process and condition improvements after maintenance for each network component. The 

long-term network level reliability then is evaluated by objective functions that aggregate 

network components’ condition throughout the planning horizon.  

The objective functions used in the literature reviewed can be categorized into 

three major types. The first type of objective functions calculate the weighted average 

based on the reliability indicators of individual network components. Exemplary objective 

functions in this type include the weighted average bridge condition (Morcous and Lounis, 

2005), the total weighted long-run availability of all the pipes (Luong and Nagarur, 2005) 

and the expected number of power failures per year for each customer (Usberti et al., 2012). 

The second type of objective functions minimize the total maintenance cost over the 

planning horizon, which are constrained by required level of network reliability like the 

connectivity requirements in bridge networks (Bocchini and Frangopol, 2013; Liu and 

Frangopol, 2005; Liu and Frangopol, 2006). The third type of objective functions 

minimize the summation of total network usage cost and maintenance cost over the period 

of time under consideration. In the models where the third type of objective functions are 

applied, the unit cost of using the network components (e.g., links) depends on the 

condition of the component. And the objective function requires maintenance to be 
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scheduled so that the maintenance cost is minimized, and the resulting condition of 

network components gives the minimum total users’ cost over the planning horizon (Hu 

et al., 2015; Orcesi et al., 2010). 

In network operating cost modeling, the optimality of a maintenance plan is 

evaluated more directly. For bridge networks, Bocchini and Frangopol (2011) evaluated 

the maintenance schedule by the total flow cost at users’ equilibrium. For power 

generation and transmission networks, based on the fact that the unit costs of power 

generation for different generators were different, Marwali and Shahidehpour (1998), 

Marwali and Shahidehpour (1999), and Niazi et al. (2015) developed models that 

minimized the total energy production cost during the maintenance period. 

Among literature reviewed on bridge network maintenance planning, only Orcesi 

and Cremona (2010) considered the impact of bridge capacity reduction caused by 

maintenance activities on network flows. The rest of the literature assumed the bridge 

would not be closed or have capacity reduction during the maintenance, which could be a 

reasonable presumption if the planning time horizon for the entire network is much longer 

than the time period when the bridge is under maintenance. In power generation and 

transmission networks, more research was conducted on short-term maintenance 

scheduling. For safety reasons, generators or transmission lines have to be physically 

disconnected from the network for maintenance activities. To deal with the temporal 

unavailability of generators and transmission lines, Gomes et al. (2007) proposed a model 

to minimize the number of critical power transmission branches. In graph theory, the 

critical branch is defined as the only branch connected to the vertex point, the removal of 

which will disconnect the network. Goel et al. (2013) developed a workforce routing and 

scheduling model to minimize the total down time of transmission lines and the travel 

effort of maintenance crews. Efficient workforce routing is an important factor to consider 
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in power transmission line maintenance planning since maintenance crews have to travel 

along the long stretches of transmission lines to maintain them. Similar types of workforce 

routing and scheduling models were proposed in literature on railroad network 

maintenance scheduling as well (Peng and Ouyang, 2012; Zhang et al., 2013b). 

In research that adopted network flows modeling approach, the temporal 

capacity reduction or unavailability of network components, and its impact on network 

flows were studied. Tawarmalani and Li (2011) proposed a mixed-integer programming 

model that scheduled link maintenance in abstract tree networks to minimize the total 

flow disruptions, which was the difference between the flow patterns before and during 

the maintenance. Boland et al. (2014) studied the network maintenance scheduling with 

the objective of maximizing the total flow over the planning time horizon, and investigated 

the problem as a maximum total flow problem with flexible link outages. Based on Boland 

et al., (2014), Boland et al. (2015) extended the research and developed continuous-time 

models that considered storage nodes. In that research, integer programming models 

based on time discretization were developed to provide primal bounds and dual bounds 

for the continuous time problem. Both Boland et al. (2014) and Boland et al. (2015) 

applied the models developed to the maintenance scheduling of a coal mine production 

network. 

Research reviewed in this section studied maintenance planning in networks that 

had relatively simple network flows attributes (e.g., single OD demand, single commodity), 

and few research explicitly considered or modeled these attributes. In research on 

maintenance planning and scheduling for transportation networks, the flow demand 

constraints, flow conservation constraints, and equilibrium conditions were more 

commonly considered in models developed. And those studies are reviewed in next section. 
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 Maintenance Planning in Transportation Networks 

The repair and maintenance of road network results in “work zones”, where some 

lane segments of a link are closed for a predicted period of time until the work is completed. 

Work zone planning is a challenging task since there are multiple parties involved and 

more than many factors need to be taken into consideration. Bayraktar and Hastak (2009) 

reviewed the factors impacting the success of work zone projects. They modeled the 

relationships between the goals of the project stakeholders and public satisfaction of the 

project using Bayesian belief networks. The model was aimed to assist highway agencies 

in developing suitable contracting strategies considering 52 interrelated factors impacting 

the success of work zone projects, which were grouped into four categories (contract 

characteristics, motorist issues, public issues, and resource issues). Despite the 

comprehensive list of factors taken into account, the model can only help prepare bids and 

not help to actually schedule the work zones.  

Most of the literature related to the maintenance planning in transportation 

networks can be grouped into four categories. The first category includes research that 

investigated the long-term network rehabilitation planning problem with the objective of 

maintaining the roads in good condition with least cost in different aspects. For example, 

Smilowitz and Madanat (2000) proposed a linear programming model to determine the 

optimal maintenance activities for each link at each time interval that minimized the total 

maintenance cost and user cost over the planning time horizon. Both user cost and 

maintenance cost of a specific maintenance type were functions of the link states. And the 

link states were modeled as a Markovian process to capture the quality deterioration and 

maintenance effectiveness. To give another example, Chu and Chen (2012) developed a bi-

level hybrid dynamic model in which the upper level problem decides the optimal 
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threshold for each road that triggers maintenance action and the lower level problem 

solves the user equilibrium problem. These two levels of problems are connected by the 

road deterioration function which models the effects of traffic loads on a road and the 

impacts of road roughness on users’ traveling cost. This type of research considers 

network-wide maintenance planning over a relatively long period of time (a year or longer). 

By assuming the project period is much shorter than the planning horizon, they omitted 

the impact of temporary link capacity reductions on traffic flow caused by the maintenance 

work. However, this assumption is not always reasonable especially for the maintenance 

work like resurfacing sets of links which would take months or longer. When the length of 

project period is comparable to the planning horizon, it is necessary to consider the effect 

of temporary link capacity reductions and to schedule the work zones in the way that 

minimizes the negative impacts on traffic flows. 

Research in the second category focused on developing operational strategies for 

work zone scheduling on a highway segment or a local arterial. Some research in this 

category has studied the short-term work zone scheduling with time horizons less than a 

day. This research focuses on optimizing the work zone planning of a single link but does 

not consider the impact of possible diverting traffic resulted from work zones to other links 

that are connected to or close to the work zone; see e.g., works of Meng and Weng (2013), 

Tang and Chien (2008) and Jiang and Adeli (2003).  However, in reality, as long as traffic 

congestion exists and there are alternative routes available, some portion of the traffic will 

divert to other routes which will affect the traffic on those alternative routes. Chien and 

Tang (2014) proposed a genetic algorithm to optimize the work zone length and start time 

in a day of the maintenance work on a highway stretch. The optimal schedule minimizes 

the total cost to the agencies conducting the maintenance plus the cost to the road users. 

Even though the temporary link capacity reductions, and resulting increased road user 
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cost, and possible traffic diversion, were modeled, only one alternative route for the 

diverted traffic was considered. Often there are more than two lanes for some segments of 

highway, but Chien and Tang (2014) did not explicitly explore different lane closing 

scenarios. Schroeder and Rouphail (2010) compared different lane closure scenarios and 

discussed the operational impacts of freeway work zones on traffic. Their approach can 

only compare every limited number of scenarios since each scenario requires extensive 

analysis. Summarizing, the research in this category focuses on scheduling work zones on 

single links and has very limited or no consideration on the impact of traffic diversion 

resulting from multiple link capacity reductions. 

The third category consists research that studied the scheduling of network 

expansion projects. This type of research specifically considered the flow pattern changes 

caused by the increase of link capacities or the addition of new links over the planning 

time horizon. This research topic is closely related to the network design problem, which 

selects among a set of candidate links to be added to a network with budget constraints, 

so as to achieve lowest total cost at users’ equilibrium state or system optimum. It is an 

extension of the network design problem since the addition of the chosen links need to be 

scheduled, and possible traffic flow pattern changes need to be evaluated after the addition 

of each link. Fontaine and Minner (2014) developed a mixed-integer programming model 

to select and schedule network expansion projects with minimum total project cost and 

system optimum flow cost, and solved it using Bender’s decomposition. Bagloee and Asadi 

(2015) presumed the set of network expansion projects were given and only one of these 

projects could be worked on at a time, and studied the network expansion scheduling 

problem as a traveling sales man problem to determine the optimal sequence of the 

expansion projects. The inter-dependency of the expansion projects was evaluated using 

the artificial neural network model, so that the “cost” of “moving” from one expansion 
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project to another could be computed. Gao et al. (2011) combined the problems of road 

maintenance and road expansion planning, and developed a mixed-integer, nonlinear, bi-

level model that scheduled the repair or expansion of every road with budget constraints. 

In the model proposed, the road capacity increase after maintenance and expansion were 

considered, and the road degradation process was modeled. General Bender’s 

decomposition method was applied to obtain the optimal maintenance and expansion 

schedule that gave the minimum total users’ cost at equilibrium state. Although literature 

reviewed in this category modeled the capacity increase after the maintenance or 

expansion, they did not consider the link capacity reductions during the time period when 

these activities were being performed. 

Only a handful of works considered the impact on traffic over the network due to 

multiple work zones and they comprised the fourth category. Orabi and El-Rayes (2012) 

developed a complex model with three genetic algorithm based modules – scheduling, 

network performance, and user savings, to select and prioritize rehabilitation projects, 

subject to budget constraints. Lee (2009) proposed a work zone scheduling model which 

considered the routing-changing behavior of road users. The schedule was optimized with 

an ant colony algorithm, where the users’ equilibrium under each schedule scenario was 

obtained through simulations using VISSIM software. Hosseininasab and Shetab-

Boushehri (2015) studied the work zone scheduling problem as a time-dependent network 

design problem. They formulated the problem as bi-level programming models, and used 

genetic algorithm to obtain the link maintenance schedule that gave the minimum total 

traveling cost at equilibria over the planning time horizon. All the three of Orabi and El-

Rayes (2012), Lee (2009) and Hosseininasab and Shetab-Boushehri (2015) did not 

explicitly discuss partial link capacity reductions resulting from work zones. Zheng et al. 

(2014) assumed the link capacity would reduce by 50% in their decision model developed. 
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However, a link might have more than two lanes and it is not always true or optimal to 

close half of the lanes at a time for maintenance. Ma et al. (2004) developed a hybrid 

simulation methodology with genetic algorithm to schedule multiple lane closures with 

minimum total traffic delay of the network. However, the flexible lane-level maintenance 

scheduling required high computation effort for the solution approach proposed in Ma et 

al. (2004). For a problem instance of scheduling the maintenance of 20 lanes, it took more 

than 120 hours.  

In maintenance planning with network flows modeling approach, the network 

capacity reductions are mandatory since the maintenance work has to be completed before 

the due date. In cases when budget is not the major concern, optimal maintenance 

scheduling is essentially managing mandatory network capacity reductions so that the 

negative impacts on flows is minimized. Due to the existence of the well-known Braess’ 

Paradox when the user equilibrium principle is adopted, and link capacity drops when 

congestion occurs, network capacity management methods that intentionally reduce the 

capacity of some links, such as imposing link tolls and ramp metering, could also improve 

the overall performance of the network if the objective is to minimize total travel cost at 

users’ equilibrium. Hence, next section reviews research that studied the design of these 

network capacity management mechanisms, and how they help improve the overall 

network performance. 

 Traffic Flow Control Mechanisms 

To improve safety, alleviate congestion, and eliminate chaos at intersections, 

traffic flow control mechanisms, such as traffic lights and link speed limits, have been 

implemented in local transportation networks since a hundred years ago. Freeways were 

originally expected to provide unlimited mobility. However, because of the quick increase 
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of traffic demand over time, demand peaks during rush hours, and link capacity reduction 

caused by incidents, freeways without traffic controls result in similar situations as the 

local networks prior to the introduction of traffic lights: blocked segments and reduced 

safety (Papageorgiou and Kotsialos, 2002). To restore and maintain the maximum 

utilization of freeways, traffic flow management strategies such as tolled imposition, ramp 

metering and speed limits, have been studied in numerous researches. Unlike most 

research developing traffic management strategies specifically for highway networks, this 

section and the research presented in later chapters do not differentiate between local and 

freeway networks, trying to generalize these traffic management strategies and apply them 

to transportation networks in general. 

2.4.1 Manage Network Flows through Ramp Metering.  Ramp meters are the 

two-phase signal lights installed at the entrance ramps of freeways. Upon activation, ramp 

meters will turn on the red light to enforce each vehicle entering the freeway to wait for a 

period of time, and then switch to the green light to let the vehicle enter the mainline. 

Papageorgiou and Kotsialos (2002) showed that ramp meters could effectively ameliorate 

local traffic conditions through restricting the amount of traffic flowing into the mainline, 

and by increasing traffic flows exiting the mainline. They illustrated their arguments with 

graphs shown in Figure 2.4 – i and Figure 2.4 – ii below, where the shaded areas are the 

congested zones:   

 

(a) (b) 

Figure2.4.1-i: (a) without and (b) with Ramp Metering (Papageorgiou and Kotsialos, 2002) 
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Graph (a) and (b) depict that by ramp metering, even though vehicles will wait in 

queues on ramps to enter the freeway, traffic condition in the mainline ameliorates and 

that benefits a larger group of travelers. Graph (c) and (d) illustrate that the improved 

mainline traffic resulted from ramp metering can increase the traffic flow that needs to 

exit the mainline, leaving more mainline capacity for traffic downstream. 

The proven effectiveness of local traffic control by ramp metering led to the rich 

literature produced on individual/isolated ramp metering algorithms (Abdel-Aty et al., 

2007; Chi et al., 2013; Chow and Li, 2014; Elefteriadou et al., 2014; Jin et al., 2014; Perrine 

et al., 2015; Rezaee et al., 2013; Wang et al., 2010; Wang et al., 2014; Zhao et al., 2011). 

Various ramp metering algorithms that coordinate among different ramp meters have also 

been developed in previous research (Bhouri et al., 2013; Chai et al., 2015; Dominguez and 

Fernandez, 2012; Geroliminis et al., 2011; Gomes and Horowitz, 2006; Jiang and Chung, 

2015; Kotsialos et al., 2004a; Kotsialos et al., 2004b; Landman et al., 2016; Li et al. 2014; 

Li and Chow, 2015; Meng and Khoo, 2010; Meshkat et al., 2015; Papamichail et al., 2010; 

Reilly et al., 2015; Shen and Zhang, 2010; Zhang and Wang, 2013). To enhance the traffic 

control effect, there exist research that integrated ramp metering with variable speed 

limits for the mainline traffic (Carlson et al., 2010; Carlson et al., 2014; Li et al., 2014; Lu 

et al., 2011). However, all of these researches were only concerned with the traffic 

(c) (d) 

Figure2.4.1-ii: (c) without and (d) with Ramp Metering (Papageorgiou and Kotsialos, 

2002) 
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condition along a highway stretch or inside the freeway loop specifically studied, but did 

not consider possible traffic diversions onto other freeways or local road networks, which 

could result in new network-wide traffic equilibrium states. It is true that ramp meters 

have limited capability to impact the network-wide equilibrium because of the limited 

queuing space for vehicles waiting on ramps, and the attempt to avoid the vehicle queue 

spilling back to the local roads. Howbeit, the deployment of ramp meters and coordinated 

ramp metering still would cause traffic diversions and change the equilibrium, because 

travel times on ramps do change.  

To evaluate the improvement of network-wide traffic condition through ramp 

metering, a number of empirical studies have been conducted by comparing travel time 

data between the time periods when there was ramp metering and when there was not 

(Faulkner et al., 2014; Levinson and Zhang, 2006; Osman et al., 2015; Xie et al., 2012; 

Zhang and Levinson, 2010). Results showed that ramp metering might not necessarily 

lead to travel time reductions in every case, but it did reduce travel time variation. Besides 

these empirical studies, Zhang (2007) used an unconventional positive approach to model 

how travelers adapted their routing to the deployment of ramp meters, and explored traffic 

diversion as an emergent process on a large network with travelers’ routing processes 

individually traced. By characterizing the behavior of the cell transmission model for a 

freeway with on-ramps and off-ramps, Gomes et al. (2008) investigated the traffic 

equilibria with and without ramp metering, and showed that congestion could be 

eliminated by ramp metering. But that research still only focused on a freeway stretch and 

did not consider network-wide OD flow diversions. 

2.4.2 Manage Network Flows through Toll Imposition.  Compared to ramp 

metering, imposing tolls on some or all of the links, has been more commonly studied as 
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an efficacious way to drive user optimized flow pattern towards system optimum in 

literature. In the case of tolls being charged for trips made, the traffic equilibrium is a bi-

criterion equilibrium since users have to select among paths based on not only the travel 

time, but also the tolled amount of the path. Value of time (VOT) has been introduced to 

describe travelers’ tradeoff between monetary cost and travel time in response to toll 

charges. It combines the monetary and temporal cost of a path as the generalized path cost. 

According to the well-established first-best congestion pricing theory, the system 

optimum flow pattern can be achieved by charging a toll on every link of the network, the 

amount of which equals to the difference between the marginal social cost and the 

marginal private cost (Dafermos and Sparrow, 1971). In reality, charging tolls on all of the 

links are not applicable since the cost of toll collection over the entire network is 

prohibitively expensive. To manage network flows with tolls in a more practical way, some 

research developed models and solution approaches based on the second-best pricing 

scenario (Verhoef, 2005; Yang and Zhang, 2002; Yang and Zhang, 2003), where only a 

subset of links were subject to toll charges. 

Under the presumption of homogeneous users, VOTs are identical for all 

travelers. With a single VOT, the minimization of total travel time and the minimization 

of total amount tolled result in the same traffic flow pattern. If link travel time function is 

separable and monotonic (Yin and Yang, 2004), the marginal-cost optimal toll can be 

simply obtained as 𝛽𝑣𝑖𝑡𝑖
′(𝑣𝑖), where 𝛽 is the VOT, 𝑣𝑖 is the flow on link 𝑖, and 𝑡𝑖

′(𝑣𝑖) is the 

first derivative of travel time function evaluated at  𝑣𝑖 . However, due to travelers’ 

demographic differences, they must have different VOTs. To incorporate the VOT 

differences among travelers, the commonly used approach in previous research is to group 

travelers into different classes, and assign each class a different VOT.  
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In the cases of multiple user classes with distinct VOTs, the system optimum flow 

pattern distinguishes between the minimization of travel time and the minimization of 

tolled amount (Yin and Yang, 2004). In spite of that, Yang and Huang (2004) showed that 

the same multi-class network equilibrium flow could be obtained, whenever the 

generalized travel cost was measured in cost or time. They demonstrated that the uniform 

link toll pattern, which supported a multi-class user equilibrium as a cost-based system 

optimum, could be obtained by multiplying the user externality of travel time by the 

arithmetic mean of the VOTs of all the users traversing that link. The user externality is 

the additional travel time that a marginal user imposes on others already traveling on link. 

They also showed that the uniform link toll, which supported a multi-class user 

equilibrium as a time-based system optimum, could be determined from the solution of a 

linear dual problem, and the toll could be either a charge or a subsidy to link users. Other 

research on this topic handled the bi-criteria optimization either through devising 

mechanisms to integrate the travel time and travel cost (Marcotte and Zhu, 2009; Wang 

and Ehrgott, 2013; Yang and Zhang, 2008; Zhang et al., 2008b), or by investigating the 

Pareto-optimality with respect to tolls and travel time (Song et al., 2009).  

Besides the case of multi-class users with different VOTs, the network 

equilibrium with tolls has been studied in other scenarios, such as stochastic user 

equilibrium (Liu et al., 2014; Meng and Wang, 2008; Yang, 1999), joint route and 

departure time choice in dynamic traffic network (Joksimovic et al., 2005), and tolls being 

imposed step-by-step (Chen et al., 2015; Guo, 2013). Although rich literature is found 

regarding various extensions of the equilibrium problems in networks with tolls, research 

based on data collected from real world, which estimates VOTs for users of different 

classes and investigates the impact of charging tolls on travelers’ routing decisions, is 

scarce. In many real-world networks with tolled links/lanes, the usage of the tolled 
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links/lanes are often overestimated. Bao et al. (2015) introduced the concepts of mental 

account and mental budgeting into travelers’ rout choice process, and studied the reason 

of the overestimated usage of tolled roads. They found that travelers with low and 

moderate out-of-pocket travel budget perceived a much higher generalized travel cost than 

the actual cost on the tolled roads, and that caused the usage being overestimated by 

conventional equilibrium models for networks with tolls.  

Although theoretically network flow management through toll imposition can 

drive user equilibrium flow pattern towards the system optimum, how to establish VOTs 

for different road users and how to design the tolls (i.e., which road to impose tolls and 

what amount to be tolled), are still research problems to be investigated. 

2.4.3 Manage Network Flows through Link Speed Limit Imposition.  Speed 

limits are usually imposed on roads to enhance safety and sometimes to reduce fuel 

consumption, emissions and noise (Yang et al., 2012). When there is no speed limit 

imposed, the speed-flow relationship and travel time-flow relationship can be described 

using the two graphs in Figure 2.4.3-i, where 𝐶 is the link capacity: 

Figure 2.4.3-i: Speed-Flow (a) and Travel Time-Flow (b) Relationship without Speed 

Limits (Yang et al., 2012) 

(a) (b) 
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In the case when speed limit is enforced on the link, the speed-flow and travel 

time-flow relationships are illustrated in Figure 2.4.3-ii, where 𝑠̅ is the imposed link speed 

limit: 

Imposing speed limits will inevitably impact travel times and mobility, and 

eventually would result in the network-wide reallocation of traffic flows. Yang et al. (2012) 

studied the uniqueness of link travel times and flows at user equilibrium with link-specific 

speed limits, and investigated how link speed limits impact network level traffic 

equilibrium macroscopically. They also compared the capability of speed limits with toll 

charges on traffic reallocation effects, and concluded that a speed limit law could regulate 

traffic flows as well as a toll charge scheme and performed better than some rebate toll 

schemes under certain conditions. Yang et al. (2015) extended the research by modeling 

the speed choices of heterogeneous travelers, which were determined by subjective travel 

time cost, the perceived crash risk and the perceived ticket risk on each link in uncongested 

condition. In their research, different user classes interact with each other and choose 

Figure 2.4.3-ii: Speed-Flow (c) and Travel Time-Flow (d) Relationship with Speed 

Limits (Yang et al., 2012) 

(c) (d) 
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their own optimal speed on particular roads, resulting in a Nash equilibrium speed pattern. 

And then based on the speed choices, travelers make route choices and eventually reach 

the user equilibrium.  

 Conclusion 

In tactical level of maintenance planning, the length of the time period when 

maintenance projects are being worked on is comparable to the length of the planning 

horizon. And the temporal network capacity reductions caused by maintenance activities 

and its impact on network-wide traffic diversions have to be considered. This induces the 

network capacity management problem of scheduling the maintenance so that flows are 

not overly affected by the mandatory temporal network capacity changes. It is a problem 

that has been investigated in very few literatures and will be addressed in the research 

presented. 

In the cases when the total flow cost at user equilibrium (UE) is used to evaluate 

the network on its capability of fulfilling flow demands, increasing network capacity might 

not always be the solution to alleviating congestions. As an application of the well-known 

Braess’ Paradox, network capacity management strategies can be developed to selectively 

reduce the capacity or increase the generalized travel cost for some of the links, so as to 

drive the traffic flow pattern towards more efficient equilibrium states. Most previous 

research that studied the network capacity management mechanisms considered isolated 

link capacity controls, and only analyzed the impacts of traffic controls on local traffic 

flows. They lacked the systematic perspective to consider the coordinated network 

capacity control and network-wide traffic diversions. Hence, this dissertation will make 

the first attempt to resolve this problem in the network level. 
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In the reviewed literature that studied managing mandatory network capacity 

changes, network maintenance strategies were evaluated by a single type of network flows 

model. However, due to the heterogeneity of multi-modal traffic in urban transportation 

networks, travelers choosing different travel modes may require disparate network flows 

models to evaluate a maintenance plan. To give an example, regular cars are the major 

users of the city road network, and their user-optimized routing pattern requires traffic 

equilibrium models to evaluate the impact of maintenance activities. Compared to regular 

cars, autonomous vehicles are equipped with the technology to decide its route without 

the interference of riders, and is a new travel mode that will be available in the near future. 

And thus, this new travel mode is expected to play an important role in reducing traffic 

congestion by taking routes that minimize the total travel time of all travelers with some 

incentives. Hence the autonomous vehicle flows can be modeled as the system optimum 

(SO) flows. Enlightened by this vision, investigating the optimal maintenance planning for 

a mixture of traffic flows with different routing objectives is another aspiration of this 

dissertation. 
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Chapter 3 

MAINTENANCE SCHEDULING IN NETWORKS OF SERVICE VEHICLES (MS-NSV) 

 Introduction 

Although service vehicles (i.e., commercial trucks) are not the major users of the 

city transportation network, they are always one of the travelers’ and city planners’ major 

concerns because of their large sizes, heavy weights, and enormous fuel consumption and 

emission. Besides service vehicles, temporal changes on the transportation network, 

which are resulted from work zones, also induce negative impacts on traffic flows. Since 

work zones reduce visibility and mobility, they reduce road capacity and safety 

significantly. Hence, it is not surprising to see that the combination of service vehicles and 

work zones exacerbates the traffic condition -- although large trucks accounted for only 4% 

of all registered vehicles in the United States, 27% of work zone fatal crashes involved at 

least one large truck (FWHA, 2013). 

In the presence of several work zones that are spatially close to each other, 

traveling through work zones one after another is stressful. These work zones cause 

extensive traffic delays and compound safety concerns, especially for service vehicles 

because of their large sizes and heavy weights. It would be ideal if work zones could be 

scheduled one after another so that only one work zone is active at any point of time. 

However, due to the budget and resource limitations, a common completion deadline is 

usually imposed on a group of work zones. And thus, the investigation of how to schedule 

multiple work zones, subject to a common due date, and with considerations of network-

wide origin-destination (OD) flow routing of service vehicles, is of great benefit to all the 

road users. 
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The research presented in this chapter treats the traveling cost of a link as the 

cost in general sense, which can be interpreted as combinations of travel time, monetary 

cost, and road unsafety. The total link traveling cost is designed to be piece-wise linear 

with respect to the number of service vehicles using that link, so that the expensive extra 

flow cost will be incurred if the available link capacity is exceeded. The piecewise linear 

cost function approximates the nonlinear relation between the traffic delay and unsafety, 

and the number of service vehicles traveling on that road. A mixed integer linear 

programming model is formulated to schedule work zones subject to a common deadline 

and OD demand of service vehicles. A randomized fix-and-optimize heuristic is developed 

to solve the model efficiently and tested with different networks.  

 MS-NSV Model 

3.2.1 Piecewise Linear Cost Structure.  In networks with service vehicle flows, 

linear flow cost structure is commonly used, where the cost of travelling on a link is set 

linear with respect to the total flow amount on that link when the amount of flows is 

smaller than or equal to the available capacity of the link. In applications where the 

demand on a link is more than the available capacity, the excess flow is either detoured or 

given a very high cost for using the link thereby circumventing the hard capacity constraint.  

In this chapter we will use the latter approach by modeling the link cost function piece-

wise linear, so as to approximate the traffic condition aggravation effect in service 

networks. With the piece-wise linear cost functions, the work zone scheduling model 

developed later can be solved by commercial solvers like CPLEX, the performance of which 

can be used to compare with the new heuristic developed later in the chapter. 

In the work zone scheduling model, it is assumed that there are Origin-

Destination (OD) flow demands of service vehicles (e.g. trucks) every time period (e.g., 
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peak period of a day). Each service vehicle can choose its own route to minimize its travel 

cost, and is treated as a unit of flow. In this chapter, we assume the minimum scheduling 

unit of a work zone is a lane of a link regardless of its length. When a link is under 

maintenance, one or more lanes are closed and this leads to the temporary link capacity 

reductions. That is likely to cause the current flow on the link to exceed the available link 

capacity, incurring the expensive extra flow cost. The available link capacity can be 

interpreted as the threshold of the traffic condition degradation effect. When the number 

of service vehicles on the link is smaller than the available link capacity, the traffic 

condition worsens at a relatively slow rate. However, if the number of service vehicles 

traveling on the link exceeds the available link capacity, the traffic condition degradation 

effect will have a qualitative change, and each additional service vehicle on that link will 

worsen the traffic condition much more severely.  The threshold (available link capacity) 

is designed to be positively related to the number of lanes open to serve the traffic flows. 

For example, for a link with multiple lanes, if the threshold is 𝑢 when a link only has one 

lane open, then the threshold becomes 2𝑢 when two lanes of the link are open.   

Suppose a link has three lanes and all three lanes have the same “flow capacity” 𝑢, 

Figure 3.2.1-i on the next page illustrates the relation between the flow units traveling on 

the link in a time period and the total flow cost in different lane closure scenarios. When 

two lanes are closed for maintenance, the available capacity of the link is 𝑢. If the units of 

flows using the link are more than 𝑢 during the time period, then the extra flow cost will 

be incurred. This is why the slope of the cost curve is much steeper when the flow units 

are more than 𝑢 for the two-lane closure case. Similar, cost curve pattern can be observed 

in the cases of no-lane closure and one-lane closure. When some of the lanes in a link is 

closed for maintenance, some of the flows that are originally on this link may divert to 
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other links to reach the destination with lower total cost, and that means the network flows 

are reactive to the maintenance schedules. 

 

Figure 3.2.1-i: Three-Lane Link Flow Cost Curve 

3.2.2 Model Formulation.  The MS-NSV model possesses the features of both 

scheduling models and multi-commodity flows models. The objective of the model is to 

schedule the lane closures so that all links that need maintenance are repaired before a 

given completion date for the whole network, while the total flow cost for all the OD pairs, 

which includes regular flow cost and extra flow cost, is minimized over the project period. 

This section describes the MS-NSV model in detail. 

Denote 𝑐𝑖 as the regular unit flow cost of link 𝑖, 𝑦𝑖𝑘𝑡 as the flow units of OD pair 𝑘 

that flow through link 𝑖 on day 𝑡, and 𝑧𝑖𝑡 as the difference between flow units of all the OD 

pairs that flow through link 𝑖 and the available capacity of link 𝑖 on day 𝑡, the objective 

function is formulated as 𝑚𝑖𝑛∑ {∑ [𝑐𝑖 ∗ (∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ) + 𝑧𝑖𝑡ρc𝑖]
𝑡=𝑇
𝑡=1 }𝑖∈𝐸 , where 𝐸 is the set of 

links, 𝑂𝐷  is the set of OD demand, and 𝑇  is the common completion date of all the 

maintenance work. 𝜌 is the congestion flow cost multiplier which makes the extra unit flow 

cost 𝜌𝑐𝑖  much larger than the regular unit flow cost 𝑐𝑖 . The first part ∑ ∑ [𝑐𝑖 ∗
𝑡=𝑇
𝑡=1𝑖∈𝐸

No Lane Closed 

 

 

 

 

𝑢 2𝑢 3𝑢 
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(∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 )] calculates the total regular flow cost for all the OD pairs on all the links over 

the project period, and the second part ∑ ∑ 𝑧𝑖𝑡ρc𝑖
𝑡=𝑇
𝑡=1𝑖∈𝐸  calculates the total congestion flow 

cost for all the links over the project period. Both 𝑦𝑖𝑘𝑡 and 𝑧𝑖𝑡 are non-negative continuous 

variables. Note that 𝑧𝑖𝑡 is non-negative in the sense that it will have positive value only 

when the total flow units on link 𝑖  exceed the available capacity and it will be zero 

otherwise.  

Binary variables 𝑠𝑖𝑚𝑡 are introduced as the flag variables indicating whether the 

repair of the 𝑚𝑡ℎ lane of link 𝑖 starts on day 𝑡, and 𝑠𝑖𝑚𝑡 = 1 if it is. The MS-NSV model 

assumes once a lane is closed for repair, it cannot open to serve the flows until its repair is 

completed. Hence we have the constraints ∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1  for  ∀𝑖 ∈ 𝑅  and ∀𝑚 ∈ [1, 𝑛𝑖] , 

where 𝑅 is the set of links that need repair and 𝑛𝑖 is the number of lanes in link 𝑖. This set 

of constraints force every lane of all the links that need repair to have one and only one 

repair start date. 

To indicate whether 𝑚𝑡ℎ lane of link 𝑖 is closed for maintenance on day 𝑡, binary 

variables 𝑥𝑖𝑚𝑡 are added to the model. 𝑥𝑖𝑚𝑡 equal to 1 if the 𝑚𝑡ℎ lane of link 𝑖 is closed for 

maintenance on day 𝑡. Let 𝑝𝑖 be the number of days needed to repair a lane of link 𝑖, we 

formulate the constraints ∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1  for ∀𝑖 ∈ 𝑅 and ∀𝑚 ∈ [1, 𝑛𝑖] to ensure the repair 

on all the links be completed by the common completion date 𝑇. Since each lane of the 

links needing maintenance have one and only one repair start date and the number of days 

needed to repair a lane is given, whether a lane is closed or not on a day is determined 

once the repair start date of that lane is determined. And thus, we develop the set of 

constraints  𝑥𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1)

 for ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ 𝑇  and ∀𝑚 ∈ [1, 𝑛𝑖]  to make sure 

that once a lane is closed for repair, it will not open to serve the flows until the repair work 

on this lane is finished and that it will be open on other dates. Constraints ∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0 
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for ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]  and ∑ 𝑥𝑖𝑚𝑡 = 0
𝑡=𝑇
𝑡=1  for  ∀𝑖 ∉ 𝑅  and ∀𝑚 ∈ [1, 𝑛𝑖]  are added to the 

model so that all the lanes of links that do not need repair will not have maintenance start 

date and will be open to serve the flows throughout the project period. 

For each OD pair on each day, flow conservation constraints, consisting of three 

groups, are needed. The first group of constraints makes sure the total incoming flow units 

minus the total outgoing flow units equal to the OD demand for the origin node of the OD 

pair. Let 𝐷𝑘  be the demand of OD pair  𝑘 , the first part is formulated as 𝐷𝑘 =

∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}
 for ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇], where 𝑂𝐷𝐾

− is the origin 

node of OD pair 𝑘, 𝐸𝑖
− is the head node of link 𝑖 and 𝐸𝑗

+ is the tail node of link 𝑗. The second 

group ensures the total outgoing flow units minus the total incoming flow units equal to 

the demand of OD pair 𝑘  for its destination node and is formulated as 𝐷𝑘 =

∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸}  for ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] , where 𝑂𝐷𝐾
+  is the 

destination node of OD pair 𝑘, 𝐸𝑖
+ is the tail node of link 𝑖 and 𝐸𝑗

− is the head node of link 

𝑗. For the rest of the nodes, other than origin and destination nodes of OD pair 𝑘, the total 

incoming flows on the node from the origin of OD pair 𝑘 should equal to the total outgoing 

flows from the node to the destination of the OD pair 𝑘. This is the third group of the flow 

conservation constraints and it is formulated as ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸}  for 

∀𝑙 ∈ 𝑁, ∀𝑡 ∈ [1, 𝑇], ∀𝑘 ∈ {𝑘: 𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

+ ≠ 𝑙} , where 𝑁  is the set of nodes in the 

network. 

In addition, binary variables 𝑣𝑖𝑚𝑡 are introduced to calculate the increased lane 

capacities and 𝑣𝑖𝑚𝑡 equals to 1 if lane 𝑚 of link 𝑖 is repaired before day 𝑡, since it is obvious 

that when a segment of road is repaired, the road condition should be improved and the 

capacity should increase. Constraints  𝑣𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1 , for ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]  and 
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∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] determine the values of 𝑣𝑖𝑚𝑡 by values of 𝑠𝑖𝑚𝑡. In the constraints, the date 

ranges from 𝑝𝑖 + 1 to 𝑇 since the lane will be repaired and open to serve the flows on day 

𝑝𝑖 + 1 the earliest, because even if the maintenance starts on day 1, it would take 𝑝𝑖 days 

to complete the repair work for this lane. Constraints 𝑣𝑖𝑚𝑡 = 0, for ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and 

∀𝑡 ∈ [1, 𝑝𝑖] make sure each lane of the links that need maintenance stay in the status of not 

repaired in the first 𝑝𝑖  days. And constraints 𝑣𝑖𝑚𝑡 = 0, for ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∀𝑡 ∈

[1, 𝑇]  force lanes of links that do not need repair stay in the status of not repaired 

throughout the project period. 

Let 𝜃 be the percentage increase in lane capacity after the lane is repaired, and let 

𝑢𝑖  be the capacity of a lane of link 𝑖 , the available capacity of link 𝑖  on day 𝑡  is 

(𝑛𝑖 −∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )𝑢𝑖 . Hence the values of 𝑧𝑖𝑡  are determined by constraints 

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 − (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )𝑢𝑖 ≤ 𝑧𝑖𝑡  and 𝑧𝑖𝑡 ≥ 0 for ∀𝑖 ∈ 𝐸 and ∀𝑡 ∈ [1, 𝑇], 

where ∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷  are the total flow units from all OD pairs on link 𝑖 on day 𝑡. Because of 

the introduction of 𝑧𝑖𝑡, flows can exceed the available capacity. Hence it is needed to make 

sure there won’t be flows on links with all lanes closed for maintenance, that is, entirely 

closed links cannot serve any flow. For this reason, the set of variables 𝑤𝑖𝑡 are added into 

the model, the values of which equal to 1 if all the lanes of link 𝑖  are closed on day 𝑡. 

Constraints ∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ≤ ∑ 𝐷𝑘𝑘∈𝑂𝐷 (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 ) for ∀𝑖 ∈ 𝑅 and ∀𝑡 ∈ [1, 𝑇] make sure  

when all the lanes of link 𝑖 are closed on day 𝑡, link 𝑖 does not serve any flows. ∑ 𝐷𝑘𝑘∈𝑂𝐷  

serves as a large number in this constraint and ensures flows from all OD pairs can use 

link 𝑖 as long as it has at least one lane open. The sets, parameters and variables of the MS-

NSV model are presented in Table 3.2.2-i : 
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Table 3.2.2-i: MS-NSV Notations 

Term Definition 

Sets  

𝑁  Node set of the network 

𝐸  The set of existing links in the network 

𝑅  The set of existing links that need to be repaired in the network, 𝑅 ⊆ 𝐸 

𝑂𝐷  The set of Origin-Destination pairs of flows 

Parameters  

𝑇 
 Completion date for all the maintenance work (the earliest start date of 

a work zone is Day 1) 

𝑛𝑖  Number of lanes of link 𝑖 

𝑢𝑖  Capacity of a lane of link 𝑖 

𝑐𝑖  The regular flow cost incurred by one unit flow on link 𝑖 per day  

𝑝𝑖  The number of days needed to repair a lane of link 𝑖 

𝜌 

 

 Extra flow cost multiplier, 𝜌𝑐𝑖 is the extra flow cost incurred by the 

available link capacity being one unit less than the flow on link 𝑖 

𝜃  Percentage of lane capacity increased after maintenance  

𝐷𝑘  Flow demand of OD pair 𝑘 

Variables  

𝑠𝑖𝑚𝑡  Binary variable indicating whether to repair the 𝑚𝑡ℎ lane of link 𝑖 starts 

on day 𝑡. If repair work starts on day 𝑡, 𝑠𝑖𝑚𝑡 = 1; otherwise, 𝑠𝑖𝑚𝑡 = 0  

𝑥𝑖𝑚𝑡  Binary variable indicating whether the 𝑚𝑡ℎ lane of link 𝑖 is closed for 

maintenance on day 𝑡, if it is closed, 𝑥𝑖𝑚𝑡 = 1; otherwise 𝑥𝑖𝑚𝑡 = 0  

𝑦𝑖𝑘𝑡 
 The flow units incurred by the Origin-Destination (OD) flow of OD pair 

𝑘 on link 𝑖 on day 𝑡 

𝑧𝑖𝑡  Flow units on link 𝑖 exceeding the available capacity of the link on day 𝑡. 

If the available capacity of link 𝑖 on day 𝑡 is less than the total flow units 

on link 𝑖, 𝑧𝑖𝑡 equals to the difference between the available capacity and 

total flow on link 𝑖; otherwise 𝑧𝑖𝑡 = 0 
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 Term Definition 

Variables  

𝑣𝑖𝑚𝑡  Binary variable indicating whether the 𝑚𝑡ℎ lane of link 𝑖 is repaired 

before day 𝑡, if it is, 𝑣𝑖𝑚𝑡 = 1, otherwise 0; for all the links that don't 

need maintenance, 𝑣𝑖𝑚𝑡 = 0 all the time 
 

The complete model of scheduling work zones in networks of service vehicles 

(MS-NSV) can now be written as: 

MS-NSV:  𝑚𝑖𝑛 ∑ {∑ [𝑐𝑖 ∗ (∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ) + 𝑧𝑖𝑡ρc𝑖]
𝑡=𝑇
𝑡=1 }𝑖∈𝐸      (1) 

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1,     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (2) 

∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1 ,     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (3) 

𝑥𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1)

,   ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ [1, 𝑛𝑖]  (4) 

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0,     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (5) 

∑ 𝑥𝑖𝑚𝑡 = 0
𝑡=𝑇
𝑡=1 ,     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (6) 

𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸} ,∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇]   (7) 

𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸} ,∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇]   (8) 

∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} ,  ∀𝑙 ∈ 𝑁, ∀𝑡 ∈ [1, 𝑇],    

      ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

+ ≠ 𝑙} (9) 

𝑣𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1 ,    ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] (10) 

𝑣𝑖𝑚𝑡 = 0,     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑝𝑖] (11) 

𝑣𝑖𝑚𝑡 = 0,     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (12) 

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 − (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )𝑢𝑖 ≤ 𝑧𝑖𝑡,  ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇] (13) 

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ≤ ∑ 𝐷𝑘𝑘∈𝑂𝐷 (𝑛𝑖 −∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 ),   ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇] (15) 

𝑠𝑖𝑚𝑡, 𝑥𝑖𝑚𝑡, 𝑣𝑖𝑚𝑡 ∈ {0, 1},   ∀𝑖 ∈ 𝐸, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (16) 

𝑧𝑖𝑡 ≥ 0,      ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]   (17) 

𝑦𝑖𝑘𝑡 ≥ 0,     ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇]  (18) 
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 Computational Implementation 

The MS-NSV model is programmed in C++ with IBM® ILOG® CPLEX® 

Concert Technology. As a mixed-integer program that does not have unimodular 

coefficient matrix for the constraints that involve scheduling variables, the MS-NSV is 

unlikely to be polynomially solvable and cannot be solved by CPLEX within a tolerable 

amount of time. Using a computer of 3.7 GHz quad-core CPU and 24.0 GB memory for 

the computation work of a small problem instance with 16 nodes, 48 links, 108 lanes, 16 

OD pairs, and 27 days to repair 50% of the links, CPLEX still has a 32% optimality gap 

after 14 hours of computation. Therefore, it is clear an efficient heuristic to solve the 

problem quickly with satisfactory accuracy is needed. 

 Solution Approach 

3.4.1 Randomized Fix-and-Optimize (RFO) Heuristic.  There are two levels of 

problems that constitute the problem of work zone scheduling in networks of service 

vehicles. The upper level is the scheduling problem which decides the repair start date for 

each lane of the links that need maintenance. The lower level is a series of multi-

commodity flow problems based on the available capacities of links on each day, which is 

determined by the current lane closures. Once the schedule is set, solving the multi-

commodity flow problems for each day is a relatively easy problem since the flow variables 

are all continuous variables. And thus the solution approach proposed in this chapter 

focuses on the upper level of obtaining good work zone schedules.  

To motivate the heuristic, suppose at a point in the algorithmic process we obtain 

a feasible schedule that has some aspects similar to the optimal schedule. For example, 

Figure 3.4.1-i gives a comparison between the Gantt charts of the optimal schedule and 
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one of the feasible schedules obtained for a small test network of 4 nodes, 12 links and 12 

OD pairs. The vertical axis shows the lanes of links that need maintenance and the 

horizontal axis shows the date during the project period. Each bar represents the time 

period when a lane is closed for maintenance and cannot be used to serve the OD flows. 

For example, in the optimal schedule, Lane 1 of Link 2 is closed on Day 1 and will be reopen 

on Day 8, and Lane 2 of Link 2 will be closed from Day 7 to Day 13. Hence this two-lane 

link will have one lane available from Day 1 to Day 6 and from Day 8 to Day 13. On Day 7 

Link 2 is not available to serve any flows since both of the two lanes are closed.  

Optimal Some Schedule 

Figure 3.4.1-i: Schedule Comparison 
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From the Gantt chart we can see that the feasible schedule has lane closures of 

Link 1, 3, 7, and 12 different from the optimal schedule. If we only optimize the lane closure 

schedules of these four links and fix the schedules of all the other links, the problem size 

will be much smaller and the time needed to solve the problem instance will reduce 

dramatically since there are much fewer integer variables to go through in the branch-and-

bound process performed by solvers like CPLEX. This observation leads to the adoption 

of the fix-and-optimize heuristic as the core of the solution approach. 

The fix-and-optimize heuristic was first introduced by Helber and Sahling (2010). 

It is an iterative optimization-based heuristic developed to solve the multi-level 

capacitated lot sizing problem which is a mixed-integer program. The basic process of the 

fix-and-optimize heuristic is to partition the integer variables into subsets, based on an 

initial solution, and then optimize the values of a subset of integer variables together with 

all continuous variables while the values of the other integer variables in other subsets are 

fixed (this is called a subproblem of the fix-and-optimize procedure).  If the new objective 

function value is better than current best objective value, then the current candidate 

optimal values are updated; iterate this process for other subsets of variables until a 

specified stopping criteria is met. The percentage of integer variables in each subset of all 

the integer variables ranged from 0.5% to 10% based on the difficulty and size of the 

problem instances tested in Helber’s paper. For each specific problem instance, the 

number of integer variables in a subset was fixed. Also, the integer variables were 

decomposed into subsets based on the descending order on cost of each product in the lot-

sizing problem, since usually a quite reasonable schedule was found after the first round 

of the product-oriented decomposition. 

In the problem of scheduling work zones in networks of service vehicles, the 

relation among work zones is more complex than that among products in the capacitated 
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lot-sizing problem. Products just compete with each other for resources (machine hours) 

in the capacitated lot-sizing problem. On the other hand, in the MS-NSV problem there 

are no resource constraints that work zones compete for, but instead the work zones affect 

the capacity of the network to serve the OD demands which in turn compete for this 

capacity. Therefore, only the schedules that consider all or many work zones will have the 

lowest increase in total flow cost, because OD demands happen over the whole network 

and each OD pair has network-wide minimum cost routing. This means applying fix-and-

optimize heuristic with small subsets of work zones (one or two links) will hardly find 

satisfactory schedules since it is only considering the maintenance of a few links at a time.  

However, if the size of the work zone subsets is large, the size of each fix-and-

optimize subproblem will also be large and it would take long time to solve. To mitigate 

the conflict between solution quality and solving time length, we develop the fix-and-

optimize procedure with varying subset sizes and use a truncated branch-and-bound 

method.  

Initially, CPLEX tries to solve the entire problem within a given time limit (e.g. 

60 seconds). If the problem is solved optimally, then the optimal schedule will be output 

and the program will terminate. If the problem is not solved optimally, the best feasible 

schedule obtained so far will be stored and used as the initial feasible solution for the fix-

and-optimize procedure. A feasible schedule should be able to both complete all the 

maintenance work before the specified completion date and make sure each OD pair won’t 

be disconnected because of possible entire-link closures throughout the project period. 

This situation of disconnecting an OD pair is likely to happen when large portion of links 

need to repair within a very short project period. To meet the maintenance completion 

deadline, the time windows of many work zones may overlap which could lead to many 

links being entirely closed at the same time, and this may result in no path can be found 
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for one or more OD pairs. If no schedule can meet the completion deadline and the OD 

flows requirements at the same time, then the preset project completion deadline is too 

tight and needs to be extended to obtain feasible schedules. 

The randomized fix-and-optimize (RFO) iteration starts with randomly dividing 

links that need maintenance into two subsets and solving each fix-and-optimize 

subproblem (FO subproblem) with a specified time limit. A RFO iteration is finished when 

the schedules of all the generated subsets of links are optimized. The RFO will be 

performed for a preset number of iterations and if any of the FO subproblems is not solved 

within the time limit in the last iteration, the RFO will enter a new stage where the number 

of subsets which the links to repair are randomly divide into is three. The RFO proceeds 

similarly in stages with more subsets of links and each RFO iteration is performed the 

same way as it is in the initial stage when there are only two subsets. 

The reason of randomly grouping links that need maintenance into subsets is 

because we do not know the set of links with schedules that are different from the optimal 

schedule since we do not have the optimal schedule. Also, consideration of various OD 

demand patterns, and flows being reactive to network capacity changes, makes it 

formidable to pin-point the links that can have better schedule through classical network 

flows optimization models. Hence random grouping is applied to explore various 

combinations of links for better schedules. Both the decomposition of the links based on 

the required number of days to repair and decomposition based on links’ unit flow cost 

are tested, but both of them have inferior performance compared to the random grouping 

approach. Through the iterative randomized fix-and-optimize process, the work zone 

schedule change gradually towards the optimal schedule.  

The detailed procedure of RFO is summarized on the next page: 
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Randomized Fix-and-optimize Heuristic 

 

1. Solve the entire problem with time limit 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡𝑆𝑉 

    If optimal solution obtained, proceed to Step 4  

    Otherwise store the best feasible schedule and objective value, and go to Step 2 

2. Set number of subsets 𝑛𝑢𝑚𝐵𝑎𝑡 = 2 

3. Randomly divide links to repair into 𝑛𝑢𝑚𝐵𝑎𝑡 groups 

     3.1. Fix  (𝑣, 𝑠, 𝑥, 𝑤)  for links in 𝑛𝑢𝑚𝐵𝑎𝑡 − 1  groups, L𝑜𝑛𝑆𝑜𝑙𝑇𝑖𝑚𝑒 = 0 , set iteration number 

𝑖𝑡𝑒𝑟𝑁𝑢𝑚 = 1  

     3.2. Solve the FO subproblem with time limit 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡𝐹𝑂  for the subset (𝑛 ) of links the 

(𝑣, 𝑠, 𝑥, 𝑤) values of which are not fixed 

If optimal solution is not obtained in 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡𝐹𝑂 proceed to Step 3.2.1 

       3.2.1. Store the current best feasible schedule and objective, and set L𝑜𝑛𝑆𝑜𝑙𝑇𝑖𝑚𝑒 = 1 

Otherwise directly proceed to Step 3.3. 

3.3. If the objective obtained in current FO subproblem is lower than the best objective of the 

FO subproblems obtained so far (𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂), update the 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂 and the schedule 

of links in subset 𝑛 

Otherwise directly proceed to Step 3.4 

3.4. Check whether there are subsets of links of which the FO subproblems are not solved 

If there are, proceed to Step 3.4.1. 

3.4.1. Choose one of the subsets to be subset 𝑛 and go back to Step 3.1 

Otherwise proceed to Step 3.4.2 

      3.4.2. If 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂 < 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 (best objective overall), proceed to Step 3.4.2.1  

3.4.2.1. Update the value of 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 with the value of 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂, increase 

𝑖𝑡𝑒𝑟𝑁𝑢𝑚 by 1, go back to Step 3 

Otherwise proceed to Step 3.4.2.2 

 3.4.2.2. If 𝑖𝑡𝑒𝑟𝑁𝑢𝑚 < 𝑖𝑡𝑒𝑟𝐿𝑖𝑚𝑖𝑡, proceed to Step 3.4.2.2.1  

3.4.2.2.1. Increase 𝑖𝑡𝑒𝑟𝑁𝑢𝑚 by 1, go back to Step 3 

Otherwise proceed to Step 3.4.2.2.2. 

3.4.2.2.2. If 𝐿𝑜𝑛𝑆𝑜𝑙𝑇𝑖𝑚𝑒 = 1, proceed to Step 3.4.2.2.2.1  

3.4.2.2.2.1. If 𝑛𝑢𝑚𝐿𝑖𝑛𝑝𝐵𝑎𝑡 > 3  proceed to Step 

3.4.2.2.1.1 

3.4.2.2.1.1. Increase subsets number 

𝑛𝑢𝑚𝐵𝑎𝑡  by 1, set iteration 

number 1, go back to Step 3 

Otherwise proceed to Step 4. 

Otherwise proceed to Step 4. 

4. Output the best schedule and flows obtained 
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The flow chart of the RFO is displayed blow: 

 

Figure 3.4.1-ii: Flow Chart of RFO 

3.4.2 Parameters Affecting the Performance of RFO.  The randomized fix-and-

optimize heuristic has two levels of computation procedures. The first level randomly 
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decomposes the links that need maintenance into a specific number of subsets and the 

second level optimizes the repair schedules of each link subset with the schedules of links 

in other subsets fixed (FO subproblem) within a specified time limit. Hence the efficiency 

of RFO heuristic is mostly determined by two parameters: the number of iterations RFO 

performs for a specific number of groups which the links to repair are randomly 

partitioned, and the time limits for the initial attempt on solving the entire problem and 

for the attempts on each FO subproblem.  

More RFO iterations means that the heuristic can solve FO subproblems for more 

combinations of links to repair for a specific subset size and is more likely to obtain better 

feasible solutions with objectives that are closer to the optimal solution. However, after a 

considerable amount of experimentation, we found that increasing the number of 

iterations does not effectively improve the solution quality. This is because there are too 

many possible combinations of links to repair for any specific subset size, and the chance 

is little that the links, which have schedules different from the optimal schedule, are in the 

same subset through random decomposition. Fewer subsets with more links in each subset 

can increase the chance of grouping together the links with repair schedules different from 

the optimal schedule. However, the time needed to find better schedules for each FO 

subproblem will be longer since now the FO subproblem has large number of integer 

variables. Thus, performing large number of iterations with fewer subsets with many links 

in one group will either result in poor solution quality with low time limit for each FO 

subproblem, or result in very long solving time with high time limit for each FO 

subproblems. As default values, we set the number of iterations the same as the specified 

number of link groups (e.g. perform 2 RFO iterations when the number of groups is 2), 

and the Computational Experiments in next section will show the RFO gives good feasible 

solutions within reasonable amount of time. 
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We also need the time limits for the initial attempt on solving the entire problem 

and for attempts on each FO subproblem. Problem instances with a few work zones have 

less integer variables, and is more likely to obtain a feasible solution that is close to the 

optimal solution (solution with less than 5% relative optimality gap) in a short time during 

the initial attempt to solve the entire problem. For each FO subproblem, if there is a 

feasible schedule that is better than the current best feasible schedule, the solver should 

be able to find it very quickly since the FO subproblem has even less integer variables. As 

long as a feasible schedule is found that is better than the current best feasible schedule, 

it can be used as the initial schedule for the next RFO iteration. Increasing the time limit 

in this case is pointless since a better schedule is already found and increased time will be 

wasted on improving the lower bound to prove the solution is optimal for the FO 

subproblem or the entire problem.  

As the number of work zones increases, the dramatic increases in the number of 

combinations of integer variables complicates the branch-and-bound process 

substantially. This makes it nearly impossible to quickly obtain a feasible solution that is 

close to the optimal solution in the initial attempt on the entire problem. Improving the 

quality of initial feasible solution through increasing the time limit is not wise since it is 

very likely that the relative optimality gap is still larger than 5% after hours of calculation. 

With an initial feasible solution which is not close to the optimal solution to start the RFO 

process, it would also be challenging for the solver to find feasible solutions that are much 

better than the current best feasible solution found in a short time in the FO subproblem. 

Therefore, increasing the time limit on solving the FO subproblem will be much more 

effective in finding better solutions since the FO subproblem has much fewer integer 

variables. And thus, both the time limits on the initial attempt on the entire problem and 
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on the attempts on each FO subproblem should be relatively higher to allow the solver to 

spend more time on searching for better feasible solutions.  

3.4.3 Computational Experiments.  The randomized fix-and-optimize heuristic is 

tested on three representative networks: a radial network, a grid network, and the Sioux 

Falls network. For each network, the links that need maintenance are randomly selected 

based on the preset percentage of links to repair. For each network with the set of links to 

repair selected, test cases vary by the parameter 𝑇, which is the completion date for all the 

maintenance work. The extra flow cost multiplier 𝜌 is set to 10000 and the percentage of 

lane capacity increase after repair 𝜃 is set to 20% for all the test cases. The computer used 

to run these tests cases is the same computer mentioned in Section 3.3.  

 

 Figure 3.4.3-i: Radial Network 

We begin the test on the heuristic designed with a radial network. Radial 

transportation network structure is commonly found in large cities with long history like 

London and Paris. The radial network tested is a small network with 6 nodes, 20 links and 

20 OD pairs (network is shown in Figure 3.4.3-i). Among the 20 links, 10 are randomly 

selected as the links that need maintenance resulting in a total number of 30 work zones 
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to be scheduled (since a link has multiple lanes and each lane is an independent work 

zone). The time limits for solving the entire problem initially and for each FO subproblem 

are both 60 seconds. The performance comparison between solving the test cases by 

randomized fix-and-optimize heuristic (RFO) and solely by CPLEX is shown in Table 

3.4.3-i. 

Table 3.4.3-i: RFO VS CPLEX on Radial Network 

Completion 
Date ( 𝑻) 

Solving Time Objective Value Objective 
Value 

Difference RFO MIP RFO MIP 

12 1.89 sec 1.89 sec 489892 489892 0.00% 

13 4.37 sec 4.37 sec 404316 404316 0.00% 

14 10.70 sec 10.70 sec 318741 318741 0.00% 

15 1.53 min 29.75 min 233166 233166 0.00% 

16 3.69 min >14.87 hr. 170591 170591 (UB) 167322 (LB) 0.00%(UB Gap) 

17 6.13 min >40.82 hr. 101516 101516 (UB) 92039 (LB) 0.00%(UB Gap) 

18 6.12 min >2.69 hr. 25833 25645 (UB) 573 (LB) 0.73%(UB Gap) 

19 7.03 min >2.54 hr. 19188 19264 (UB) 6762 (LB) 0.40%(UB Gap) 

20 7.39 min > 15.73 hr. 10189 9790 (UB) 3320 (LB) 4.07%(UB Gap) 

26 4.62 sec 4.62 sec 623.34 623.34 0.00% 

36 49.79 sec 49.79 sec 856.62 856.62 0.00% 

46 1.88 min 1.07 hr. 1090.17 1090.17 0.00% 

For the solving time of CPLEX that has “>”, it means CPLEX is not able to solve 

the test case optimally after a long time and the solving process is terminated manually 

with the best upper bound and lower bound obtained recorded. The upper bound is the 

objective value of the best feasible solution obtained at the time of terminating the solving 

process. The optimality gap is calculated as the objective obtained by RFO minus the 

objective (or upper bound if solving process is terminated manually) obtained by CPLEX 

and divide the difference by the objective (or upper bound) obtained by CPLEX. These 
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result display formats are the same for the illustration on the experiments on the grid 

network and Sioux Fall network later. 

The solving time of RFO and CPLEX for some test cases are the same because 

CPLEX was able to solve the entire problem in 60 seconds and the randomized fix-and-

optimize procedure did not start. Since the grouping of links that need maintenance is 

random for each RFO iteration, the time needed to solve the same test case for each run 

will be different and the best solution obtained in each run may also be different from each 

other. We run RFO to solve each test case that are not solved optimally by CPLEX in 60 

seconds for five times, take the average of the solving times and the objective values from 

the five runs, and compare them with the objective and solving time of CPLEX. The 

objective values and solving times of five runs of each test case are listed in Appendix A. 

From Table 3.4.3-i we can see that even for a 20-link radial network with 50% of 

the links need maintenance, CPLEX is not able to solve some of the test cases in tolerable 

amount of time. Also, the RFO heuristic is able to obtain optimal or near-optimal solutions 

within little amount of time compared to CPLEX. Notice that for the test case when 𝑇 =

19, the objective value from RFO is better than the best feasible solution obtained by 

CPLEX. To obtain the best feasible solution of this test case, RFO takes less than 7 minutes 

and the solution dominates the best feasible solution from CPLEX after nearly 3 hours of 

computation.  

A larger network tested is a grid network with 16 nodes, 48 links and 24 OD pairs 

(network is shown in Figure 3.4.3-ii). Grid transportation network structure is frequently 

found in large modern cities like Phoenix and Vancouver, and their central business 

districts. The grid network tested also has 50% of links randomly selected as the links to 

be repaired and the total number of work zones to be scheduled is 52. The time limits set 
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for solving the entire problem initially and for the FO subproblems are both 60 seconds. 

RFO is used to solve each test case for five times and the objective values and solving times 

for each solution run for each test case are listed in Appendix A. The comparison between 

the average performance of RFO and the performance of CPLEX is displayed in Table 

3.4.3-ii below: 

 

Figure 3.4.3-ii: Grid Network  

Table 3.4.3-ii shows that RFO is much more efficient than CPLEX on solving the 

test cases of the grid network, especially when the test case is difficult to solve. And the 

solution quality of RFO is also quite good. Usually the percentage of links that need 

maintenance in a network won’t be as much as 50%. The reason we set the percentage of 

links to repair 50% for the radial network and grid network tested is because we would 

like to show how difficult the MS-NSV problem can be and how efficient the RFO is 

compared to solving the test cases solely by CPLEX.  
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Table 3.4.3-ii: RFO VS CPLEX on Grid Network 

Completion 
Date ( 𝑻) 

Solving Time Objective Value 
Objective Value 

Difference 

RFO MIP RFO MIP  

12 52.21 sec 52.21 sec 255576 255576 0.00% 

13 2.35 min 1.24 min 186740 186740 0.00% 

14 4.488 min 25.78 min 143429 142525 0.67% 

15 4.492 min 37.03 min 105997 105502 0.47% 

16 3.596 min 27.36 min 67711.7 66209.3 2.06% 

17 6.67 min >14.28 hr. 51773.7 51771(UB) 37692(LB) 0.00%(UB Gap) 

18 7.882 min >1.23 hr. 37350 37344.6(UB) 25990.6(LB) 0.68%(UB Gap) 

19 6.848 min >13.39 hr. 26672.5 26666.25(UB) 19660.61(LB) 0.41%(UB Gap) 

20 5.154 min >3.98 hr. 15988.9 15988.21(UB) 12611.43(LB) 0.01%(UB Gap) 

21 5.3 min >2.98 hr. 7810.32 7807.98(UB) 5806.61(LB) 0.02%(UB Gap) 

22 48.72 sec 48.72 sec 1630.4 1630.4 0.00% 

23 57.45 sec 57.45 sec 1701.99 1701.99 0.00% 

26 2.09 min 2.75 min 1915.75 1915.534 -0.01% 

36 2.67 min 2.61 min 2631.65 2630.874 0.02% 

46 57.73 sec 57.73 sec 3347.04 3347.04 0.00% 

56 31.64 sec 31.64 sec 4066.15 4066.15 0.00% 

66 1.32 min 1.75 min 4786.15 4785.52 0.06% 

 

 

We also test the randomized fix-and-optimize heuristic on the Sioux Falls 

network which is a real network with 24 nodes, 76 links and 87 OD pairs. There are two 

sets of problem instances created for the Sioux Falls network, the first set of test cases are 

based on the scenario that 10% of the links are randomly selected as the links that need 

maintenance which results in a total number of 16 work zones need to be scheduled. The 

percentage of links to repair in the second set of test cases is 20% and the total number of 

work zones to be scheduled is 25. The time limits on solving the entire problem initially 

and on solving each FO subproblem are both 40 seconds for first set of test cases, and both 

are 120 seconds for the second set of test cases.  
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Figure 3.4.3-iii: Sioux Falls Network 

Table 3.4.3-iii and Table 3.4.3-iv on the next two pages give the performance 

comparison between RFO and CPLEX on the first and second set of test cases respectively. 

Again, RFO solves each test case five times, and the objective values and solving time of 

each run are listed in Appendix A. 
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Table 3.4.3-iii: RFO VS CPLEX on Sioux Falls Network with 10% of Links to Repair 

 

From Table 3.4.3-iii we see that when the completion date is small the RFO takes 

more time to give the final solution than CPLEX does. This is because the problem instance 

of Sioux Falls network with 10% of links to repair is relatively easy to solve especially when 

the completion date is small, since the number of integer variables are not large. As the 

completion date gets larger, the problem instance has more integer variables and gets 

harder to solve. As a result, the solving times of test cases with larger completion dates are 

much longer for CPLEX. As a comparison, the solving times for RFO on these test cases 

Completion 
Date ( 𝑻) 

Solving Time Objective Value 
Objective Value 

Difference 
RFO MIP RFO MIP 

18 33 sec 33 sec 232233.88 232233.88 0.00% 

19 3.33 min 1.92 min 237499.4 237458.8 0.02% 

20 3.384 min 2.22 min 242533.2 242531.8 0.00% 

21 2.44 min 1.1 min 247323.4 247342.39 -0.01% 

22 2.788 min 57.67 sec 252177 252203.14 -0.01% 

23 3.464 min 1.12 min 260322 260489.83 -0.06% 

24 3.73 min 2.11 min 268560.4 268666.57 -0.04% 

25 5.544 min 3.85 min 277241.2 277160.17 0.03% 

26 5.176 min 6.21 min 285831.4 285930.8 -0.03% 

27 6.168 min 3.16 min 294679.2 294426.42 0.09% 

28 7.308 min 16.39 min 303283 302816.79 0.15% 

29 7.512 min 12.8 min 311629.4 311690.72 -0.02% 

30 7.89 min 13.27 min 320744.6 320326.55 0.13% 

31 9.556 min 18.85 min 329453.2 329038.46 0.13% 

32 10.066 min 11.79 min 338659.2 338241.54 0.12% 

33 5.598 min 12.82 min 348635.4 347560.79 0.31% 

34 9.208 min 17.7 min 357030.2 356870.16 0.04% 

35 10.23 min 23.64 min 366264.4 366126.06 0.04% 

36 9.654 min 16.4 min 375561.2 375420.78 0.04% 

37 10.74 min 16.12 min 380249 385436.84 -1.35% 

38 10.99 min 24.18 min 395848.2 395675.45 0.04% 
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increase slightly and the objectives obtained are close to the optimal objectives given by 

CPLEX. 

Table 3.4.3-iv: RFO VS CPLEX on Sioux Falls Network with 20% of Links to Repair 

Completion 
Date (𝑻) 

Solving Time                        Objective Value 
Objective Value 

Difference 

RFO MIP RFO MIP  

28 44.086 min 2.15 hr. 446506.6 443226.27 0.74% 

29 48.692 min 2.37 hr. 451906.4 451307.57 0.13% 

30 41.016 min 3.22 hr. 462594.8 459098.29 0.76% 

31 1.0915 hr. 2.39 hr. 468561.2 466737.54 0.39% 

32 1.0075 hr. 3.68 hr. 475069.6 474657.98 0.09% 

33 51.396 min 3.14 hr. 486382.2 483550.96 0.59% 

34 1.258 hr. 4.37 hr. 495743.8 492508.96 0.66% 

35 1.398 hr. >1.29 hr. 502681.4 502912.96 (UB) 445782.53 (LB) -0.05%(UB Gap) 

36 1.234 hr. >1.37 hr. 513386.2 511092.08 (UB) 463690.32 (LB) 0.45%(UB Gap) 

37 1.29 hr. >1.38 hr. 522632.2 521498.54 (UB) 459461.32 (LB) 0.22%(UB Gap) 

38 36.59 min >1.4 hr. 549474.2 529503.64 (UB) 464731.92 (LB) 3.77%(UB Gap) 

39 36.994 min 10.4 hr. 548756.8 537251.06 2.14% 

40 42.258 min >1.42 hr. 562862 547592.55 (UB) 469568.44 (LB) 2.79%(UB Gap) 

41 43.08 min >1.4 hr. 568607 555430.09 (UB) 52061.60 (LB) 2.37%(UB Gap) 

42 50.53 min >1.43 hr. 585013 566841.84 (UB) 482454.42 (LB) 3.21%(UB Gap) 

 

Data in Table 3.4.3-iv shows that when 20% of links need maintenance, solving 

time of CPLEX increase significantly. RFO has pretty good performance in solving most 

of the problem instances because it gives near-optimal solutions with much less time 

compared to CPLEX. For problem instances with completion dates of 38, 40, and 42, the 

optimality gaps are relatively large compared to those of other problem instances. This 

means the parameters of RFO are not appropriately set for these problem instances, and 

adjustments like increasing the time limits of the FO subproblems and/or changing the 

RFO iterations to be performed can improve the performance of RFO. 
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Notice that in Table 3.4.3-iii and 3.4.3-iv the objective obtained by RFO for some 

test cases is better than the optimal objective obtained by CPLEX. For example, in Table 

3.4.3-iii for the test case when 𝑇 = 23, the objective obtained by RFO is 260302, which is 

less than the optimal objective 260489.83 from CPLEX. This is because the relative MIP 

gap tolerance is set to 0.5% for the CPLEX and FO subproblems. CPLEX stops solving 

process as soon as the relative optimality gap (which is calculated as upper bound minus 

lower bound and then divide the difference by the upper bound) is under 0.5% and uses 

the best feasible solution obtained as the optimal solution, which is same for FO 

subproblems. But because of the randomized grouping of links that need repair, it is 

possible for a FO subproblem start with a branching node that leads to a better upper 

bound when the 0.5% relative optimality gap is reached, and this node is not selected or 

reached by CPLEX in the regular branch-and-bound process. So when the 0.5% relative 

optimality gap is reached, the upper bound obtained by CPLEX is not as good as the one 

obtained by RFO. If we reduce the relative MIP gap tolerance to 0.1% or smaller for CPLEX, 

CPLEX should be able to obtain the same final solution but certainly with much more time 

spent on the branch-and-bound process. 

 Conclusion 

In this chapter, a mixed-integer linear programming model is formulated to 

schedule work zones in networks of service vehicles (MS-NSV). The model schedules work 

zones with network-wide perspective to achieve minimum total flow cost of all OD 

demands throughout the project period. The MS-NSV problem is very challenging and 

CPLEX cannot solve it efficiently. To give an example, CPLEX is not able to obtain the 

optimal solution for a small network with 20 links after hours of computation on a 

personal computer. The randomized fix-and-optimize heuristic (RFO) is developed to 
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solve the problem efficiently, which can obtain optimal or near-optimal solutions with 

much less time compared to solving the MS-NSV problem solely with CPLEX. The 

performance of RFO and CPLEX are compared on various tests cases to illustrate the 

advantage that RFO has over CPLEX.  

Since to schedule the work zones (lane closures) is essentially to manage the 

mandatory network capacity changes to achieve the minimum negative impacts on service 

vehicle flows, the MS-NSV problem is a network capacity management problem. The 

network flows model used in the MS-NSV problem is the multi-commodity flow model 

with system optimum as the objective, where link capacity reductions absolutely cannot 

reduce the total flow cost. The next chapter will briefly introduce the proposed research 

aimed at addressing the network capacity management problem in networks with user-

optimized flows, where selective link capacity reductions may reduce the total flow cost. It 

also briefly discusses the proposed research that studies the maintenance planning in 

networks with both the flow type with system optimum as the objective, and the flow type 

conforming the user equilibrium principle.  
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Chapter 4 

NETWORK-LEVEL TRAFFIC MANAGEMENT THROUGH SELECTIVE LINK 

CAPACITY REDUCTIONS (OCREC) 

 Introduction 

 In 2015, people in the 52 metropolitan areas in US experience peak-hour travel 

times that are 37% longer than the off-peak travel times on average (FHWA, 2015). Besides 

travel delays, traffic congestion also leads to higher fuel consumption and pollution, 

unsafe travel conditions and longer response time for emergency vehicles.  

Although there are various non-recurring events that cause traffic congestion, 

such as incidents (25% of overall congestion), work zones (10%), and weather (15%), half 

of all congestion happens day after day at the same time and location (FHWA, 2016). And 

this recurring congestion is imputed to the basic imbalance between traffic supply and 

demand. To reverse this traffic supply-demand imbalance, abundant research has been 

conducted on how to increase traffic supply (i.e., network capacity expansion) smartly (e.g., 

Ewing and Proffitt, 2016; Fan and Gurmu, 2014; Gan et al. 2013; Mathew and Sharma, 

2009; Msigwa et al. 2015). However, because of the expensive road construction cost and 

quick saturation of the newly built roads due to growing travel demand, network capacity 

expansion turns out to have very limited effect on alleviating traffic congestion. Another 

caveat about network capacity expansion is the counter-intuitive situation described by 

the Braess Paradox (Braess et al. 2005), where adding a road to a congested road network 

could increase the overall travel time. 

What’s more, as pointed out by FHWA (2017), traffic bottlenecks (e.g., freeway 

entrance/exit, lane drop, weaving areas, freeway-to-freeway interchanges) are 
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increasingly the issue that cause congestion. To alleviate congestion at traffic bottlenecks, 

traffic flow control mechanisms like ramp metering (e.g., Chai et al., 2015; Jiang and 

Chung, 2015; Landman et al., 2016; Li and Chow, 2015; Meshkat et al., 2015; Osman et al., 

2015; Perrine et al., 2015; and Reilly et al., 2015) and variable speed limit (Carlson et al., 

2014; Carlson et al., 2010; Li et al., 2014; and Lu et al., 2011) have also been studied and 

implemented in practice. Researchers have investigated ways to limit the number of 

vehicles traveling through the bottlenecks so that traffic flow can be smoother and moving, 

instead of stop-and-go or completely stagnant. However, these mechanisms only focus on 

local traffic conditions and often are not able to improve the network-wide travel time 

much for all the travelers (Levinson and Zhang, 2006). 

Another approach to reduce traffic congestion is travel demand management. 

With a network-wide perspective, this approach deals with the imbalance between traffic 

supply and demand focusing on the demand side, and aims at reducing the travel demand 

for some time periods (typically the rush hours) and travel modes (mostly private cars) by 

effectively influencing people’s travel activities (e.g., departure time, route selection, travel 

mode selection) though monetary pricing or incentives.  

Although user equilibrium (UE) flow (Wardrop, 1952) routing guarantees the 

fairness among all travelers, it is not an efficient flow pattern compared to the system 

optimum (SO) flow (Wardrop, 1952), where some travelers may need to take routes with 

longer travel times so that the total travel time of all the travelers can be minimized. Hence, 

mechanisms that can drive UE flows towards more efficient flow patterns, such as 

imposing tolls on some or all the links (e.g., Bao et al., 2015; Chen et al., 2015; Liu et al., 

2014; Guo, 2013; Marcotte and Zhu, 2009; Wang and Ehrgott, 2013), have continuously 

drawn researchers’ attention. However, tolls may sometimes be considered not very 
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practical due to the high cost of toll collection and the socio-economic differences on value 

of time. 

Besides the vast literature on the toll imposition strategies, there exists research 

that use incentives to guide the routing of traffic flows. For example, Hu et al. (2017) 

developed an integrated system called Metropia that can calculate the optimal and near-

optimal routes and estimate the corresponding travel times based on real-time traffic data 

and departure time options. The system influences people’s travel habits by assigning 

tradable credits to departure times and route options that are better for the entire traffic 

system, and work with well-known stores or chains to let travelers use the tradable credits 

to buy products or gift cards. This system has been implemented in large cities like Los 

Angeles and such implementations demonstrate its effectiveness in changing people’s 

travel habits and alleviating congestion. One drawback of this approach is that travel 

demand is too rigid to allow such systems to reduce traffic congestion substantially, 

because most people must travel during rush hours to arrive at work on time. 

Based on the advantages and limitations of the aforementioned congestion 

alleviation approaches, this chapter studies a solution to traffic congestion with a network-

wide perspective but without physically expanding the network capacity. Enlightened by 

the situations described by Braess Paradox - that building a road to a congested road 

network could increase the overall travel time and blocking a road in a congested network 

may decrease the overall travel time – this research explores ways to selectively reduce the 

capacity of some roads to improve the overall efficiency of the traffic flow at UE. It is a 

strategy that attempts to drive user equilibrium flows toward more efficient flow patterns 

without the introduction of monetary pricing or incentive schemes. 
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 Related Work 

Research that has studied control mechanisms to improve the efficiency of traffic 

flows without monetary penalties or incentives are handful. Jahn et al. (2005) developed 

a route guidance system that solved a constrained system optimum problem with user 

constraints. Based on route travel times at user equilibrium, their model generated routes 

with travel times that were within a certain range of the UE travel times for each origin-

destination (OD) pair, and solved the system optimum using these routes generated. The 

“fairness” of the routes recommended to the travelers is related to the width of the range. 

If the range is very small, the traffic flow will be closer to the UE flow; and if the range is 

large, the traffic flow will resemble the SO flow and some travelers might be recommended 

to take lengthy detours. Schulz and Stier-Moses (2006) showed mathematically that the 

route guidance system developed by Jahn et al. (2005) results in a traffic assignment that 

is provably efficient and close to fair, the efficiency and fairness of the resultant traffic 

pattern still depends on the range parameter. An important presumption in such a system 

is that every traveler uses the same route guidance system and follows the recommended 

route, which is not practical.  

The numerous literature on Braess paradox in transportation networks can be 

categorized into two major groups. The first group studies methods to detect whether 

Braess paradox could occur (Chen et al., 2016; Di et al., 2014; Hwang and Cho, 2016; Pas 

and Principio, 1997; Steinberg and Zangwill, 1983; Valiant and Roughgarden, 2010; 

Zverovich and Avineri, 2015). The methods proposed in these studies only works well for 

single OD demand and linear link travel time functions (i.e., link travel time is a linear 

function of the flow on the link). Such approaches have difficulties in detecting Braess 
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paradox in networks of moderate size or with multiple OD pairs, or with general 

continuous non-decreasing link travel time functions.  

The second group have studied the bounds of the Braess ratio (Lin et al., 2005; 

Lin et al., 2011; Roughgarden, 2006), which is obtained by dividing the total travel time at 

UE for the original network by the solution after the removal of some links. Only two 

papers are found to apply Braess paradox to improve the efficiency of UE flows by entirely 

closing some links in the network. Askoura et al. (2011), developed a path-based approach 

to find the sub-network which reduced the total travel time at UE. They analyzed the total 

OD flow cost with all paths enumerated, and removed some of the links based on the travel 

demand volume to obtain the desired sub-network. However, their approach did not work 

well in test cases with multiple OD pairs in networks of moderate size. Bagloee et al. (2014) 

proposed a method to obtain a pool of candidate links by comparing the total travel time 

at UE before and after the closure of the link, and then used a genetic algorithm to find a 

good combination of the links to close to reduce the total UE travel time. The disadvantage 

of their approach is that for large networks with many links, both obtaining the pool of 

candidate links and searching for the combination of links to close is computationally 

unwieldly.  

In light of the aforementioned literature, our research studies network-level 

traffic management through selective link capacity reductions, which essentially is the 

optimal capacity reduction with equilibrium constraints (OCREC). First, it develops 

different optimization models to investigate the existence of Braess paradox when links 

are not entirely removed but the capacity may be reduced. Second, it introduces a new way 

to identify links whose capacity reduction may reduce the total travel time at UE by 

comparing the link flows at UE and SO. Since the link travel time function used here is the 

Bureau of Public Roads (BPR) function, both the UE and SO problems are nonlinear 
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problems. We used the “Traffic Assignment by Paired Alternative Segments” (Bar-Gera, 

2010) approach to solve the UE problem, and developed a Frank-Wolfe type algorithm to 

solve the SO problem efficiently. Third, we develop a heuristic to find a good combination 

of links and the desired capacity reduction that results in more efficient UE flows.  

 OCREC Models 

In the problem of OCREC, it is assumed that there are fixed origin-destination 

(OD) flow demands routed through the network as per Wardrop’s first principle (Wardrop, 

1952), where every traveler has perfect knowledge of path travel times, and will rationally 

choose the path that minimizes his/her own travel time. Because of this selfish routing, 

the static and deterministic equilibrium flow will be reached where no single traveler can 

reduce his/her travel time by changing the route unilaterally. All (or a subset of) the links 

in the network may reduce their capacities by some amount. If a link has capacity 

reduction, its link travel time will change for the same link flow. As a result, the flow 

patterns at the equilibrium before and after link capacity reductions most likely will be 

different, and so will the total travel times. The goal of OCREC is to find the optimal set of 

links and the optimal amount of capacity reductions on these links so that the new UE has 

the lowest total travel time. 

OCREC is a two-level problem. The upper level problem is to find the links on 

which reduce capacity and the amount to reduce. With the decreased link capacities, the 

lower level problem is a traffic equilibrium problem which obtains the user equilibrium 

(UE) flows and the associated total travel time. Based on how UE condition is enforced, 

the traffic equilibrium problem can be formulated as a path-based model or a link-based 

model. In the path-based model, specific variables are defined for the path cost and path 

flows, and the UE condition is enforced by complementarity constraints on these path 
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variables. In the link-based model where path cost and path flows are not calculated, the 

UE condition is ensured by the Beckmann’s objective function: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∫ 𝑡𝑖(𝜔)𝑑𝜔
𝑥𝑖  𝑖∈𝐸 , 

where 𝑥𝑖 is the flow on link 𝑖, 𝐸 is the link set and 𝑡𝑖(𝑥𝑖) is the link travel time function of 

link 𝑖  evaluated at 𝑥𝑖 . Sheffi (1984) proved that the flow pattern obtained by the 

Beckmann’s objective function satisfies the UE condition. 

Based on whether or not link capacity constraints are explicitly defined, traffic 

equilibrium models can be grouped into two categories: the capacitated traffic equilibrium 

models and the uncapacitated traffic equilibrium models. In capacitated traffic 

equilibrium models, hard link capacity constraints are modeled to ensure that the total 

amount of link flow do not exceed the link capacity. The resultant traffic flow in this case 

is a constrained equilibrium since OD flows will choose the path with the second lowest 

cost if at least one link on the path with the lowest cost has reached its capacity, or choose 

the path with the third lowest cost if at least one link on the path with the lowest cost and 

at least one link on the path with the second lowest cost have reached their capacities, and 

so on.  

In uncapacitated traffic equilibrium models, hard link capacity constraints are 

not explicitly defined; “link capacity" usually is a parameter in link travel time function so 

that link travel time increases rapidly once the link flow exceeds the nominal link capacity. 

For example, Bureau of Public Roads (BPR) link travel time function is: 

𝑡𝑖(𝑥𝑖) = 𝑡𝑖
0 ∗ (1 + 𝛼 (

𝑥𝑖

𝐶𝑖
)
𝛽
), 

where 𝑡𝑖
0 is the free-flow travel time on link 𝑖, 𝐶𝑖 is the nominal link capacity, and 𝛼 and 𝛽 

(greater than 1) are parameters. Link travel time will increase nonlinearly when link flow 

exceeds the nominal link capacity. Thus, with the objective of minimizing the total travel 
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time at UE for the path-based model, or the Beckmann’s function for the link-based model, 

these link travel time functions work as “soft capacity constraints” to prevent link flows 

from exceeding nominal link capacities too much. Because no hard link capacity 

constraints are imposed, traffic flow pattern obtained in this case satisfies the UE 

condition precisely. 

Since many network test cases are uncapacitated traffic equilibrium models with 

BPR link travel time functions, and they are widely used by transportation researchers and 

practitioners, the research presented in this chapter also assumes the BPR function and 

adopts the uncapacitated model for the lower level traffic equilibrium problem. The next 

two sub-sections respectively discuss the path-based model and link-based model for the 

OCREC problem. 

4.3.1 Path-based Model. The path-based model is a single level optimization model 

with the objective to minimize the total flow cost and with complementarity constraints to 

ensure user equilibrium condition. Denote variables 𝒄𝒑
𝒌 and 𝒇𝒑

𝒌 as the travel time and the 

amount of flows on path 𝒑 of OD pair 𝒌 respectively. The objective function is formulated 

as 𝐦𝐢𝐧∑ ∑ 𝒄𝒑
𝒌𝒇𝒑

𝒌
𝒑∈𝑷𝒌𝒌∈𝑶𝑫 , where 𝑬 is the set of links, 𝑶𝑫 is the set of OD demand pairs, and 

𝑷𝒌 is the path set of OD pair 𝒌. To ensure all the OD demands are satisfied, parameter 𝑫𝒌 

is introduced as the demand of OD pair 𝒌, and constraint ∑ 𝒇𝒑
𝒌 = 𝑫𝒌𝒑∈𝑷𝒌  is formulated for 

each OD pair so that the total amount of flows on all the paths connecting the OD pair 

equals to the demand for that OD pair. Let variable 𝒙𝒊 be the total amount of flows on link 

𝒊 and 𝜹𝒊,𝒑
𝒌  be the binary parameter indicating whether link 𝒊 is on path 𝒑 of OD pair 𝒌, then 

constraint 𝒙𝒊 = ∑ ∑ 𝒇𝒑
𝒌𝜹𝒊,𝒑

𝒌
𝒑∈𝑷𝒌𝒌∈𝑶𝑫  is added for each link to make sure all the OD flows that 

using the link are accounted in the link flow.       
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Introducing 𝑡𝑖(𝑥𝑖) as the link travel time function, constraint 𝑐𝑝
𝑘 = ∑ 𝛿𝑖,𝑝

𝑘 𝑡𝑖(𝑥𝑖)𝑖∈𝐸  

is formulated for each path to calculate the path travel time. Define variable 𝑟𝑖  as the 

capacity reduction on link 𝑖, then 𝑡𝑖(𝑥𝑖) is calculated as 𝑡𝑖
0 ∗ (1 + 𝛼 (

𝑥𝑖

𝐶𝑖−𝑟𝑖
)
𝛽
) for links that 

can have capacity reductions, where 𝑡𝑖
0 is the free-flow travel time on link 𝑖, 𝐶𝑖 is the link 

capacity, and 𝛼 and 𝛽 (greater than 1) are parameters. For links where capacity reductions  

are not allowed, the link travel time function remains as 𝑡𝑖(𝑥𝑖) = 𝑡𝑖
0 ∗ (1 +

𝛼 (
𝑥𝑖

𝐶𝑖
)
𝛽
). In order to restrict the capacity reduction on a link, parameter 𝑟𝑖

𝑚𝑎𝑥, which is 

smaller than 𝐶𝑖, and constraints 𝑟𝑖 ≤ 𝑟𝑖
𝑚𝑎𝑥 are added to the model. Let variable 𝑐𝑚𝑖𝑛

𝑘  be the 

minimum travel time between OD pair 𝑘, then constraint 𝑐𝑚𝑖𝑛
𝑘 ≤ 𝑐𝑝

𝑘 assures that 𝑐𝑚𝑖𝑛
𝑘  is 

not larger than the travel time of any path of OD pair 𝑘. This user equilibrium condition is 

then ensured by the complementarity constraints 0 ≤ (𝑐𝑝
𝑘 − 𝑐𝑚𝑖𝑛

𝑘 ) ⊥ 𝑓𝑝
𝑘 ≥ 0  formulated 

for each path of all the OD pairs, which basically means if 𝑐𝑝
𝑘 − 𝑐𝑚𝑖𝑛

𝑘 > 0, 𝑓𝑝
𝑘 = 0; and if 

𝑓𝑝
𝑘 > 0, 𝑐𝑝

𝑘 − 𝑐𝑚𝑖𝑛
𝑘 = 0. The sets, parameters, variables and functions used in the OCREC 

path-based model are given in Table 4.3.1-1: 

Table 4.3.1-i: Notations for Path-based OCREC 

 

Term Definition 

Sets  

𝐸 The set of existing links in the network 

𝑅 The set of existing links that allows capacity reduction 𝑅 ⊆ 𝐸 

𝑂𝐷 The set of Origin-Destination pairs of flows 

𝑃𝑘 The set of paths for OD pair 𝑘 
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The complete path-based model of optimal capacity reduction with equilibrium 

constraints (OCREC) can now be written as:  

Path-based OCREC: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙, 𝒓) = ∑ ∑ 𝑐𝑝
𝑘𝑓𝑝

𝑘
𝑝∈𝑃𝑘𝑘∈𝑂𝐷       (1) 

∑ 𝑓𝑝
𝑘 = 𝐷𝑘𝑝∈𝑃𝑘      ∀𝑘 ∈ 𝑂𝐷   (2) 

𝑥𝑖 = ∑ ∑ 𝑓𝑝
𝑘𝛿𝑖,𝑝

𝑘
𝑝∈𝑃𝑘𝑘∈𝑂𝐷     ∀𝑖 ∈ 𝐸    (3) 

𝑐𝑝
𝑘 = ∑ 𝛿𝑖,𝑝

𝑘 𝑡𝑖(𝑥𝑖)𝑖∈𝐸      ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘  (4) 

𝑐𝑚𝑖𝑛
𝑘 ≤ 𝑐𝑝

𝑘      ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘  (5) 

Term Definition 

Parameters  

𝐶𝑖 Traffic flow capacity of link 𝑖 

𝑡𝑖
0 Travel time on link 𝑖 when there is no traffic flow on the link 

𝑟𝑖
𝑚𝑎𝑥 Maximum capacity reduction can be achieved on link 𝑖 

𝛿𝑖,𝑝
𝑘  Binary variable indicating whether link 𝑖 is on path 𝑝 of OD pair 𝑘. If it is, 

then  

𝛿𝑖,𝑝
𝑘 = 1; otherwise 𝛿𝑖,𝑝

𝑘 = 0 

𝐷𝑘 Flow demand of OD pair 𝑘 

Variables  

𝑥𝑖 Traffic flow on link 𝑖 

𝑟𝑖 Capacity reduction caused on link 𝑖 

𝑓𝑝
𝑘 Traffic flow of OD pair 𝑘 on path 𝑝 of the OD pair, 𝑝 ∈ 𝑃𝑘 

𝑐𝑝
𝑘 Travel time on path 𝑝 of the OD pair 𝑘, 𝑝 ∈ 𝑃𝑘  

𝑐𝑚𝑖𝑛
𝑘  Minimum travel time of all the paths of OD pair 𝑘 

Functions  

𝑡𝑖(𝑥𝑖) Travel time on link 𝑖  when the flow on the link is  𝑥𝑖 . For ∀𝑖 ∈ 𝐸\𝑅, 𝑡𝑖(𝑥𝑖) =

𝑡𝑖
0 [1 + 𝛼 (

𝑥𝑖

𝐶𝑖
)
𝛽

]; for ∀𝑖 ∈ 𝑅, 𝑡𝑖(𝑥𝑖 , 𝑟𝑖) = 𝑡𝑖
0 [1 + 𝛼 (

2𝑥𝑖

𝐶𝑖−𝑟𝑖
)
𝛽

].  
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0 ≤ (𝑐𝑝
𝑘 − 𝑐𝑚𝑖𝑛

𝑘 ) ⊥ 𝑓𝑝
𝑘 ≥ 0    ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘  (6) 

0 ≤ 𝑟𝑖 ≤ 𝑟𝑖
𝑚𝑎𝑥     ∀𝑖 ∈ 𝑅    (7) 

𝑓𝑝
𝑘 ≥ 0      ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘  (8) 

𝑐𝑝
𝑘 ≥ 0      ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘  (9) 

𝑐𝑚𝑖𝑛
𝑘 ≥ 0      ∀𝑘 ∈ 𝑂𝐷   (10) 

𝑥𝑖 ≥ 0      ∀𝑖 ∈ 𝐸    (11) 

Theoretically, with all paths of each OD pair enumerated, the path-based OCREC 

can be solved in one shot by nonlinear commercial solvers that can handle 

complementarity constraints (e.g., Knitro®). For example, for a test case based on the 

four-node network displayed in Figure 4.3-1. There are 40 units of travel demand from 

node 1 to node 4 and 20 units from node 3 to node 4. All the five links can have capacity 

reductions and the capacity reduction limit is 0.0001 unit less than the original link 

capacity. Detailed network data is given in Appendix B. Given all the paths connecting the 

two OD pairs found, Knitro solves this test case in less than one second. The optimal 

solution is to reduce the capacity of link 5 by 59.999 units, and the total travel time at UE 

after the capacity reduction is 3042.555. As a comparison, the total travel time at UE 

before the capacity reduction is 3066.637.   

It is commonsense that enumerating all the paths for each OD pair is impractical 

even for networks of moderate size. Thus, a more reasonable approach to solve the path-

Figure 4.3.1-i: Four-Node Network 
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based model is to generate a set of paths based on current link travel times, solve the 

restricted OCREC problem with the paths found, update the link travel times based on the 

new flow pattern, and find more paths for the restricted problem in the next iteration. The 

computation procedure will end when the total travel time between two iterations are close 

enough.  

The path-based OCREC belongs to a category of optimization models referred as 

“mathematical programing with equilibrium constraints” (MPEC) (Luo et al., 1996), which 

are extremely hard to solve. This renders the path-based model not a viable approach 

because the restricted OCREC problem cannot be solved for larger test cases. For example, 

for the test case created based on the square network shown in Figure 4.3.1-ii, which has 

56 links and 14 OD pairs, Knitro computes for 3 hours but still returns an infeasible 

solution for the restricted problem with 12 paths found for each OD pair. The detailed data 

of the network and OD demand of the test case given in Appendix B. 

 

Figure 4.3.1-ii: Square Network 
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Since the difficulty of solving the restricted OCREC problem is mostly due to the 

complementarity constraints, we reformulated the path-based OCREC without these 

complementarity constraints. Introducing binary variable 𝑤𝑝
𝑘  for ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘 , the 

complementarity constraint (constraint 6) can be reformulated as: 

𝑐𝑝
𝑘 − 𝑐𝑚𝑖𝑛

𝑘 ≤ 𝑀𝑤𝑝
𝑘   ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘   (a) 

𝑓𝑝
𝑘 ≤ 𝑀(1 − 𝑤𝑝

𝑘)   ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘   (b) 

𝑤𝑝
𝑘 ∈ {0, 1}    ∀𝑘 ∈ 𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘   (c) 

where 𝑀  is a big number. We can examine the effectiveness of these three 

constraints on ensuring the UE flow pattern in two scenarios. The first scenario is if the 

path travel time equals to the minimum travel time for the OD pair, we need to verify 

whether the path flow can be positive. In this scenario, 𝑐𝑝
𝑘 − 𝑐𝑚𝑖𝑛

𝑘 = 0  and the binary 

variable 𝑤𝑝
𝑘  can take value 0 in constraint (a), enabling path flow variable 𝑓𝑝

𝑘  to take 

positive values in constraint (b). The second scenario is if the path travel time is longer 

than the minimum travel time for the OD pair, we need to verify whether the path flow is 

0. In this scenario, 𝑐𝑝
𝑘 − 𝑐𝑚𝑖𝑛

𝑘 > 0, forcing 𝑤𝑝
𝑘 to take value 1 in constraint (a). And 𝑤𝑝

𝑘 = 1 

forces 𝑓𝑝
𝑘  to be 0 in constraint (b). Hence constraints (a), (b) and (c) ensure that flow 

pattern obtained is UE flow. 

This reformulation is easier to solve since Knitro can find a feasible solution for 

the square network with 12 paths found for each OD pair, whereas Knitro returns an 

infeasible solution for the same test case for the original model with complementarity 

constraints. However, it takes intolerably long time for Knitro to solve the restricted 

problem with more paths generated for the square network, let alone networks in larger 

sizes. Therefore, the path-based OCREC is only used for the validation of solution methods 
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developed for the link-based approach for small networks, which are presented in the 

following sections. 

4.3.2 Link-based Model. The link-based model is a bi-level optimization model. The 

upper level obtains the link capacity reductions, and the lower level computes the UE flows 

associated with the link capacity reductions obtained from the upper level. Denote 𝑈(𝒙, 𝒓) 

as the total travel time at UE under the capacity reduction scenario 𝒓, where 𝒓 is the vector 

of link capacity reductions and 𝒙 is the vector of link flows. The objective of the upper level 

model is 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒓) =  𝑈(𝒙, 𝒓), which is to find the link capacity reductions that give 

the lowest total travel time at UE. Constraint 0 ≤ 𝑟𝑖 ≤ 𝑟𝑖
𝑚𝑎𝑥  is added for each link to 

restrict the amount of capacity that can be reduced on the link. 

The lower level is the classic traffic equilibrium model. Define variable 𝑥𝑖
𝑘 as the 

flow from OD pair 𝑘  on link 𝑖 , constraint 𝑥𝑖 = ∑ 𝑥𝑖
𝑘

𝑘∈𝑂𝐷  is formulated to ensure flow 

consistency for each link so that the flows from all OD pairs using the link are accounted 

for in the total link flow. For each OD pair, flow conservation constraints, consisting of 

three groups, are needed. The first group of constraints makes sure the total incoming flow 

units minus the total outgoing flow units equal to the OD demand for the origin node of 

the OD pair. Let 𝐷𝑘 be the demand of OD pair 𝑘, the first group is formulated as 𝐷𝑘 =

∑ 𝑦𝑖𝑘{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}
 for ∀𝑘 ∈ 𝑂𝐷, where 𝑂𝐷𝐾

− is the origin node of OD 

pair 𝑘, 𝐸𝑖
− is the head node of link 𝑖 and 𝐸𝑗

+ is the tail node of link 𝑗. The second group 

ensures the total outgoing flow units minus the total incoming flow units equal to the 

demand of OD pair 𝑘  for its destination node and is formulated as 𝐷𝑘 =

∑ 𝑦𝑖𝑘{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸}  for ∀𝑘 ∈ 𝑂𝐷, where 𝑂𝐷𝐾
+ is the destination node of 

OD pair 𝑘, 𝐸𝑖
+ is the tail node of link 𝑖 and 𝐸𝑗

− is the head node of link 𝑗. For the rest of the 
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nodes, other than origin and destination nodes of OD pair 𝑘, the total incoming flows on 

the node from the origin of OD pair 𝑘 should equal to the total outgoing flows from the 

node to the destination of the OD pair 𝑘. This is the third group of the flow conservation 

constraints and it is formulated as ∑ 𝑦𝑖𝑘{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸}  for ∀𝑙 ∈ 𝑁, ∀𝑘 ∈

{𝑘:𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

+ ≠ 𝑙}, where 𝑁 is the set of nodes in the network. 

The sets, parameters, variables and functions used in the link-based OCREC 

model are presented in Table 4.3.2-i:  

Table 4.3.2-i: Notations for Link-based OCREC 

 

Term Definition 

Sets  

𝑁 Node set of the network 

𝐸 The set of existing links in the network 

𝑅 The set of existing links that allow link capacity reductions 𝑅 ⊆ 𝐸 

𝑂𝐷 The set of Origin-Destination pairs of flows 

Parameters  

𝐶𝑖 Traffic flow capacity of link 𝑖 

𝑡𝑖
0 Travel time on link 𝑖 when there is no traffic flow on the link 

𝑟𝑖
𝑚𝑎𝑥 Maximum capacity reduction can be achieved on link 𝑖 

𝐸𝑖
− Head node of link 𝑖  

𝐸𝑖
+ Tail node of link 𝑖  

𝑂𝐷𝑘
− Origin node of OD pair 𝑘 

𝑂𝐷𝑘
+ Destination node of OD pair 𝑘 

𝐷𝑘 Flow demand of OD pair 𝑘 

Variables  

𝑥𝑖
𝑘 Traffic flow on link 𝑖 from OD pair 𝑘 

𝑥𝑖 Traffic flow on link 𝑖 from all OD pairs 

𝑟𝑖 Capacity reduction on link 𝑖 
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The complete link-based model of optimal capacity reduction with equilibrium 

constraints (OCREC) is shown below: 

Upper Level of Link-based OCREC: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒓) = ∑ 𝑡𝑖(𝑥𝑖) ∗ 𝑥𝑖𝑖∈𝐸        (1) 

𝑠. 𝑡.:  

0 ≤ 𝑟𝑖 ≤ 𝑟𝑖
𝑚𝑎𝑥     ∀𝑖 ∈ 𝑅     (2) 

Lower Level of Link-based OCREC: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒙) = ∑ ∫ 𝑡𝑖
𝑥𝑖
0𝑖∈𝐸 (𝜔)𝑑𝜔       (3) 

𝑠. 𝑡.:  

𝑥𝑖 = ∑ 𝑥𝑖
𝑘

𝑘∈𝑂𝐷      ∀𝑖 ∈ 𝐸     (4) 

𝐷𝑘 = ∑ 𝑥𝑖
𝑘

{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑥𝑗
𝑘

{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷    (5) 

𝐷𝑘 = ∑ 𝑥𝑖
𝑘

{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑥𝑗
𝑘

{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷    (6) 

∑ 𝑥𝑖
𝑘

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑥𝑗

𝑘
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸}  ∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘: 𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

+ ≠ 𝑙} (7) 

𝑥𝑖 ≥ 0      ∀𝑖 ∈ 𝐸     (8) 

This link-based OCREC is not convex. To give an example, we create a problem 

instance based on the four-node network in Figure 4.3.1-i, but with a different link 

capacities and free-flow travel times, and with 6 units of travel demand going from node 1 

to node 4. The detailed network information can be found in Appendix B. When there is 

no capacity reduction, the total travel time at UE is 𝑧(𝒓) = 178.528 . After 2 units of 

capacity is reduced on link 5, the total travel time at UE is 𝑧(𝒓′) = 249.462. Let 𝜆 = 0.5, 

the convex combination of these two capacity reduction scenarios is to reduce 1 unit of 

capacity on link 5, and the total travel time at the corresponding UE is 𝑧(𝒓′′) =

Functions  

𝑡𝑖(𝑥𝑖) Travel time on link 𝑖 when the flow on the link is 𝑥𝑖. If BPR function is used, for 

∀𝑖 ∈ 𝐸\𝑅, 𝑡𝑖(𝑥𝑖) = 𝑡𝑖
0 [1 + 𝛼 (

𝑥𝑖

𝐶𝑖
)
𝛽

]; for ∀𝑖 ∈ 𝑅, 𝑡𝑖(𝑥𝑖) = 𝑡𝑖
0 [1 + 𝛼 (

𝑥𝑖

𝐶𝑖−𝑟𝑖
)
𝛽

]. 
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𝑧(𝜆𝒓 + (1 − 𝜆)𝒓′) = 244.8 . Since 𝜆𝑧(𝒓) + (1 − 𝜆)𝑧(𝒓′) = 213.995 < 244.8 = 𝑧(𝜆𝒓 + (1 −

𝜆)𝒓′), we produce a case where the link-based OCREC is not convex because convexity 

requires 𝜆𝑧(𝒓) + (1 − 𝜆)𝑧(𝒓′) ≥ 𝑧(𝜆𝒓 + (1 − 𝜆)𝒓′) for 𝜆 ∈ (0,1). 

We can also show the link-based OCREC is not always cave using the original 

problem instance of the four-node network in Figure 4.3.1-i. The total travel time at UE is 

𝑧(𝒓) = 3066.635 when there is no capacity reduction, and the total travel time at UE is 

𝑧(𝒓′) = 3049.805 when 30 units of capacity is reduced on link 5. Again, let 𝜆 = 0.5, the 

convex combination of these two capacity reduction scenarios is to reduce 15 units of 

capacity on link 5; the associated total travel time at UE is 𝑧(𝒓′′) = 𝑧(𝜆𝒓 + (1 − 𝜆)𝒓′) =

3056.738. This demonstrates that the link-based OCREC is not concave because  𝜆𝑧(𝒓) +

(1 − 𝜆)𝑧(𝒓′) = 3058.221 > 3056.738 = 𝑧(𝜆𝒓 + (1 − 𝜆)𝒓′) , and concave problems must 

have 𝑧(𝒓) + (1 − 𝜆)𝑧(𝒓′) < 𝑧(𝜆𝒓 + (1 − 𝜆)𝒓′) for 𝜆 ∈ (0,1). 

Therefore, the link-based OCREC is a challenging bi-level nonlinear optimization 

problem that is neither convex nor concave. Hence, we develop a heuristic for the link-

based model which systematically identifies candidate links for capacity reduction and the 

desired amount of reduction. 

 Approximate Solution Approach for the Link-based Model 

4.4.1 Structure of the Heuristic. Because the system optimum (SO) is the most cost 

efficient flow pattern, the primary purpose of the heuristic developed is to move the user 

equilibrium (UE) flows toward SO flow by reducing the link capacities. To find candidate 

links for capacity reduction, the UE problem and the SO problem are first solved for the 

original network without capacity reductions. Based on the UE and SO flows obtained, 

links are sorted in descending order with respect to the link flow difference between UE 
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and SO. We consider links with positive flow difference between UE and SO are overly 

used by the UE flows. Hence, to drive the UE flow towards the SO flow, the capacity of 

these links may be reduced and the link travel times will increase, and so will the travel 

time of the paths using these links. The UE flows then will divert to other paths with less 

travel time to reach a new UE which may be closer to the SO flow.  

Let 𝑥𝑖
𝑈𝐸 denote the flow on link 𝑖 at UE and 𝑥𝑖

𝑆𝑂 denote the flow on link 𝑖 at SO. 

To find the link whose capacity reduction can improve the efficiency of UE flows, and the 

desired amount of capacity to decrease on the link, the heuristic starts with the link with 

the largest 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂 and reduces the link capacity by 0.618 ∗ (𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂). The numeric 

multiplier 0.618 can be replaced by any number between 0 and 1. 0.618 is used in our 

heuristic because it results in the best heuristic performance for the problem instances 

tested. We note coincidentally that 0.618 is the ratio used in golden section line search 

method. Let 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑 represent the additional amount of capacity reduction added to 

the capacity reduction already accepted, initially 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 0.618 ∗ (𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂). 

The UE problem will be solved to check whether the capacity reduction results in UE with 

less total travel time. If it does, the capacity reduction will be accepted and additional 

capacity reduction with the amount of 
1

0.618
∗ 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 will be attempted on the same 

link. The reason to set the multiplier 
1

0.618
 is to have more aggressive capacity reduction 

trials given the last capacity reduction trial is effective, and accelerate the search for the 

desired link capacity reduction. Otherwise, the capacity reduction will be reverted and the 

new capacity reduction to be considered is 0.382 ∗ 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐, and the UE problem 

will be solved to check whether more efficient UE flow is obtained. This process continues 

until either 𝑟𝑖
𝑚𝑎𝑥  is reached or the total travel time at UE of two consecutive capacity 

reduction attempts are very close. 
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If the effective link capacity reduction that results in UE with less total travel time 

is found, the SO problem will be solved based on the accepted link capacity reductions, 

and links are sorted again in descending order based on the value of 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂 to start a 

new round of link capacity reduction tests. If no effective capacity reduction is found for 

the current link, the capacity reduction test will continue to the next link with the largest 

value of 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂. The heuristic stops when the total travel time at UE is very close to the 

total travel time at SO, or no capacity reduction on any of the links with 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂 > 0 can 

improve the UE flow efficiency. Let 𝐵𝑒𝑡𝑡𝑒𝑟𝑈𝐸 = 1 indicate more efficient UE obtained 

through capacity reductions after the most recent link sort. The heuristic is shown on the 

next page, where 𝑝𝑟𝑒𝑣_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 is the best total travel time obtained before the most 

recent solution to the SO problem, 𝑙𝑎𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 is the total travel time from the most 

recent UE, and 𝑆𝑂𝑇𝑡𝑖𝑚𝑒 is the total travel time from the most recent SO solution. 

Inside the heuristic, the UE problem is solved by the traffic assignment with 

paired alternative segments (TAPAS) algorithm developed by Bar-Gera (2010). To solve 

the SO problem, a Frank-Wolfe type algorithm was developed which is discussed in detail 

in the next subsection. The heuristic for link-based OCREC is summarized on the next 

page and is illustrated by a flow-chart on the page after next: 
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Step 1: Solve the UE and SO problems with no link capacity reductions, let 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 , 
𝑝𝑟𝑒𝑣_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 and 𝑙𝑎𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 equal to 𝑈𝐸𝑇𝑡𝑖𝑚𝑒. 

Step 2: Calculate 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂. 

Step 3: Sort the links in descending order with respect to 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂. Let 𝐵𝑒𝑡𝑡𝑒𝑟𝑈𝐸 = 0 

Step 4: Find the link with the largest positive 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂 that has not tried capacity reduction 

after the sort, let 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 0.618(𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂). If there is no more links with 

positive 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂, go to Step 7. 

Step 5: If 𝑟𝑖 < 𝑟𝑖
𝑚𝑎𝑥  and 𝑟𝑖 + 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 < 𝑟𝑖

𝑚𝑎𝑥, 𝑟𝑖 = 𝑟𝑖 + 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐; 

If 𝑟𝑖 < 𝑟𝑖
𝑚𝑎𝑥  and 𝑟𝑖 + 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 ≥ 𝑟𝑖

𝑚𝑎𝑥, let 𝑙𝑎𝑠𝑡_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 𝑟𝑖
𝑚𝑎𝑥 − 𝑟𝑖, 𝑟𝑖 = 𝑟𝑖

𝑚𝑎𝑥, 
𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 0; 

If 𝑟𝑖 = 𝑟𝑖
𝑚𝑎𝑥, go back to Step 4.  

Step 6: Let 𝑙𝑎𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 = 𝑈𝐸𝑇𝑡𝑖𝑚𝑒, resolve the UE problem based on the new capacity 
reductions. 

If 𝑈𝐸𝑇𝑡𝑖𝑚𝑒 is very close to 𝑆𝑂𝑇𝑡𝑖𝑚𝑒, let 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 = 𝑈𝐸𝑇𝑡𝑖𝑚𝑒, exit the solving 
procedure.  local optimality is obtained, exit the solving procedure; 

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 < 𝑈𝐸𝑇𝑡𝑖𝑚𝑒, and 𝑈𝐸𝑇𝑡𝑖𝑚𝑒 is very close to 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 or 
𝑙𝑎𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒, revert the capacity reduction. If 𝐵𝑒𝑡𝑡𝑒𝑟𝑈𝐸 = 0, continue to the next link 

with the largest 𝑥𝑖
𝑈𝐸 − 𝑥𝑖

𝑆𝑂 and go back to Step 5. If 𝐵𝑒𝑡𝑡𝑒𝑟𝑈𝐸 = 1, solve SO based on 
accepted capacity reductions and go to Step 2; 

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 < 𝑈𝐸𝑇𝑡𝑖𝑚𝑒 and 𝑟𝑖 = 𝑟𝑖
𝑚𝑎𝑥, revert the capacity reduction, let 

𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 0.382 ∗ 𝑙𝑎𝑠𝑡_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 and 𝑙𝑎𝑠𝑡_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 0, and go back to Step 5; 

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 < 𝑈𝐸𝑇𝑡𝑖𝑚𝑒and 𝑟𝑖 < 𝑟𝑖
𝑚𝑎𝑥, revert the capacity reduction, let 

𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 = 0.382 ∗ 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐, and go back to Step 5; 

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 > 𝑈𝐸𝑇𝑡𝑖𝑚𝑒 and 𝑟𝑖 = 𝑟𝑖
𝑚𝑎𝑥, let 𝐵𝑒𝑡𝑡𝑒𝑟𝑈𝐸 = 1, accept the capacity 

reduction, let 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 = 𝑈𝐸𝑇𝑡𝑖𝑚𝑒, resolve SO based on the accepted link capacity 
reductions and go back to Step 2; 

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 > 𝑈𝐸𝑇𝑡𝑖𝑚𝑒 and 𝑟𝑖 < 𝑟𝑖
𝑚𝑎𝑥, let 𝐵𝑒𝑡𝑡𝑒𝑟𝑈𝐸 = 1, accept the capacity 

reduction, let 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐 =
1

0.618
∗ 𝑡ℎ𝑖𝑠_𝐶𝑎𝑝𝑅𝑒𝑑𝑢𝑐, let 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 = 𝑈𝐸𝑇𝑡𝑖𝑚𝑒, and 

go back to Step 5; 

Step 7: Compare 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 and 𝑝𝑟𝑒𝑣_𝑈𝐸𝑇𝑡𝑖𝑚𝑒,  

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 < 𝑝𝑟𝑒𝑣_𝑈𝐸𝑇𝑡𝑖𝑚𝑒, let 𝑝𝑟𝑒𝑣_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 = 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒, solve SO and go 
back to Step 2; 

If 𝑏𝑒𝑠𝑡_𝑈𝐸𝑇𝑡𝑖𝑚𝑒 = 𝑝𝑟𝑒𝑣_𝑈𝐸𝑇𝑡𝑖𝑚𝑒, local optimality is obtained, exit the solving 
procedure. 
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 Figure 4.4.1-i: Flow Chart of Link-based OCREC  

 

4.4.2 The Frank-Wolfe (FW) Algorithm for the System Optimum Problem. 

The system optimum (SO) problem is a type of the nonlinear multi-commodity flows 

problem. Research on the solution methods for this problem have mostly focused on how 
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to deal with integer flows, how to avoid oscillation during the solution procedure, and how 

to solve this problem as a general nonlinear programming problem. For a brief review of 

the literature on this topic, please refer to section 2.1.4 in Chapter 2. To our knowledge, 

very little research has been done on the solution method for the SO problem that takes 

advantage of its network flows features to improve the efficiency of the solution procedure. 

This subsection introduces the FW algorithm for the SO problem, which resembles the FW 

algorithm approach to the UE problem. 

The Frank-Wolfe (FW) algorithm is a well-known exact approach for nonlinear 

convex problems. Based on an initial feasible solution, it calculates the gradient vector and 

minimizes the cross product of the gradient vector and the variable vector within the 

feasible region of the original problem. This minimization problem is called the direction-

finding problem and formulated as a linear optimization program. Its solution produces 

the descending direction at the initial solution to the original problem. After the 

descending direction is found, a line search problem is solved to obtain the optimal step 

size to proceed from the current feasible solution. After a new feasible solution is obtained, 

another iteration of FW starts. The objective value evaluated at each feasible solution is 

the upper bound of the original problem. A lower bound is computed as the upper bound 

subtracting the cross product of the new feasible solution and the gradient at the current 

feasible solution. The FW algorithm iterates until the lower bound and upper bound are 

within a predefined tolerance range (e.g., 10−6). 

Because of its straightforward structure, the FW has often been applied to solve 

the UE problem. With an initial set of feasible flows, the basic procedure of the Frank-

Wolfe algorithm for the UE problem (Sheffi, 1984) is first to solve the direction-finding 

problem by performing all-or-nothing assignment based on the link travel times evaluated 
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at the initial feasible flows, with are also called primary flows. All-or-nothing assignment 

is to send all the travel demand of an OD pair along its shortest path.  During this 

assignment, the link travel times are considered fixed regardless of the flows on the link. 

The solution obtained in the direction-finding problem is the descending direction for the 

primary flows. Because the objective function of the UE problem is the Beckmann’s 

function 𝑚𝑖𝑛𝑖𝑚𝑖𝑧 ∑ ∫ 𝑡𝑖(𝜔)𝑑𝜔
𝑥𝑖

𝑖∈𝐸 , and the gradient evaluated at the feasible link flows 𝒙̅ 

is 

𝑑

𝑑𝜔
∫ 𝑡𝑖(𝜔)𝑑𝜔
𝑥𝑖̅

= 𝑡𝑖(𝑥𝑖̅), ∀𝑖 ∈ 𝐸 

which coincidentally is the link travel time evaluated at current solution. The direction-

finding problem has the objective to ∑ 𝑡𝑖(𝑥𝑖̅) ∗ 𝑥𝑖𝑖∈𝐸 , and it is essentially a series of min-

cost flow problems with fixed link cost (a.k.a. link travel time) for each OD pair and 

without hard link capacity constraints. Hence the direction-finding problem can be solved 

by finding the shortest path for the OD pair and assign all the OD flow on the path found, 

which is the all-or-nothing assignment. Corresponding to the primary flows, the 

descending directions obtained in the direction-finding problem are called auxiliary flows. 

With the primary and auxiliary link flows, a line search is performed to find the 

optimal convex combination of these two flows for the Beckmann’s objective function. 

Once the optimal convex combination of the primary and auxiliary links flows is found, it 

will be the primary link flows for the next iteration. This procedure repeats until the link 

flows converge. 

Inspired by the FW algorithm applied to the UE problem, we develop the FW 

algorithm tailored for the SO problem. Adopting the notations from the link-based OCREC, 

the SO problem can be formulated as follows: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝑆𝑂(𝒙) = ∑ 𝑡𝑖(𝑥𝑖)𝑥𝑖𝑖∈𝐸        (1) 

𝑠. 𝑡.:  

𝑥𝑖 = ∑ 𝑥𝑖
𝑘

𝑘∈𝑂𝐷      ∀𝑖 ∈ 𝐸    (2) 

𝐷𝑘 = ∑ 𝑥𝑖
𝑘

{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑥𝑗
𝑘

{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷   (3) 

𝐷𝑘 = ∑ 𝑥𝑖
𝑘

{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑥𝑗
𝑘

{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷   (4) 

∑ 𝑥𝑖
𝑘

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑥𝑗

𝑘
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸}  ∀𝑙 ∈ 𝑁    

      ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

+ ≠ 𝑙} (5) 

The objective is to minimize the total travel time of all OD flow. Constraint (2) ensures the 

link flow consistency. Constraint (3) to (5) are flow conservation constraints.  

Suppose at 𝑛𝑡ℎ iteration, feasible flows 𝑥̅𝑖
𝑘(𝑛) ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷 are obtained. The 

gradient evaluated at 𝒙̅𝑛 is: ∇𝑧(𝒙̅𝒏) = 𝒕(𝒙̅𝑛) +
𝑑𝒕(𝒙̅𝑛)

𝑑𝒙
𝒙̅𝑛, where 𝒙̅𝑛 is the vector of link flows 

at 𝑛𝑡ℎ  iteration and 𝒕(𝒙̅𝑛) is the corresponding link travel time vector. If the BPR link 

travel time function is used, 𝑧𝑆𝑂(𝒙) = ∑ 𝑡𝑖
0 (1 + 𝛼 (

𝑥𝑖

𝐶𝑖
)
𝛽
) ∗ 𝑥𝑖𝑖∈𝐸 , and ∇𝑧(𝑥̅𝑖(𝑛)) = 𝑡𝑖

0 (1 +

𝛼(𝛽 + 1) (
𝑥𝑖̅(𝑛)

𝐶𝑖
)
𝛽
) for ∀𝑖 ∈ 𝐸. To demonstrate the FW algorithm for the SO problem, the 

discussion forward adopts BPR function as the link travel time function. Let 𝒚𝑛 denote the 

descending direction (a.k.a. auxiliary flows) for the feasible solution 𝒙𝑛 , then the 

direction-finding problem is:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝒚𝑛
𝑇∇𝑧(𝒙̅𝒏) = ∑ 𝑡𝑖

0 (1 + 𝛼(𝛽 + 1) (
𝑥𝑖̅(𝑛)

𝐶𝑖
)
𝛽
) 𝑦𝑖(𝑛)𝑖∈𝐸     (1’) 

𝑠. 𝑡.:  

𝑦𝑖 = ∑ 𝑦𝑖
𝑘

𝑘∈𝑂𝐷      ∀𝑖 ∈ 𝐸    (2’) 

𝐷𝑘 = ∑ 𝑦𝑖
𝑘

{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗
𝑘

{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷   (3’) 

𝐷𝑘 = ∑ 𝑦𝑖
𝑘

{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗
𝑘

{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷   (4’) 
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∑ 𝑦𝑖
𝑘

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗

𝑘
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} ,∀𝑙 ∈ 𝑁,∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

+ ≠ 𝑙} (5’) 

Since all parts other than 𝒚𝑛 in the objective function (1’) are fixed, this direction-

finding problem can be perceived as a series of min-cost flow problems for the OD pairs 

with fixed link travel time 𝑡𝑖
0 (1 + 𝛼(𝛽 + 1) (

𝑥𝑖̅(𝑛)

𝐶𝑖
)
𝛽
) for ∀𝑖 ∈ 𝐸. And this means 𝒚𝑛 can be 

obtained by all-or-nothing assignment based on skewed link travel time 𝑡𝑖
0 (1 +

𝛼(𝛽 + 1) (
𝑥𝑖̅(𝑛)

𝐶𝑖
)
𝛽
)  for ∀𝑖 ∈ 𝐸 . As a comparison, the true link travel time is 𝑡𝑖

0 (1 +

𝛼 (
𝑥𝑖̅(𝑛)

𝐶𝑖
)
𝛽
) for ∀𝑖 ∈ 𝐸. The shortest paths of each OD pair for the all-or-nothing assignment 

can be found by a label correcting algorithm such as the Dijkstra algorithm. Let 𝒚̅𝑛 be the 

descending direction obtained from the direction-finding subproblem, then the step-size 

problem can be formulated as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝑆𝑂(𝜆) = ∑ 𝑡𝑖
0 [1 + 𝛼 (

𝑥𝑖̅(𝑛)+𝜆[𝑦𝑖̅(𝑛)−𝑥𝑖̅(𝑛)]

𝐶𝑖
)
𝛽

] {𝑥𝑖̅(𝑛) + 𝜆[𝑦𝑖̅(𝑛) − 𝑥𝑖̅(𝑛)]}𝑖∈𝐸  (6’) 

𝑠. 𝑡.:  𝜆 ∈ (0, 1) 

The flow consistency and flow conservation constraints are not needed since both 𝒙̅𝒏 and 

𝒚̅𝒏 satisfy these constraints and 𝒙̅𝑛 + 𝜆[𝒚̅𝑛 − 𝒙̅𝑛] is a convex combination of these two sets 

of flows. The step size problem is solved by a quadratic approximation method, which is a 

line search method that approximates the objective function using a quadratic function 

based on the value of 𝜆, the corresponding objective value and the first derivatives of the 

objective function evaluated at the value of 𝜆. New 𝜆 value is obtained by optimizing the 

quadratic function within the range defined by the previous 𝜆 values. As more iterations 

being computed, the range defined by previous 𝜆 values keeps contracting until the lower 
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bound and upper bound of the range nearly coincide. The optimal 𝜆  for the step-size 

problem is the lower bound and/or the upper bound. 

As to the convergence of FW developed for the SO problem, since the objective 

function of the SO problem is convex (its Hessian matrix is positive definite) and so is the 

feasible region (intersection of hyperplanes), the SO problem is convex. Hence for any two 

feasible flows 𝒙 and 𝒚, we have: 𝑧𝑆𝑂(𝒚) ≥ 𝑧𝑆𝑂(𝒙) + (𝒚 − 𝒙)
𝑇∇𝑧𝑆𝑂(𝒙). Suppose the optimal 

flow for the SO problem is 𝒙∗, we have: 𝑧𝑆𝑂(𝒙
∗) ≥ 𝑧𝑆𝑂(𝒙̅) + (𝒙

∗ − 𝒙̅)𝑇∇𝑧𝑆𝑂(𝒙̅) where 𝒙̅ is a 

set of feasible link flows. Let 𝐹 be the feasible region defined by constraints from (2) to (5), 

since 

𝑧𝑆𝑂(𝒙̅) + (𝒙
∗ − 𝒙̅)𝑇∇𝑧𝑆𝑂(𝒙̅) ≥ min

{𝒚∈𝐹}
{𝑧𝑆𝑂(𝒙̅) + (𝒚 − 𝒙̅)

𝑇∇𝑧𝑆𝑂(𝒙̅)}

= 𝑧𝑆𝑂(𝒙̅) − 𝒙̅
T∇𝑧𝑆𝑂(𝒙̅) + min

{𝒚∈𝐹}
𝒚𝑇∇𝑧𝑆𝑂(𝒙̅) 

we have: 

𝑧𝑆𝑂(𝒙
∗) ≥ 𝑧𝑆𝑂(𝒙̅) − 𝒙̅

T∇𝑧𝑆𝑂(𝒙̅) + min
{𝒚∈𝐹}

𝒚𝑇∇𝑧𝑆𝑂(𝒙̅) 

where min
{𝒚∈𝐹}

𝒚𝑇∇𝑧𝑆𝑂(𝒙̅)  is the objective of the direction-finding subproblem. Therefore, 

𝑧𝑆𝑂(𝒙̅) − 𝒙̅
T∇𝑧𝑆𝑂(𝒙̅) + min

{𝒚∈𝐹}
𝒚𝑇∇𝑧𝑆𝑂(𝒙̅) is the lower bound obtained at 𝒙̅. Let 𝐿𝐵𝑛−1 be the 

lower bound obtained at iteration 𝑛 − 1, we have: 

𝐿𝐵𝑛 = max {𝐿𝐵𝑛−1,   𝑧𝑆𝑂(𝒙̅𝒏) − 𝒙̅𝒏
𝑻∇𝑧𝑆𝑂(𝒙̅𝒏) + 𝒚̅𝒏

𝑇∇𝑧𝑆𝑂(𝒙̅𝒏)} 

The upper bound for the SO problem at 𝑛𝑡ℎ iteration is simply the objective value 

evaluated at 𝒙̅𝒏, that is 𝑈𝐵𝑛 = 𝑧𝑆𝑂(𝒙̅𝒏).With the continuously improving upper bound and 

lower bound of SO, the solution procedure will end when the optimality gap is smaller 

than a predefined value. It has been shown that the FW algorithm converges at the rate 
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𝑂 (
1

𝑛
). (Frank and Wolfe, 1956) Therefore, the Frank-Wolfe (FW) algorithm for the system 

optimum (SO) problem is convergent and can be summarized as:  

Step 1: 𝑛 = 0, perform all-or-nothing assignment based on free-flow travel times and obtain 𝒙0. 
𝐿𝐵0 = 0. 

Step 2: Calculate ∇𝑧(𝒙𝒏) and solve the direction-finding subproblem with a shortest path 
algorithm. Obtain auxiliary flows 𝒚̅𝑛. 

Step 3: Update 𝐿𝐵𝑛 = max{𝐿𝐵𝑛−1,   𝑧(𝒙𝑛) − 𝒙𝑛
𝑻∇𝑧(𝒙𝑛) + 𝒚̅𝑛

𝑇∇𝑧(𝒙𝑛)}. If 
|𝑧(𝒙̅𝑛)−𝐿𝐵𝑛|

𝐿𝐵𝑛
≤ 𝜖, optimal flow 

has been find, exit the algorithm; otherwise, go to step 4. 

Step 4: Solve the step size subproblem, obtain 𝜆 and let 𝒙𝑛+1 = 𝒙𝑛 + 𝜆[𝒚̅𝑛 − 𝒙𝑛], which is the set 
of primary flows for the next iteration. Go back to step 2. 

Since the search directions of the FW method tend to become orthogonal to the 

gradient as the solution gets close to the optimum, FW method usually converges slowly 

when the optimality gap is less than 10−4 because of the extremely zigzagging effect. To 

obtain search directions that are not orthogonal to the gradient, Mitradjieva and Lindberg 

(2013) developed a conjugate Frank-Wolfe (CFW) algorithm which utilizes the search 

directions obtained in last two iterations, and bi-conjugate Frank-Wolfe (BFW) algorithm 

taht incorporates the search directions obtained in last three iterations. The BFW was 

implemented in this research for faster convergence in the solving the SO problem. 

 Computational Experiments 

The entire heuristic for link-based OCREC was implemented in C++. The C++ 

implementation of TAPAS algorithm for the UE problem is adopted from the UE algorithm 

package developed by Perederieieva et al. (2015). To get a baseline for the heuristic for 

comparison purposes, the heuristic was also implemented in AMPL® and uses the 

nonlinear solver MINOS® to solve the UE problems and SO problems. The optimality 

tolerance for the UE problem was set to 10−8 for both TAPAS algorithm and MINOS, and 

the optimality tolerance for the SO problem was set to 10−6 for both BFW algorithm and 
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MINOS. The reason for this configuration is because smaller optimality gap is required for 

more accurate UE flows and it can be obtained by the TAPAS algorithm within a short 

amount of time. And BFW struggles to reduce the optimality gap when it is less than 10−6 

for the problems instances tested. All the computational experiments were conducted on 

a personal computer with a 3.7 GHz quad-core CUP and 24.0 GB memory.  

First, both the C++ and AMPL implementation are tested on the original problem 

instance of the simple four-node network shown in Figure 5.5-i, which is solved by Knitro 

successfully for the path-based OCREC. The solution given by Knitro is to reduce the 

capacity of link 5 by 59.999 units, and he total travel time at UE after the capacity 

reduction is 3042.555. As it is shown in table 4.5-i, both the C++ implementation and the 

AMPL implementation give the same solution as the solution given by Knitro, but the 

AMPL implementation solves this problem instance a little faster. 

Table 4.5-i: C++-TAPAS-BFW vs. AMPL-MINOS on Four-Node Network 

Implementation Methods C++-TAPAS-BFW AMPL-Minos 

Total Travel Time at UE 

Before Capacity Reduction 3066.637 3066.637 

After Capacity Reduction 3042.555 3042.555 

% Reduced 0.79% 0.79% 

Total Travel Time at SO 
Before Capacity Reduction 2901.54 2901.54 

After Capacity Reduction 3042.552 3042.552 

Computation Time 0.343 sec 0.2 sec 

Link Capacity Reduction CapRed[5]=59.999 CapRed[5]=59.999 

Then, the square network problem instance, which Knitro fails to solve for the 

path-based model as discussed in Section 4.3.2, is solved by the C++ implementation and 

the AMPL implementation for the link-based model. The solutions obtained by the two 

implementations are given in Table 4.5-ii. 
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Table 4.5-ii: C++-TAPAS-BFW vs. AMPL-MINOS on Square Network 

Implementation Methods C++-TAPAS-BFW AMPL-Minos 

Total Travel Time at UE 

Before Capacity Reduction 5137807.64 5137807.866 

After Capacity Reduction 5008575.52 5008577.066 

% Reduced 2.52% 2.52% 

Total Travel Time at SO 
Before Capacity Reduction 4729754.84 4729753.387 

After Capacity Reduction 4936195.04 4938203.792 

Computation Time 4.32 min 0.35 min 

Link Capacity Reduction 

CapRed[2]=499.999 CapRed[2]=499.999 

CapRed[13]=599.999 CapRed[13]=599.999 

CapRed[15]=213.755 CapRed[15]=225.237 

CapRed[16]=599.999 CapRed[16]=599.999 

CapRed[29]=599.999 CapRed[25]=0.103 

CapRed[32]=99.349 CapRed[26]=29.881 

CapRed[42]=599.999 CapRed[29]=599.999 

CapRed[45]=599.999 CapRed[32]=117.858 

CapRed[53]=599.999 CapRed[42]=599.999 

CapRed[55]=599.999 CapRed[45]=599.999 

  
CapRed[53]=599.999 

CapRed[55]=599.999 

It can be observed in Table 5.5-ii that the solutions given by these two 

implementations are very similar but the C++ implementation took much longer to solve 

the problem instance. Comparing the performance of the heuristic for the link-based 

model to the approach that uses Knitro to solve the path-based model, for the square 

network with 12 paths found for each OD pair, it took Knitro hours to obtain a capacity 

reduction scheme that decreased the total UE travel time to 5135620. Although this total 

UE travel time is less than the total travel time of 5137808 for the original network, 

meaning Knitro does find an effective capacity reduction scheme that improves the 

efficiency of UE flows, it is much higher than the UE travel time from the solutions 

obtained by the heuristic developed for the link-based model. Hence, it is concluded that 
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the heuristic for the link-based model is much more efficient and effective than using 

Knitro to solve the path-based model. 

Another problem instance is created for the same square network by doubling the 

original travel demand for each OD. The solution from the two implementations are 

summarized in Table 4.5-iii.  

Table 4.5-iii: C++-TAPAS-BFW vs. AMPL-MINOS on Square Network with Demand 

Doubled 

Implementation Methods C++-TAPAS-BFW AMPL-Minos 

Total Travel Time at UE 

Before Capacity Reduction 10990702.5 10990705.51 

After Capacity Reduction 10473795.9 10473802.92 

% Reduced 4.70% 4.70% 

Total Travel Time at SO 
Before Capacity Reduction 10333230.5 1033223.488 

After Capacity Reduction 10473804.7 2.03E+24 

Computation Time 5.38 min 0.08 min 

Link Capacity Reduction 

CapRed[10]=599.999 CapRed[10]=599.999 

CapRed[13]=599.999 CapRed[13]=599.999 

CapRed[16]=599.999 CapRed[16]=599.999 

CapRed[19]=599.999 CapRed[19]=599.999 

CapRed[23]=599.999 CapRed[23]=599.999 

CapRed[26]=599.999 CapRed[26]=599.999 

CapRed[29]=599.999 CapRed[29]=599.999 

CapRed[32]=599.999 CapRed[32]=599.999 

CapRed[36]=599.999 CapRed[36]=599.999 

CapRed[39]=599.999 CapRed[39]=599.999 

CapRed[42]=599.999 CapRed[42]=599.999 

CapRed[45]=599.999 CapRed[45]=599.999 

CapRed[49]=599.999 CapRed[49]=599.999 

CapRed[51]=599.999 CapRed[51]=599.999 

CapRed[53]=599.999 CapRed[53]=599.999 

CapRed[55]=599.999 CapRed[55]=599.999 

Both implementation give the same link capacity reductions and AMPL 

implementation is much faster than the C++ implementation. However, the BFW 
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algorithm outperforms MINOS in solving the SO problem. The MINOS effectively gives 

up and returns an SO solution with total travel time of 2.03×1024, which is nowhere close 

to the total travel time at SO before the capacity reduction, whereas BFW gives the SO that 

is very close to the UE after capacity reduction. Although the total travel time at SO after 

the capacity reduction is still larger than the total travel time at UE for the C++ 

implementation, which should not happen since SO is supposed to minimize total travel 

time, the difference on total travel times of these two flow patterns is less than 10−6 and 

can be considered to be practically same. Another the reason that the total travel time at 

SO is slightly larger than that at UE is because the optimality tolerance for the SO problem 

is 10−6; if the optimality tolerance is set much smaller (i.e., 10−8), the BFW could obtain 

an SO with total travel time less than that at UE, but would require significantly longer 

computation time.  

Besides the square network, both implementations were also tested on the Sioux 

Falls network shown in Figure 3.4.3-iii in Chapter 3, which is a real-world network with 

76 links and 528 OD pairs. The detailed information of Sioux network test case is not 

attached in the appendix since it is a widely used test case in research and can be found 

online.  

Table 4.5-iv compares the solution given by the C++ implementation and the 

AMPL implementation. Both implementations conclude no link capacity reduction can 

improve the efficiency of the UE flows. However, the total travel times at UE given by these 

two implementations differ significantly, and so do the total travel times at SO. To verify 

which of the two implementations gave the correction solution, the same Sioux Falls test 

case is solved with the bi-conjugate Frank-Wolfe (BFW) algorithm for the UE problem 

implemented in Julia, which is developed by Kwon (2017). With optimality tolerance set 
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to 10−6 , the total travel time at UE obtained by the Julia implementation of BFW is 

7480217.15, matching the result from our C++ implementation. And thus, it may be 

concluded that MINOS gave the wrong solution. Also, it can be seen from Table 4.5-iv that 

the time consumptions of these two implementations are getting closer, indicating the 

efficiency of MINOS is affected by the scale of the problem instance and deteriorates 

quickly as the dimension of the problem instance increases.  

Table 4.5-iv: C++-TAPAS-BFW vs. AMPL-MINOS on Sioux Falls Network 

Implementation Methods C++-TAPAS-BFW AMPL-Minos 

Total Travel Time at 
UE 

Before Capacity Reduction 7480224.53 * 5137687.454 

After Capacity Reduction 
No effective link capacity 

reduction 
No effective link 

capacity reduction 

% Reduced NA NA 

Total Travel Time at 
SO 

Before Capacity Reduction 7194258.56 4902374.426 

After Capacity Reduction 
No effective link capacity 

reduction 
No effective link 

capacity reduction 

Computation Time 3.82 min 1.63 min 

Link Capacity Reduction NA NA 

*The total travel time at UE before capacity reduction matches results from the Julia implementation of BFW, which is 

7480217.15 

 The C++ implementation was also experimented on the Sioux Falls network after 

the OD demands were reduced by half. The solution from the C++ implementation shows 

that the efficiency of UE flows can be improved by 0.1655% with capacity reductions on 

link 22 and 47. For the same problem instance, the AMPL implementation gives a totally 

different solution that concludes no capacity reduction can improve the efficiency of the 

UE flows. What’s more, the total travel time at UE when there is no capacity reduction 

given by the AMPL implementation deviates far from that given by the C++ 

implementation. Based on the validation just conducted on the Sioux Falls with the 

original OD demand, it is concluded that AMPL implementation gave the wrong solution 
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again. Solutions for this test case from the two implementations are summarized in Table 

4.5-v. 

Table 4.5-v: C++-TAPAS-BFW vs. AMPL-MINOS on Sioux Falls Network with Demand 

Reduced by Half 

Besides the Sioux Falls network, the C++ and AMPL implementations are also 

tested on the Anaheim network shown in Figure 4.5-vi on the next page, which is a much 

larger real-world network test case with 914 links and 1406 OD pairs. The detailed 

information of the Anaheim network and the OD demand can also be found online and 

thus is not attached in the appendix.  

The C++ implementation solved this problem instance in 8 minutes and obtained 

a capacity reduction scheme that improved the UE flow efficiency by 0.24%. As a 

comparison, the AMPL implementation spends 58.3 hours on solving this problem 

instance and returns a solution that is obviously wrong: the total travel time at SO after 

capacity reduction is less than that before the capacity reduction. This cannot happen for 

the SO problem which is a convex minimization problem. Since the objective function of 

SO is to minimize the total travel time, the total travel time will not decrease after the 

capacity reductions because these capacity reductions will increase the link travel times. 

Implementation Methods C++-TAPAS-BFW AMPL-Minos 

Total Travel Time at UE 

Before Capacity Reduction 1870591.65 1637771.024 

After Capacity Reduction 1867495.14 
No effective link 

capacity reduction 

% Reduced 0.1655% NA 

Total Travel Time at SO 

Before Capacity Reduction 1815464.81 1585060.691 

After Capacity Reduction 1823643.35 
No effective link 

capacity reduction 

Computation Time 3.85 min 1.61 min 

Link Capacity Reduction 
CapRed[22]=854.948 No effective link 

capacity reduction CapRed[47]=2892.079 
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If no OD flow is traveling on the link that has capacity reduction, the total travel time will 

stay the same; otherwise it will increase because of the steeper curve of the link travel time 

to the link flow. Also, the total travel times at the UE from the AMPL implementation and 

the UE from the C++ implementation differ considerably. The solutions from both 

implementations are summarized in Table 4.5-vi on the next page. 

 

Figure 4.5-i: Anaheim Network 

The comparison between these two implementations demonstrates how sensitive 

a nonlinear commercial solver is to the scale of the problem it tries to solve. In our case, 

nonlinear solvers like MINOS and Knitro are not able to solve UE problems and SO 

problems correctly for networks of moderate size (i.e., the Sioux Falls network). The 

efficiency of the C++ implementation is resistant to the dimension escalation of the 
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problem instances. And this is because it adopts solution methods that exploit the 

structures of the specific nonlinear optimization problem, and that are particularly 

developed based on the features of the problem (i.e., TAPAS for the UE problem and BFW 

for the SO problem).  

Table 4.5-vi: C++-TAPAS-BFW vs. AMPL-MINOS on Anaheim Network 

Implementation Methods C++-TAPAS-BFW AMPL-Minos 

Total Travel Time at 
UE 

Before Capacity 
Reduction 

1419914.03 1337004 

After Capacity Reduction 1416527.17 1098210 

% Reduced 0.24% 17.86% 

Total Travel Time at 
SO 

Before Capacity 
Reduction 

1398386.57 1173096 

After Capacity Reduction 1399015.40 1018116 

Computation Time 7.98 min 58.3 hr 

Link Capacity Reduction 

CapRed[115]=1799.999 CapRed[124]=3156.8 

CapRed[187]=44.318 CapRed[130]=244.815 

CapRed[207]=365.729 CapRed[132]=981.843 

CapRed[218]=3085.825 CapRed[133]=2814.85 

CapRed[230]=2449.265 CapRed[134]=500.832 

CapRed[255]=1799.999 CapRed[162]=7858.65 

CapRed[291]=996.883 CapRed[208]=1786.13 

CapRed[297]=68.6416 CapRed[210]=702.264 

CapRed[304]=33.434 CapRed[250]=279.913 

CapRed[307]=35.541 CapRed[283]=1799.9 

CapRed[479]=1491.557 … 

 Conclusion 

This chapter demonstrates the existence of Braess paradox when links are not 

entirely removed from the network but the capacity is reduced by a certain amount, which 

can be considered as the generalized version of the Braess paradox. With user equilibrium 

(UE) flows, the generalized Braess paradox can be applied to network-level traffic 

management through selective link capacity reductions. OCREC aims at identifying the 
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links whose capacity reduction can reduce the total travel time at UE, and finding the 

optimal amount of capacity to decrease for the links identified.  

Both path-based model and link-based model are developed for OCREC. The 

path-based OCREC model has the objective of minimizing the total flow cost at UE after 

link capacity reductions, and has complementarity constraints to ensure the UE flow 

condition. The nonlinear solver Knitro is used to solve the path-based OCREC but can only 

handle very small problem instances. The link-based OCREC is a bi-level model where the 

upper level determines the link capacity reductions that minimizes the total travel time at 

UE, and the lower level finds the UE flow under a certain capacity reduction scenario. A 

heuristic is designed for the link-based OCREC to find a good combination of links and 

the desired capacity reduction amount on the links found.  The heuristic compares the link 

flows at UE and SO, identifies the links that are overused by the UE flows, and attempts 

capacity reductions on these links. If a more efficient UE is obtained, the capacity 

reduction will be accepted and the UE and SO will be recalculated based on the accepted 

link capacity reductions. The heuristic stops when no further capacity reduction on any of 

the links can improve the efficiency at UE. Inside the heuristic, the TAPAS algorithm is 

adopted to solve the UE problem and a bi-conjugate Frank-Wolfe (BFW) algorithm is 

developed to solve the SO problem. The heuristic is implemented in C++ and compared 

with the implementation in AMPL with MINOS to solve UE and SO. Computational results 

on various test cases show that the C++ implementation with TAPAS and BFW is much 

more resistant to the escalation of problem size, and can give correct solutions to large 

problem instances where the AMPL implementation fails. 

Since OCREC is a static model, its goal is to influence commuters’ routing habits 

by reducing the road capacities, so as to improve the overall efficiency of the traffic flows. 

The link capacity reduction can be achieved through traffic control methods like traffic 
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light phase adjustment, ramp meter phase adjustment, speed limit change, etc. A direction 

for possible future research is to investigate how these link capacity reductions will affect 

the dynamic evolution of traffic flows during the day. And design a system to dynamically 

identify links and the amount of capacity reductions to alleviate traffic congestion in real-

time based on a network-wide perspective.  
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Chapter 5 

MAINTENANCE SCHEDULING IN MULTI-MODAL NETWORKS (MS-MMN) 

 Introduction 

In large cities, people often have the options of traveling to their destinations 

through different transportation modes, such as private cars, buses, light-rails, ride-

sharing cars/vans, autonomous vehicles (in the near future), etc. Different travel modes 

serve portions of the origin-destination (OD) demands and/or compete for the same 

transportation infrastructure (i.e., road network). For the multi-modal traffic that 

competes for the road capacity, numerous studies have investigated the mixed flows of 

cars and trucks (e.g., Bliemer, 2000; Chanut and Buisson, 2003; Ferrari, 2009; Ferrari, 

2011; Mesa-Arango and Ukkusuri, 2014; Wu et al., 2006; Zhang et al., 2002; etc.). As 

greater traffic of electric vehicles and self-driving cars being predicted, more research 

attention has been drawn to the multi-modal traffic consisting gasoline vehicles and 

electric vehicles (e.g., Agrawal et al., 2016; Jiang and Xie, 2014; Xu et al., 2017), and the 

mixed flows of human-driving vehicles and autonomous vehicles (e.g., Davis, 2007; 

Mahmassani, 2016). These studies, albeit innovative, are limited to the assumption that 

all traffic flows of different travel modes are user equilibrium (UE) flows as described in 

Wardrop’s First Principle (Wardrop, 1952), where every traveler routes through the 

network to minimize his/her own travel time. 

This chapter studies the mixed flow of two travel modes where the travelers of 

each mode have distinct routing objectives. Travelers of the first travel mode (i.e., private 

cars) choose the routes that minimize individual travel times and reach user equilibrium. 

And the travelers of the second travel mode choose the routes that minimize the overall 
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travel time of all travelers and achieve system optimum (SO). One example of such travel 

mode is autonomous vehicles mode where the route to take passengers may be decided 

centrally. 

 As discussed in Section 2.3, literature reviewed on maintenance scheduling in 

transportation networks only considered single mode traffic flows -- either pure UE flows 

or pure SO flows. This chapter makes the first attempt to investigate the maintenance 

scheduling problem with the consideration of multi-modal traffic flows that consist of both 

UE flows and SO flows. To approach this problem, a bi-level optimization model is 

developed in the next section, where the upper level is a scheduling problem and the lower 

level are a series of UE flow and SO flow assignment problems for each day in the planning 

horizon based on a feasible schedule. An iterative UE-SO assignment algorithm is 

developed for the lower level problem in Section 5.3. Section 5.4 applies the genetic 

algorithm to solve the problem of maintenance scheduling in multi-modal networks (MS-

MMN). The computational experiments conducted on various test cases are summarized 

in Section 5.5. The research findings presented in this chapter are summarized in Section 

5.6. 

 MS-MMN Model 

In the problem of maintenance scheduling in multi-modal networks (MS-MMN), 

a set of links need to be repaired before a common due date and each lane of these links 

can constitute an independent work zone to be scheduled. Once a lane is closed for repair, 

it cannot open to serve flows until it is repaired. Upon maintenance completion, lanes will 

have a small capacity increase since it is commonsense that the road condition should be 

improved and the capacity should increase after maintenance. The available capacity of 

the links may change from day to day due to closing lanes for repair and reopening lanes 
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that are repaired. On each day in the planning horizon, there are some OD flows which are 

UE flows and other OD flows that are SO flows. They route through the network based on 

the available link capacities on each day. The objective of the MS-MMN problem is to 

schedule lane closures so that all maintenance work can be completed before the common 

due date, and the total travel time of all OD flows are minimized in the planning time 

horizon.  

The MS-MMN is formulated as a bi-level mixed integer nonlinear program. The 

upper level is the scheduling problem that obtains lane closure schedules. Denote 𝑦𝑖𝑡 as 

the total flow from all OD demand on link 𝑖 on day 𝑡, and 𝑐𝑖(𝑦𝑖𝑡) as the travel time function 

of link 𝑖  evaluated at 𝑦𝑖𝑡 , the objective of the upper level problem, which is also the 

objective of the MS-MMN, is 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖(𝑦𝑖𝑡) ∗𝑖∈𝐸𝑡∈[1,𝑇] 𝑦𝑖𝑡 , where 𝑇  is the 

maintenance completion date and 𝐸 is the link set in the network.  

Binary variables 𝑠𝑖𝑚𝑡  are introduced to indicate whether the repair of the 𝑚𝑡ℎ 

lane of link 𝑖  starts on day  𝑡 , and 𝑠𝑖𝑚𝑡 = 1  if it is. Hence, we have the constraints 

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1 for ∀𝑖 ∈ 𝑅 and ∀𝑚 ∈ [1, 𝑛𝑖], where 𝑅 is the set of links that need repair and 

𝑛𝑖 is the number of lanes in link 𝑖. This set of constraints force every lane of all the links 

that need repair to have one and only one repair start date. 

To indicate whether 𝑚𝑡ℎ lane of link 𝑖 is closed for maintenance on day 𝑡, binary 

variables 𝑥𝑖𝑚𝑡 are added to the model and it equals to 1 if the lane is closed. Let 𝑝𝑖 be the 

number of days needed to repair a lane of link 𝑖, constraints ∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1  for ∀𝑖 ∈ 𝑅 and 

∀𝑚 ∈ [1, 𝑛𝑖]  are formulated to ensure the repair on all the links be completed by the 

common due date 𝑇. Since each lane of the links that need maintenance have one and only 

one repair start date and the number of days needed to repair a lane is given, whether a 

lane is closed or not on a day is determined once the repair start date of that lane is 
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determined. And thus, we develop the set of constraints 𝑥𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1)

 for 

∀𝑖 ∈ 𝑅, ∀𝑡 ∈ 𝑇 and ∀𝑚 ∈ [1, 𝑛𝑖] to make sure that once a lane is closed for repair, it will not 

open to serve traffic flows until the repair work on this lane is finished and that it will be 

open on other dates. Constraints ∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0 for ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∑ 𝑥𝑖𝑚𝑡 = 0

𝑡=𝑇
𝑡=1  

for ∀𝑖 ∉ 𝑅 and ∀𝑚 ∈ [1, 𝑛𝑖] are added to the model so that all the lanes of links that do not 

need repair will not have maintenance start date and will be open to serve the flows 

throughout the project period. 

In addition, binary variables 𝑣𝑖𝑚𝑡 are introduced to calculate the increased lane 

capacities and 𝑣𝑖𝑚𝑡  equals to 1 if lane 𝑚  of link 𝑖  is repaired before day 𝑡 . 

Constraints 𝑣𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1 , for ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] determine the 

values of 𝑣𝑖𝑚𝑡 given the values of 𝑠𝑖𝑚𝑡. In the constraints, the date ranges from 𝑝𝑖 + 1 to 𝑇 

since 𝑝𝑖 + 1 is the earliest day that the lane can open and serve traffic flows, because even 

if the maintenance starts on day 1, it would take 𝑝𝑖 days to complete the repair work for 

this lane. Constraints 𝑣𝑖𝑚𝑡 = 0 , for ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]  and ∀𝑡 ∈ [1, 𝑝𝑖]  make sure each 

lane of the links that need maintenance stay in the status of not repaired in the first 𝑝𝑖 days. 

And constraints 𝑣𝑖𝑚𝑡 = 0, for ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∀𝑡 ∈ [1, 𝑇] force lanes of links that 

do not need repair stay in the status quo throughout the project period.  

Let 𝜃 be the percentage of capacity increase after a lane is repaired, and let 𝑢𝑖 be 

the lane capacity of link 𝑖, then the available capacity of link 𝑖 on day 𝑡 is (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 +

∑ 𝜃𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1 )𝑢𝑖 . Although there is no constraint based on link capacity being explicitly 

formulated in MS-MMN, link overflow is contained by adopting link travel time functions 

that increase exponentially once the link flow exceeds the link available capacity. One 

example of this type of link travel time function is the function developed by Bureau of 

Public Roads (BPR), which is: 
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𝑐𝑖(𝑦𝑖𝑡) = 𝑐𝑖
0 [1 + 𝛼 (

𝑦𝑖𝑡

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  + 𝜃 ∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)

𝛽

] 

where 𝑐𝑖
0  is the free-flow travel time on link 𝑖  and 𝛼  and 𝛽  are parameters. This BPR 

function is adopted as the link travel time function for in this chapter. 

Denote 𝑦𝑖𝑡
𝑈𝐸 as the total flow from all OD pairs that generate UE flows, and denote 

𝑦𝑖𝑡
𝑆𝑂  as the total flow from all OD pairs that generate SO flows, the flow consistency 

constraints 𝑦𝑖𝑡 = 𝑦𝑖𝑡
𝑈𝐸 + 𝑦𝑖𝑡

𝑆𝑂  are formulated for ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]  with the presumption 

that each unit of UE flow has the same effect on the link travel time as each unit of SO flow 

does. Denote 𝐷𝑘
𝑈𝐸  as the UE flow and 𝐷𝑘

𝑆𝑂  as the SO flow generated by OD pair 𝑘 

respectively, constraint 𝑦𝑖𝑡 ≤ (∑ 𝐷𝑘
𝑈𝐸

𝑘∈𝑂𝐷𝑈𝐸 + ∑ 𝐷𝑘
𝑆𝑂

𝑘∈𝑂𝐷𝑆𝑂 )(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  ) is added for 

∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇] to ensure entirely closed links not to serve any flows.  

The lower-level UE flow assignment problem and SO flow assignment problem are 

formulated for each day in the planning horizon. For a specific day, the objective of the UE 

assignment problem is the Beckmann’s function 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∫ 𝑐𝑖(𝜔)𝑑𝜔
𝑦𝑖𝑡
𝑈𝐸

𝑖∈𝐸  that ensures 

the UE flow condition. The flow consistency constraint 𝑦𝑖𝑡
𝑈𝐸 = ∑ 𝑦𝑖𝑘𝑡

𝑈𝐸
𝑘∈𝑂𝐷𝑈𝐸  is added for 

∀𝑖 ∈ 𝐸 so that the UE flows from all OD pairs are accounted for the total UE flow on link 𝑖. 

For each OD pair that generates UE flows on each day, flow conservation 

constraints, consisting of three groups, are needed. The first group of constraints makes 

sure the total incoming UE flow units minus the total outgoing UE flow units equal to the 

OD demand for the origin node of the OD pair. The first part is formulated as 𝐷𝑘
𝑈𝐸 =

∑ 𝑦𝑖𝑘𝑡
𝑈𝐸

{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

𝑈𝐸−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡
𝑈𝐸

{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

𝑈𝐸−,𝑗∈𝐸}  for ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , where 𝑦𝑗𝑘𝑡
𝑈𝐸  is the UE flow of 

OD pair 𝑘 on link 𝑗 on day 𝑡, 𝑂𝐷𝐾
𝑈𝐸− is the origin node of OD pair 𝑘 that generates the UE 

flow, 𝐸𝑖
−  is the head node of link 𝑖  and 𝐸𝑗

+  is the tail node of link 𝑗. The second group 
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ensures the total outgoing UE flow units minus the total incoming UE flow units equal to 

the demand of OD pair 𝑘  for its destination node, and is formulated as 𝐷𝑘
𝑈𝐸 =

∑ 𝑦𝑖𝑘𝑡
𝑈𝐸

{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

𝑈𝐸+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡
𝑈𝐸

{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

𝑈𝐸+,𝑗∈𝐸}  for ∀𝑘 ∈ 𝑂𝐷, where 𝑂𝐷𝐾
𝑈𝐸+ is the destination 

node of OD pair 𝑘 that generates the UE flow, 𝐸𝑖
+ is the tail node of link 𝑖 and 𝐸𝑗

− is the 

head node of link 𝑗. For the rest of the nodes, other than origin and destination nodes of 

OD pair 𝑘, the total incoming UE flows on the node from the origin of OD pair 𝑘 should 

equal to the total outgoing UE flows from the node to the destination of the OD pair 𝑘. 

This is the third group of the flow conservation constraints and it is formulated as 

∑ 𝑦𝑖𝑘𝑡
𝑈𝐸

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡

𝑈𝐸
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸}  for ∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
𝑈𝐸− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

𝑈𝐸+ ≠ 𝑙} , where 𝑁 

is the set of nodes in the network.  

As to the SO assignment problem on each day, the objective function is 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖(𝑦𝑖𝑡) ∗ 𝑦𝑖𝑡𝑖∈𝐸 , which is to have the SO flows to choose the routes that will 

minimize the total travel time of all the OD flows. It has flow consistency constraints and 

flow conservation constraints that are similar to those of the UE assignment problem, but 

are formulated with respect to the SO flows and OD pairs that generate SO flows.  

The aforementioned sets, parameters, variables and functions are listed in Table 

5.2 – i: 

Table 5.2-i: Notations for MS-MMN 

Term Definition 

Sets  

𝑵  Node set of the network 

𝑬  The set of existing links in the network 

𝑹  The set of existing links that need to be repaired in the network, 𝑅 ⊆ 𝐸 

𝑶𝑫𝑼𝑬  The set of Origin-Destination pairs of UE flows  
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Term Definition 

Sets  

𝑶𝑫𝑺𝑶  The set of Origin-Destination pairs of SO flows 

Parameters  

𝑻  Completion date for all the maintenance work (the earliest start date of a work 

zone is Day 1) 

𝒏𝒊  Number of lanes of link 𝑖, 𝑖 ∈ 𝐸 

𝒖𝒊  Capacity of a lane of link 𝑖, 𝑖 ∈ 𝐸 

𝜽  The percentage of capacity increase after a lane is repaired 

𝒄𝒊
𝟎  The free-flow travel time on link 𝑖, 𝑖 ∈ 𝐸 

𝒑𝒊  The number of days needed to repair a lane of link 𝑖, 𝑖 ∈ 𝑅 

𝑬𝒊
−  Start node of link 𝑖, 𝑖 ∈ 𝐸 

𝑬𝒊
+  End node of link 𝑖, 𝑖 ∈ 𝐸 

𝑶𝑫𝒌
𝑼𝑬−  Origin node of OD pair 𝑘, 𝑘 ∈ 𝑂𝐷𝑈𝐸  

𝑶𝑫𝒌
𝑼𝑬+  Destination node of OD pair 𝑘, 𝑘 ∈ 𝑂𝐷𝑈𝐸  

𝑶𝑫𝒌
𝑺𝑶−  Origin node of OD pair 𝑘, 𝑘 ∈ 𝑂𝐷𝑆𝑂  

𝑶𝑫𝒌
𝑺𝑶+  Destination node of OD pair 𝑘, 𝑘 ∈ 𝑂𝐷𝑆𝑂  

𝑫𝒌
𝑼𝑬  Flow demand of OD pair 𝑘, 𝑘 ∈ 𝑂𝐷𝑈𝐸  

𝑫𝒌
𝑺𝑶  Flow demand of OD pair 𝑘, 𝑘 ∈ 𝑂𝐷𝑆𝑂  

Variables  

𝒔𝒊𝒎𝒕  Binary variable indicating whether to repair on the 𝑚𝑡ℎ lane of link 𝑖 starts on 

day 𝑡. If repair work starts on day 𝑡, 𝑠𝑖𝑚𝑡 = 1; otherwise, 𝑠𝑖𝑚𝑡 = 0  

𝒙𝒊𝒎𝒕  Binary variable indicating whether the 𝑚𝑡ℎ  lane of link 𝑖  is closed for 

maintenance on day 𝑡, if it is closed, 𝑥𝑖𝑚𝑡 = 1; otherwise 𝑥𝑖𝑚𝑡 = 0  

𝒚𝒊𝒌𝒕
𝑼𝑬  The flow units incurred by the UE flow of OD pair 𝑘 on link 𝑖 on day 𝑡 

𝒚𝒊𝒕
𝑼𝑬  The flow units from all UE flows on link 𝑖 on day 𝑡 

𝒚𝒊𝒌𝒕
𝑺𝑶   The flow units incurred by the SO flow of OD pair 𝑘 on link 𝑖 on day 𝑡 

𝒚𝒊𝒕
𝑺𝑶  The flow units from all SO flows on link 𝑖 on day 𝑡 

𝒚𝒊𝒕  The total amount of flows on link 𝑖 on day 𝑡 from all UE and SO OD pairs 

𝒗𝒊𝒎𝒕  Binary variable indicating whether the 𝑚𝑡ℎ lane of link 𝑖 is repaired before day 

𝑡, if it is, 𝑣𝑖𝑚𝑡 = 1, otherwise 0; for all the links that don't need maintenance, 

𝑣𝑖𝑚𝑡 = 0 all the time 
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Term Definition 

Functions  

𝒄𝒊(𝒚𝒊𝒕) Travel time on link 𝑖 when the flow on the link is 𝑦𝑖𝑡. BPR function is used, for 

∀𝑖 ∈ 𝐸\𝑅 , 𝑐𝑖(𝑦𝑖𝑡) = 𝑐𝑖
0 [1 + 𝛼 (

𝑦𝑖𝑡

𝑢𝑖𝑛𝑖
)
𝛽

] ; for ∀𝑖 ∈ 𝑅 , 𝑐𝑖(𝑦𝑖𝑡) = 𝑐𝑖
0 [1 +

𝛼 (
𝑦𝑖𝑡

𝑢𝑖(𝑛𝑖−∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  +𝜃 ∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)

𝛽

]. 𝛼 > 0, 𝛽 > 0. 

With the notations above, the complete MS-MMN model is presented below: 

MS-MMN: 

Upper Level: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒔) = ∑ ∑ 𝑐𝑖(𝑦𝑖𝑡) ∗ 𝑦𝑖𝑡
𝑇
𝑡=1𝑖∈𝐸       (1) 

𝑠. 𝑡.            

  

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1,     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (2) 

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0,     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (3) 

𝑥𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1)

,   ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ [1, 𝑛𝑖]  (4) 

∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1 ,     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (5) 

∑ 𝑥𝑖𝑚𝑡 = 0
𝑡=𝑇
𝑡=1 ,     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (6) 

𝑣𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1 ,    ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] (7) 

𝑣𝑖𝑚𝑡 = 0,     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑝𝑖] (8) 

𝑣𝑖𝑚𝑡 = 0,     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (9) 

𝑠𝑖𝑚𝑡, 𝑥𝑖𝑚𝑡, 𝑣𝑖𝑚𝑡 ∈ {0, 1},   ∀𝑖 ∈ 𝐸, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (10) 

𝑦𝑖𝑡 = 𝑦𝑖𝑡
𝑈𝐸 + 𝑦𝑖𝑡

𝑆𝑂,    ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]   (12) 

𝑦𝑖𝑡 ≤ (∑ 𝐷𝑘
𝑈𝐸

𝑘∈𝑂𝐷𝑈𝐸 + ∑ 𝐷𝑘
𝑆𝑂

𝑘∈𝑂𝐷𝑆𝑂 )(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  ),∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇]  (13) 
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Lower Level – UE Flow Assignment: 

For ∀𝑡 ∈ [1, 𝑇]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∫ 𝑐𝑖(𝜔, 𝑦𝑖𝑡
𝑆𝑂)𝑑𝜔

𝑦𝑖𝑡
𝑈𝐸

𝑖∈𝐸        (14) 

𝑠. 𝑡.            

  

𝑦𝑖𝑡
𝑈𝐸 = ∑ 𝑦𝑖𝑘𝑡

𝑈𝐸
𝑘∈𝑂𝐷𝑈𝐸 ,     ∀𝑖 ∈ 𝐸    (15) 

𝐷𝑘
𝑈𝐸 = ∑ 𝑦𝑖𝑘𝑡

𝑈𝐸
{𝑖:𝐸𝑖

−=𝑂𝐷𝑘
𝑈𝐸−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑈𝐸
{𝑗:𝐸𝑗

+=𝑂𝐷𝑘
𝑈𝐸−,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷𝑈𝐸   (16) 

𝐷𝑘
𝑈𝐸 = ∑ 𝑦𝑖𝑘𝑡

𝑈𝐸
{𝑖:𝐸𝑖

+=𝑂𝐷𝑘
𝑈𝐸+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑈𝐸
{𝑗:𝐸𝑗

−=𝑂𝐷𝑘
𝑈𝐸+,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷𝑈𝐸   (17) 

∑ 𝑦𝑖𝑘𝑡
𝑈𝐸

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡

𝑈𝐸
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} , ∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
𝑈𝐸− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

𝑈𝐸+ ≠ 𝑙} (18) 

𝑦𝑖𝑘𝑡
𝑈𝐸 ≥ 0,      ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷𝑈𝐸  (19) 

Lower Level – SO Flow Assignment: 

For ∀𝑡 ∈ [1, 𝑇]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸) ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸)𝑖∈𝐸       (20) 

𝑠. 𝑡.            

  

𝑦𝑖𝑡
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
𝑘∈𝑂𝐷𝑆𝑂 ,     ∀𝑖 ∈ 𝐸    (21) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
{𝑖:𝐸𝑖

−=𝑂𝐷𝑘
𝑆𝑂−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

+=𝑂𝐷𝑘
𝑆𝑂−,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷𝑆𝑂   (22) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
{𝑖:𝐸𝑖

+=𝑂𝐷𝑘
𝑆𝑂+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

−=𝑂𝐷𝑘
𝑆𝑂+,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷𝑆𝑂   (23) 

∑ 𝑦𝑖𝑘𝑡
𝑆𝑂

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} ,∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘: 𝑂𝐷𝑘
𝑆𝑂− ≠ 𝑙}⋂{𝑘:𝑂𝐷𝑘

𝑆𝑂+ ≠ 𝑙} (24) 

𝑦𝑖𝑘𝑡
𝑆𝑂 ≥ 0,      ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷𝑆𝑂  (25) 

The MS-MMN model formulated is a challenging bi-level mixed-integer 

nonlinear program that has two parallel subproblems in the lower level. Currently there is 

no commercial solver available to handle this type of problem. Based on the bi-level 

structure of MS-MMN, the solution methods developed in the following two sections 
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address the upper level scheduling problem and the lower level UE and SO assignment 

problems separately. 

 Solution Approach for the Lower Level Problem 

Although the UE flow assignment problem and the SO flow assignment problem 

are two separate problems in the lower level of MS-MMN, they are connected by the link 

travel times. Given the schedule of lane closures on a certain day, the UE assignment will 

change if the SO assignment changes because link travel times have changed, and vice 

versa. Hence, one intuitive solution to the lower level of MS-MMN is the iterative UE-SO 

assignment algorithm developed in this section, which repetitively fixes the SO flows and 

solves the UE assignment problem, then fixes the UE flows obtained and solves the SO 

flow assignment, until the UE flows meet the UE condition and at the same time the SO 

flows minimizes the total travel time of all the flows. This section first proves the existence 

of the converged UE-SO flows, and then presents the iterative UE-SO assignment 

algorithm.  

The converged UE and SO flow is the stationary status that both the UE flows and 

the SO flows are at their optimality for the UE assignment problem and the SO assignment 

problem respectively. That means the combined UE and SO flows result in the link travel 

times that satisfy both the UE condition for the UE flows and the SO condition for the SO 

flows. The existence of this stationary status is stated in the following lemma.  

Lemma 5.3-1: 

Given link available capacities and the origin-destination (OD) demand for user 

equilibrium (UE) flows and system optimum (SO) flows, there exists a routing pattern for 

all the OD demand that both UE flows and SO flows are at their optimality. 
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Proof of Lemma 5.3-1: 

Besides the link-based formulation for the UE assignment problem shown in the 

previous section, there is an equivalent path-based formulation: 

Lower Level – UE Flow Assignment (Path-based Formulation): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∫ 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝜔)𝑑𝜔

𝑦𝑖𝑡
𝑈𝐸

𝑖∈𝐸        (14) 

𝑠. 𝑡.            

  

∑ 𝑓𝑝
𝑘,𝑡 = 𝐷𝑘

𝑈𝐸
𝑝∈𝑃𝑘      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸   (26) 

𝑦𝑖𝑡
𝑈𝐸 = ∑ ∑ 𝑓𝑝

𝑘,𝑡𝛿𝑖,𝑝
𝑘

𝑝∈𝑃𝑘𝑘∈𝑂𝐷𝑈𝐸    ∀𝑖 ∈ 𝐸    (27) 

𝑓𝑝
𝑘,𝑡 ≥ 0      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (28) 

𝑦𝑖𝑡
𝑈𝐸 ≥ 0      ∀𝑖 ∈ 𝐸    (19) 

On any specific day 𝑡, variable 𝑓𝑝
𝑘,𝑡 is the amount of flows of OD pair 𝑘 that travel 

on path 𝑝. 𝛿𝑖,𝑝
𝑘  is the parameter indicating whether link 𝑖 is along path 𝑝 for OD pair 𝑘. 

𝛿𝑖,𝑝
𝑘 = 1 if it is and 𝛿𝑖,𝑝

𝑘 = 0 otherwise. 𝑃𝑘 is the path set of the OD pair 𝑘. Constraint (26) 

makes sure all OD demands are satisfied. Constraint (27) ensures the flows from all OD 

pairs that generate UE flows are accounted for the total UE flow on the link.  

Since another way to interpret the UE principle is that paths being used by flows 

have the same path travel time, and it equals to the minimum travel time between the OD 

pair, the UE condition can be ensured by a set of linear constraints with the introduction 

of binary variables instead of using Beckmann’s function as the objective. For day 𝑡 in the 

planning horizon, denote 𝑐𝑝
𝑘,𝑡 as the travel time on path 𝑝 of OD pair 𝑘, and 𝑐min

𝑘,𝑡  as the 

minimum travel time of all the paths of OD pair 𝑘. Introduce binary variable 𝑤𝑝
𝑘,𝑡 for ∀𝑘 ∈

𝑂𝐷, ∀𝑝 ∈ 𝑃𝑘, which equals 1 if path 𝑝 has longer travel time than the minimum travel time 
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between OD pair 𝑘 and 0 otherwise, the UE condition can be ensured by the following 

constraints: 

𝑐𝑝
𝑘,𝑡 = ∑ 𝛿𝑖,𝑝

𝑘 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂, 𝑦𝑖𝑡

𝑈𝐸)i∈𝐸   ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (29) 

𝑐𝑚𝑖𝑛
𝑘,𝑡 ≤ 𝑐𝑝

𝑘,𝑡    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (30) 

𝑐𝑝
𝑘,𝑡 − 𝑐𝑚𝑖𝑛

𝑘,𝑡 ≤ 𝑀𝑤𝑝
𝑘,𝑡   ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (31) 

𝑓𝑝
𝑘,𝑡 ≤ 𝑀(1 − 𝑤𝑝

𝑘,𝑡)   ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (32) 

𝑐𝑝
𝑘,𝑡 ≥ 0    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (33) 

𝑐𝑚𝑖𝑛
𝑘,𝑡 ≥ 0    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (34) 

𝑤𝑝
𝑘,𝑡 ∈ {0, 1}    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘    (35) 

Constraint (29) calculates the path travel time and constraint (30) ensures 𝑐min
𝑘,𝑡  

is the minimum travel time between OD pair 𝑘. Constraint (31) and (32) make sure paths 

will not be used by flows of OD pair 𝑘 if its travel time is longer than the minimum travel 

time between the OD pair, and only paths with travel time equal to the minimum travel 

time can have flows on them. Hence the UE assignment problem is equivalent to finding 

a feasible solution to the set of constraints from (26) to (35). Therefore, the UE flow 

assignment problem and the SO flow assignment problem in the lower level can be 

combined as one optimization problem: 

Lower Level: UE-SO Flow Assignment 

For ∀𝑡 ∈ [1, 𝑇]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸) ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸)𝑖∈𝐸       (20) 

𝑠. 𝑡.            

𝑦𝑖𝑡
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
𝑘∈𝑂𝐷𝑆𝑂      ∀𝑖 ∈ 𝐸    (21) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
{𝑖:𝐸𝑖

−=𝑂𝐷𝑘
𝑆𝑂−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

+=𝑂𝐷𝑘
𝑆𝑂−,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷𝑆𝑂   (22) 
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𝐷𝑘
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
{𝑖:𝐸𝑖

+=𝑂𝐷𝑘
𝑆𝑂+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

−=𝑂𝐷𝑘
𝑆𝑂+,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷𝑆𝑂   (23) 

∑ 𝑦𝑖𝑘𝑡
𝑆𝑂

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} , ∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
𝑆𝑂− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

𝑆𝑂+ ≠ 𝑙} (24) 

∑ 𝑓𝑝
𝑘,𝑡 = 𝐷𝑘

𝑈𝐸
𝑝∈𝑃𝑘      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸   (26) 

𝑦𝑖𝑡
𝑈𝐸 = ∑ ∑ 𝑓𝑝

𝑘,𝑡𝛿𝑖,𝑝
𝑘

𝑝∈𝑃𝑘𝑘∈𝑂𝐷𝑈𝐸    ∀𝑖 ∈ 𝐸    (27) 

𝑐𝑝
𝑘,𝑡 = ∑ 𝛿𝑖,𝑝

𝑘 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂, 𝑦𝑖𝑡

𝑈𝐸)i∈𝐸     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (29) 

𝑐𝑚𝑖𝑛
𝑘,𝑡 ≤ 𝑐𝑝

𝑘,𝑡      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (30) 

𝑐𝑝
𝑘,𝑡 − 𝑐𝑚𝑖𝑛

𝑘,𝑡 ≤ 𝑀𝑤𝑝
𝑘,𝑡     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (31) 

𝑓𝑝
𝑘,𝑡 ≤ 𝑀(1 − 𝑤𝑝

𝑘,𝑡)     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (32) 

𝑓𝑝
𝑘,𝑡 ≥ 0      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (28) 

𝑦𝑖𝑘𝑡
𝑆𝑂 ≥ 0      ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷𝑆𝑂  (25) 

𝑦𝑖𝑡
𝑈𝐸 ≥ 0      ∀𝑖 ∈ 𝐸    (19) 

𝑐𝑝
𝑘,𝑡 ≥ 0      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (33) 

𝑐𝑚𝑖𝑛
𝑘,𝑡 ≥ 0      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (34) 

𝑤𝑝
𝑘,𝑡 ∈ {0, 1}      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  (35) 

The UE-SO flow assignment problem is feasible since it does not have 

contradicting constraints. Also, the feasible region is bounded and closed, because all 

variables are bounded by the OD demand either directly or indirectly, and the feasible 

space defined by each constraint contains its boundary. Hence, there exist optimal 

solutions to the UE-SO flow assignment problem. Because at the optimality the SO flows 

(𝒚𝑺𝑶) minimize the total travel time of all flows and the UE flows (𝒚𝑼𝑬) must satisfy the 

UE condition ensured by constraint (31) and (32), there exists a routing pattern for all the 

OD demand that UE flows satisfy the UE condition and SO flows are at their optimality.  



 

136 
 

The iterative UE-SO assignment solves the UE assignment and the SO 

assignment alternately. The algorithm adopted for the UE assignment problem is the 

Traffic Assignment with Paired Alternative Segments (TAPAS) algorithm developed by 

Bar-Gera (2010). When the UE assignment is being solved, the SO flows are considered 

fixed. And thus, the link travel time function in the objective of the UE assignment 

becomes: 

𝑐𝑖(𝑦𝑖𝑡
𝑈𝐸) = 𝑐𝑖

0 [1 + 𝛼 (
𝑦𝑖𝑡
𝑈𝐸 + 𝑦𝑖𝑡

𝑆𝑂̅̅ ̅̅ ̅

𝑢𝑖(𝑛𝑖 −∑ 𝑥𝑖𝑚𝑡̅̅ ̅̅ ̅̅
𝑛𝑖
𝑚=1  + 𝜃 ∑ 𝑣𝑖𝑚𝑡̅̅ ̅̅ ̅̅

𝑛𝑖
𝑚=1 )

)

𝛽

] 

where 𝑦𝑖𝑡
𝑆𝑂̅̅ ̅̅ ̅ (∀𝑖 ∈ 𝐸) are the fixed SO flows and 𝑥𝑖𝑚𝑡̅̅ ̅̅ ̅̅  and 𝑣𝑖𝑚𝑡̅̅ ̅̅ ̅̅  have known values derived 

from a given lane closure schedule. Since the convergence of TAPAS algorithm is proved 

in Bar-Gera (2010), the UE flows will converge given fixed 𝒚𝒕
𝑺𝑶. 

The SO assignment problem with fixed 𝒚𝒕
𝑼𝑬  is a convex optimization problem 

because its objective function is convex since its Hessian is a positive definite diagonal 

matrix, and the feasible region is a convex set since it is defined by linear constraints. 

Hence, the SO assignment given fixed 𝒚𝒕
𝑼𝑬 can be solved by the Bi-conjugate Frank-Wolfe 

(BFW) algorithm adopted in Chapter 4 with a minor adjustment in the direction-finding 

subproblem and step size subproblem. The objective function for the SO assignment with 

fixed 𝒚𝒕
𝑼𝑬 is: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒚𝑺𝑶) =∑𝑐𝑖
0 [1 + 𝛼 (

𝑦𝑖𝑡
𝑆𝑂 + 𝑦

𝑖𝑡
𝑈𝐸̅̅ ̅̅

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡̅̅ ̅̅ ̅
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡̅̅ ̅̅ ̅
𝑛𝑖
𝑚=1 )

)

𝛽

] (𝑦𝑖𝑡
𝑆𝑂 + 𝑦

𝑖𝑡
𝑈𝐸̅̅ ̅̅ )

𝑖∈𝐸

  

where 𝑦𝑖𝑡
𝑈𝐸̅̅ ̅̅ ̅, 𝑥𝑖𝑚𝑡̅̅ ̅̅ ̅̅  and 𝑣𝑖𝑚𝑡̅̅ ̅̅ ̅̅  are all treated as parameters.  

Suppose at 𝑛𝑡ℎ  iteration, feasible flows 𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅  for ∀𝑖 ∈ 𝐸  are obtained, the 

gradient of the objective function is: 
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𝛻𝑧𝑖𝑡(𝒚𝑛
𝑆𝑂̅̅ ̅̅ ̅) = 𝑐𝑖

0 ∗ (1 + 𝛼(𝛽 + 1)(
𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1 )

)

𝛽

) , ∀𝑖 ∈ 𝐸 

where 𝒚𝑛
𝑆𝑂 is the vector of 𝑦𝑖𝑡

𝑆𝑂(𝑛) ∀𝑖 ∈ 𝐸. Let 𝒘𝑛 denote the descending direction for the 

feasible solution 𝒚𝑛
𝑆𝑂̅̅ ̅̅ ̅, the direction-finding subproblem is:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝒘𝑛
𝑇𝛻𝒛𝒕(𝒚𝑛

𝑆𝑂̅̅ ̅̅ ̅) = ∑ 𝑐𝑖
0 ∗ (1 + 𝛼(𝛽 + 1)(

𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅̅

𝑢𝑖(𝑛𝑖−∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  +𝜃∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)

𝛽

)𝑤𝑖𝑡(𝑛)𝑖∈𝐸

 (20’) 
𝑠. 𝑡.:  

𝑤𝑖𝑡 = ∑ 𝑤𝑖𝑘𝑡𝑘∈𝑂𝐷𝑆𝑂      ∀𝑖 ∈ 𝐸    (21’) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑤𝑖𝑘𝑡{𝑖:𝐸𝑖

−=𝑂𝐷𝑘
𝑆𝑂−,𝑖∈𝐸} −∑ 𝑤𝑖𝑘𝑡{𝑗:𝐸𝑗

+=𝑂𝐷𝑘
𝑆𝑂−,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷𝑆𝑂   (22’) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑤𝑖𝑘𝑡{𝑖:𝐸𝑖

+=𝑂𝐷𝑘
𝑆𝑂+,𝑖∈𝐸} −∑ 𝑤𝑖𝑘𝑡{𝑗:𝐸𝑗

−=𝑂𝐷𝑘
𝑆𝑂+,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷𝑆𝑂   (23’) 

∑ 𝑤𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑤𝑖𝑘𝑡{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} ,∀𝑙 ∈ 𝑁, ∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
𝑆𝑂− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

𝑆𝑂+ ≠ 𝑙} (24’) 

𝑤𝑖𝑘𝑡 ≥ 0      ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷𝑆𝑂  (25’) 

This direction-finding subproblem can be perceived as a series of min-cost flow 

problems for the OD pairs with fixed unit flow cost 𝑐𝑖
0 ∗ (1 + 𝛼(𝛽 +

1) (
𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅̅

𝑢𝑖(𝑛𝑖−∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  +𝜃∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)
𝛽

) ∀𝑖 ∈ 𝐸. Since there is no hard link capacity constraint, 𝒚𝑛 

can be obtained by all-or-nothing assignment based on the “skewed” link cost 𝑐𝑖
0 ∗

(1 + 𝛼(𝛽 + 1) (
𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅̅

𝑢𝑖(𝑛𝑖−∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  +𝜃∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)
𝛽

), which finds the shortest path for each OD pair 

and then send all the flows of the OD pair along that path. As a comparison, the true link 

travel time is 𝑐𝑖
0 ∗ (1 + 𝛼 (

𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅̅

𝑢𝑖(𝑛𝑖−∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  +𝜃∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)
𝛽

), 

Let 𝒘̅𝑛  be the descending direction obtained from the direction-finding 

subproblem, the step size subproblem is:  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝑡(𝜆)

=∑𝑐𝑖
0 ∗ (1 + 𝛼 (

(𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅) + 𝜆(𝑤𝑖𝑡(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1 )

)

β

)

𝑖∈𝐸

∗ [(𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅) + 𝜆(𝑤𝑖𝑡(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅)],  

𝑠. 𝑡. :  𝜆 ∈ (0,  1) 

which is,  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝑡(𝜆)

=∑𝑐𝑖
0 ∗ (1 + 𝛼(

(𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜆(𝑤𝑖𝑡(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑦𝑖𝑡

𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅)) + 𝑦𝑖𝑡
𝑈𝐸̅̅ ̅̅ ̅

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  + 𝜃∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)

𝛽

)

𝑖∈𝐸

∗ [(𝑦𝑖𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜆(𝑤𝑖𝑡(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑦𝑖𝑡

𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅)) + 𝑦𝑖𝑡
𝑈𝐸̅̅ ̅̅ ̅] 

 𝑠. 𝑡. :  𝜆 ∈ (0,  1) 

We do not need the flow feasibility constraints since both 𝒚𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝒘𝑡(𝑛)̅̅ ̅̅ ̅̅ ̅̅  satisfy the 

flow feasibility constraints and 𝒚𝑡
𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜆[𝒘𝒕(𝑛)̅̅ ̅̅ ̅̅ ̅̅ − 𝒚𝑡

𝑆𝑂(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅] is their convex combination. 

The quadratic approximation algorithm is applied to solve the step size subproblem. For 

detailed execution procedure of the Frank-Wolfe algorithm and the discussion on its 

convergence, please refer to Section 4.4.2 in Chapter 4. Since it has been proven that the 

FW will converge (Frank and Wolfe, 1956), the SO flow assignment will converge with 𝒚𝒕
𝑼𝑬 

fixed.  

Suppose a feasible solution is obtained for the UE-SO assignment problem on day 

𝑡 and it is 𝑦𝑖𝑡
𝑆𝑂̅̅ ̅̅ ̅ and 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅∗ (∀𝑖 ∈ 𝐸). The star in the superscript means the flows are optimal 

for the lower level UE assignment problem. This feasible solution satisfies all the 

constraints in the integrated UE-SO assignment model including the UE condition 
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constraints, but is sub-optimal since the SO flows are not optimized. If the UE flows are 

fixed at 𝑦𝑖𝑡
𝑈𝐸̅̅ ̅̅ ̅ and the SO flows are optimized based on the fixed UE flows, a new solution to 

the UE-SO assignment problem can be obtained. Suppose it is 𝑦𝑖𝑡
𝑆𝑂̿̿ ̿̿ ̿
∗
 and 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅ (∀𝑖 ∈ 𝐸), 

where the star in the superscript means the flows are optimal for the lower level SO 

assignment problem, and the double bars indicate the SO flows are different from the 

previous 𝑦𝑖𝑡
𝑆𝑂̅̅ ̅̅ ̅. However, the combination of 𝑦𝑖𝑡

𝑆𝑂̿̿ ̿̿ ̿
∗
 and 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅ (∀𝑖 ∈ 𝐸) is an infeasible solution 

to the integrated UE-SO assignment problem since 𝑦𝑖𝑡
𝑈𝐸̅̅ ̅̅ ̅ (∀𝑖 ∈ 𝐸) no longer satisfy the UE 

condition constraints because the link travel times have changed. And thus 𝑦𝑖𝑡
𝑆𝑂̿̿ ̿̿ ̿
∗
 and 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅ 

(∀𝑖 ∈ 𝐸) is an infeasible solution to the UE-SO assignment problem. Hence, the iterative 

UE-SO assignment algorithm switches between the solutions obtained from UE 

assignment that are feasible and sub-optimal to the UE-SO assignment problem, and the 

solutions obtained from SO assignment which are infeasible, and eventually reaches the 

flow pattern that is optimal to the integrated UE-SO assignment problem.  

Figure 5.3-i on the next page demonstrates the evolution of the mixed flow 

pattern over the iterative UE-SO flow assignment process. The horizontal axis represents 

the iterative UE-SO flow assignment iterations, the vertical axis is the total travel time of 

all flows. The horizontal dashed line is the total travel time associated with the optimal 

UE-SO flow assignment, where UE flows satisfy the UE conditions and SO flows are 

optimal at the same time. Compared with the total travel time of the optimal UE-SO flows, 

initially the total travel time of the mixed flows where UE flows meet the UE conditions 

but SO flows are sub-optimal is much higher, and the total travel time of the mixed flows 

where SO flows are optimal but UE flows don’t satisfy the UE conditions is much lower. 

But as the iterative UE-SO assignment proceeds, the total travel time of the mixed flows is 

getting closer to that of the optimal UE-SO flows and eventually will be the same. 
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Figure 5.3-i: Total Travel Time Change in the Iterative UE-SO Assignment Process 

This iterative UE-SO flow assignment procedure is illustrated in Figure 5.3-i: 

 

Figure 5.3-ii: Iterative UE-SO Assignment Algorithm 
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The computation procedure of the iterative UE-SO assignment algorithm is 

summarized as follows: 

Iterative UE-SO Assignment Algorithm 

Step 1: Solve the UE assignment problem without the SO flows.  

Step 2: Fix the UE flows and solve the SO assignment problem. Record the travel time for 

all the flows 𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒. 

Step 3: Fix the SO flows and solve the UE assignment problem. Record the travel time for 

all the flows 𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒′. 

Step 4: Check whether 𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 = 𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒′. If it is, exit the algorithm; otherwise go 

back to Step 2. 

The iterative UE-SO assignment algorithm, which contains the TAPAS algorithm 

for the UE assignment and the BFW algorithm for the SO assignment, is programmed in 

C++ and tested on two networks: the simple four-node network shown in Figure 4.3.1-i in 

Chapter 4 and the Sioux Falls Network shown in Figure3.4.3-iii in Chapter 3. The total OD 

demand in each network does not change but a certain percentage of the demand are SO 

flows and the rest of the demand are UE flows. The test cases are generated by varying the 

percentage of the demand that are SO flows. For example, if the SO flow percentage is 0%, 

all the demand are UE flows; and if the SO flow percentage is 100%, all the demand are 

SO flows.  

Table 5.3-i gives the total travel time of converged UE-SO flows associated with 

different SO flow percentages in the simple four-node network. All five instances are 

solved within a second. It can be observed that as the SO flow percentage increases, the 

total travel time decreases. This is expected since the SO flow pattern is more efficient than 

the UE flow pattern.  
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Table 5.3-i: Iterative UE-SO Assignment in Four-Node Network 

SO Flow Percentage 0 10% 50% 90% 100% 

Total Travel Time 3066.63700 3066.63574 2990.34698 2901.53732 2901.53731 

The total travel time and computation time for test cases generated based on the 

Sioux Falls network is summarized in Table 5.3-ii below. Again, it can be observed that the 

total travel time decreases as the percentage of SO flows increases.  

Table 5.3-ii: Iterative UE-SO Assignment in Sioux Falls Network 

SO Flow Percentage 0 10% 50% 90% 100% 

Total Travel Time 7480226.09 7467535.71 7299283.73 7216487.21 7194258.54 

Computation Time 1.671 sec 2.709 sec 63.97 sec 86.215 sec 11.667 sec 

To obtain the total travel time resulted from a lane closure schedule, the UE-SO 

assignment needs to be solved for each day in the planning horizon based on the link 

available capacities. The travel time of the UE and SO flows on each day then will be 

summed up over the planning horizon to obtain the total travel time associated with the 

schedule. 

 Solution Approach for the Upper Level Problem 

With the iterative UE-SO assignment algorithm to evaluate lane closure 

schedules in the lower level, this section develops the solution method for the upper level 

to obtain the schedules. But before that, the convexity of the objective function and the 

feasible region of MS-MMN is explored. The following lemma shows the convexity of the 

objective function of MS-MMN. 

Lemma 5.4-1:  

The objective function of the MS-MMN problem is convex if the link travel time 

function is the BPR function. 
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Proof of Lemma 5.4-1: 

For a certain day 𝑡  in the planning horizon, take the first derivative of the 

objective function with respect to the UE flows and SO flows on link 𝑖, we obtain: 

∇𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸) ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸)

= [
𝜕𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂 , 𝑦𝑖𝑡
𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑆𝑂 ∗ (𝑦𝑖𝑡

𝑆𝑂 + 𝑦𝑖𝑡
𝑈𝐸) + 𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂 , 𝑦𝑖𝑡
𝑈𝐸)

𝜕𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑈𝐸 ∗ (𝑦𝑖𝑡

𝑆𝑂 + 𝑦𝑖𝑡
𝑈𝐸) + 𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂 , 𝑦𝑖𝑡
𝑈𝐸)] 

Then take the second derivative of the objective function with respect to the UE 

and SO flows on link 𝑖, we have: 

H[𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂, 𝑦𝑖𝑡

𝑈𝐸) ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸)] =

[

𝜕2𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂,𝑦𝑖𝑡

𝑈𝐸)

𝜕(𝑦𝑖𝑡
𝑆𝑂)

2 ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸) + 2
𝜕𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂,𝑦𝑖𝑡
𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑆𝑂

𝜕2𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂,𝑦𝑖𝑡

𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑈𝐸𝜕𝑦𝑖𝑡

𝑆𝑂 ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸) +
𝜕𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂,𝑦𝑖𝑡
𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑈𝐸 +

𝜕𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂,𝑦𝑖𝑡

𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑆𝑂

𝜕2𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂,𝑦𝑖𝑡

𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑆𝑂𝜕𝑦𝑖𝑡

𝑈𝐸 ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸) +
𝜕𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂,𝑦𝑖𝑡
𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑆𝑂 +

𝜕𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂,𝑦𝑖𝑡

𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑈𝐸

𝜕2𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂,𝑦𝑖𝑡

𝑈𝐸)

𝜕(𝑦𝑖𝑡
𝑈𝐸)

2 ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸) + 2
𝜕𝑐𝑖(𝑦𝑖𝑡

𝑆𝑂,𝑦𝑖𝑡
𝑈𝐸)

𝜕𝑦𝑖𝑡
𝑈𝐸

]  

Since BPR function is adopted as the link travel time function, the second 

derivative (i.e, the Hessian matrix) is simplified to: 

H[𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸) ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸)]

=

[
 
 
 
 
 𝛼(𝛽 + 1)𝛽 (

𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1

)
)

𝛽−1

𝛼(𝛽 + 1)𝛽 (
𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1

)
)

𝛽−1

𝛼(𝛽 + 1)𝛽 (
𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1

)
)

𝛽−1

𝛼(𝛽 + 1)𝛽 (
𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1

 + 𝜃∑ 𝑣𝑖𝑚𝑡
𝑛𝑖
𝑚=1

)
)

𝛽−1

]
 
 
 
 
 

 

After a few elementary row operations, it becomes: 

H[𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸) ∗ (𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸)] = [𝛼(𝛽 + 1)𝛽 (
𝑦𝑖𝑡
𝑆𝑂 + 𝑦𝑖𝑡

𝑈𝐸

𝑢𝑖(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  + 𝜃∑ 𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1 )

)

𝛽−1

0

0 0

] 

Combining the Hessian of all the link flow variables for the objective function, it 

is concluded that the Hessian matrix of the objective function is positive semidefinite 
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because it is a diagonal matrix with the elements along the diagonal either have positive 

values or are zeros. Hence, the objective function is convex.  

To find out whether the feasible region of MS-MMN is convex or not, the feasible 

region of the UE-SO assignment problem, which is the lower level of MS-MMN, is 

investigated first. 

Lemma 5.4-2:  

The linear relaxation of the UE-SO assignment model has a non-convex feasible 

region. 

Proof of Lemma 5.4-2: 

Since only 𝑤𝑝
𝑘,𝑡  for ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘  are not continuous variables, these 

variables are relaxed from being binary to taking values in [0, 1]. After the relaxation, all 

constraints in UE-SO assignment model are linear constraints with continuous variables 

except Constraint (29), which is a nonlinear equality constraint with all feasible points on 

the surface. Suppose we have two sets of feasible UE-SO flows 𝑦𝑖𝑡
𝑈𝐸̅̅ ̅̅ ̅ and 𝑦𝑖𝑡

𝑆𝑂̅̅ ̅̅ ̅, and 𝑦𝑖𝑡
𝑈𝐸̿̿ ̿̿ ̿ and 

𝑦𝑖𝑡
𝑆𝑂̿̿ ̿̿ ̿ for ∀𝑖 ∈ 𝐸, from Constraint (29) we have: 

𝑐𝑝
𝑘,𝑡̅̅ ̅̅ ̅ =∑𝛿𝑖,𝑝

𝑘 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂̅̅ ̅̅ ̅, 𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅)

i∈𝐸

 

and 

𝑐𝑝
𝑘,𝑡̿̿ ̿̿ ̿ =∑𝛿𝑖,𝑝

𝑘 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂̿̿ ̿̿ ̿, 𝑦𝑖𝑡

𝑈𝐸̿̿ ̿̿ ̿)

i∈𝐸

 

Since 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂 , 𝑦𝑖𝑡

𝑈𝐸) is the nonlinear BPR function with 𝛽 > 1, it is obvious that for 𝜆 ∈ [0, 1] 

𝜆𝑐𝑝
𝑘,𝑡̅̅ ̅̅ ̅ + (1 − 𝜆)𝑐𝑝

𝑘,𝑡̿̿ ̿̿ ̿ ≠∑𝛿𝑖,𝑝
𝑘 𝑐𝑖(λ𝑦𝑖𝑡

𝑆𝑂̅̅ ̅̅ ̅ + (1 − 𝜆)𝑦𝑖𝑡
𝑆𝑂̿̿ ̿̿ ̿, 𝜆𝑦𝑖𝑡

𝑈𝐸̅̅ ̅̅ ̅ + (1 − 𝜆)𝑦𝑖𝑡
𝑈𝐸̿̿ ̿̿ ̿)

i∈𝐸
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Therefore, the feasible region defined by Constrain (29) is not convex and thus the feasible 

region of the linear relaxation of UE-SO assignment model is not convex.  

Lemma 5.3-2 below and shows the linear relaxation of the MS-MMS problem has 

a non-convex feasible region: 

Lemma 5.4-3:  

The linear relaxation of the MS-MMN model has a non-convex feasible region. 

Proof of Lemma 5.4-3: 

With the UE-SO assignment model developed in Section 5.2, the MS-MMN 

model can also be formulated as a single-level optimization problem by duplicating the 

UE-SO assignment model for each day in the planning horizon and with the addition of 

the scheduling variables and constraints, because both models have the same objective of 

minimizing the total travel time of UE flows and SO flows. The single-level MS-MMN 

model is shown below: 

Single-Level MS-MMN 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝒔) = ∑ ∑ 𝑐𝑖(𝑦𝑖𝑡) ∗ 𝑦𝑖𝑡
𝑇
𝑡=1𝑖∈𝐸       (1) 

𝑠. 𝑡.            

  

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (2) 

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (3) 

𝑥𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1)

   ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ 𝑇  (4) 

∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1      ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (5) 

∑ 𝑥𝑖𝑚𝑡 = 0
𝑡=𝑇
𝑡=1      ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖]   (6) 

𝑣𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] (7) 

𝑣𝑖𝑚𝑡 = 0     ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑝𝑖] (8) 
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𝑣𝑖𝑚𝑡 = 0     ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (9) 

𝑦𝑖𝑡 = 𝑦𝑖𝑡
𝑈𝐸 + 𝑦𝑖𝑡

𝑆𝑂,     ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]  (12) 

𝑦𝑖𝑡 ≤ (∑ 𝐷𝑘
𝑈𝐸

𝑘∈𝑂𝐷𝑈𝐸 + ∑ 𝐷𝑘
𝑆𝑂

𝑘∈𝑂𝐷𝑆𝑂 )(𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1  ) ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇]  (13) 

𝑦𝑖𝑡
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
𝑘∈𝑂𝐷𝑆𝑂 ,     ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]  (21) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
{𝑖:𝐸𝑖

−=𝑂𝐷𝑘
𝑆𝑂−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

+=𝑂𝐷𝑘
𝑆𝑂−,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷𝑆𝑂, ∀𝑡 ∈ [1, 𝑇]  (22) 

𝐷𝑘
𝑆𝑂 = ∑ 𝑦𝑖𝑘𝑡

𝑆𝑂
{𝑖:𝐸𝑖

+=𝑂𝐷𝑘
𝑆𝑂+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

−=𝑂𝐷𝑘
𝑆𝑂+,𝑗∈𝐸}  ∀𝑘 ∈ 𝑂𝐷𝑆𝑂, ∀𝑡 ∈ [1, 𝑇]  (23) 

∑ 𝑦𝑖𝑘𝑡
𝑆𝑂

{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡

𝑆𝑂
{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸}
    ∀𝑙 ∈ 𝑁, 

∀𝑘 ∈ {𝑘:𝑂𝐷𝑘
𝑆𝑂− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

𝑆𝑂+ ≠ 𝑙}, ∀𝑡 ∈ [1, 𝑇] (24) 

∑ 𝑓𝑝
𝑘,𝑡 = 𝐷𝑘

𝑈𝐸
𝑝∈𝑃𝑘      ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑡 ∈ [1, 𝑇] (26) 

𝑦𝑖𝑡
𝑈𝐸 = ∑ ∑ 𝑓𝑝

𝑘,𝑡𝛿𝑖,𝑝
𝑘

𝑝∈𝑃𝑘𝑘∈𝑂𝐷𝑈𝐸     ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]  (27) 

𝑐𝑝
𝑘,𝑡 = ∑ 𝛿𝑖,𝑝

𝑘 𝑐𝑖(𝑦𝑖𝑡
𝑆𝑂, 𝑦𝑖𝑡

𝑈𝐸)i∈𝐸    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (29) 

𝑐𝑚𝑖𝑛
𝑘,𝑡 ≤ 𝑐𝑝

𝑘,𝑡     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (30) 

𝑐𝑝
𝑘,𝑡 − 𝑐𝑚𝑖𝑛

𝑘,𝑡 ≤ 𝑀𝑤𝑝
𝑘,𝑡    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (31) 

𝑓𝑝
𝑘,𝑡 ≤ 𝑀(1 − 𝑤𝑝

𝑘,𝑡)    ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (32) 

𝑓𝑝
𝑘,𝑡 ≥ 0     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (28) 

𝑦𝑖𝑘𝑡
𝑆𝑂 ≥ 0     ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷𝑆𝑂, ∀𝑡 ∈ [1, 𝑇] (25) 

𝑦𝑖𝑡
𝑈𝐸 ≥ 0     ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇]   (19) 

𝑐𝑝
𝑘,𝑡 ≥ 0     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (33) 

𝑐𝑚𝑖𝑛
𝑘,𝑡 ≥ 0     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (34) 

𝑠𝑖𝑚𝑡, 𝑥𝑖𝑚𝑡, 𝑣𝑖𝑚𝑡 ∈ {0, 1}    ∀𝑖 ∈ 𝐸, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (10) 

𝑤𝑝
𝑘,𝑡 ∈ {0, 1}     ∀𝑘 ∈ 𝑂𝐷𝑈𝐸 , ∀𝑝 ∈ 𝑃𝑘 , ∀𝑡 ∈ [1, 𝑇] (35) 
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After relaxing all the binary variables, all the constraints are linear constraints 

with continuous variables except Constraint (29) which is a nonlinear equality constraint. 

Follow the same logic in the proof of Lemma 5.4-2, it is concluded that the feasible region 

of the linear relaxation for the single-level MS-MMN model is non-convex. 

Because of the non-convexity of the linear relaxation for MS-MMN, it is not easy 

to find the global optimal solution for MS-MMN, nor to prove a solution obtained is global 

optimal. Hence, the well-established genetic algorithm (GA) is applied to solve the MS-

MMN. The genetic algorithm was first introduced by Holland in 1975. It is a metaheuristic 

that solves complex optimization problems through bio-inspired operators, such as 

selection, crossover and mutation. Because implementing GA is relatively easy and 

requires little knowledge about the problem structure, GA has been applied to solve 

difficult optimization problems in a broad range of disciplines. Since the MS-MMN is a 

challenging bi-level mixed-integer nonlinear program with its linear relaxation being non-

convex, GA is considered a suitable solution method for the MS-MMN. Here are the key 

components of the GA for MS-MMN: 

Decimal Encoding for GA 

The genes of a member in a generation are the repair start dates of each lane in 

the links that need repair, instead of the binary variables 𝒔 that indicate whether the repair 

of a lane starts on a certain day. Thus, the GA for MS-MMN has decimal encoding. Given 

the repair start dates, the values of variables 𝒙 and 𝒗 can be determined, and so are the 

link available capacities on each day in the planning horizon.  

Initial Population for GA 

The genes of members in the first generation are generated randomly. For each 

lane, the repair start date is a random number generated between day 1 and its latest 
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possible repair start date. The latest possible repair start date for a lane is the date that if 

the repair starts on that day, this lane will be repaired on due date 𝑇. For an example, if 

each lane of link 𝑖 requires 𝑝𝑖 = 5 days to repair and the maintenance due date for all the 

maintenance work is 𝑇 = 18, then the latest possible repair start date for all the lanes in 

link 𝑖 is day 14 since otherwise the repair will not be completed on time if the it starts on 

days later than day 14. Hence, the latest repair start date for the lanes in link 𝑖 is calculated 

as 𝑇 − 𝑝𝑖 + 1. To ensure the population in each generation is large enough have all possible 

repair start dates of a lane be present in the same generation, the population size (𝑁) is 

determined as: 

𝑁 = 𝑇 −min
𝑖∈𝑅

{𝑝𝑖} + 1  (5.4-a) 

since the lane that requires the least number of days to repair has the most choices of 

repair start dates. 

Selection Rules for GA 

The fitness of a member is evaluated based on the total travel time over the 

planning horizon associated with the member’s gene, which essentially is a schedule of 

lane closures. The less the total travel time is, the fitter the member is. After the 

computation of the total travel time associated with each member in a generation, these 

members are ranked in ascending order with respected to their total travel times. Suppose 

there are 𝑁  members in a generation, 𝑟𝑎𝑛𝑘𝑁  is the member whose gene results in the 

largest total travel time in current generation and 𝑟𝑎𝑛𝑘1 is the member whose gene results 

in the least total travel time. The fitness of a member with the 𝑗𝑡ℎ rank is calculated as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑟𝑎𝑛𝑘𝑗 = 𝑡𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑟𝑎𝑛𝑘𝑁 − 𝑡𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑟𝑎𝑛𝑘𝑗 + 1 (5.4-b) 

which is one plus the difference between the largest total travel time in current generation 

and the total travel time of the member with rank 𝑗. The reason to add one in the fitness 
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calculation is to ensure the member with the largest total travel time can also be selected 

for crossover with a positive probability. The probability of the member with rank 𝑗 being 

selected for crossover is: 

𝑠𝑒𝑙𝑒𝑐𝑃𝑟𝑜𝑏𝑟𝑎𝑛𝑘𝑗 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑟𝑎𝑛𝑘𝑗

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑟𝑎𝑛𝑘𝑎
𝑎=𝑁
𝑎=1

  (5.4-c) 

In the computation procedure, a random number 𝑟 will be generated between (0, 

1]. If 𝑟 < 𝑠𝑒𝑙𝑒𝑐𝑃𝑟𝑜𝑏𝑟𝑎𝑛𝑘1, then the member with the least total travel time will be selected 

for crossover; if ∑ 𝑠𝑒𝑙𝑒𝑐𝑃𝑟𝑜𝑏𝑟𝑎𝑛𝑘𝑎
𝑎=𝑗−1
𝑎=1 < 𝑟 ≤ ∑ 𝑠𝑒𝑙𝑒𝑐𝑃𝑟𝑜𝑏𝑟𝑎𝑛𝑘𝑎

𝑎=𝑗
𝑎=1  ∀𝑗 ∈ [1, 𝑁] , then the 

member with rank 𝑗 is selected for crossover.  

Handling Entire Link Closures and Infeasible Schedules  

Since BPR function is used as the link travel time function and it has link available 

capacity in the denominator, the available capacity cannot be zero. Thus, if a link is entirely 

closed on a certain day, the available link capacity is set to 10−6 instead of 0 and the free-

flow travel time of the link is set to 1030, so that all the paths that contain this link have 

travel times that are much longer than other paths. As a result of this manipulation, no 

flow will use these paths and effectively this link is entirely closed.  

If one or more links are entirely closed on a certain day, it is possible that some 

OD pairs may not be able to find a path connecting the origin and destination to send the 

flows, rendering the maintenance schedule infeasible. But in our computational procedure 

the schedule is still “feasible” since all those entirely closed links still have the available 

capacity of 10−6. Therefore, the UE-SO assignment problem can still be solved but the 

total travel time will be drastically larger than those of the feasible schedules. Since the 

members with less total travel times are fitter and have a better chance of being selected 
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for crossover, the members whose genes result in drastically large total travel times (i.e., 

infeasible schedules) will be eliminated in the computational procedure.  

Crossover in GA 

The GA for MS-MMN applies the multi-point crossover scheme, and the number 

of crossover points 𝑛𝑏𝐶𝑃𝑜𝑖𝑛𝑡𝑠 is determined as: 

𝑛𝑏𝐶𝑃𝑜𝑖𝑛𝑡𝑠 =
𝑡𝑜𝑡𝑎𝑙𝑊𝑍

max
{𝑖∈𝑅}

{𝑛𝑖}
  (5.4-d) 

that is, the total number of lanes to repair (𝑡𝑜𝑡𝑎𝑙𝑊𝑍) divided by the largest number of 

lanes in a link among the links that need repair. Since too few crossover points will limit 

the flexibility of the crossover operation on finding better combinations of genes, and too 

many crossover points will result in offspring not very different from the parents and 

unnecessarily increasing the computations, it is desirable to have more link-level schedule 

swaps between the two members selected for crossover because UE-SO flows route 

through the network based on the link travel times. With the number of crossover points 

determined by 5.4-d, a total of 𝑛𝑏𝐶𝑃𝑜𝑖𝑛𝑡𝑠  random numbers are generated between 

[1, 𝑡𝑜𝑡𝑎𝑙𝑊𝑍] to determine the exact loci to start the gene swap for the members selected 

for crossover. Preliminary experiments indicate that this method can have more link-level 

schedule swaps on average. 

To demonstrate the crossover procedure, suppose in a network the links that 

need repair have a total of 16 lanes. Among these links, link 5 has 4 lanes which is the most 

number of lanes. The number of crossover points in this case is 𝑛𝑏𝐶𝑃𝑜𝑖𝑛𝑡𝑠 = 16/4 = 4. 

Suppose the four crossover points randomly generated between [1, 16] are 2, 6, 9, 13, 

Figure 5.4-i on the next page illustrates the crossover operation for this case: 
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Mutation in GA 

The mutation rate is designed to decrease gradually from a pre-specified upper 

bound (𝑀𝑢𝑈𝐵) towards the lower bound (𝑀𝑢𝐿𝐵) from one generation to the next. Suppose 

the maximum number of generations to be computed is 𝑁𝐺 , the mutation rate of 

generation 𝑛𝑔 is calculated as: 

𝑀𝑢𝑛𝑔 = 𝑀𝑢𝑈𝐵 −
𝑀𝑢𝑈𝐵−𝑀𝑢𝐿𝐵

𝑁𝐺
∗ 𝑛𝑔  (5.4-e) 

The changing mutation rate helps GA explore the solution space for better schedules in 

the early stage and accelerate the convergence in the later stage.  

To determine the loci for mutation, a total of ⌈𝑀𝑢𝑛𝑔 ∗ 𝑡𝑜𝑡𝑎𝑙𝑊𝑍⌉ random numbers 

are generated between [1, 𝑡𝑜𝑡𝑎𝑙𝑊𝑍]. Each of these random numbers represent the locus 

where the mutation happens. For each of these loci, the repair start date of the lane will be 

an integer number randomly generated between the first day of the planning horizon and 

the latest possible repair start date for the lane. All the offspring generated from the 

crossover operation will go through this mutation process before becoming members in 

Locus 

Parent I 

Parent II 

Offspring I 

Offspring II 

Locus 

 1   2   3   4   5   6   7   8   9  10 11  12  13 14 15 16 

 1   2   3   4   5   6   7   8   9  10 11  12  13 14 15 16 

Figure 5.4-i: Four-Point Crossover Example 
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the next generation. To retain the best schedule obtained so far, the member with the best 

fitness in current generation will be directly put into the next generation without mutation. 

Stopping Criteria for GA 

The GA for MS-MMN will stop if the pre-specified maximum number of 

generations have been computed, or the best schedule hasn’t changed for the past 10 

consecutive generations. 

The combination of the GA and the iterative UE-SO flow assignment algorithm 

completes the solution approach for MS-MMN. The overall computation procedure to 

solve MS-MMN is described below: 

Step 1: Initial population is randomly generated 

Step 2: Evaluate the members in current generation 

Step 2.1: For a member, on each day in planning horizon, calculate the link available 

capacities, and perform the iterative UE-SO assignment algorithm to obtain the 

UE-SO flow travel time  

Step 2.2: Sum the travel time over the planning horizon to obtain the total travel time 

associated with the member 

Step 3: If the number of generations computed reach the pre-specified limit, or the best member 

hasn’t changed for the last 10 consecutive generations, exit the solution procedure. 

Otherwise continue to Step 4 

Step 4: Calculate the probability for each member to be selected for crossover 

Step 5: Repetitively select two members to perform multi-point crossover, until the number of 

offspring is 𝑁 − 1 

Step 6: Perform mutation on the 𝑁 − 1 offspring produced 

Step 7: Add the member with the best fitness in the parent generation to the offspring generation, 

and go back to Step 2 
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 Computational Experiments 

The solution approach developed for MS-MMN is programmed in C++ and tested 

with three problem instances based on the square network shown in Figure 4.3.1-ii in 

Chapter 4. In the first problem scenario, 10% of the links are randomly selected to be the 

links that need repair. And the percentage of links to repair are 20% and 30% respectively 

in the other two problem scenarios. All three scenarios have the same OD demand and the 

same SO flow percentage of 10%, which means 10% of the demand for each OD pair will 

route through the network to achieve system optimum, and the rest 90% of the demand 

will route through the network to reach user equilibrium. All the maintenance works are 

due in 18 days for all the three scenarios. Since the square network is a specially designed 

network that can have severe Braess Paradox effect, for each scenario, five test cases are 

created to make sure the aggregated test results align with commonsense, that is, in 

general the more links need to be repaired during the same period of time, the higher the 

total travel time would be because of the network capacity is reduced. The detailed 

information of these test cases can be found in Appendix C.  

Setting the upper bound of mutation rate 20% and the lower bound 10% for the 

GA, and using a personal computer with 3.7 GHz CPU and 24 GB memory for the 

computation work, the results of the three repair scenarios are summarized in Table 5.5-

i, Table 5.5-ii and Table 5.5-iii respectively. As it can be observed from these three tables, 

the average computation time gets longer as more links need to be repaired. Also, as more 

links with lanes closed for maintenance during the same period of time, the total travel 

time of all flows gets longer since the available capacity of links are less, which leads to 

longer link travel times and longer travel times in general. 
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Table 5.5-i: Results of Five Test Cases for Square Network with 10% of Links to Repair 

 Case I Case II Case III Case IV Case V Average 

Total Travel Time 198287018 228115451 198006312 199017203 200042655 204693727.8 

Computation 
Time (in hours) 

1.74 5.85 2.36 2.24 3.28 3.09 

Number of 
Generations 
Computed 

27 46 26 24 18 28 

Table 5.5-ii: Results of Five Test Cases for Square Network with 20% of Links to Repair 

 Case I Case II Case III Case IV Case V Average 

Total Travel Time  199755215 253964706 207756792 201070121 200019555 212513277.8 

Computation 
Time (in hours) 

6.13 6.11 4.76 1.42 4.12 4.56 

Number of 
Generations 
Computed 

24 24 26 21 34 26 

Table 5.5-iii: Results of Five Test Cases for Square Network with 30% of Links to Repair 

 Case I Case II Case III Case IV Case V Average 

Total Travel Time 219824173 207171576 211923696 235200590 199572821 214738571.2 

Computation 
Time (in hours) 

5.53 7.11 10.29 12.15 4.08 7.83 

Number of 
Generations 
Computed 

16 14 47 29 32 28 
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Because of the randomness of GA, to show the performance of the solution 

method developed, a test case is selected from each scenario and is solved five times and 

the computation results are averaged over the five runs. The results of the test cases 

selected are summarized in Table 5.5-iv, 5.5-v, 5.5-vi respectively. It is obvious that as 

more links are required to be repaired during the same period of time, GA takes longer to 

solve the problem instance. 

Table 5.5-iv: Five Runs of Test Case I in 10% of Links to Repair Scenario 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Total Travel Time 198287958 198318282 198287018 198277517 198263262 198286807 

Computation 
Time (in hours) 

1.79 0.70 1.74 1.74 2.35 1.66 

Number of 
Generations 
Computed 

26 12 27 28 40 26.6 

 

Table 5.5-v: Five Runs of Test Case I in 20% of Links to Repair Scenario 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Total Travel Time  199585929 199885561 199755215 199719781 199591233 199707543.8 

Computation 
Time (in hours) 

6.93 5.32 6.13 8.59 3.8 6.15 

Number of 
Generations 
Computed 

31 22 24 37 15 26 
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Table 5.5-vi: Five Runs of Test Case I in 10% of Links to Repair Scenario 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Total Travel Time 219824173 220572965 219586053 218746178 219424194 219630712 

Computation 
Time (in hours) 

5.53 10.82 18.78 10.04 9.4 10.91 

Number of 
Generations 
Computed 

16 26 49 24 24 28 

The solution approach is also tested with two problem instances generated based 

on the Sioux Falls network shown in Figure 3.4.3-iii in Chapter 3. The percentage of the 

links that need repair in these two problem instances are 10% and 20% respectively. All 

maintenance works are due in 21 days and the SO flow percentage is 10% for both problem 

instances. The detailed information of these two test cases can be found in the Appendix 

C, and the total demand of UE and SO flows for each OD pair is the same as the Sioux Falls 

network test case, which can be found online. With the same mutation rate settings and 

the same computer for the computation work, the results are summarized in Table 5.5-vii 

and Table 5.5-viii. 

Table 5.5-vii: Sioux Falls Network with 10% of Links to Repair 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Total Travel Time 173595710 174214938 173513915 174169416 174244662 173947728.2 

Computation 
Time (in hours) 

26.42 12.51 24.94 12.94 17.80 18.92 

Number of 
Generations 
Computed 

40 19 43 19 27 30 
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Table 5.5-viii: Sioux Falls Network with 20% of Links to Repair 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Total Travel Time 232500828 226601969 229547278 226966956 224486683 228020742 

Computation 
Time (in hours) 

31.93 33.56 48.43 43.03 35.24 38.44 

Number of 
Generations 
Computed 

21 20 30 25 23 24 

The test cases generated based on the Sioux Falls network take much longer to 

solve than those generated based on the square network. And the reason is because Sioux 

Falls network is larger and requires longer computation time for the UE-SO flow 

assignment to obtain the converged UE-SO flow. Also, the longer planning horizon means 

the UE-SO flow assignment needs to be performed for more days for a schedule. And the 

larger problem size generally requires larger population, which means more schedules 

must be evaluated in a generation. From the five problem instances tested, it can be 

perceived that in general the MS-MMN takes a long time to solve. This is because the 

iterative UE-SO assignment algorithm needs to be performed repetitively for each day in 

the planning horizon and for all the schedules generated in GA. 

 Conclusion 

With the fast-evolving technologies of self-driving cars, people will start traveling 

with these new transportation modes in the near future. Thus, the traffic flows in the road 

network would become more multi-modal flow, where travelers driving human-operated 

cars choosing the routes that minimize individual travel times, and travelers with self-
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driving cars selecting routes that minimize the total travel time of all the travelers. This 

multi-modal traffic flow essentially is a mixture of UE flows and SO flows.  

This chapter investigates the maintenance scheduling problem in multi-modal 

networks (MS-MMN), where a set of links need to be repaired before a common due date, 

each lane of these links is an independent work zone to be scheduled, and there are mixed 

UE-SO flows routing through the network every day based on the link available capacities. 

A bi-level mixed-integer nonlinear program is formulated for this problem with the upper 

level to find schedules, and the lower level to obtain the converged UE-SO flows for the 

schedules obtained in the upper level. 

The existence of the converged UE-SO flow is proved, and this converged flow 

can be obtained by the iterative UE-SO assignment algorithm developed in this chapter. 

Given link available capacities and OD demand, the iterative UE-SO assignment algorithm 

iteratively fixes the UE flows and solves the SO assignment problem, and fixes the SO flows 

and solves the UE assignment problem. This iterative procedure stops when the UE flows 

are optimal to the UE assignment problem and at the same time the SO flows are optimal 

to the SO assignment problem.  

Since the MS-MMN is a challenging non-convex optimization problem, GA is 

applied to find good schedules that will result in less total travel time over the planning 

horizon. However, in general the MS-MMN takes a long time solve since the UE-SO flow 

assignment need to be performed for each day in the planning horizon and for each 

schedule in the generation. One possible way to reduce the computation time is to use 

parallel computing techniques for GA. Since most computers nowadays are equipped with 

a multi-core CPU and each core has two threads that can work on different tasks 

independently, by assigning each member in a generation to one of the available threads, 
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the computation of total travel times associated with the members can be done parallelly. 

Then, these threads will perform the UE-SO assignment for each day in the planning 

horizon for the member assigned, and return the associated total travel time. Once all 

members in the generation have been evaluated, the crossover and mutation can also be 

done parallelly in the same fashion. 

A direction for future research is to further differentiate the autonomous vehicle 

flows and the connected vehicle flows in MS-MMN. Since travelers using connected 

vehicles still are the decision makers on route choices, the connected vehicle flow most 

likely will not be the exact SO flow, but a flow pattern that is somewhere between the UE 

flow pattern and the SO flow pattern. Thus, future research topics include (a) how to model 

the connected vehicle flow, (b) whether there exists a converged multi-modal flow of these 

three travel modes (i.e., human-operated cars, self-driving cars, and connected vehicles), 

(c) how to obtain the converged multi-modal flow if it exists, and (d) how this multi-modal 

flow will react to the work zone schedules. 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

 

 Conclusions 

In transportation networks, both non-recurring events (e.g., road maintenance) 

and recurring events (i.e., demand surges during rush hours) can cause traffic congestion. 

To alleviate the traffic congestion caused by these two types of events, this dissertation 

develops solution from the supply side with a network-wide perspective. It builds 

optimization models to manage mandatory network capacity change to minimize the 

congestion caused by road maintenance activities, and designs the mechanism to manage 

optional network capacity change to reduce the congestion caused by inefficient routing 

in normal time. 

The research on maintenance planning for various types of physical networks has 

been mostly focused on the long-term planning and the short-term planning. The long-

term maintenance planning addresses the research question of how to maintain the 

network for a certain level of reliability or service quality with minimum maintenance cost. 

And the short-term planning schedules maintenance activities on a link to minimize the 

flow disruptions locally. Although maintenance work changes the network layout 

temporally and will impact the routing of OD flows, the long-term maintenance planning 

omits this effect because the planning horizon is much longer than the period when the 

network is under maintenance. And the short-term maintenance planning does not 

consider the flow diverted from the link being repaired to the neighborhood links since the 

scope of the problem is limited to the link being repaired. However, more often than not 
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maintenance work needs to be performed on a set of links that are close to each other in a 

relatively short period of time (medium term). In these situations, the scheduling and 

coordination of these maintenance works are critical to the network capability on serving 

the flows. And this is particularly true for transportation network since each unit of flows 

(i.e., vehicles) can change its route on its own in response to changed network layouts.  

The medium-term maintenance planning hasn’t drawn much attention from 

researchers until last decade. Among the handful research that has investigated the 

medium-term maintenance planning with the consideration of network-wide OD flow 

diversions, most research did not consider partial link closures or assumed links under 

maintenance would have 50% of capacity decrease. Chapter 3 and Chapter 5 fill this blank 

and investigate the lane-based maintenance scheduling problem, where there are a set of 

links to repair before a common due date, and each lane of these links is an independent 

work zone to be scheduled.  

Considering the exacerbation of traffic mobility and safety caused by the 

combination of work zones and service vehicles (e.g., trucks), Chapter 3 develops a 

mathematical model to optimize maintenance schedules particularly for service vehicle 

flows. These service vehicles are assumed to route through the network based on available 

link capacities every day to achieve system optimum (SO). The link travel cost function is 

designed to be piece-wise linear to approximate the nonlinear relation between the travel 

cost and the number of trucks traveling on the link. Because of the introduction of piece-

wise linear link travel cost function, the problem of maintenance scheduling in networks 

of service vehicles (MS-NSV) is formulated as a mixed-integer linear program (MIP). 

Although there are commercial solvers available for MIPs, they are not able to solve MS-

NSV instances within a tolerable amount of time because the solution space explodes as 

the problem size gets larger. Fortunately, this issue can been handled well by the 
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randomized fix-and-optimize (RFO) heuristic developed. With a feasible schedule, RFO 

will randomly decompose the links that need repair into groups and optimize the work 

zone schedules for one group with schedules of other work zones fixed. RFO is an effective 

mechanism to limit the number of integer variables to be solved at a time. Computational 

experiments on various test cases show that RFO is able to obtain good quality solutions 

within much less time than solving the problem instances solely by CPLEX.  

Chapter 5 extends the work in Chapter 3 to study the maintenance scheduling in 

networks with multi-modal traffic flows (MS-MMN). The travel modes considered in 

Chapter 5 include private cars and autonomous vehicles. Every traveler that drives a 

private car will take the route that minimizes his/her own travel time to reach user 

equilibrium (UE), and the travelers riding autonomous vehicles will choose the routes that 

minimize the total travel time of all the travelers to achieve system optimum (SO). Since 

flows of different travel modes share the road network, they compete for the limited 

capacity on the links. MS-MMN is formulated as a bi-level mixed-integer nonlinear 

program. The upper level of MS-MMN searches for the schedule that minimizes the total 

travel time of all travelers over the planning horizon, and the lower level finds the mixed 

UE-SO flow assignment for each day in the planning horizon based on a feasible schedule.  

The lower level of MS-MMN contains two optimization problems: the UE 

assignment problem for travelers using private cars and the SO assignment problem for 

travelers riding autonomous vehicles. The optimal solution for the lower level is the UE-

SO flow assignment where UE flows satisfy the UE condition and SO flows minimize the 

total travel time of all flows at the same time. Given the link available capacities and OD 

demand for UE flows and SO flows on a certain day, the existence of the optimal solution 

for the lower level UE-SO assignment problem is proved. The iterative UE-SO assignment 

algorithm is developed solve the lower level problem. It iteratively fixes the UE flows and 
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solves the SO assignment problem, and fixes the SO flows and solves the UE assignment 

problem, until the total travel time between two iterations are the same. With the Bureau 

of Public Road (BPR) function adopted as the link travel time function, the non-convexity 

of MS-MMN is shown and the upper level scheduling problem is solved by the genetic 

algorithm with multi-point crossover. Since for each schedule evaluation the iterative UE-

SO assignment has to be performed for each day in the planning horizon, it takes a long 

time to solve MS-MMN instances in moderate-size. 

As to the strategy for managing optional network capacity changes, Chapter 4 

develops a mechanism that selectively reduce the capacity of some links to improve the 

overall efficiency of the UE flow pattern. The research work in Chapter 4 is inspired by the 

well-known Braess paradox, which describes the counter-intuitive phenomenon in 

networks with UE flows, that adding more links to the network could worsen the traffic 

congestion, and congestion could be alleviated by removing links from the network. 

Chapter 4 studies the generalized Braess paradox that reducing the capacity of some links 

could improve the efficiency of UE flows. Compared to the generalized Braess paradox, 

the original Braess paradox is a special case since removing a link is the same as reducing 

the link capacity to zero.  

Chapter 4 develops a heuristic that identifies the links whose capacity reduction 

could decrease the total travel time at UE, and finds the desired amount of link capacity 

reduction. Assuming link travel time is a decreasing function of link capacity, the basic 

idea of the heuristic is to reduce the capacity of some links to increase the link travel time, 

so as to drive the UE flow pattern towards the more efficient SO flow pattern. To find the 

links to reduce capacity, the UE assignment problem and the SO assignment problem are 

solved for the same OD demand, and links are sorted with respect to the difference 

between the total UE flows and the total SO flows on the link. Links with more UE flows 
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than SO flows are considered being over-used by the UE flows, and could be candidates 

for capacity reductions. If the total travel time at UE is less after the link capacity reduction, 

the capacity reduction on the link can increase and the UE assignment problem will be 

solved again; otherwise the link capacity reduction could be decreased. This process 

repeats for the link until the total travel time at UE cannot decrease further through 

greater link capacity reductions. The process effectively is a line search to set the best 

capacity reductions for the link. Once the best capacity reduction is found for a link, the 

UE assignment and SO assignment will be solved and links are sorted again based on the 

difference between the total UE flows and the total SO flows on every link. And then a new 

round of link capacity reduction trials is considered. If there is no effective capacity 

reduction for current selected link, the heuristic considers the next link in the list to do a 

line search for a capacity reduction. 

The heuristic is implemented in both C++ and AMPL. In the C++ implementation, 

the UE assignment problem is solved by the Traffic Assignment with Paired Alternative 

Segments (TAPAS) algorithm developed by Bar-Gera (2010), and the SO assignment 

problem is solved by a Bi-conjugate Frank-Wolfe (BFW) type algorithm. For the AMPL 

implementation, both UE and SO assignment problems are solved by the nonlinear 

commercial solver MINOS. Experiments on real network test cases show that MINOS 

sometimes fails to give correct solutions to the UE and SO assignment problems because 

some test cases are too large for MINOS to handle. Experiments on real networks 

demonstrate the generalized Braess’ paradox exists in reality, and the C++ 

implementation with TAPAS and BFW is more reliable than the AMPL implementation 

with MINOS. 



 

165 
 

In summary, this dissertation develops optimization methods to manage both 

mandatory and optional network capacity changes. The computational experiments on 

real network test cases indicate the solution methods developed are efficient and reliable.  

 Future Work 

Since the problems studied in Chapter 3, Chapter 4 and Chapter 5 do not involve 

any uncertainties, investigating these problems in stochastic settings would be a major 

extension to this dissertation. Uncertainties can stem from all aspects of the problems 

studied. For example, instead of assuming travelers have perfect information about the 

path travel times, it is more realistic to model travelers’ perception of the path travel times 

as the true path travel time plus a random perception error. With travelers’ perception 

error modeled, the UE assignment problem in the lower levels of OCREC and MS-MMN 

evolve to the stochastic UE assignment problem, which has been well researched in the 

literature as reviewed in Section 2.1.5 in Chapter 2. Correspondingly, the SO assignment 

problem in MS-NSV and MS-MMN becomes the stochastic SO assignment problem, and 

can be solved by the methods developed in literature for the stochastic UE assignment 

with some alteration. 

Another way to involve uncertainty is to consider stochastic OD demand. The OD 

demands are assumed to be known in this dissertation but actually they are random 

variables, whose distributions can be estimated from historical data. With stochastic OD 

demand modeled, the three problems studied can be formulated as typical two-stage 

stochastic programs (Shapiro et al., 2009), where the first stage is to decide the schedule 

of lane closures in MS-NSV and MS-MMN and the link capacity reductions in OCREC, and 

the second stage solves the flow assignment problems. Since MS-NSV is a mixed-integer 

linear program, it can be solved by a progressive hedging method (Watson and Woodruff, 
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2011), which is a solution approach based on scenario decomposition of the stochastic 

parameters. Although the progressive hedging method has been used to handle nonlinear 

stochastic programs, the non-convexity of OCREC and MS-MMN would require extra 

caution when progressive hedging is applied as a meta-heuristic to solve OCREC and MS-

MMN. 

The stochastic programs investigated in literature only involve uncertainties in 

the follower problem, and all attributes of the decisions in the leader problem are 

deterministic. For example, in the MS-NSV and MS-MMN with stochastic OD demands, 

the uncertainty is considered in the lower level flow assignment problems but there is no 

uncertainty involved in the upper level scheduling problem, that is, it is assumed that the 

maintenance work on a lane of link 𝑖 will last exactly 𝑝𝑖 days. However, it is common for a 

road maintenance project to finish either earlier or later than the planned completion date 

due to various reasons (e.g., unexpected good/severe weather condition, work zone 

accidents, addition/failure of machines, etc.). Hence, the number of days required to 

repair a lane is a random variable and its distribution can be estimated from historical 

data. The MS-NSV and MS-MMN that involve uncertainty in project durations introduce 

a new category of stochastic program, where some attributes of the decisions in the leader 

problem are random variables. How to address this new type of stochastic program would 

be another interesting and challenging future research problem. 
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APPENDIX A 

FIVE RUNS OF RFO FOR TESTCASES SOLVED IN MS-NSV



 

 
 

Table 1: Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Radial Network 

Completion 
Date ( 𝑻) 

Run 1 Run 2 Run 3 Run 4 Run 5 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

15 233166 1.6 min 233166 1.45 min 233166 1.58 min 233166 1.52 min 233166 1.5 min 

16 170591 3.25 min 170591 2.85 min 170591 3.02 min 170591 4.4 min 170591 4.95 min 

17 101516 8.35 min 101516 4.93 min 101516 6.12 min 101516 5.45 min 101516 5.8 min 

18 25644.7 7.1 min 25644.7 6.5 min 26547.7 5.92 min 25677.7 6.1 min 25647.7 4.97 min 

19 19668.1 4.92 min 19067.3 12.87 min 19067.3 6.52 min 19067.4 6.52 min 19067.4 4.32 min 

20 10889.6 6.15 min 10389.2 6.56 min 9888.26 7.4 min 9888.26 9.42 min 9888.07 7.42 min 

Table 2: Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Grid Network 

Completion 
Date ( 𝑻) 

Run 1 Run 2 Run 3 Run 4 Run 5 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

14 143230 4.9 min 144071 4.2 min 143630 2.78 min 143033 5.23 min 143429 5.33 min 

15 105997 3 min 105997 6.5 min 105991 5.71 min 105989 3.75 min 106000 3.5 min 

16 67527.2 3.05 min 68704.6 5.43 min 67711.7 2.23 min 66211.3 3.25 min 67711.7 4.02 min 

17 51773.6 5.87 min 51773.7 4.1 min 51773.7 7.92 min 51772 7.28 min 51772 8.18 min 

18 37350 9.95 min 37350.5 4.53 min 37348.3 3.95 min 37350.3 13 min 38602 7.98 min 

19 26921.2 7.53 min 26671.2 6.56 min 26921.4 6.58 min 26672.5 7.32 min 26671.4 6.25 min 

20 15989.2 6.68 min 15988.9 5.22 min 15989.5 3.62 min 15989.2 3.75 min 15989.3 6.5 min 

21 7809.33 4.48 min 7810.41 7.67 min 7809.9 3.65 min 7810.32 4 min 7809.11 6.7 min 

26 1915.95 2.13 min 1915.51 2.17 min 1914.49 2.15 min 1915.75 1.97 min 1915.97 2.02 min 

36 2631.65 2.6 min 2630.52 2.6 min 2631.65 2.57 min 2628.9 2.93 min 2631.65 2.65 min 

2
0

0
 



 

 
 

Table 3: Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux Falls Network (10%) 

Completion 
Date ( 𝑻) 

Run 1 Run 2 Run 3 Run 4 Run 5 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

19 237459 2.68 min 237494 4.63 min 237515 5.12 min 237487 2.17 min 237542 2.05 min 

20 242532 4.67 min 242542 2.2 min 242518 4.47 min 242532 3 min 242542 2.58 min 

21 247317 2.17 min 247325 2.63 min 247325 2.47 min 247325 2.58 min 247325 2.35 min 

22 252140 2.57 min 252201 2.38 min 252201 2.6 min 252203 3.62 min 252140 2.77 min 

23 260386 3.05 min 260302 2.87 min 260302 5.6 min 260318 2.75 min 260302 3.05 min 

24 268500 2.87 min 268570 2.97 min 268498 6.53 min 268603 3.25 min 268631 3.03 min 

25 277223 6.87 min 277258 3.35 min 277170 7.15 min 277339 3.07 min 277216 7.28 min 

26 285841 7.65 min 285791 3.13 min 285841 4.12 min 285841 7.63 min 285843 3.35 min 

27 294744 7.07 min 294744 4.75 min 294744 6.72 min 294573 5.3 min 294591 7 min 

28 302933 7.92 min 303279 8.27 min 303278 8.92 min 303529 3.93 min 303396 7.5 min 

29 311643 7.37 min 311643 8.82 min 311691 4.77 min 311447 8.37 min 311723 8.23 min 

30 320849 5.45 min 320798 8.7 min 320522 8.27 min 320756 8.28 min 320798 8.75 min 

31 329556 9.12 min 329368 10.77 min 329476 10.78 min 329430 8.18 min 329436 8.93 min 

32 338608 10.93 min 338334 10.35 min 338860 9.08 min 338829 10.62 min 338665 9.35 min 

33 349090 8.18 min 349265 2.67 min 347910 6.83 min 347897 3.83 min 349015 6.48 min 

34 357086 8.43 min 357090 8.63 min 357045 9.5 min 357064 9.1 min 256866 10.38 min 

35 366209 11.55 min 366280 9.47 min 366242 9.22 min 366256 11.11 min 366335 9.8 min 

36 375665 9.62 min 375585 9.38 min 375633 9.57 min 375407 9.52 min 375516 10.18 min 

37 385649 10.08 min 385649 11.1 min 385649 12.07 min 385649 10.95 min 358649 9.5 min 

38 395879 10.53 min 395879 11.17 min 395879 10.75 min 395743 10.05 min 395861 12.45 min 

 

2
0
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Table 4: Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux Falls Network (20%) 

Completion 
Date 

(𝑻) 

Run 1 Run 2 Run 3 Run 4 Run 5 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

Objective 
Value 

Solving 
Time 

26 429644 20.63 min 419612 19.38 min 429673 23.15 min 430182 18.85 min 430182 18.33 min 

27 441983 24.33 min 439772 28.43 min 440444 34.22 min 441998 27.45 min 441053 55.08 min 

28 446741 1.03 hr. 446946 25.7 min 446316 38.73 min 444821 1.13 hr. 447709 26.4 min 

29 451943 44.5 min 451798 1.06 hr. 452415 41.88 min 451972 1.17 hr. 451404 23.28 min 

30 461263 37.18 min 462005 53 min 465685 42.33 min 463749 22.77 min 460272 49.8 min 

31 468504 1.17 hr. 468968 52.93 min 468724 53.72 min 468724 1.33 hr. 467886 1.18 hr. 

32 474658 1.2 hr. 475698 33.17 min 475486 1.14 hr. 474658 1.34 hr. 474848 48.28 min 

33 486761 47.63 min 485102 1.11 hr. 485800 1.23 hr. 487476 24.58 min 486772 44.37 min 

34 495069 1.3 hr. 496514 1.25 hr. 496356 1.24 hr. 495278 1.21 hr. 495502 1.29 hr. 

35 502656 1.43 hr. 502775 1.48 hr. 502704 1.31 hr. 502616 1.47 hr. 502656 1.3 hr. 

36 513889 1.5 hr. 513445 1.04 hr. 512527 1.25 hr. 512588 1.24 hr. 514482 1.14 hr. 

37 523158 1.41 hr. 521056 1.27 hr. 523197 1.28 hr. 521984 1.14 hr. 523766 1.35 hr. 

38 547711 30.32 min 550335 38.5 min 535769 17.73 min 554759 52.37 min 558797 44.03 min 

39 543698 26.23 min 544046 40.72 min 553827 46.6 min 560203 33.07 min 542010 38.35 min 

40 568072 56.52 min 563160 38.82 min 575092 56.82 min 556089 39.6 min 551897 19.53 min 

41 563869 43.07 min 562826 31.43 min 561137 30.55 min 581717 1.16 hr. 573486 40.75 min 

42 571838 49.55 min 594626 1.02 hr. 567858 30.08 min 585013 47.62 min 588380 1.07 hr. 
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NETWORK TESTCASES SOLVED IN OCREC 
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Table 5: Simple Four-Node Network 

Link ID Initial node Terminal node Capacity Free Flow Time Alpha Beta 

1 1 2 600 50 2.4 4 

2 1 3 50 1 2.4 4 

3 2 4 50 1 2.4 4 

4 3 4 600 50 2.4 4 

5 3 2 60 40 2.4 4 

 

Table 6: OD Demand for the Simple Four-Node Network 

OD Origin Node  Destination Node Demand 

1 1 4 40 

2 3 4 20 

 

Table 7: Square Network 

Link ID Initial Node Terminal Node Free-Flow Travel Time Alpha Beta Capacity 

1 1 2 500 0.15 4 6000 

2 1 6 10 0.15 4 500 

3 6 2 400 0.15 4 600 

4 2 3 500 0.15 4 6000 

5 2 7 10 0.15 4 500 

6 7 3 400 0.15 4 600 

7 3 4 500 0.15 4 6000 

8 3 8 10 0.15 4 500 

9 8 4 400 0.15 4 600 

10 4 5 500 0.15 4 6000 

11 4 9 10 0.15 4 500 

12 9 5 400 0.15 4 600 

13 5 10 10 0.15 4 500 

14 6 7 500 0.15 4 6000 

15 6 11 10 0.15 4 500 

16 11 7 400 0.15 4 600 

17 7 8 500 0.15 4 6000 

18 7 12 10 0.15 4 500 

19 12 8 400 0.15 4 600 

20 8 9 500 0.15 4 6000 

21 8 13 10 0.15 4 500 
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Link ID Initial Node Terminal Node Free-Flow Travel Time Alpha Beta Capacity 

22 13 9 400 0.15 4 600 

23 9 10 500 0.15 4 6000 

24 9 14 10 0.15 4 500 

25 14 10 400 0.15 4 600 

26 10 15 10 0.15 4 500 

27 11 12 500 0.15 4 6000 

28 11 16 10 0.15 4 500 

29 16 12 400 0.15 4 600 

30 12 13 500 0.15 4 6000 

31 12 17 10 0.15 4 500 

32 17 13 400 0.15 4 600 

33 13 14 500 0.15 4 6000 

34 13 18 10 0.15 4 500 

35 18 14 400 0.15 4 600 

36 14 15 500 0.15 4 6000 

37 14 19 10 0.15 4 500 

38 19 15 400 0.15 4 600 

39 15 20 10 0.15 4 500 

40 16 17 500 0.15 4 6000 

41 16 21 10 0.15 4 500 

42 21 17 400 0.15 4 600 

43 17 18 500 0.15 4 6000 

44 17 22 10 0.15 4 500 

45 22 18 400 0.15 4 600 

46 18 19 500 0.15 4 6000 

47 18 23 10 0.15 4 500 

48 23 19 400 0.15 4 600 

49 19 20 500 0.15 4 6000 

50 19 24 10 0.15 4 500 

51 24 20 400 0.15 4 600 

52 20 25 10 0.15 4 500 

53 21 22 500 0.15 4 6000 

54 22 23 500 0.15 4 6000 

55 23 24 500 0.15 4 6000 

56 24 25 500 0.15 4 6000 
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Table 8: The Original OD Demand for Square Network 

OD Origin Node Destination Node Demand 

1 1 7 400 

2 1 13 400 

3 1 19 400 

4 1 25 400 

5 7 13 400 

6 7 19 400 

7 7 25 400 

8 13 19 400 

9 13 25 400 

10 19 25 400 

11 6 7 200 

12 11 13 200 

13 16 19 200 

14 21 25 200 

 

Table 9: Simple Four-Node Network to Show the Nonconvexity of OCREC 

Link ID Initial node Terminal node Capacity 
Free Flow 

Time 
Alpha Beta 

1 1 2 8 50  2.4 4 

2 1 3 6 1 2.4 4 

3 2 4 6 1 2.4 4 

4 3 4 8 50 2.4 4 

5 3 2 7 10 2.4 4 

 

 

Table 10: OD Demand for the Simple Four-Node Network to Show the Nonconvexity of 

OCREC 

OD Origin Node  Destination Node Demand 

1 1 4 6 
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APPENDIX C 

TEST CASES SOLVED IN MS-MMN



 

 
 

Table 11: Square Network Test Cases for 10% of Links to Repair 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair 
in  Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

1 2 10 0 0 0 0 0 

1 6 4 0 0 0 0 1 

2 3 10 0 0 0 0 0 

2 7 4 1 0 0 0 0 

3 4 10 0 0 0 0 0 

3 8 4 0 0 0 0 0 

4 5 10 0 0 0 0 1 

4 9 4 0 0 0 0 0 

5 10 4 0 0 1 1 0 

6 2 6 0 0 0 0 0 

6 7 10 0 1 0 0 0 

6 11 4 0 0 0 0 0 

7 3 6 0 0 0 0 0 

7 8 10 0 0 1 0 0 

7 12 4 0 0 0 0 0 

8 4 6 0 0 0 1 0 

8 9 10 0 0 0 0 0 

8 13 4 0 0 0 0 0 

9 5 6 0 0 0 0 0 

9 10 10 1 0 0 0 0 

9 14 4 0 0 0 1 0 

10 15 4 0 1 0 0 0 

11 7 6 0 0 0 0 1 

11 12 10 0 0 0 0 0 

2
0

8
 



 

 
 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair 
in  Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

11 16 4 1 0 0 0 0 

12 8 6 1 0 0 1 0 

12 13 10 0 0 0 0 1 

13 9 6 0 0 0 0 0 

13 14 10 0 0 0 0 0 

13 18 4 0 0 0 0 0 

14 10 6 0 0 0 1 0 
14 15 10 0 0 0 0 0 

14 19 4 0 0 0 0 0 

15 20 4 0 1 0 0 0 

16 12 6 1 0 0 0 0 

16 17 10 0 0 0 0 0 

16 21 4 0 0 0 0 0 

17 13 6 0 0 0 0 0 

17 18 10 0 0 0 0 0 

17 22 4 0 0 1 0 0 

18 14 6 1 0 0 0 0 

18 19 10 0 0 0 0 0 

18 23 4 0 0 0 0 0 

19 15 6 0 0 1 0 0 

19 20 10 0 1 0 0 0 

19 24 4 0 0 0 0 1 

20 25 4 0 0 1 0 0 

21 17 6 0 0 0 0 0 

21 22 10 0 0 0 1 0 

22 18 6 0 0 0 0 0 

        

2
0

9
 



 

 
 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair 
in  Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

22 23 10 0 0 0 0 0 

23 19 6 0 0 0 0 0 

23 24 10 0 0 0 1 0 

24 20 6 0 0 0 0 0 

24 25 10 1 1 0 0 0 
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Table 12: Square Network Test Cases for 20% of Links to Repair 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair 
in  Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

1 2 10 0 1 0 0 0 

1 6 4 0 0 0 0 0 

2 3 10 1 0 0 0 0 

2 7 4 0 0 0 0 0 

3 4 10 0 1 0 0 0 

3 8 4 0 0 0 0 0 

4 5 10 0 0 0 0 0 

4 9 4 1 0 0 0 0 

5 10 4 1 1 0 0 0 

6 2 6 1 1 0 0 1 

6 7 10 0 1 0 1 1 

6 11 4 1 0 0 1 0 

7 3 6 0 0 0 0 0 

7 8 10 0 1 1 1 0 

7 12 4 0 0 0 0 0 

8 4 6 0 0 1 0 1 

8 9 10 0 0 0 0 1 

8 13 4 0 0 0 0 1 

9 5 6 0 0 0 0 0 

9 10 10 0 1 1 0 0 

9 14 4 0 0 1 0 0 

10 15 4 1 0 0 0 0 

11 7 6 0 0 1 1 1 

11 12 10 0 0 0 1 1 

2
11 



 

 
 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair 
in  Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

11 16 4 1 1 0 0 0 

12 8 6 0 0 1 0 0 

12 13 10 0 0 1 0 0 

13 9 6 0 0 0 0 0 

13 14 10 1 0 0 1 0 

13 18 4 0 0 0 1 1 

14 10 6 0 1 0 0 0 

14 15 10 0 0 0 0 1 

14 19 4 0 0 0 0 0 

15 20 4 0 0 0 0 1 

16 12 6 0 0 0 0 0 

16 17 10 0 0 0 0 0 

16 21 4 0 0 1 1 0 

17 13 6 0 0 0 0 0 

17 18 10 0 1 0 0 0 

17 22 4 1 0 0 0 0 

18 14 6 0 0 0 0 0 

18 19 10 0 0 0 0 0 

18 23 4 0 0 1 1 0 

19 15 6 0 0 1 1 0 

19 20 10 1 0 0 0 0 

19 24 4 0 0 0 1 1 

20 25 4 0 0 0 0 0 

21 17 6 0 0 0 0 0 

21 22 10 0 0 0 0 0 

22 18 6 0 0 0 1 0 

2
12

 



 

 
 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair 
in  Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

22 23 10 0 0 0 0 0 

23 19 6 0 0 1 0 1 

23 24 10 0 0 1 0 1 

24 20 6 1 0 0 0 0 

24 25 10 0 1 0 0 0 
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Table 13: Square Network Test Cases for 30% of Links to Repair 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair in  
Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

1 2 10 1 0 0 0 0 

1 6 4 0 1 0 0 0 

2 3 10 0 1 1 1 0 

2 7 4 0 1 0 1 1 

3 4 10 0 1 0 0 1 

3 8 4 0 1 0 0 0 

4 5 10 0 0 0 1 0 

4 9 4 0 1 1 1 1 

5 10 4 1 1 0 1 0 

6 2 6 1 0 0 0 0 

6 7 10 0 0 1 0 0 

6 11 4 0 0 0 1 1 

7 3 6 1 0 0 0 0 

7 8 10 1 0 0 0 0 

7 12 4 0 0 1 1 0 

8 4 6 0 0 0 0 0 

8 9 10 0 0 0 1 0 

8 13 4 0 1 1 0 0 

9 5 6 1 0 0 1 1 

9 10 10 0 0 0 0 1 

9 14 4 0 0 0 0 0 

10 15 4 1 0 0 1 0 

11 7 6 0 0 0 0 0 

11 12 10 0 1 0 0 0 

2
14

 



 

 
 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair in  
Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

11 16 4 1 1 1 1 1 

12 8 6 1 0 0 0 0 

12 13 10 0 1 0 0 1 

13 9 6 0 1 0 1 0 

13 14 10 0 0 1 1 1 

13 18 4 0 0 1 0 1 

14 10 6 1 0 0 0 0 

14 15 10 0 0 0 1 0 

14 19 4 1 1 1 1 0 

15 20 4 0 0 0 0 1 

16 12 6 0 1 0 0 0 

16 17 10 1 0 1 0 0 

16 21 4 0 0 0 0 0 

17 13 6 0 0 0 0 1 

17 18 10 1 0 0 0 1 

17 22 4 0 1 1 0 0 

18 14 6 0 1 1 1 1 

18 19 10 0 0 0 0 0 

18 23 4 0 0 1 0 0 

19 15 6 0 0 1 0 0 

19 20 10 0 0 1 0 1 

19 24 4 0 0 0 0 1 

20 25 4 1 0 1 0 0 

21 17 6 0 0 0 0 0 

21 22 10 1 0 0 0 1 

22 18 6 0 0 1 0 0 

2
15

 



 

 
 

Initial 
node 

Terminal 
node 

Days Required to 
Repair a Lane 

Need to Repair in 
Case I? 

Need to Repair in  
Case II? 

Need to Repair in 
Case III? 

Need to Repair in 
Case IV? 

Need to Repair in 
Case V? 

22 23 10 
0 1 0 0 0 

23 19 6 
0 1 1 0 0 

23 24 10 
1 0 1 1 0 

24 20 6 
0 0 1 0 1 

24 25 10 
0 0 0 1 0 

2
16
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Table 14: OD Demand for Square Network 

OD Origin Node Destination Node Total Demand of UE and SO Flows 

1 1 7 400 

2 1 13 400 

3 1 19 400 

4 1 25 400 

5 7 13 400 

6 7 19 400 

7 7 25 400 

8 13 19 400 

9 13 25 400 

10 19 25 400 

11 6 7 200 

12 11 13 200 

13 16 19 200 

14 21 25 200 



 

 
 

Table 15: Sioux Falls Network Test Case 

Initial 
node 

Terminal 
node 

Capacity 
Number 
of Lanes 

Free Flow 
Time 

B Power 
Days Required to 

Repair a Lane 
Need to Repair in 
10% Repair Case? 

Need to Repair in 
20% Repair Case? 

1 2 25900.2 4 6 0.15 4 11 10% 20% 

1 3 23403.47 4 4 0.15 4 9 0 0 

2 1 25900.2 4 6 0.15 4 11 0 0 

2 6 4958.181 1 5 0.15 4 8 1 0 

3 1 23403.47 4 4 0.15 4 9 0 0 

3 4 17110.52 3 4 0.15 4 8 0 0 

3 12 23403.47 4 4 0.15 4 9 0 1 

4 3 17110.52 3 4 0.15 4 8 0 0 

4 5 17782.79 4 2 0.15 4 6 0 0 

4 11 4908.827 1 6 0.15 4 7 0 0 

5 4 17782.79 4 2 0.15 4 6 0 1 

5 6 4947.995 1 4 0.15 4 7 0 0 

5 9 10000 2 5 0.15 4 6 0 1 

6 2 4958.181 1 5 0.15 4 8 0 0 

6 5 4947.995 1 4 0.15 4 7 1 0 

6 8 4898.588 1 2 0.15 4 5 0 0 

7 8 7841.811 2 3 0.15 4 6 0 1 

7 18 23403.47 4 2 0.15 4 7 0 0 

8 6 4898.588 1 2 0.15 4 5 1 0 

8 7 7841.811 2 3 0.15 4 6 0 0 

8 9 5050.193 1 10 0.15 4 8 0 0 

8 16 5045.823 1 5 0.15 4 7 0 1 

9 5 10000 2 5 0.15 4 6 0 0 

9 8 5050.193 1 10 0.15 4 8 0 0 

9 10 13915.79 3 3 0.15 4 4 0 0 

2
18

 



 

 
 

Initial 
node 

Terminal 
node 

Capacity 
Number 
of Lanes 

Free Flow 
Time 

B Power 
Days Required to 

Repair a Lane 
Need to Repair in 
10% Repair Case? 

Need to Repair in 
20% Repair Case? 

10 9 13915.79 3 3 0.15 4 4 0 0 

10 11 10000 2 5 0.15 4 5 0 0 

10 15 13512 3 6 0.15 4 6 0 0 

10 16 4854.918 1 4 0.15 4 6 0 0 

10 17 4993.511 1 8 0.15 4 8 0 1 

11 4 4908.827 1 6 0.15 4 7 0 0 

11 10 10000 2 5 0.15 4 5 0 1 

11 12 4908.827 1 6 0.15 4 8 0 0 

11 14 4876.508 1 4 0.15 4 5 0 0 

12 3 23403.47 4 4 0.15 4 9 0 0 

12 11 4908.827 1 6 0.15 4 8 0 0 

12 13 25900.2 4 3 0.15 4 8 0 0 

13 12 25900.2 4 3 0.15 4 8 0 0 

13 24 5091.256 1 4 0.15 4 7 0 1 

14 11 4876.508 1 4 0.15 4 5 0 1 

14 15 5127.526 1 5 0.15 4 6 0 0 

14 23 4924.791 1 4 0.15 4 5 0 0 

15 10 13512 3 6 0.15 4 6 0 0 

15 14 5127.526 1 5 0.15 4 6 0 0 

15 19 14564.75 3 3 0.15 4 6 0 0 

15 22 9599.181 2 3 0.15 4 7 0 0 

16 8 5045.823 1 5 0.15 4 7 0 0 

16 10 4854.918 1 4 0.15 4 6 0 1 

16 17 5229.91 1 2 0.15 4 4 0 1 

16 18 19679.9 4 3 0.15 4 5 1 1 

17 10 4993.511 1 8 0.15 4 8 0 0 

17 16 5229.91 1 2 0.15 4 4 1 0 

2
19

 



 

 
 

Initial 
node 

Terminal 
node 

Capacity 
Number 
of Lanes 

Free Flow 
Time 

B Power 
Days Required to 

Repair a Lane 
Need to Repair in 
10% Repair Case? 

Need to Repair in 
20% Repair Case? 

17 19 4823.951 1 2 0.15 4 5 0 0 

18 7 23403.47 4 2 0.15 4 7 0 0 

18 16 19679.9 4 3 0.15 4 5 0 0 

18 20 23403.47 4 4 0.15 4 10 0 0 

19 15 14564.75 3 3 0.15 4 6 0 0 

19 17 4823.951 1 2 0.15 4 5 1 0 

19 20 5002.608 1 4 0.15 4 6 0 0 

20 18 23403.47 4 4 0.15 4 10 0 0 

20 19 5002.608 1 4 0.15 4 6 0 1 

20 21 5059.912 1 6 0.15 4 7 0 0 

20 22 5075.697 1 5 0.15 4 7 0 0 

21 20 5059.912 1 6 0.15 4 7 0 0 

21 22 5229.91 1 2 0.15 4 5 0 0 

21 24 4885.358 1 3 0.15 4 6 0 0 

22 15 9599.181 2 3 0.15 4 7 0 0 

22 20 5075.697 1 5 0.15 4 7 0 1 

22 21 5229.91 1 2 0.15 4 5 0 1 

22 23 5000 1 4 0.15 4 6 0 0 

23 14 4924.791 1 4 0.15 4 5 0 0 

23 22 5000 1 4 0.15 4 6 0 0 

23 24 5078.508 1 2 0.15 4 4 1 1 

24 13 5091.256 1 4 0.15 4 7 1 0 

24 21 4885.358 1 3 0.15 4 6 0 0 

24 23 5078.508 1 2 0.15 4 4 0 0 

 

2
2

0
 


