
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2016

Modeling, Control, and Impact Analysis of The
Next Generation Transportation System
Feng Zhu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Civil Engineering Commons, and the Transportation Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Zhu, Feng, "Modeling, Control, and Impact Analysis of The Next Generation Transportation System" (2016). Open Access
Dissertations. 899.
https://docs.lib.purdue.edu/open_access_dissertations/899

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/899?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form

30 Updated

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 

Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 

this thesis/dissertation adheres to the provisions of Purdue University�s �Policy of 

Integrity in Research� and the use of copyright material.

Approved by Major Professor(s): 

Approved by:

Head of the Departmental Graduate Program Date

Feng Zhu

MODELING, CONTROL, AND IMPACT ANALYSIS OF THE NEXT GENERATION TRANSPORTATION SYSTEM

Doctor of Philosophy

Satish V. Ukkusuri Fred Mannering

Chair

Hubo Cai Xiaojun Lin

Andrew Liu

Satish V. Ukkusuri

Dulcy M. Abraham 6/15/2016





MODELING, CONTROL, AND IMPACT ANALYSIS OF THE NEXT

GENERATION TRANSPORTATION SYSTEM

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Feng Zhu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana



ii

To my father



iii

ACKNOWLEDGMENTS

First and foremost, I would like to give my sincere respect and greatest gratitude to

my mentor, Prof. Satish V. Ukkusuri. I owe my deepest gratitude to Prof. Ukkusuri,

a respectable, responsible and resourceful scholar, who has enlightened me not only

in my graduate study with his experienced learning and his insightful ideas in the

field of transportation, but also in my future career with his responsible attitude

towards research and work. I truly appreciate his impressive patience and kindness

with me. This thesis would not have been possible without his continuous guidance

and support throughout my PhD study at Purdue.

Secondly, I would like to express my heartfelt gratitude to my PhD advisory

committee members: Prof. Fred Mannering, Prof. Hubo Cai, Prof. Andrew Liu, and

Prof. Xiaojun Lin. Their constructive and valuable comments have greatly helped to

improve the quality of this dissertation.

My gratitude also goes to all the ITE members of Purdue, and the colleagues in the

Interdisciplinary Transportation Modeling and Analytics Laboratory at Purdue. Es-

pecially I am obliged to Xianyuan Zhan, Xinwu Qian, Arif Sadri, Wenbo Zhang, Tho

Le, and Hemant Gehlot. I enjoyed the atmosphere of the research group. Lots of my

research contributions will not be possible without the exchanging of ideas, inspiring

discussion, and valuable suggestions and comments from all the group members.

Finally, I would like to give my special thanks to all my family members, my father

Fuchao Zhu, my mother Lingfei Zhou, my sister Ying Zhu, for their thoughtfulness

and encouragement all along from the very beginning of my postgraduate study.

Especially, I am so blessed to have my love Juan Du to be always on my side during

the precious days at Purdue.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Traffic flow modeling . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Traffic control strategies . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Traffic impact analysis . . . . . . . . . . . . . . . . . . . . . 7

1.3 Overall contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . 11

Part I: Traffic Flow Modeling . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Modeling the proactive driving behavior of connected vehicles . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Cell transmission model . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Tracking the trajectory of connected vehicles . . . . . . . . . 27

2.3.4 Accounting for the proactive speed adjustment of connected
vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Numerical case studies . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Vehicular emissions estimation . . . . . . . . . . . . . . . . . 30

2.4.2 Test case 1: a single link . . . . . . . . . . . . . . . . . . . . 34



v

Page

2.4.3 Test case 2: Manhattan downtown network . . . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 An optimal estimation approach for the calibration of connected vehicles 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 An optimal estimation approach . . . . . . . . . . . . . . . . . . . . 51

3.3.1 The simplified car-following model . . . . . . . . . . . . . . 51

3.3.2 An optimal estimation formulation . . . . . . . . . . . . . . 52

3.3.3 A modified EM algorithm . . . . . . . . . . . . . . . . . . . 56

3.3.4 Simulation validation . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Numerical case study . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Michigan test bed data analysis . . . . . . . . . . . . . . . . 67

3.4.2 Experiment design . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Part II: Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Network wide traffic control: a coordinated multi-agent framework . . . . 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Contributions of the chapter . . . . . . . . . . . . . . . . . . 78

4.2 Introduction of Junction Tree Algorithm in signal coordination . . . 79

4.3 JTA based RL framework to solve the signal coordination problem . 81

4.3.1 Elements of the reinforcement learning framework . . . . . . 81

4.3.2 Best joint action inference from JTA . . . . . . . . . . . . . 83

4.3.3 The whole procedure of the JTA based RL framework . . . . 88

4.4 Test case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Network description . . . . . . . . . . . . . . . . . . . . . . 92

4.4.2 Measures of effectiveness (MOEs) and experiment design . . 92



vi

Page

4.4.3 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.4 Assessment of results at the system level . . . . . . . . . . . 94

4.4.5 Assessment of results at the intersection level . . . . . . . . 97

4.4.6 Assessment of environmental impact . . . . . . . . . . . . . 102

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Autonomous intersection control: a linear programming formulation . . . 106

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.2 Contributions of the chapter . . . . . . . . . . . . . . . . . . 110

5.2 A lane based traffic flow model for autonomous intersection control 114

5.2.1 Assumptions of the formulation . . . . . . . . . . . . . . . . 114

5.2.2 Lane based traffic flow modeling . . . . . . . . . . . . . . . . 114

5.2.3 The nonlinear optimization formulation . . . . . . . . . . . . 120

5.3 Linear programming formulation of the lane based traffic flow model 120

5.3.1 Linear programming formulation for autonomous intersection
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 Properties of the LPAIC formulation . . . . . . . . . . . . . 122

5.4 Numerical case studies . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.1 X shape network demonstration . . . . . . . . . . . . . . . . 125

5.4.2 Isolated intersection . . . . . . . . . . . . . . . . . . . . . . 126

5.4.3 Grid network . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Concluding remarks and discussions . . . . . . . . . . . . . . . . . . 132

5.6 Appendix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Part III: Traffic Impact Analysis . . . . . . . . . . . . . . . . . . . . . . 139

6 Efficient and fair system states in dynamic transportation networks . . . 140

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.2 Contributions of the chapter . . . . . . . . . . . . . . . . . . 144



vii

Page

6.2 Formulation of an efficient and fair transportation network . . . . . 147

6.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.2 Bi-level optimization formulation . . . . . . . . . . . . . . . 147

6.2.3 Linear programming relaxation . . . . . . . . . . . . . . . . 150

6.3 On computing an efficient and fair system state . . . . . . . . . . . 153

6.3.1 An algorithm to obtain an efficient and fair system state . . 153

6.3.2 ε-tolerant fairness . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4.1 Test network 1: [177]’s network . . . . . . . . . . . . . . . . 158

6.4.2 Test network 2: [187]’s network . . . . . . . . . . . . . . . . 162

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



viii

LIST OF TABLES

Table Page

1.1 Development levels of autonomous vehicles [3] . . . . . . . . . . . . . . 4

2.1 VSP modes [54, 55] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Normalized average emission rates for CO2, CO, NOx and HC by VSP
mode [56] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Parameter settings of test case 1 . . . . . . . . . . . . . . . . . . . . . 34

2.4 Comparison of the average speed (≤ 30 kph) and emissions of test case 1 41

2.5 Comparison of the average speed (≤ 30 kph) and emissions of test case 2 44

3.1 Parameter settings of the simulation . . . . . . . . . . . . . . . . . . . 62

3.2 Comparison of the estimated and the true parameters . . . . . . . . . . 66

3.3 Mobility benefit of connected vehicles under different penetration rates 71

4.1 Mean values of performance measures at 95% confidence intervalfor JTA
algorithm (delay and stopped delay measures are expressed in seconds per
vehicle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Independent vs. coordinated control: comparison between JTA and Q-
learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Learning based vs. real-time adaptive controllers: comparison between
JTA and LQF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Total emissions for all links in the network (computed from MOVES2010b) 103

5.1 Total travel time (in units of time steps) comparison with different V/C
ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Route choices setting for the grid network . . . . . . . . . . . . . . . . 130

5.3 Route choices for various demand cases . . . . . . . . . . . . . . . . . . 131

5.4 Departure rates under the non-accident scenario . . . . . . . . . . . . . 133

5.5 Departure rates under the accident scenario . . . . . . . . . . . . . . . 134

5.6 Occupancy output of the LPAIC formulation and LTM (both are the same) 137

5.7 Occupancy output of CTM . . . . . . . . . . . . . . . . . . . . . . . . 138



ix

Table Page

6.1 Parameter settings of test network 1 . . . . . . . . . . . . . . . . . . . 159

6.2 Departure rate (i.e., ro,d(p, t̄)) and average travel time (i.e., lo,d(p, t̄)) of
test network 1 under efficient and fair system state (TSTT: 275) . . . . 160

6.3 Departure rate (i.e., ro,d(p, t̄)) and average travel time (i.e., lo,d(p, t̄)) of
test network 1 under SO condition (TSTT: 248) . . . . . . . . . . . . . 161

6.4 Route choices of different ODs of test network 2 . . . . . . . . . . . . . 163

6.5 Demand scenarios of test network 2 . . . . . . . . . . . . . . . . . . . . 163

6.6 Departure rate (i.e., ro,d(p, t̄)) for demand scenario 2 of test network 2
under efficient and fair system state . . . . . . . . . . . . . . . . . . . . 164

6.7 Average travel time (i.e., lo,d(p, t̄)) for demand scenario 2 of test network
2 under efficient and fair system state (TSTT: 2250) . . . . . . . . . . 165

6.8 Departure rate (i.e., ro,d(p, t̄)) for demand scenario 2 of test network 2
under SO condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.9 Average travel time (i.e., lo,d(p, t̄)) for demand scenario 2 of test network
2 under SO condition (TSTT: 2130) . . . . . . . . . . . . . . . . . . . . 167

6.10 Efficient and ε-tolerant system states . . . . . . . . . . . . . . . . . . . 168



x

LIST OF FIGURES

Figure Page

1.1 Inter-vehicle communications (IVC) system demonstration . . . . . . . 2

1.2 Autonomous vehicle legislature in US as of May 2014 (CIS 2014) . . . . 5

1.3 Overall picture of the dissertation . . . . . . . . . . . . . . . . . . . . . 9

2.1 Trajectory of (a-1) passive car following behavior, (a-2) proactive driving
behavior; Speed distribution of (b-1) passive car following behavior, (b-2)
proactive driving behavior . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Flow propagation of the cell transmission model . . . . . . . . . . . . . 25

2.3 Demonstration of tracking the trajectory of connected vehicles . . . . . 28

2.4 Proactive driving behavior of connected vehicles . . . . . . . . . . . . . 30

2.5 Density demonstration of different connected vehicle penetrations for light
demand scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Density demonstration of different connected vehicle penetrations for medium
demand scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Density demonstration of different connected vehicle penetrations for heavy
demand scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Comparison of speed under different connected vehicle penetrations and
demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Comparison of emissions under different connected vehicle penetrations
and demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Test case 2: Manhattan downtown network . . . . . . . . . . . . . . . . 42

2.11 Comparison of speed under different connected vehicle penetrations and
demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Comparison of emissions under different connected vehicle penetrations
and demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 (a) The flow-density fundamental diagram (b) The spacing-speed relation-
ship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Trajectory demonstration of different driving behaviors . . . . . . . . . 62



xi

Figure Page

3.3 Trajectory estimation error evolution: (a) Case 1, (b) Case 2, (c) Case 3 63

3.4 Trajectory estimation error distribution: (a) Case 1, (b) Case 2, (c) Case
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Comparison of the estimated trajectory and the real trajectory . . . . . 65

3.6 Location map of the road side equipment (RSE) stations [88] . . . . . . 68

3.7 Trajectories for a sample of connected vehicles in the Michigan test bed
[88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 (a)Directed chain network.(b)Cluster network . . . . . . . . . . . . . . 84

4.2 Message passing demonstration . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Flow chart of the JTA based RL algorithm . . . . . . . . . . . . . . . . 89

4.4 (a)Center line representation of the network (b)Zooming in of one inter-
section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Triangulation of the test network . . . . . . . . . . . . . . . . . . . . . 91

4.6 Junction tree construction of the test network . . . . . . . . . . . . . . 91

4.7 Average delay comparison of different algorithms for intersection 1, 4, 7,
and 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Stopped delay comparison of different algorithms for intersection 1, 4, 7,
and 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Average number of stops comparison of different algorithms for intersec-
tion 1, 4, 7, and 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 Different activity patterns for vehicles on the same link . . . . . . . . . 102

5.1 Demonstration of conflict points in a typical 4-lane 4-leg intersection . 115

5.2 The X shape network (upper level is lane-based; lower level is cell-based) 125

5.3 The 12-node grid network . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 A demonstrative example of average path travel time calculation . . . . 151

6.2 Test network 1 [177] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Test network 2 [187] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



xii

ABSTRACT

Zhu, Feng PhD, Purdue University, August 2016. Modeling, Control, and Impact
Analysis of The Next Generation Transportation System. Major Professor: Satish
V. Ukkusuri.

This dissertation aims to develop a systematic tool designated for connected and

autonomous vehicles, integrating the simulation of traffic dynamics, traffic control

strategies, and impact analysis at the network level.

The first part of the dissertation is devoted to the traffic flow modeling of con-

nected vehicles. This task is the foundation step for transportation planning, opti-

mized network design, efficient traffic control strategies, etc, of the next generation

transportation system. Chapter 2 proposes a cell-based simulation approach to model

the proactive driving behavior of connected vehicles. Firstly, a state variable of con-

nected vehicle is introduced to track the trajectory of connected vehicles. Then the

exit flow of cells containing connected vehicles is adjusted to simulate the proac-

tive driving behavior, such that the traffic light is green when the connected vehicle

arrives at the signalized intersection. Extensive numerical simulation results consis-

tently show that the presence of connected vehicles contributes significantly to the

smoothing of traffic flow and vehicular emission reductions in the network. Chapter 3

proposes an optimal estimation approach to calibrate connected vehicles’ car-following

behavior in a mixed traffic environment. Particularly, the state-space system dynam-

ics is captured by the simplified car-following model with disturbances, where the

trajectory of non-connected vehicles are considered as unknown states and the tra-

jectory of connected vehicles are considered as measurements with errors. Objective

of the reformulation is to obtain an optimal estimation of states and model parame-

ters simultaneously. It is shown that the customized state-space model is identifiable



xiii

with the mild assumption that the disturbance covariance of the state update process

is diagonal. Then a modified Expectation-Maximization (EM) algorithm based on

Kalman smoother is developed to solve the optimal estimation problem.

The second part of the dissertation is on traffic control strategies. This task drives

the next generation transportation system to a better performance state in terms of

safety, mobility, travel time saving, vehicular emission reduction, etc. Chapter 4 de-

velops a novel reinforcement learning algorithm for the challenging coordinated signal

control problem. Traffic signals are modeled as intelligent agents interacting with the

stochastic traffic environment. The model is built on the framework of coordinated

reinforcement learning. The Junction Tree Algorithm based reinforcement learning is

proposed to obtain an exact inference of the best joint actions for all the coordinated

intersections. The algorithm is implemented and tested with a network containing

18 signalized intersections from a microscopic traffic simulator. Chapter 5 develops a

novel linear programming formulation for autonomous intersection control (LPAIC)

accounting for traffic dynamics within a connected vehicle environment. Firstly, a

lane based bi-level optimization model is introduced to propagate traffic flows in the

network. Then the bi-level optimization model is transformed to the linear program-

ming formulation by relaxing the nonlinear constraints with a set of linear inequalities.

One special feature of the LPAIC formulation is that the entries of the constraint ma-

trix has only values in {-1, 0, 1}. Moreover, it is proved that the constraint matrix is

totally unimodular, the optimal solution exists and contains only integer values. Fur-

ther, it shows that traffic flows from different lanes pass through the conflict points

of the intersection safely and there are no holding flows in the solution. Three nu-

merical case studies are conducted to demonstrate the properties and effectiveness of

the LPAIC formulation to solve autonomous intersection control.

The third part of the dissertation moves on to the impact analysis of connected

vehicles and autonomous vehicles at the network level. This task assesses the positive

and negative impacts of the system and provides guidance on transportation plan-

ning, traffic control, transportation budget spending, etc. In this part, the impact of



xiv

different penetration rates of connected vehicle and autonomous vehicles is revealed

on the network efficiency of a transportation system. Chapter 6 sets out to model

an efficient and fair transportation system accounting for both departure time choice

and route choice of a general multi OD network within a dynamic traffic assignment

environment. Firstly, a bi-level optimization formulation is introduced based on the

link-based traffic flow model. The upper level of the formulation minimizes the to-

tal system travel time, whereas the lower level captures traffic flow propagation and

the user equilibrium constraint. Then the bi-level formulation is relaxed to a linear

programming formulation that produces a lower bound of an efficient and fair system

state. An efficient iterative algorithm is proposed to obtain the exact solution. It is

shown that the number of iterations is bounded, and the output traffic flow solution is

efficient and fair. Finally, two numerical cases (including a single OD network and a

multi-OD network) are conducted to demonstrate the performance of the algorithm.

The results consistently show that the travel time of different departure rates of the

same OD pair are identical and the algorithm converges within two iterations across

all test scenarios.
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1. INTRODUCTION

Intelligent transportation systems (ITS) are embracing an unprecedented era featur-

ing the practical application of automation and communication technologies. The

conceptual application products include connected vehicles, connected corridors, au-

tonomous vehicles (also known as self-driving vehicles or driver-less vehicles), au-

tonomous highways, autonomous freights, autonomous parking lots, and autonomous

intersection managements, etc. In this dissertation, we refer to this new era of ITS

as the next generation transportation system.

1.1 Background

Inter-vehicle communications (IVC) system is the first step towards this next

generation transportation system and has received tremendous interests from aca-

demics, industries, and government agencies. Connected vehicle (CV) technology

grows rapidly since its inception owing to the development of wireless communi-

cation technology, especially the Dedicated Short Range Communications (DSRC)

technology. DSRC has great potential in the area of ITS, as it facilitates the wireless

exchange of information between vehicles (i.e., Vehicle-to-Vehicle, V2V), as well as

between vehicles and roadside infrastructure (i.e., Vehicle-to-Infrastructure, V2I), as

demonstrated in Figure 1.1. In Europe, IVC is known as Car to Car (C2C) and Car to

X (C2X) technology. Though CV has not been implemented in the real world trans-

portation system yet, many auto companies (e.g. Mercedes-Benz, BMW, Ford, etc.)

are expending significant efforts to produce vehicles with communication features. In

addition, many test beds are ongoing in US, Europe, and Japan. Furthermore, the

U.S. DOT National Highway Traffic Safety Administration [1] plans to mandate IVC

technology on every single vehicle by 2016.
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Fig. 1.1. Inter-vehicle communications (IVC) system demonstration

The realization of autonomous vehicle in the real world is not in the distant fu-

ture as well. The realization is an international pursuit. In 1977, the pioneering

computerized driver-less car was designed by Tsukuba Mechanical Engineering Lab,

Japan. Starting at 1987, the Eureka PROMETHEUS Project (PROgraMme for a Eu-

ropean Traffic of Highest Efficiency and Unprecedented Safety) initiated the research

of driver-less cars in Europe. As part of the project, Dickmanns’ team developed the

VaMP Mercedes sedan and drove on multi-lane highway in Paris in 1993, and the

ARGO team drove their Lancia Thema testbed car in Italy with 94% of the time in

autonomous mode in 1996. In US, the DARPA (Defense Advanced Research Projects

Agency) Grand Challenge organized the first long distance (150 miles in California’s

Mojave desert) autonomous driving competition in 2004. In the competition, none

of the autonomous vehicles finished the trip. However, five autonomous vehicle suc-

cessfully completed the course in 2005. The third Grand Challenge in 2007, known

as Urban Challenge, has set up more complicated rules including obeying real world
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traffic regulations, dealing with blocked routes and obstacles, merging into traffic,

etc, and the course was in an urban area environment. Six teams finally finished

the course. Later in 2008, some of the team leaders of the Urban Challenge joined

the driver-less car project in Google. In 2014 June, Google debuted the conceptual

driver-less car and claims to launch driver-less cars to the public before 2019. Many

vehicle manufacturers are also publicly committed to producing autonomous vehicles

in the near future. E.g. Nissan plans to sell autonomous vehicles in 2018, Volvo

claims to bring crash-free autonomous vehicle to the public in 2020, etc, Moreover,

as predicted from various publications [2], traffic lights will be eliminated and 75% of

vehicles will be autonomous vehicles by the year 2040.

Currently it is encouraging that some states in the US have passed the legislature

allowing autonomous vehicles to drive legally on public roads. In 2013, NHTSA issued

a preliminary statement of policy concerning the autonomous vehicle. Different levels

of autonomous vehicle development are presented in the statement [3], as shown in

Table 1.1. As of 2014 May, California, Nevada, Florida, Michigan, and Washington

DC have enacted the legislation to allow the licensing of autonomous vehicles. A

more detailed map showing the current status of the autonomous vehicle legislation

is presented in Figure 1.2.

1.2 Motivations

The connected vehicle (CV) and autonomous vehicle (AV) technology have the

potential to greatly improve the transportation system in terms of safety, efficiency,

and sustainability. According to the U.S. Department of Transportation’s (DOT) Re-

search and Innovative Technology Administration [4], the CV technology will poten-

tially reduce 81% of all-vehicle target crashes, 83% of all light-vehicle target crashes,

and 72% of all heavy-truck target crashes annually. It will also improve the conges-

tion problem in US which consumes up to 4.2 billion hours and 2.8 billion gallons

of fuel annually. Note these numbers would also apply to autonomous vehicles as
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Table 1.1.
Development levels of autonomous vehicles [3]

Level 1 Function-specific

Automation

Automation of specific control functions, such as cruise

control, lane guidance and automated parallel parking.

Drivers are fully engaged and responsible for overall ve-

hicle control (hands on the steering wheel and foot on

the pedal at all times).

Level 2 - Combined Func-

tion Automation

Automation of multiple and integrated control func-

tions, such as adaptive cruise control with lane center-

ing. Drivers are responsible for monitoring the roadway

and are expected to be available for control at all times,

but under certain conditions can disengaged from vehi-

cle operation (hands off the steering wheel and foot off

pedal simultaneously).

Level 3 - Limited Self-

Driving Automation

Drivers can cede all safety-critical functions under cer-

tain conditions and rely on the vehicle to monitor for

changes in those conditions that will require transition

back to driver control. Drivers are not expected to con-

stantly monitor the roadway.

Level 4 - Full Self-Driving

Automation

Vehicles can perform all driving functions and monitor

roadway conditions for an entire trip, and so may oper-

ate with occupants who cannot drive and without hu-

man occupants.
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Fig. 1.2. Autonomous vehicle legislature in US as of May 2014 (CIS 2014)

autonomous vehicles are the more advanced and autonomous version of connected

vehicles.

The rapid development of connected vehicles and autonomous vehicles also brings

new challenges to the area of traffic flow modeling, traffic control strategies, and

network impact analysis.

1.2.1 Traffic flow modeling

There is limited literature on traffic flow simulation with connected vehicles and

autonomous vehicles, or the integration of traffic flow simulation and network telecom-

munication simulation. Towards this end, one approach is to develop a trace-based

mobility model and then insert the trace to the network telecommunication simula-

tion. The trace-based mobility model can be based on either real-world observations

or traffic flow simulator. E.g., [5] constructed the trace-based mobility model by us-

ing the GPS taxi data. [6] generated the trace data by running the traffic simulator
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VISSIM [7]. One major limitation of the trace-based mobility model is that the traf-

fic simulation and network communication simulation are independent, i.e., there is

no interaction between these two simulations. Addressing this issue, [8] developed a

coupled simulation platform integrating the network simulator OMNET++ [9] and

traffic simulator SUMO [10], which allows dynamic interaction between both simula-

tors. [11] studied the impact of penetration rate of connected vehicle on the stability

of traffic flow and road capacity. In the modeling framework, the inter-vehicle com-

munication is modeled by a VANET simulator named JiST/SWANS [12], and the

traffic flow is modeled by cellular automaton. It is found that the traffic efficiency

is improved even for a 5% penetration rate of connected vehicles. However, the im-

provement is based on connected vehicles’ willingness to adjust acceleration and speed

under certain circumstances. It does not consider the impact from the cooperation

between connected vehicles.

1.2.2 Traffic control strategies

Connected vehicle is a new and reliable source to provide traffic flow informa-

tion to the signal controller, as a complement to the traditional flow detection tech-

niques. The telecommunication technology enables the coordination between vehicles

and infrastructures that eventually contributes to more efficient traffic signal control

strategies. For example, distributed controllers can be installed in the intersection.

Through wireless communication, the controller has accesses to the traversing infor-

mation (e.g., queue length, average speed, delay) of the connected vehicles approach-

ing the intersection. Based on the information, the controller runs inherent algorithms

and outputs the best timing plan for a better operation of the intersection. More-

over, by means of Infrastructure to Infrastructure (I2I) communication, the signal

controllers share information in the network level and take the best joint decisions.

The road side equipments (RSE) assist the coordination of the signal controllers. The

technology to enable I2I can be either dedicated short range communications (DSRC)
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or cellular networks. In the deployment stage of connected vehicles, traffic flows are

mixed with non-connected (not equipped with wireless communication device) vehi-

cles and the connected vehicles. The signal controller only accesses the traversing

information (e.g., speed, location, arrival time) of connected vehicles and then es-

timates the traffic state of the intersection. Dependent on the penetration rate of

connected vehicles, the accuracy of the traffic state estimation varies. [13] confirmed

in simulation runs that the average delay of the intersection is significantly decreased

even with a low penetration rate (20%) of connected vehicles. The improvement due

to connected vehicles is much higher with unexpected demands [14].

1.2.3 Traffic impact analysis

The technology of autonomous vehicles has great potential to push the road traffic

accidents to the minimum rate, because (1) autonomous vehicles are controlled by

computers, (2) autonomous vehicles do not possess human errors (e.g, alcohol-driving,

fatigue-driving), and (3) disabled people, seniors, and children are free and safe to

drive. [15] investigated a total of 5,471 crashes data from 2005 to 2007 and found

that 93% of crashes were attributed to human factors. Particularly, about 41% were

recognition errors, about 34% were decision errors. Moreover, according to [16],

in 2012, there were 10,322 fatalities considered as alcohol-impaired-driving crash (it

comprises of 31% of total traffic fatalities for the year), and there were a total of 1,168

children age 14 and younger killed in motor vehicle traffic crashes. It is foreseeable

that in the transportation system with mass autonomous vehicles, human-error driven

accidents will significantly reduce.

It is also foreseeable that autonomous vehicles will alleviate traffic congestion

due to shorter headways, better route choice, speed harmonization, and coordinated

traffic platoon. However, the relationship between traffic congestion and road safety

is a debated issue. [17] investigated the relationships between the single- and multi-

vehicle accident rates and traffic flow (in terms of the hourly flow instead of the
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average daily traffic) and found that the relationship could be fitted with the power

law function. [17] further studied the relationship by dividing traffic flow into free-flow

and congested-flow conditions. It was discovered that the total accident rate and the

hourly flow follows the U-shaped curve for the free-flow condition, and accident rate

is sharply increased with hourly flow for the congested-flow condition. [18] found that

separate predictive model should be developed for single- and multi-vehicle crashes

and solely using traffic flow may not capture accurately the characteristics of crashes,

other explanatory covariates such as traffic volume, vehicle density, and V/C ratio

should also be incorporated. [19] introduced a congestion index to represent the level

of traffic congestion to investigate the effect of congestion on road accidents. Results

from various model specifications have shown that congestion has on impact on the

occurrence of accidents. [20] studied the impact of freeway traffic oscillation on traffic

safety. It is found that speed variation is a significant variable on crash rates. The

possibility of one crash increases by about 8% with an additional unit increase in the

standard deviation of speed.

In all, these three subjects (i.e., traffic flow modeling, traffic control strategies,

and traffic impact analysis) are highly correlated and play a crucial role in the re-

alization of the safest, most efficient, and most sustainable transportation system.

On the one hand, traffic flow modeling is the foundation step and the building block

for traffic control strategies and traffic impact analysis. On the other hand, traffic

impact analysis assesses the performance of traffic control strategies and provides

guidance for improvement. Traffic impact analysis and control strategies are highly

relying on the accurate simulation of traffic flows regarding connected vehicles and

autonomous vehicles. Inversely, the implementation of traffic control will exert im-

pacts on the traffic flows in the network. Only the integration of these three parts

forms the systematic tool for the assessment and improvement of the next generation

transportation system. Currently, there are barely sufficient studies addressing these

up-to-date issues hence providing strong driving forces for the research topics of this

dissertation.
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1.3 Overall contributions

This dissertation aims to develop a systematic tool designated for connected and

autonomous vehicles, integrating the simulation of traffic dynamics, traffic control

strategies, and impact analysis at the network level of the next generation trans-

portation system. Figure 1.3 presents the overall picture of the dissertation.

Fig. 1.3. Overall picture of the dissertation

The first part of the dissertation is devoted to the traffic flow modeling of the

connected vehicles and autonomous vehicles. This task is the foundation step for

transportation planning, optimized network design, efficient traffic control strategies,

etc, for the next generation transportation system. Specific contributions include:

• Heterogeneous driving behaviors are considered to capture the traffic flow os-

cillation in the microscopic traffic simulation including the timid, neutral, ag-

gressive, and connected vehicle driving behavior.
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• Based on the empirical data of connected vehicles from the Michigan testbed, we

develop the linear regression model for the relationship between spatial headway

and speed for the connected vehicle.

• Extensive simulation tests have been conducted to analyze the mobility benefits

of connected vehicle under different penetration rates and demand scenarios.

The second part contributes to proposing efficient traffic control strategies to

better off the next generation transportation system. This task pushes the next

generation transportation system to a better performance state in terms of traffic

safety, travel time saving, vehicular emission reduction, etc. Specific contributions

include:

• Examining the performance of the learning based signal control under the mixed

connected vehicle environment.

• Extending the junction tree algorithm (JTA) to obtain the best joint actions

for the entire traffic network.

• Proposing a linear programming formulation accounting for both autonomous

intersection control and system optimal based dynamic traffic assignment.

The third part moves on to the impact analysis of connected vehicles and au-

tonomous vehicles at the network level. This task assesses the positive and negative

impacts of the system and provides guidance on transportation planning, traffic con-

trol, transportation budget spending, etc. Specific contributions include:

• Revealing the impact of different penetration rates of connected vehicle and au-

tonomous vehicles on the network efficiency and mobility of the transportation

system.

• Formulating the ideal network state problem and proposes solution algorithms

of the problem.
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1.4 Organization of the dissertation

The overall dissertation is consisting of three parts. Part I (Chapter 2 and Chap-

ter 3)is on traffic flow modeling. Specifically, Chapter 2 is devoted to proposing a

cell-based simulation approach to model the proactive driving behavior of connected

vehicles. Chapter 3 proposes an optimal estimation approach to calibrate connected

vehicles’ car-following behavior in a mixed traffic environment. Part II (Chapter 4

and Chapter 5) is on traffic control strategies. Specifically, Chapter 4 develops a

novel reinforcement learning algorithm based on Junction Tree Algorithm for the

challenging coordinated signal control problem. Chapter 5 develops a novel linear

programming formulation for autonomous intersection control accounting for traffic

dynamics within a connected vehicle environment. Part III (Chapter 6) is on impact

analysis. Specifically, Chapter 6 sets out to model an efficient and fair transportation

system accounting for both departure time choice and route choice of a general multi

OD network within a dynamic traffic assignment environment. Finally, Chapter 7

concludes the dissertation and discusses the interesting future research directions.



12

Along with this work, the following research has been submitted or published

in peer-reviewed journals, conference proceedings, and presented at conferences, all

listed below.

Peer-Review Journal Papers

1. Zhu, F., & Ukkusuri S.V. 2016. Efficient and fair system states in dynamic

transportation networks (submitted to Transportation Research Part B).

2. Zhu, F., & Ukkusuri S.V. 2016. On modeling the proactive driving behavior

of connected vehicles: a cell-based simulation approach (submitted to Journal

of Advanced Transportation).

3. Aziza, H.M., Zhu, F., & Ukkusuri S.V. 2013. Learning Approaches Based

Traffic Signal Control Algorithms with Neighborhood Information Sharing: An

Application for Sustainable Mobility (submitted to Journal of Intelligent Trans-

portation Systems, passed second round review).

4. Zhu, F., & Ukkusuri S.V. 2016. An optimal estimation approach for the cal-

ibration of the car-following behavior of connected vehicles in a mixed traffic

environment. Accepted for publication in IEEE Transactions on Intelligent

Transportation Systems.

5. Zhu, F., & Ukkusuri S.V. 2015. A linear programming formulation for au-

tonomous intersection control within a dynamic traffic assignment and con-

nected vehicle environment. Transportation Research Part C: Emerging Tech-

nologies, 55, pp. 363-378.

6. Zhu, F., Aziza, H.M., Qian X., & Ukkusuri S.V. 2015. A junction-tree based

learning algorithm to optimize network wide traffic control: a coordinated multi-

agent framework. Transportation Research Part C: Emerging Technologies, 58,

pp. 487-501



13

7. Zhu, F., & Ukkusuri S.V. 2015. A reinforcement learning approach for distance-

based dynamic tolling in the stochastic network environment. Journal of Ad-

vanced Transportation, 49(2), pp. 247-266.

8. Zhan, X., Ukkusuri S.V., & Zhu, F. 2014. Inferring urban land use using

large-scale social media check-in data. Networks and Spatial Economics, 14,

pp. 647-667.

9. Zhu, F., & Ukkusuri S.V. 2014. Accounting for dynamic speed limit con-

trol problems in the stochastic traffic environment: a reinforcement learning

approach. Transportation Research Part C: Emerging Technologies, 41, pp. 30-

47.

10. Zhu, F., & Ukkusuri S.V. 2013. A cell based dynamic system optimum model

with non-holding back flows. Transportation Research Part C: Emerging Tech-

nologies, 36, pp. 367-380.

11. Zhu, F., Lo, H.K. & Lin, H.-Z. 2013. Delay and emissions modelling for

signalised intersections. Transportmetrica B: Transport Dynamics, 1(2), pp.

111-135.

Working Papers

1. Zhu, F., & Ukkusuri S.V. 2016. Information provision optimization in network

equilibrium with generalized route choice inertia.

2. Zhu, F., & Ukkusuri S.V. 2015. An Efficient Equivalent of Cell Transmission

Model for Traffic Systems.

3. Zhu, F., & Ukkusuri S.V. 2015. On Dynamic Information Propagation through

Inter-Vehicle Communications.

4. Zhu, F., & Ukkusuri S.V. 2015. On Learning based Intersection Signal Control

with Partial Information from Connected Vehicles.



14

5. Zhu, F., & Ukkusuri S.V. 2015. Accounting for Traffic Oscillation under the

Mixed Connected Vehicle Environment in Microscopic Traffic Simulation.

Peer-review Conference Papers

1. Zhu, F., & Ukkusuri, S.V. 2016. On modeling the proactive driving behavior of

connected vehicles: a cell-based simulation approach. To appear in Proceedings

of the 95th Transportation Research Board Meeting, Washington D.C.

2. Zhu, F., & Ukkusuri, S.V. 2015. On Dynamic Information Propagation through

Inter-Vehicle Communications. In Proceedings of the 94th Transportation Re-

search Board Meeting, Washington D.C.

3. Zhu, F., & Ukkusuri, S.V. 2015. Accounting for Traffic Oscillation under the

Mixed Connected Vehicle Environment in Microscopic Traffic Simulation. In

Proceedings of the 94th Transportation Research Board Meeting, Washington

D.C.

4. Zhu, F., & Ukkusuri, S.V. 2015. A linear programming formulation for au-

tonomous intersection control within a dynamic traffic assignment and con-

nected vehicle environment. In Proceedings of the 94th Transportation Research

Board Meeting, Washington D.C.

5. Zhu, F., Aziza, H.M., Qian, X., & Ukkusuri, S.V. 2014. Junction tree-based

reinforcement learning algorithm for coordinated multiagent systems to solve

network-level signal control. In Proceedings of the 93rd Transportation Re-

search Board Meeting, Washington D.C.

6. Zhu, F., & Ukkusuri, S.V. 2013. A non-holding back linear programming model

for system optimum dynamic traffic assignment problem. In Proceedings of the

92nd Transportation Research Board Meeting, Washington D.C.

7. Aziz, H.M., Zhu, F., & Ukkusuri, S.V. 2013. Reinforcement learning-based

signal control using r-markov average reward technique accounting for neigh-



15

borhood congestion information sharing. In Proceedings of the 92nd Trans-

portation Research Board Meeting, Washington D.C.



16

Part I: Traffic Flow Modeling
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2. MODELING THE PROACTIVE DRIVING BEHAVIOR

OF CONNECTED VEHICLES

With the communication characteristics, connected vehicles are able to pro-actively

change speed to adapt to the prevailing traffic condition. Even in the mixed traffic

environment, connected vehicles may function as leading vehicles, hence influencing

the driving pattern of following non-connected vehicles. This chapter proposes a

cell-based simulation approach to model the proactive driving behavior of connected

vehicles. Firstly, a state variable of connected vehicles is introduced to track the

trajectory of connected vehicles. Then the exit flow of cells containing connected

vehicles is adjusted to simulate the proactive driving behavior, such that the traffic

light is green when the connected vehicle arrives at the signalized intersection. The

second part of the chapter conducts numerical tests to examine the effect of the

proactive driving behavior of connected vehicles. Extensive test results consistently

show that the presence of connected vehicles contributes significantly to the smoothing

of traffic flow and vehicular emission reductions in the network.

2.1 Introduction

Intelligent transportation systems (ITS) are embracing an unprecedented era fea-

turing the application of communication and automation technologies, particularly,

connected vehicles (vehicles equipped with wireless communication devices) and au-

tomated vehicles (also known as self-driving or driver-less vehicles). This next gen-

eration ITS is not in the distant future, as the U.S. National Highway Traffic Safety

Administration (NHTSA) planed to mandate connected vehicle technology by 2016,

and Google debuted the conceptual driver-less “bubble” car in 2014 and claimed to

launch driver-less cars before 2019. Tremendous interests are attracted to connected
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and automated vehicles due to the huge benefits they are able to bring. According

to the U.S. Research and Innovative Technology Administration (2014), connected

vehicle technology will potentially reduce 81% of all-vehicle target crashes and vastly

improve the congestion problem in US which consumes up to 4.2 billion hours and

2.8 billion gallons of fuel annually. In this study, we focus on the mobility benefits,

especially, the speed stability, of connected vehicles and leave out the discussion of

automated vehicles, though the methodology may also applies to automated vehicles

as well.

The emerging connected vehicle technology brings new challenges to the research

of traffic flow modeling. In traditional traffic flow modeling, vehicles travel at free

flow speed unless the spacial headway (inter-vehicle distance) is within a certain

range (e.g., 125 meters), where vehicles will follow the leading vehicle to maintain

a safe and short distance. Typically in the literature of car following modeling, the

spacial headway is a function of the driver’s reaction time and the speed of the

leading vehicle [21, 22, 23, 24], and the following vehicle’s movement is dependent on

the leading vehicle’s movement. We consider this kind of car following behavior as

passive driving behavior. Almost all of the traditional car following models belong

to this category. The passive car following behavior is typical in the present world

mainly due to the lack of information on the prevailing traffic condition (e.g., status

of traffic light in the downstream intersection). One typical case is that vehicles travel

at free flow speed before reaching the signalized intersection (red traffic light) then

stop till the light turns to green, as demonstrated later in Figure 2.1 (a-1).

However, connected vehicles may behave differently from non-connected vehicles

due to the unique communication characteristics. Particularly, connected vehicles are

able to communicate with other connected vehicles (V2V communication) through

the vehicle ad-hoc network (VANET) or communicate directly with the infrastructure

(V2I communication), such that connected vehicles are more informed about the

traffic condition downstream (e.g., the timing plans of the downstream intersection).

With the prevailing traffic information, connected vehicles are able to adjust the
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driving speed accordingly rather than blindly adjust speed based on the speed change

of the leading vehicle. In other words, connected vehicles change speed pro-actively

and is independent of the speed change of the leading vehicle. We consider this kind

of driving behavior as proactive driving behavior.

The proactive driving behavior of connected vehicles contributes significantly to

the smoothing of traffic flow in the transportation network. Even in the mixed con-

nected vehicle environment, connected vehicles may function as the leading vehicle

to influence the driving behavior of following non-connected vehicles. This chapter

applies the meso-scopic cell transmission model as the underlying traffic flow model.

Firstly, we introduce the state variable of connected vehicles akin to every cell at every

time step in order to track the trajectory of individual connected vehicles. Then the

exit flow of cells containing connected vehicles is adjusted to account for the proac-

tive driving behavior of connected vehicles. With the adjusted exit flow, connected

vehicles reach the signalized intersection before the traffic light turns red. The second

part of the chapter conducts extensive numerical tests to examine the effect of the

proactive driving behavior of connected vehicles.

The rest of the chapter is structured as below. Section 2.2 is devoted to the recent

literature on the mobility benefit analysis of connected vehicle and an motivation

example of this study. Section 2.3 introduces the cell transmission model and related

changes needed to account for the proactive speed adjustment behavior of connected

vehicles. Section 2.4 conducts two numerical case studies including a signalized inter-

section and the Manhattan downtown network. Followed by Section 2.5 with some

concluding remarks and future research directions.

2.2 Related work

Proactive speed adjustment shares similarity with the notion of speed harmoniza-

tion. Speed harmonization is also known as variable speed limit control [25, 26]. It
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is an effective traffic management technique that adjusts the speed limit of the road

segment to account for the dynamic change of traffic demand, road construction con-

dition, work zone, and weather condition. The objective of speed harmonization is

to smooth the traffic flow towards a more uniform speed.

The recent advance of connected vehicles offers useful technologies in detection

and acquisition of high fidelity data that can be used for speed harmonization[26,

27]. Empirical studies have shown the effectiveness of variable speed limit control in

smoothing traffic flow and reducing traffic breakdowns [28, 29]. [30] develop an on-

line algorithm for variable speed limit control in highway work zone operations. [31]

formulate the integrated variable speed limit control and ramp metering problem as a

constrained discrete-time optimal control problem. [32] integrate variable speed limit

control and ramp metering as a coordination control problem. A model predictive

control approach is applied to solve the problem. The numerical case study shows

that significant travel time reduction (15%) is gained compared to non-control case.

[27] formulate the dynamic speed limit problem as a Markov decision process problem

and applied an on-line reinforcement learning algorithm to solve the problem.

Note that the notion of proactive speed adjustment is different from speed harmo-

nization (or variable speed limit control) in the way that proactive speed adjustment

requires the vehicle to be informed about the prevailing traffic condition. Hence

proactive speed adjustment is associated only with connected vehicles. By contrast,

speed limit control is usually applied to a certain road segment, and is effective to

both connected and non-connected vehicles.

Though we consider that only connected vehicles are able to pro-actively change

speed, the influence of the proactive speed adjustment is not limited to connected

vehicles. Because connected vehicles may act as leading vehicles (especially on the

single lane roadways in the real world) in the traffic flow propagation, the following

non-connected vehicles will exert a similar speed pattern as the leading connected

vehicle (as shown later in the demonstration example). In such a way, the influence

of the proactive driving behavior of connected vehicles may expand to the whole net-
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work. Recently, [33] introduce the influential subspace of connected vehicles within

which the connected vehicle is able to influence the macroscopic state of traffic flow

to a desired state. However, the analysis is based on a macroscopic traffic flow model

using a time-space diagram. The analytical solution is also limited to a single link

case.

Motivation example: the potential of a single connected vehicle

Consider the case of a signalized intersection (or a traffic accident) as shown in

Figure 2.1. Assuming that the third vehicle (highlighted in red in the figure) is a

connected vehicle. Here we consider two scenarios for the purpose of comparison:

(a-1) the connected vehicle does not adjust speed pro-actively (i.e., no different from

non-connected vehicles); (a-2) the connected vehicle adjusts speed pro-actively. As

shown in Figure 2.1 (a-1), all vehicles firstly travel at free flow speed, next stop in

front of the intersection due to red traffic light, and then discharge when the light

turns to green. In other words, all vehicles passively follow the stop-and-go process

of the first vehicle (leading vehicle). On the contrary, in Figure 2.1 (a-2), the third

vehicle (connected vehicle) does not blindly follow the second vehicle’s trajectory.

Away from the intersection about 200 meters, it is aware of the status of traffic light.

It pro-actively adjusts the speed such that it arrives at the intersection exactly when

the traffic light turns on green. In such a way, the third vehicle avoids the stop-and-

go process of the second vehicle. The following vehicles also avoids the stop-and-go

process as they are following the third vehicle. Figure 2.1 (b) further presents the

speed distribution corresponding to the two types of traffic in Figure 2.1 (a). It

is clearly shown that the low speed (0∼2.5 m/s) density of traffic pattern (b-2) is

significantly less than that of traffic pattern (b-1).
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Notations:

Sets:

C : Set of all cells

CR : Set of origin cells

CS : Set of destination cells

CO : Set of ordinary cells

CD : Set of diverging cells

CM : Set of merging cells

CT : Set of signalized cells

Γ−1(i) : Set of predecessors of cell i

Γ(i) : Set of successors of cell i

Parameters:

W : Shock wave speed

V : Free-flow speed

S : Saturation flow rate

L : Length of a cell

T : Total time steps

dJ : Jam density

N t
i : Maximum number of vehicles allowable in cell i at time t

Dt
i : Fixed mean demand input of cell i at time t

Variables:

Qt
i : Inflow or outflow capacity of cell i at time t

dti : Demand input of cell i at time t

pti : Probability for the demand or capacity of cell i

xti : Cell occupancy (number of vehicles) of cell i at time t

f ti,j : Flow from cell i to j at time t

Gt
i : Traffic light status of cell i at time t

kti : Density of cell i at time t

vti : Speed of cell i at time t

CV t
i : The state of connected vehicles of cell i at time t
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2.3 Methodology

2.3.1 Assumptions

To begin with, the assumptions in our modeling framework are:

1. The signalized intersection is installed with wireless communication devices.

Connected vehicles are able to communicate with the signalized intersection

within the transmission range. In the contest of this study, we consider that

connected vehicles are aware of the timing plan of the intersection when the

distance is within the transmission range.

2. Once the connected vehicle is aware of the traffic light status of the downstream

intersection, it will pro-actively adjust speed to arrive at the intersection when

the traffic light is green.

3. We utilize the cell transmission model (CTM) to propagate traffic flow. CTM

is a meso-scopic traffic flow model that assumes a piecewise linear relationship

between traffic flow and density. A series of homogeneous cells are used to

represent the road network and time is discretized into time steps. Moreover,

we have not considered the lane changing behavior. For more details, please

refer to [34, 35].

2.3.2 Cell transmission model

It is noted that in the literature of traffic flow modeling, there are macroscopic

link-based models [27, 36, 37, 38] that are more efficient than CTM [34, 35]. However,

they are not readily applicable for this study due to the specialty of this study as

below. 1) Link-based models propagates traffic flow on an aggregation level where

the macroscopic concept (e.g., flow, density, average speed) is applied. In this study,

we want to explicitly track the trajectory of individual connected vehicles. 2) Link

based models focus on the accumulative traffic flow at the boundaries of the link. In
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this study, we want to model connected vehicles’ capability of changing speed at any

point of the link, hence we care more about the traffic flow dynamics within the link.

CTM provides a convergent approximation to a simplified version of the LWR

hydrodynamic model [39, 40], whereby the fundamental diagram of traffic flow and

density is assumed to be a piecewise linear function. CTM is one of the widely used

network loading models due to its simplicity and capability of covering the whole

range of traffic dynamics including queue formation, dissipation, and kinematic wave.

Among the wealth of literature, CTM has been used for various dynamic problems

in the last decade, including the dynamic user optimal problem [41, 42], dynamic

network analysis [43, 44], traffic control management [45, 46, 47, 48], and so on.
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Fig. 2.2. Flow propagation of the cell transmission model

CTM discretizes the road network with a series of homogeneous cells, as shown

in Figure 2.2. The length of each cell L is set to be the distance traveled by the

free-flow speed V in one time step ξ, i.e., L = V ξ. CTM approximates the LWR

[39, 40] process by the following set of recursive equations:

Source cells:

xti = dt−1
i + xt−1

i − f t−1
i,j ,∀i ∈ CR, j ∈ Γ(i) (2.1)
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Sink cells:

xti = xt−1
i + f t−1

k,i , ∀i ∈ CS, k ∈ Γ−1(i) (2.2)

Ordinary/Merging/Diverging cells:

xti = xt−1
i +

∑
k∈Γ−1(i)

f t−1
k,i −

∑
j∈Γ(i)

f t−1
i,j ,∀i ∈ CO,M,D (2.3)

Ordinary cell connectors:

f ti,j = min

(
xti, Q

t
i, Q

t
j,
W

V

(
N t
j − xtj

))
,∀i ∈ CO, j ∈ Γ(i) (2.4)

Diverging cell connectors:

f ti,j = min

(
ρtix

t
i, Q

t
i, Q

t
j,
W

V

(
N t
j − xtj

))
,∀i ∈ CD, j ∈ Γ(i) (2.5)

where ρti is an exogenous parameter denoting the proportion of traffic flow diverted

to cell i at time t.

Merging cell connectors:

f ti,j = min

(
xti, Q

t
i, Q

t
j,
W

V
ρti
(
N t
j − xtj

))
, ∀i ∈ CM , j ∈ Γ(i) (2.6)

In order to capture the uncertainty from traffic demand, we have:

dti = ptiD
t
i (2.7)

Note that Dt
i is a fixed value, representing the predefined demand; and pti denotes

a random value within (0, 1) which is generated by certain probability distribution.

Based on empirical data, the typical probability distributions of pti include multi-

variate normal distribution, log-normal distribution, and multivariate log-normal dis-

tribution [49, 50, 51, 52]. A similar idea to describe the stochastic traffic network

environment with CTM is also discussed in [53].

For signalized intersection, the exit flow is saturation flow rate at green traffic

light, and zero at red traffic light. Thus we have:

Qt
i =

Sξ if Gt
i = 1

0 if Gt
i = 0

(2.8)
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where i ∈ CG, S is a fixed value, representing the saturation flow, and Gt
i denotes

the traffic light status of the signalized cell i at time t. Moreover, Gt
i = 1 indicates

the green traffic light, while Gt
i = 0 indicates the red traffic light.

With the density or cell occupancy determined, the mean speed at the cell level

can be derived. Firstly, note that kti =
xti
L

, thus according to the piece-wise fun-

damental diagram as shown in Figure 2.2, we obtain the associated flow as: qti =

min (ktiV,Q
t
i, (dJ − kti)W ). Thus according to the fundamental relationship between

flow, density, and speed, we get:

vti =
qti
kti

= min

(
V,

1

xti
Qt
iL,

(
1

xti
LdJ − 1

)
W

)
, i ∈ C (2.9)

2.3.3 Tracking the trajectory of connected vehicles

In this study, connected vehicles are generated randomly according to the pen-

etration rate (a preset parameter). However, CTM is originally developed as an

efficient meso-scale traffic flow simulation model, where traffic flow is not considered

at the individual vehicle level. Thus the probability of a initial source cell containing

connected vehicles (i.e., CV t
i = 1) is determined by:

P(CV t
i = 1) = 1− (1− Z)d

t
i , i ∈ CR (2.10)

where Z represents the penetration rate of connected vehicles.

As noted in the motivation example, even one single connected vehicle may ex-

ert significant impact on the traffic flow profile of the whole network. Hence in

this section, we extend CTM to make it capable of tracking the trajectory of con-

nected vehicles. For this purpose, we introduce a state variable of connected vehicles,

CV t
i , i ∈ C, t ∈ [0, T ], to describe the existence of connected vehicle in cell i at time t,

where CV t
i > 0 indicates that there is connected vehicle inside cell i at time t, while

CV t
i = 0 indicates the otherwise.

Figure 2.3 demonstrates tracking the trajectory of connected vehicles. The pa-

rameter setting of this example comes from Section 2.4.2. Figure 2.3 is only for
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demonstration purpose, the proactive speed adjustment of connected vehicles is not

implemented yet. From Figure 2.3, the trajectories of connected vehicles are clearly

and accurately captured.
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Fig. 2.3. Demonstration of tracking the trajectory of connected vehicles

2.3.4 Accounting for the proactive speed adjustment of connected vehi-

cles

Note that CTM discretizes space into homogeneous cells of the same size. The size

of a cell is dependent on the free flow speed and the size of the time step. As indicated

in the fundamental diagram of CTM, the flow-density relationship is approximated

by a piece-wise linear model (Figure 2.2). In non-congested traffic condition, traffic

flow propagates from one cell to another in the free-flow speed (lies on the left side

of the fundamental diagram). However, connected vehicles will not travel blindly

at free-flow speed at non-congested situation but adjust speed pro-actively to avoid
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the stop-and-go pattern at the downstream intersection. Hence, there is a need to

modify the flow propagation from the original CTM to account for the proactive

driving behavior of connected vehicles. Consider the process of a connected vehicle

traversing through a series of cells, the CV states of cells will change chronologically.

Hence, we relate the CV state of cells with the trajectory of connected vehicles as

below.

For demonstration purpose, as shown in Figure 2.4, consider a general cell i that

belongs to a general signalized link. In CTM, this link is discretized into 1...i...n

cells, where n denotes the ending cell (also the signalized cell) of the link. Further,

the value of (n− i) represents the minimum time steps for the traffic flow at cell i to

reach the end of the link (i.e., to reach the signalized cell). Let point O represent time

t, and point A represent the arrival time of traffic at cell i reaching the intersection.

Thus OA = n − i. Moreover, let Rt (i.e., point B) denotes the ending time of red

traffic light of cell n within the cycle covering time t. Then OB = Rt − t represents

the needed time for vehicles in cell i at time t (i.e., xti) to reach the intersection. It

is clear that if OB≤OA, the traffic of xti will travel through the intersection freely as

the traffic light is green (as shown in Figure 2.4 (a)), otherwise xti will stop in front

of the intersection till point B (i.e., time Rt), as presented in Figure 2.4 (b).

Assuming that cell i at time t contains connected vehicles, i.e., CV t
i = 1, and the

distance from cell i to n is within transmission range such that the connected vehicle

is aware of Rt. In the case of OB>OA (i.e., Rt
i − t > ni − i), the connected vehicle

need to adjust speed (particularly, slow down) to reach the ending cell at point B.

To simulate this proactive driving behavior, we retain the vehicles in cell i for bOB
OA
c

time steps, where bOB
OA
c indicates the rounding down integer of OB

OA
. Specifically in

the implementation, at time t, if 0 < CV t
i <

OB
OA

, we update CV t+1
i as CV t

i + 1 in

time step t + 1, and restrict the exit flow to be zero (so as to retain the traffic in

cell i). This process continues till CV t
i ≥ OB

OA
. Then CV t+1

i is updated to be zero,

the restriction on the exit flow of cell i is released, and CV t+1
j is updated to be one,

where j ∈ Γ(i). In summary, the CV state is updated in a recursive way as shown in
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Pseudocode 1 (note thatOB
OA

= Rt−t
n−i ). The traffic density patterns in the presence of

connected vehicles in Figures 2.5, 2.6, and 2.7 have confirmed that connected vehicles

reach the intersection at the end of red traffic light.
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Fig. 2.4. Proactive driving behavior of connected vehicles

2.4 Numerical case studies

2.4.1 Vehicular emissions estimation

To evaluate the environmental impact of the proactive driving behavior of con-

nected vehicles, we apply the approach of vehicle specific power (VSP) developed by

[54] to estimate different types of vehicular emissions. It is worthwhile to note that

there is a vast literature on vehicular emission estimation. We choose the VSP ap-

proach due to its convenience in estimating emission rates based on second-by-second

speed profile. Other emission modeling approaches are similarly applicable.

In the VSP approach [54], firstly, VSP is determined based on the second-by-

second speed profile for a typical light-duty vehicle as below:

V SP = v[1.1a+ 9.81sin(arctan(grade)) + 0.132] + 0.000302v3 (2.11)
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1 for i ∈ CR do

2 Update CV t
i according to (2.10);

3 end

4 while i ∈ C/{CR ∪CS} do

5 j ∈ Γ(i);

6 if 0 < CV t
i <

Rt − t
n− i

then

7 CV t+1
i = CV t

i + 1;

8 f ti,j = 0;

9 end

10 else if 0 < CV t
i <

Rt − t
n− i

then

11 CV t+1
i = 0;

12 CV t+1
j = 1;

13 end

14 if 0 < CV t
i and f ti,j ≥ 0 then

15 end

16 update: i = j;

17 end

Pseudocode 1: The updating process of connected vehicle state and exit flow

adjustment
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Table 2.1.
VSP modes [54, 55]

VSP mode Definition(kW/ton)

1 VSP<-2

2 -2≤VSP<0

3 0≤VSP<1

4 1≤VSP<4

5 4≤VSP<7

6 7≤VSP<10

7 10≤VSP<13

8 13≤VSP<16

9 16≤VSP<19

10 19≤VSP<23

11 23≤VSP<28

12 28≤VSP<33

13 33≤VSP<39

14 39<VSP

where V SP denotes the vehicle specific power (kW/metric ton); v denotes vehicle

speed (m/s); a denotes acceleration or deceleration (m/s2); and grade is terrain gra-

dient (±%).

Depending on the value, the second-by-second VSP is categorized into fourteen

discrete modes as defined in Table 2.1 [54, 55]. Each VSP mode is corresponding to

a different type of fuel use and emission rate. [56] measures the energy consumption

and pollutant emissions of a EURO IV gasoline passenger car (1.4 L VW Polo 1.4

16V) and develops the normalized average emission rates for CO2, CO, NOx and HC

by VSP mode as showed in Table 2.2.
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Table 2.2.
Normalized average emission rates for CO2, CO, NOx and HC by VSP mode [56]

VSP mode CO2(g/s) CO(mg/s) NOx(mg/s) HC(mg/s)

1 0.21 0.03 1.29 0.14

2 0.61 0.07 2.62 0.11

3 0.73 0.14 3.38 0.11

4 1.5 0.25 6.05 0.17

5 2.34 0.29 9.36 0.2

6 3.29 0.69 12.53 0.23

7 4.2 0.58 15.48 0.24

8 4.94 0.64 17.82 0.23

9 5.57 0.61 21.32 0.24

10 6.26 1.01 32.53 0.28

≥11 7.4 1.15 55.75 0.37
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2.4.2 Test case 1: a single link

The first test case is a single link with a signalized intersection at the end of the

link. The purpose of conducting this test case is to demonstrate that the customized

CTM is capable of accounting for the proactive driving behavior of connected vehicles,

as well as to examine the mobility benefit that an isolated intersection is able to gain

with varied penetration rates of connected vehicles.

The length of the link is 300 meters. Free flow speed is set at 50 kph. The

duration of the simulation is 600 s with the time step of one second. Hence the cell

discretization of the road is around 13.9 meters. The communication transmission

range is set at 200 meters, i.e., the connected vehicle is aware of the timing of traffic

lights when it is within 200 meters of the intersection. Details of the other parameters

are presented in Table 2.3.

Table 2.3.
Parameter settings of test case 1

Jam density 200 veh/km

Free flow speed 50 km/h

Transmission range 200 meters

Shockwave speed over free flow speed ratio 0.4

Saturation flow rate 1800 veh/hour

Cycle time 80 seconds

Red phase 40 seconds

Time step 1 second

Duration 600 seconds

In the experiment design, we consider three types of demands: 300 vph (light), 600

vph (medium), and 1200 vph (heavy). The demand inputs are generated according

to the lognormal probability distribution with the deviation percentage of 0.20. Note

that the saturation flow rate is 1800 vph, and the green time is half of the cycle time.
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Thus the capacity of the intersection is 900 vph, and the demand case of 1200 vph

will expect over-saturation in the intersection. Figures 2.5, 2.6, and 2.7 present the

traffic density profile of the link under different penetration rates of connected vehicles

and under different demand scenarios. From the three figures, we have observed the

following results:

1. Connected vehicles will pro-actively adjust speed such that when the connected

vehicle arrives at the intersection the traffic light turns to green. This pattern is

especially clearly demonstrated in the case of low penetration rate of connected

vehicles (as shown in Figure 2.5, case of 10%, 50% CV; Figure 2.6, case of 50%

CV; Figure 2.7, case of 10%, 50% CV).

2. The stopped traffic significantly reduces with the presence of connected vehicles.

Especially in the low and medium demand scenario, even if there are only a

couple of connected vehicles (as for the case of 10% CV), the traffic density

profile of the link are substantially different from the non-CV case (as shown in

Figure 2.5, case of 10% CV; Figure 2.6, case of 10% CV).

3. As expected, over-saturation occurs in the heavy demand scenario (as shown in

Figure 2.7). Though stopped traffic also reduces with the presence of connected

vehicles, the reduction is not as significant as in the case of low and medium

demand. Moreover, a new queue forms up at the end of the transmission range

(Figure 2.7, case of 100% CV).

To further quantify the mobility benefits of connected vehicles in terms of speed

stability, we consider the weighted average speed and the weighted speed deviation

for the speeds that are within the range of (0∼30 kph) as the performance measures

(30 kph is just a tentative threshold parameter). Particularly, we firstly compute

the speed of every cell at every time step, then subtract the set of speeds that are

within the range of (0∼30 kph), then compute the weighted mean and deviation of

the speed set with respect to the density of the cell. Table 2.4 presents the weighted
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Fig. 2.5. Density demonstration of different connected vehicle pene-
trations for light demand scenario

mean and deviation of the speed profile of the link under different demand scenarios

and penetration rates of connected vehicles. From Table 2.4, we see that:

1. The presence of connected vehicles significantly contributes to increasing the

average speed of the link. Even with only 10 % connected vehicles, the av-

erage speed improves at least 15.34%, and with 30% connected vehicles, the

improvement is at least 27.85%.
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Fig. 2.6. Density demonstration of different connected vehicle pene-
trations for medium demand scenario

2. The marginal improvement of average speed decreases with the penetration rate

of connected vehicles. In other words, the rate of improvement slows down with

the penetration rate. Especially, 50% of connected vehicles seems to be a crit-

ical point. The average speed increases rapidly (slowly) with the penetration

rate before (after) 50% of connected vehicles. This observation may offer valu-

able insights to designing the most efficient and cost-effective deployment of

connected vehicles.
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Fig. 2.7. Density demonstration of different connected vehicle pene-
trations for heavy demand scenario

3. Though there is not a consistent pattern for the deviation of the average speed,

it is seen that the deviation is within a narrow range.

2.4.3 Test case 2: Manhattan downtown network

The Manhattan downtown network is a real world network as shown in Figure

2.10. We firstly obtain the shape-file for the Manhattan network, then extract the

network configuration information (e.g., the length of links, the direction of links,
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Fig. 2.8. Comparison of speed under different connected vehicle pen-
etrations and demands

the link-node incidence, and origin/destination nodes) and feed it into the Matlab

code of the CTM model. For the Manhattan road network, there are 340 links, and

the total length of the entire network is 26,252 m. The specific configurations of the

network (e.g. the length of each link) are skipped here as they are the same as that in

the real world. Other parameter settings are the same as test case 1, unless specified

otherwise.

Similar to test case 1, we consider the weighted average speed and speed deviation

for the speeds that are within (0∼30 kph) as the performance measures to quantify

the mobility benefits of connected vehicles. Table 2.5 presents the weighted mean and

deviation of the speed profile of the whole network under different demand scenarios

and penetration rates of connected vehicles. The following results can be observed

from Table 2.5:

1. It is easily seen that connected vehicles contribute significantly to improving the

average speed of the network. Relatively, the improvement of the low demand

scenario is the worst. However, even under the low demand case, the average

speed increases from 13.7 kph to 18.49 kph with 10% connected vehicles, and

to 22.30 kph with 100% connected vehicles.
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Fig. 2.9. Comparison of emissions under different connected vehicle
penetrations and demands

2. Similar to test case 1, the marginal improvement of average speed slows down

with the penetration rate. In this test network, 30% of connected vehicles seems

to be the critical point instead of 50%. The average speed increases slowly after

the penetration rate of 30%. In the deployment of connected vehicles, 30% may

be the most cost-effective penetration rates of connected vehicles.

3. The speed deviation increases with the penetration rate of connected vehicles

under the medium and heavy demand cases. For the 900 vph demand case,

the increase of speed deviation goes up to 48.12% with 30% connected vehicles.
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Table 2.4.
Comparison of the average speed (≤ 30 kph) and emissions of test case 1

Demand (vph) Speed (kph) Deviation (%) CO2 (g) CO (mg) NOx (mg) HC (mg)

300

Non-CV(Base) 10.06 0.85 561 97 2391 69

10% CV 11.53 0.75 552 95 2341 67

30% CV 15.95 0.58 330 54 1372 33

50% CV 18.07 0.30 268 42 1131 22

80% CV 18.75 0.28 206 32 797 17

100% CV 19.95 0.20 138 24 553 12

600

Non-CV(Base) 8.87 0.98 1598 279 6846 197

10% CV 10.83 0.75 1551 273 6628 185

30% CV 16.61 0.42 1190 204 4930 126

50% CV 17.52 0.32 1136 191 4640 117

80% CV 18.84 0.23 887 147 3676 88

100% CV 20.71 0.21 445 83 1899 53

900

Non-CV(Base) 9.52 0.85 3181 567 13834 407

10% CV 13.18 0.60 3130 548 13519 387

30% CV 17.34 0.32 2952 494 12566 329

50% CV 19.61 0.23 2531 425 10932 274

80% CV 19.83 0.22 2623 436 11647 271

100% CV 20.32 0.22 2455 414 11564 256

How connected vehicles’ proactive driving behavior will impact the deviation of

speed in the network is an interesting topic. However, it is not the focus of this

chapter, hence is left to future research.
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Fig. 2.10. Test case 2: Manhattan downtown network
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Fig. 2.11. Comparison of speed under different connected vehicle pen-
etrations and demands
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Table 2.5.
Comparison of the average speed (≤ 30 kph) and emissions of test case 2

Demand (vph) Speed (kph) Deviation (%) CO2 (g) CO (mg) NOx (mg) HC (mg)

300

Non-CV(Base) 11.94 0.77 12556 2139 53617 1533

10% CV 17.42 0.52 10145 1706 42832 1173

30% CV 19.05 0.44 8478 1415 35624 947

50% CV 21.24 0.33 7114 1176 30030 756

80% CV 21.36 0.32 6863 1139 28751 717

100% CV 21.19 0.31 6897 1141 29644 694

600

Non-CV(Base) 6.31 1.12 55956 10253 250678 7777

10% CV 13.21 0.78 51734 9398 229851 6939

30% CV 15.26 0.67 48292 8752 214839 6415

50% CV 15.46 0.66 48028 8710 213651 6351

80% CV 15.73 0.64 46955 8536 209683 6226

100% CV 15.76 0.64 45395 8278 202819 6081

900

Non-CV(Base) 4.18 1.21 158942 29963 726002 23182

10% CV 9.71 1.02 153563 28712 698390 21909

30% CV 11.01 0.94 150828 28160 686208 21446

50% CV 11.26 0.92 149484 27894 681015 21205

80% CV 11.44 0.91 147314 27539 672289 20970

100% CV 11.50 0.91 145961 27316 667483 20787

2.5 Conclusions

The advent of connected vehicles brings new challenges to the research of traffic

flow modeling. Due to the unique communication characteristics, connected vehicles

are capable of adjusting speed pro-actively to account for the prevailing traffic con-

ditions. This proactive driving behavior contributes significantly to the smoothing

of traffic flow in the transportation network. Even in the mixed connected vehicle

environment, connected vehicles may function as the leading vehicle to influence the

driving behavior of the following non-connected vehicles, resulting the change of the

flow pattern of entire network. This chapter firstly modifies the cell-based meso-

scopic traffic flow model to track the trajectory of individual connected vehicles, then
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adjusts the exit flow of the cells along the trajectory of connected vehicles to account

for the proactive driving behavior. Particularly, it is shown that connected vehicles

will pro-actively adjust speed to arrive at the signalized intersection when the traffic

light is green. The second part of the chapter conducts two numerical tests including

an intersection case and the Manhattan downtown network. To quantify the mobility

benefits of connected vehicles, the mean and deviation for the speeds that are within

the range of (0∼30kph) are considered as the performance measures. The mean and

deviation of speed are weighted with respect to the cell density. For the purpose of

comparison, we design multiple test scenarios by varying the demand levels and the

penetration rates of connected vehicles. The results clearly and consistently show that

the presence of connected vehicles contributes significantly to improving the average

speed of the traffic flow in the network.

There are some future research directions for this study. Firstly, this study only

simulates one type of proactive speed adjustment scheme (i.e., the connected vehicle

decreases speed to arrive the signalized intersection exactly at the end of the red traffic

light). It is worthwhile to investigate other types of speed adjustment scheme as well.

Secondly, it is considered that the traffic flow (both connected and non-connected

vehicles) propagates on determined routes. However, as connected vehicles are more

informed about the traffic situation in the downstream network, they may alternate

routes dynamically during the trip.
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3. AN OPTIMAL ESTIMATION APPROACH FOR THE

CALIBRATION OF CONNECTED VEHICLES

In the test bed of connected vehicles, detailed trajectory data are collected for con-

nected vehicles only. It brings challenges to study the car-following behavior of con-

nected vehicles following non-connected vehicles. This chapter proposes an optimal

estimation approach to calibrate connected vehicles’ car-following behavior in a mixed

traffic environment. Particularly, the state-space system dynamics is captured by

the simplified car-following model with disturbances, where the trajectory of non-

connected vehicles are considered as unknown states and the trajectory of connected

vehicles are considered as measurements with errors. Objective of the reformulation

is to obtain an optimal estimation of states and model parameters simultaneously. It

is shown that the customized state-space model is identifiable with the mild assump-

tion that the disturbance covariance of the state update process is diagonal. Then

a modified Expectation-Maximization (EM) algorithm based on Kalman smoother is

developed to solve the optimal estimation problem. The performance of the EM al-

gorithm is validated through simulation data. The second part of the chapter applies

the empirical data of connected vehicles from the Michigan test bed and analyzes the

mobility impact of connected vehicles with different penetration rates and demand

scenarios.

3.1 Introduction

Collectively known as V2X in the United States and Car2X in Europe, connected

vehicle technologies have seen a rapid growth and received tremendous interests from

academics, industries, and government agencies. Though connected vehicles are still

yet launched to the public, many test beds have been established in the US, Europe,
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and Asia. In the US, as of the date, there are five test beds affiliated to the US

Department of Transportation (USDOT) supporting the public- and private-sector

testing and certification activities of connected vehicles and connected infrastructure

[57]. Typically, connected vehicles are tested in a selected real world network in

the presence of regular vehicles (i.e., in a mixed traffic environment where connected

and non-connected vehicles coexist). In the test bed of connected vehicles, it is

routine that the detailed trajectory data are recorded for connected vehicles only.

This empirical data greatly assists the analysis and evaluation of the characteristic

of connected vehicles. However, this data set is seemingly insufficient to study the

car-following behavior of connected vehicles following non-connected vehicles.

In general, the car-following behavior in a mixed traffic environment can be divided

into three cases according to the relative position of vehicles as below:

• Non-connected vehicles following connected or non-connected vehicles.

• Connected vehicles following connected vehicles.

• Connected vehicles following non-connected vehicles.

For the first case, the car-following behavior of non-connected vehicles (i.e., regular

vehicles) have been well studied in the literature. For the second case, both lead-

ing and following vehicles are connected vehicles whose trajectory data are assumed

known. There is a large amount of literature on calibrating the car-following behavior

based on trajectory data. A brief review is presented in Section II. Challenges occur

in the third case, where the trajectories of leading vehicles (non-connected vehicles)

are not available.

In this study, we propose an optimal estimation approach to account for the

challenge in the third case. The main contributions of this chapter are:

• An optimal estimation approach is proposed to calibrate the car-following be-

havior of connected vehicles (whose trajectories are assumed known) following

non-connected vehicles (whose trajectories are assumed unknown).
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• The trajectory of non-connected vehicles are considered as unknown states. The

trajectory of connected vehicles are considered as measurements with errors.

The calibration problem is formulated as to obtain an optimal estimation for

both states and model parameters based on measurements.

• State dynamics are captured by the simplified car-following model with distur-

bances. It is shown that the customized state-space model is identifiable under

the mild assumption that the error covariance of the state update process is

diagonal.

• A modified Expectation-Maximization (EM) algorithm based on Kalman smoother

is proposed to solve the optimal estimation problem. The performance of the

EM algorithm is validated through simulation data.

• A numerical case is conducted based on the empirical data of connected vehicles

from the Michigan test bed to analyze the mobility benefit of connected vehicles

with different penetration rates and demands.

The rest of the chapter is structured as follows. Related work is summarized in

Section 3.2. Section 3.3 is devoted to the introduction of the simplified car-following

model, reformulation of the calibration problem, the detailed steps of the EM al-

gorithm, and the validation of the algorithm through simulation data. Section 3.4

describes the trajectories data of connected vehicles in the Michigan test bed, and

conducts a numerical case to analyze the mobility benefits of connected vehicles un-

der different market penetration rates and demand scenarios. Finally, Section 3.5

concludes the chapter and discusses the direction for future research.

3.2 Related work

Heterogeneous driver’s anticipation or overreaction to unexpected events such as

the sudden break or deceleration of the leading vehicle is the main cause of traffic

oscillations[58, 59]. For example, an aggressive driver responds differently from a
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conservative driver to the speed change of the leading vehicle. Connected vehicles

behave differently from non-connected vehicles due to the communication feature.

The communication feature warns vehicle about the potential danger in advance

and enables the vehicle to quickly and robustly respond to the speed change of the

leading vehicle. Thus, the traffic oscillation (or the stop-and-go waves) reduces in the

connected vehicle environment [60].

In the literature, a popular research direction to model the traffic flow with con-

nected vehicles is by integrating the traffic flow simulation and network communica-

tion simulation. Towards this end, one approach is to develop a trace-based mobility

model and then insert the trace to the network communication simulation. The trace-

based mobility model can be based on either real-world observations or traffic flow

simulator. E.g., In [5], the trace-based mobility model is developed by using the GPS

taxi data. In [6], the trace data is generated by running the traffic simulator VIS-

SIM [7]. One major limitation of the trace-based mobility model is that the traffic

simulation and network communication simulation are independent, i.e., there is no

interaction between these two simulations. Addressing this issue, in [8], a coupled

simulation platform is developed integrating the network simulator OMNET++ and

traffic simulator SUMO [10], which allows dynamic interaction between both simula-

tors. In [11], the impact of the penetration rate of connected vehicles on the stability

of traffic flow and road capacity is studied. In the modeling framework, the inter-

vehicle communication is modeled by a VANET simulator named JiST/SWANS [12],

and the traffic flow is modeled by cellular automaton. It is found that the traffic

efficiency is improved even for a 5% penetration rate of connected vehicles. However,

the improvement is based on the connected vehicle’s willingness to adjust acceleration

and speed under certain circumstances. From a different perspective, a multi-agent

framework is proposed in [61] including three layers, namely, the physical layer, the

trust layer, and the communication layer. The cooperative driving behavior (e.g., car-

following, lane changing) of connected vehicles is modeled by integrating the three

layers.
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Most of the above literature relies on making assumptions on the traffic flow dy-

namics of connected vehicles and is short of validating the assumption through em-

pirical data from the real world. To overcome the limitation, a handful of researchers

focus on calibrating car-following models for connected vehicles. Car-following mod-

els, which describe the process that vehicles follow one another in the traffic stream,

have been studied for more than half a century since its inception in 1950s and are

common in microscopic traffic simulators (e.g., VISSIM, PARAMICS, SUMO). In

[23], car-following models are categorized into five categories: Gazis-Herman-Rothery

models [21], safety distance or collision avoidance models [22], linear models [62],

psychophysical or action point models, and fuzzy-logic based models. There is a

vast literature for the calibration of car-following models by making use of detailed

trajectory data [63, 64, 65, 66, 67, 68, 69, 70]. However, most of them require the tra-

jectories of both leading and following vehicles to be known. They do not address the

challenge in a mixed traffic environment where trajectories of non-connected vehicles

are not available.

There is limited literature studying the car-following behavior of connected vehi-

cles based on empirical data. In [71], four types of car-following models are calibrated

based on the next-generation simulation program (NGSIM [72]) data. The models

are reformulated as bidirectional car-following models to account for the backward

information propagation in the connected vehicle environment. However, the NGSIM

data are not collected from connected vehicles. In [73], a new car-following model is

proposed assuming drivers can adjust acceleration rates according to the prevailing

traffic information (especially the accident condition) from inter-vehicle communica-

tion. However, the model has not been verified or calibrated through empirical data,

and the effect of different penetration rates is not revealed. In [74], different types

of car-following models are calibrated based on the naturalistic driving data of 100

connected vehicles collected by the Virginia Tech Transportation Institute. Though

the non-connected vehicles’ information are not available in the naturalistic data, the

car-following event can be identified through the radar object tracking data and the
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forward-facing video data. However, due to the significant errors in the object track-

ing, the radar data are not reliable hence all car-following events are manually verified

by using the recorded video data. Finally a total data set of 1,000 min of data from

the initial 30,213 min of data were identified for the car-following calibration process.

Nevertheless, it is concluded in [74] that the data reduction process is complex and

costly. A sound method for studying the car-following behavior of connected vehicles

remains to be explored.

3.3 An optimal estimation approach

It is a challenging task to calibrate the car-following behavior based on the fol-

lowing vehicle’s trajectory only as: (1) parameters of the car-following model are

unknown; (2) headways between the leading vehicle (non-connected vehicle) and fol-

lowing vehicle (connected vehicle) are unknown. To address these challenges, we

consider the trajectory of non-connected vehicles as hidden states and the trajec-

tory of connected vehicles as measurements of the state with errors. The simplified

car-following model is applied to describe the state update dynamics. Thus the cal-

ibration problem is formulated as an optimal estimation problem where states and

model parameters are to be estimated simultaneously.

3.3.1 The simplified car-following model

In this study, we focus on the simplified car-following model proposed by [24] due

to its simplicity and effectiveness in simulation, as well as its flexibility to incorporate

different types of driving behaviors. In [75], the simplified car-following model is

verified by the trajectory of vehicles discharging at signalized intersections. In [76],

the vehicle trajectory data shows that the formation and propagation of stop-and-go

traffic oscillations are caused by different driving behaviors (e.g., the timid or the

aggressive driving behavior). To simulate the traffic oscillation, the simplified car-
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following model is extended to the behavioral car-following model which is validated

by [77] in empirical observations.

The simplified car-following model provides an exact solution to the simplified

version of the Lighthill-Whitham-Richards [78, 79] hydrodynamic model, whereby

the fundamental diagram of traffic flow and density is assumed to be in a triangular

form. As shown in Figure 3.1a, the fundamental diagram is described by the free

flow speed, V , the shockwave speed, W , and the jam traffic density. On a single lane,

considering that vehicle (i+ 1) follows vehicle i, then we have:

gi+1
t+τi+1

= min{git − dj, gi+1
t + V τi+1} (3.1)

where git denotes the position of vehicle i at time t, τi denotes the response time of

vehicle i, and dj denotes the jam spacial headway.

The first term of (3.1) represents the congestion condition where two vehicles are

separated by the jam spacing and the response delay, while the second term represents

the free-flow traffic condition where vehicles travel in free flow speed. The spacing

between the leading and the following vehicle are further expressed as (Figure 3.1b):

sit = dj + vitτi (3.2)

where sit represents the spacial headway between the leading vehicle i and the following

vehicle (i+ 1) at time t.

3.3.2 An optimal estimation formulation

As the trajectory of connected vehicles are known and that of non-connected ve-

hicles are unknown, we consider the trajectory of connected vehicles as measurements

and the trajectory of non-connected vehicles as hidden states. According to (3.2), the

spatial headway is linear on the speed of the leading vehicle, i.e.,

st = d+ τvt (3.3)
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Fig. 3.1. (a) The flow-density fundamental diagram (b) The spacing-
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where the vehicle index i is omitted in the notation hereafter for the sake of brevity;

d and τ are unknown model parameters.

In the literature, researchers have spent lots of efforts to calibrate the parameters

for non-connected vehicles. However, little is known for the parameters of connected

vehicles. The rest of this section is devoted to estimate and validate the most accurate

parameters for connected vehicles.

Firstly, let gt denote the position and vt denote the speed of a non-connected

vehicle, then we have:

gt+1 = gt + vtδ + wg,t (3.4)

vt+1 = vt + wv,t (3.5)

where wg,t and wv,t represents the disturbance of position and speed. Denote state

variables in a vector form as xt =

gt
vt

, then the dynamic model of states is written

as:

xt+1 = Axt + wt,wt ∼ N (0, Q) (3.6)
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where A =

1 δ

0 1

, wt =

wg,t
wv,t

, δ is the time step size. It is assumed that wt follows

a normal distribution with zero mean and covariance Q (unknown).

Similarly, we denote measurements as yt = yt , where yt represents the position of

a connected vehicle. According to (3.3), we obtain the linear model of measurements

as:

yt = Cxt + d+ γt, γt ∼ N (0, R) (3.7)

where C =

1

τ

′, γt represents the measurement noise. γt is assumed to follow a

normal distribution with zero mean and variance R (unknown).

Now that we have formulated the calibration problem in the framework of linear

state-space modeling (SSM). In the presentation, the latent process follows a vec-

tor autoregressive (VAR) model as shown in (3.6). The observed measurements are

a linear mixture of the latent processes with white noise as shown in (3.7). In this

estimation problem, both the state xt and the part of the parameter matrix of the dy-

namic model (Q, τ, d, R) are unknown. The objective is to estimate states and model

parameters simultaneously based on the measurement y . Note that parameter matrix

A and the first entry of C are known. However, if we directly apply (3.6) and (3.7) to

estimate model parameters of the SSM, we may encounter the over-parameterization

issue (i.e., it is possible to have an infinite number of parameterizations fulfilling (3.6)

and (3.7)). This issue is also known as the lack of identifiability of SSM [80, 81]. To

overcome this identifiability issue, we impose a mild assumption on the state update

dynamics: there is no correlation between the position noise and the speed noise in

the state update process. Then the covariance Q can be written as Q =

σ2
1 0

0 σ2
2


, where σ2

1 and σ2
2 denote the variance of the position update error and the speed

update error.

Notice that A is known, and parts of the parameter matrix Q and C are known.

Based on these known parts, along with the mild assumption that wg,t and wv,t are

uncorrelated, we show that the customized SSM is identifiable in Lemma 1.
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Lemma 1. The customized SSM model given by (3.6) and (3.7) is identifiable if

Q is diagonal .

Proof: Let Φ =

a1 a2

a3 a4

 be an arbitrary nonsingular matrix. Insert Φ into (3.6) and

(3.7), then we have:

Φxt+1 = ΦAΦ−1Φxt + Φwt,Φwt ∼ N (0,ΦQΦ′) (3.8)

yt = CΦ−1Φxt + d+ γt, γt ∼ N (0, R) (3.9)

Note that A is transformed to ΦAΦ−1. Since A is known, we have:

A = ΦAΦ−1 ⇒ AΦ = ΦA (3.10)

Further, replace A with A =

1 δ

0 1

, we have:

1 δ

0 1

a1 a2

a3 a4

 =

a1 a2

a3 a4

1 δ

0 1

⇒ a3 = 0, a1 = a4 (3.11)

Moreover, C is transformed to CΦ−1 , we have:

CΦ−1 =
[
1 τ

]a1 a2

a3 a4

−1

=
1

a1a4 − a2a3

[
1 τ

] a4 −a2

−a3 a1

 (3.12)

Substituting a3 = 0 and a1 = a4 into (3.12) leads to:

CΦ−1 =

[
1

a1

−a2 + a1τ

a1

]
(3.13)

From the fact that C(1) = 1, we have: a1 = a4 = 1. Moreover, Since Q is transformed

to ΦQΦ′ , we have:

ΦQΦ′ =

1 a2

0 1

σ2
1 0

0 σ2
2

1 a2

0 1

′

=

σ2
1 + a2

2σ
2
2 a2

2σ
2
2

a2
2σ

2
2 σ2

2

 (3.14)
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Since the first and the third entry of Q is known to be zero, we have:

a2
2σ

2
2 = 0⇒ a2 = 0 (3.15)

In all, the arbitrary matrix Φ is restricted to be the identity matrix

1 0

0 1

. 2

3.3.3 A modified EM algorithm

In the SSM model given by (3.6) and (3.7), both the latent state and model

parameters are unknown. The Expectation-Maximization (EM) algorithm proposed

by [82] is a potential solution for this problem. EM algorithm is a powerful tool to

estimate the hidden model with missing data by maximizing the model log likelihood

[83]. In [84, 85] the EM algorithm is extended in the linear state-space system to

estimate latent state and missing parameters simultaneously. The EM algorithm

alternates between two steps: E-step and M-step. The purpose of the E-step is to

compute the expected log-likelihood based on the initiated or estimated values of

model parameters, while the purpose of the M-step is to determine model parameters

to maximize the expected log-likelihood function. This two-step process is iterated

until the desired convergence requirement is fulfilled.

E-step of the EM algorithm

In the E-step of the EM algorithm, we apply the Kalman filter and smoother

techniques [86, 87] to compute the expectation value of the state variable and other

interim terms.

Firstly, denote Xt|n = (Xt|Y1 = y1, · · · , Yn = yn) as:

Xt|n = N
(
E (Xt|Y1 = y1, · · · , Yn = yn) ,

V ar (Xt|Y1 = y1, · · · , Yn = yn)
) (3.16)

which reads as Xt|n = N
(
x̂t|n, Pt|n

)
.
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The Kalman filter consists of two steps: the time update step and the measurement

update step. In the time update step, we need to compute the priori distribution of

Xt+1|t from Xt|t :

x̂t+1|t = Ax̂t|t (3.17)

Pt+1|t = APt|tA
′ +Q (3.18)

In the measurement update, we compute the posteriori distribution of Xt+1|t+1 as:

Kt+1 = Pt+1|tC
′ (CPt+1|tC

′ +R
)−1

(3.19)

x̂t+1|t+1 = x̂t+1|t +Kt+1

(
yt+1 − Cx̂t+1|t − d

)
(3.20)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t (3.21)

where Kt+1 denotes the Kalman gain of the Kalman filter.

Note that Kalman filter only provides the forward update of the state variable,

we also need to compute Xt|Te for 0 ≤ t < Te , where Te denotes the total number of

time steps. The backward pass update is as below:

Lt = Pt|tA
′P−1
t+1|t (3.22)

x̂t|Te = x̂t|t + Lt
(
xt+1|Te − x̂t+1|t

)
(3.23)

Pt|Te = Pt|t + Lt
(
Pt+1|Te − Pt+1|t

)
L′t (3.24)

The forward and backward pass process of Kalman smoother provides the needed

input to compute the expected log-likelihood as below:

E (xt) = x̂t|Te (3.25)

E (xtx
′
t) = Pt|Te + x̂t|Tex̂

′
t|Te (3.26)

E
(
xtx

′
t+1

)
= x̂t|tx̂

′
t+1|Te + Vt,t+1 (3.27)

Vt,t+1 = Pt|tL
′
t+1 + Lt+1

(
Vt+1,t+2 − APt|t

)
L′t+1 (3.28)
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M-step of the EM algorithm

Firstly, the likelihood function of the model parameter based on xt and yt is given

as:

L (Q, τ, d, R|x,y) = p (x,y|Q, τ, d, R)

=
Te∏
t=2

p (xt|xt−1) p (yt|xt)
(3.29)

Taking the log likelihood of (3.29) gives:

lnL (Q, τ, d, R|x,y) = ln
Te∏
t=2

p (xt|xt−1) p (yt|xt) (3.30)

The purpose of M-step is to maximize the expectation of the log likelihood. Thus,

we have:

E (lnL|y) =

Te−1∑
t=1

(
1

2
ln |Q−1| − 1

2
(xt − Axt)

′Q−1 (xt − Axt)

)
+

Te∑
t=1

(
1

2
ln |R−1| − 1

2
(yt − Cxt − d)2R−1

)
+ const

(3.31)

where const denotes a constant term.

The log likelihood function can be further written as:

E (lnL|y) =
Te−1∑
t=1(

− lnσ1σ2 −
1

2

(
((xt+1 − Axt)1)2

σ2
1

+
((xt+1 − Axt)2)2

σ2
2

))

+
Te∑
t=1

(
−1

2
lnR− 1

2R
(yt − Cxt − d)2

)
+ const

(3.32)

where (xt+1 − Axt)1,2 refers to the first (or second) element of the vector (xt+1 − Axt).
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To optimize the parameter for the deviation of position disturbance, i.e., σ1, we

have:

∂E (lnL|y)

∂σ1

=
Te−1∑
t=1

− 1

σ1

+
((xt+1 − Axt)1)2

σ3
1

(3.33)

σ2
1 =

1

Te − 1

Te−1∑
t=1

((xt+1 − Axt)1)2 (3.34)

Similarly, to optimize the parameter for the deviation of speed disturbance, i.e.,

σ2, we have:

∂E (lnL|y)

∂σ2

=
Te−1∑
t=1

− 1

σ2

+
((xt+1 − Axt)2)2

σ3
2

(3.35)

σ2
2 =

1

Te − 1

Te−1∑
t=1

((xt+1 − Axt)2)2 (3.36)

To optimize the parameter for the critical headway, i.e., d, we have:

∂E (lnL|y)

∂d
= R−1

Te∑
t=1

(yt − Cxt − d) (3.37)

d =
1

Te

Te∑
t=1

(yt − Cxt) (3.38)

To optimize the parameter for the linear relationship between headway and speed,

i.e., τ , we have:

∂E (lnL|y)

∂τ
= R−1

Te∑
t=1

(
yt − (xt)1 − (xt)2 τ − d

)
(xt)2 (3.39)

τ =

(
Te∑
t=1

(
yt − (xt)1 − d

)
(xt)2

)(
Te∑
t=1

((xt)2)2

)−1

(3.40)

where (xt)1,2 refers to the first (or second) element of the vector (xt).

Applying (3.39) to (3.38), we have:

d =
1

Te

Te∑
t=1

(
yt − (xt)1 − (xt)2 (· )

)
(3.41)

where (· ) =

(
Te∑
t=1

(
yt − (xt)1 − d

)
(xt)2

)(
Te∑
t=1

((xt)2)2

)−1
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To optimize the parameter for the variance of the measurement update distur-

bance, i.e., R, we have:

∂E (lnL|y)

∂R−1
=
Te
2
R− 1

2

Te∑
t=1

(yt − Cxt − d)2 (3.42)

R =
1

Te

Te∑
t=1

(yt − Cxt − d)2 (3.43)

Finally, the pseudo-code of the overall EM algorithm is presented in Algorithm 1.

1 Initialize: model parameters σ1, σ2, d, τ, R, and Check = 0;

2 while Check = 0 do

3 for E-step(compute the expectation of the log likelihood) do

4 for t = 1 to Te //Forward pass do

5 Update x̂t+1|t, Pt+1|t according to (3.17) - (3.18);

6 Update Kt+1, x̂t+1|t+1, Pt+1|t+1 according to (3.19) - (3.21)

7 end

8 for t = Te − 1 to 1 //Backward pass do

9 Update Lt, x̂t|Te , Pt|Te according to (3.22) - (3.24)

10 end

11 end

12 for M-step (maximize the expectation of the log likelihood) do

13 Update σ1 according to (3.34);

14 Update σ2 according to (3.36);

15 Update d according to (3.41);

16 Update τ according to (3.39);

17 Update R according to (3.43);

18 end

19 If Convergence/MaxIteration is satisfied, Check = 1;

20 end

Algorithm 2: The pseudo-code of the overall EM algorithm
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3.3.4 Simulation validation

It is preferable to test the performance of the EM algorithm through the empirical

trajectory data. However, to the best of our knowledge, no test bed of connected

vehicles has collected data for non-connected vehicles. Thus in this section we validate

the performance of the EM algorithm by constructing simulation data. The validation

procedure is as below. Firstly the traffic flow simulation data is constructed based

on assumed model parameters for the mixed traffic environment. The trajectory of

non-connected vehicles is considered as the real data in the comparison later. Then

the trajectory of connected vehicles is extracted and fed into the EM algorithm. Once

the convergence requirement fulfills, the EM algorithm outputs the estimated model

parameters and trajectories of non-connected vehicles. Then we conduct a comparison

analysis on the estimated trajectory and the real trajectory (from simulation) of non-

connected vehicles.

In constructing the simulation data, in order to generate the traffic oscillation

as realistic as possible, we consider three different types of driving behaviors for

non-connected vehicles, i.e., aggressive, timid, and neutral driving behaviors [76, 77].

Figure 3.2 presents the demonstration of the trajectories for the three types of non-

connected vehicles.

The car-following model is coded for these driving behaviors under a single lane

scenario. Parameters of non-connected vehicles are applied from [76, 77]. Parameters

of connected vehicles are assumed. In the simulation setting, the demand input is 600

vph, and the penetration rate of connected vehicles is 20%. Among the non-connected

vehicles, the percentage of the neutral, timid, and aggressive driving behavior is

assumed to be 40%, 40%, and 20%, respectively. Details of the parameter settings

are presented in Table 3.1.

In the validation step, we consider three cases with varied model parameters of

the SSM, as shown in Table 3.2. For each case, the trajectory of connected vehicle

is extracted and considered as the only input to the EM algorithm which produces
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Fig. 3.2. Trajectory demonstration of different driving behaviors

Table 3.1.
Parameter settings of the simulation

Time 1800 s

Length 5000 mters

Free flow speed 50 mph

Shock wave speed ratio 0.5

Connected vehicle Penetration:20%

Non-connected vehicle Penetration:80%, d∗ = −20 meters, τ ∗ = −2

Neutral driving Penetration:32%

Timid driving Penetration:32%

Aggressive driving Penetration:16%

the trajectory of non-connected vehicles and estimated model parameters. Table 3.2

presents the comparison of the estimated and true values of the model parameters.

As expected, the estimated parameters and the true parameters do not always match
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Table 3.2.
Comparison of the estimated and the true parameters

Parameters d σ1 σ2 R τ

Case 1
True value -10 1 1 1 -1

Estimated value -6.62 1 1 1.14 -1.23

Case 2
True value -15 2 2 2 -1.36

Estimated value -18.03 2.68 1.95 2.38 -1.11

Case 3
True value -18 3 3 3 -1.64

Estimated value -17.37 3.17 2.10 3.36 -1.13

due to the disturbance of the model dynamics and the challenge that both states

and model parameters are unknown. Still, the difference between the estimated and

true parameters are within a reasonable range. Figure 3.3 presents the evolution of

the trajectory estimation error (difference between the estimated and real trajectories

over time) for all the cases. For case 1 (2, 3), the mean and deviation of the error

evolution are 0.64 (0.16, 0.80) meter and 3.52 (5.78, 5.02) meters, respectively. These

results are encouraging. Case 2 is roughly the worst. Even in this case, the mean

error is less than one meter. Moreover, the density distribution of the error evolution

is presented in Figure 3.4 with the logistic distribution fitting curves. It confirms

that the error course of the last iteration centers tightly around zero and significantly

outperforms that of the first iteration across all three cases. Further, Figure 3.5 shows

the estimated and real trajectories of a sampled (randomly selected) non-connected

vehicle under case 1. Generally it is seen that the two trajectories match closely with

each other. It confirms the performance of the modified EM algorithm in calibrating

the car-following behavior of connected vehicles.
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3.4 Numerical case study

3.4.1 Michigan test bed data analysis

The empirical data [88] in this section comes from the Michigan Test Bed of

connected vehicles which is one of the Proof of Concept (POC) trials. The data were

collected at test sites at Ann Arbor, Michigan, on August 25, 2008 between 16:00 and

23:20. The POC trial features fifty-two roadside equipment (RSE) stations within

45 square miles, as shown in Figure 3.6. There are 27 connected vehicles equipped

with On-board Equipments (OBEs) and the Dedicated Short-Range Communications

(DSRC) devices. The raw data are collected by the OBEs and the mounted sensors

from the connected vehicles. Here we focus on the processed data of trajectories of

connected vehicles obtained from the open-access Research Data Exchange (RDE)

system [88].

Figure 3.7 presents the time-distance trajectories for a sample of connected vehi-

cles. It is seen that the trajectories look sparse because they are only the connected

vehicles’ trajectories. In the mixed traffic environment, connected vehicles are mixed

with non-connected vehicles. There may be non-connected vehicles traveling between

connected vehicles. Still, from Figure 3.7, several observations can be made as fol-

lows. (1) The trajectories of connected vehicles also witness traffic oscillation, but the

range of the oscillation is narrow. (2) The oscillation periods of connected vehicles

are short. The traffic flow oscillation returns to equilibrium state quickly. (3) The

spatial headway for connected vehicles is short.

Next, the trajectory data of connected vehicles are input into the modified EM

algorithm, and the model parameters of connected vehicles are estimated. The esti-

mated parameter values are as below: Q =

1 0

0 1.69

, C =
[
1 −1.25

]
, d = −8.92,

and R = 0.42. These estimated parameters will be applied to the numerical study in

the following section.
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Fig. 3.6. Location map of the road side equipment (RSE) stations [88]



69

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (seconds)

D
is

ta
n

c
e

 (
m

e
tr

e
s
)

Fig. 3.7. Trajectories for a sample of connected vehicles in the Michi-
gan test bed [88]
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3.4.2 Experiment design

The purpose of this numerical case study is to test the mobility benefit of con-

nected vehicles in the mixed traffic environment. Towards this end, we code the

car-following model for a single lane scenario. Parameters of connected vehicles are

estimated with the Michigan test bed data as presented in Section 3.4.1. Other pa-

rameters are the same as in Section 3.3.4 unless specified otherwise.

In the experiment design, we consider three demand scenarios including 600 vph,

900 vph, and 1200 vph to represent different levels of traffic loading. For penetration

rates of connected vehicles, we consider five different scenarios include 0%, 20%, 40%,

60%, and 100%. For the non-connected vehicles, the neutral, timid, and aggressive

driving behavior is assumed to account for 40%, 40%, and 20%, respectively.

For comparison analysis, we consider the total travel time and total traveled dis-

tance as the Measures Of Effectiveness (MOE). Total travel time refers to the sum-

mation of vehicles’ travel time to reach the destination (set at 5000m), while the total

traveled distance refers to the summed distance traveled by all the vehicles within

the time period (set at 1800s).

3.4.3 Result analysis

The MOE results for different simulation scenarios are presented in Table 3.3.

There are several observations from Table 3.3 as below:

• Across all three demand scenarios, the mobility benefit (in terms of both total

travel time and distance) of connected vehicles is growing with the penetration

rates of connected vehicles.

• The mobility benefit of connected vehicles also grows with the traffic demand.

For example, with 100% connected vehicles, the total travel time reduces by

23.6% in the 1200 vph demand case, while the reduction drops to 14.6% in the

600 vph demand case.
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Table 3.3.
Mobility benefit of connected vehicles under different penetration rates

Demand MOE
CV penetration

0 20% 40% 60% 100%

600 vph
Travel time 0 -1.86% -4.62% -6.70% -14.60%

Distance 0 1.48% 4.01% 5.75% 13.05%

900 vph
Travel time 0 -1.48% -5.28% -8.05% -17.03%

Distance 0 2.06% 6.88% 10.48% 22.84%

1200 vph
Travel time 0 -3.64% -6.93% -10.46% -23.58%

Distance 0 5.08% 9.96% 15.63% 35.52%

• Though there is consistently positive mobility benefit for connected vehicles,

the benefit is not significant under the low penetration case. For instance, in

the case of 20% connected vehicles, the reduction in travel time never exceeds

4%.

• The benefit of connected vehicles is significant under the heavy traffic demand

scenario. For instance, in the 1200 vph demand case, the reduction of travel

time goes up to 23.6%, and the increase of traveled distance goes up to 35.5%.

3.5 Concluding remarks

This chapter is devoted to calibrating the car-following behavior of connected

vehicles following non-connected vehicles based on the trajectory data of connected

vehicles only. The calibration problem is formulated as an optimal estimation prob-

lem whereby the trajectory (unknown) of non-connected vehicles is considered as

hidden states while the trajectory (known) of connected vehicles is considered as ob-

servations with errors. The state-space system dynamics is captured by the simplified
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car-following model with unknown model parameters. As both states and model pa-

rameters are unknown, the formulated estimation problem causes the identifiability

issue where there exists an infinite number of parameterizations. To solve this over-

parameterization issue, the disturbance of the state update process is constrained

to be uncorrelated. It is shown the customized system-space model is identifiable.

Further, the Expectation-Maximization (EM) algorithm based on Kalman smoother

is applied to obtain the optimal estimation of states and model parameters simulta-

neously. In the E-step, the Kalman smoother is employed to compute the expected

log-likelihood based on the initiated (at the first iteration) or estimated (at other

iterations) model parameters. In the M-step, model parameters are updated by

maximizing the log likelihood of the state. As data of non-connected vehicles are

rarely collected in the test bed of connected vehicles, we generate simulation data to

validate the performance of the EM algorithm. In the validation, we compare the

reconstructed trajectory with the real trajectory (from simulation) of non-connected

vehicles. It is found that the two trajectories match closely. In the second part of

the chapter, the empirical data of connected vehicles from the Michigan test bed is

applied to estimate the car-following model of connected vehicles. A numerical case

study is constructed to analyze the mobility benefit of connected vehicles with dif-

ferent penetration rates and demand scenarios. It is found that the mobility benefit

of connected vehicles grows with the penetration rate and the traffic demand. The

benefit of connected vehicles is especially significant under the heavy traffic demand

scenario.

In the future, more and more connected vehicles may be equipped with ranging

sensors such as millimeter wave radar, laser sensors, front cameras, etc. The charac-

teristic of connected vehicles in a mixed traffic environment can be more thoroughly

studied with the help of comprehensive data. However, the data reduction and fusion

processes are complex and costly [74]. As a complement, this chapter provides an in-

expensive solution to study the car-following behavior of connected vehicles following
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non-connected vehicles based on the trajectory data of connected vehicles only. There

are several limitations of this study that are worthwhile to address in the future.

• In the simulation validation section, though the error of the estimated trajectory

is centered around zero, the deviation of the error evolution can go up to 5

meters. This reliability issue can be improved by collecting and incorporating

the prior information about the non-connected vehicles (e.g., the headway data

from the front-camera of connected vehicles).

• The most important feature of connected vehicles lies in the exchanging of short

range and real time traffic information, based on which connected vehicles can

alter routes or departure time. Incorporating both the cooperative driving be-

havior and the route choice behavior of connected vehicles will be an interesting

topic.

• The empirical data from the Michigan test bed is of limited size. Given more

test beds of connected vehicles are established in US, Europe, and Japan, it will

be more convincing to develop and validate the car-following behavioral models

for connected vehicles based on more empirical data.



74

Part II: Traffic Control
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4. NETWORK WIDE TRAFFIC CONTROL: A

COORDINATED MULTI-AGENT FRAMEWORK

This chapter develops a novel reinforcement learning algorithm for the challenging

coordinated signal control problem. Traffic signals are modeled as intelligent agents

interacting with the stochastic traffic environment. The model is built on the frame-

work of coordinated reinforcement learning. The Junction Tree Algorithm (JTA)

based reinforcement learning is proposed to obtain an exact inference of the best

joint actions for all the coordinated intersections. The algorithm is implemented and

tested with a network containing 18 signalized intersections in VISSIM. Results show

that the JTA based algorithm outperforms independent learning (Q-learning), real-

time adaptive learning, and fixed timing plans in terms of average delay, number of

stops, and vehicular emissions at the network level.

4.1 Introduction

Vehicular traffic control on road networks is a complex decision making task in an

inherently non-static environment. Heterogeneous agents (i.e., road users or vehicles,

traffic controllers, pedestrians, system operators, and so on) interact with each other

that shapes the dynamics of road traffic systems. Optimized traffic control systems

directly contribute to travel time reduction, savings in fuel consumptions, and ve-

hicular emissions reduction. Traffic signals are responsible for an estimated 5 to 10

percent of all traffic delays which is about 295 million vehicle-hours of delay on major

roadways [89] alone. The 2012 National Traffic Signal Report Card [90] reports C

grade for the current traffic signal operations and underscores the needs of optimizing

traffic signals from system perspectives in a coordinated manner. Clearly there is a
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need for developing efficient algorithms for coordinating traffic signals to improve the

operations of traffic systems.

Recent advances in connected vehicle (CV) environment offer useful technologies

in detection and acquisition of high fidelity data that can be used for more effi-

cient traffic control strategies. CV environment facilitates communication platform

where vehicles can talk to each other (Vehicle-to-Vehicle, V2V), to the infrastructure

components (Vehicle-to-Infrastructure, V2I), and also infrastructure to infrastruc-

ture communication (I2I) is possible. CV has received significant attention in Europe

where it is known as Car to Car (C2C) and Car to X (C2X) technology. The intelli-

gent transportation systems (ITS) program of the U.S. Department of Transportation

(DOT) emphasizes the CV research in the ITS Strategic Plan (2010-2014). Using the

accessible information from the surrounding environment to develop an efficient and

robust traffic control systems is of key interest to many researchers and practitioners

in the traffic engineering area.

4.1.1 Related work

The signal control problem has been studies extensively in the literature. SCOOT

[91], SCATS [92], PRODYN [93], OPAC [94], RHODES [95], UTOPIA [96], CRONOS

[97], and TUC [98] are among the first adaptive signal control systems developed by

traffic engineering community. SCOOT and SCATS are centralized systems based

on real time information. OPAC and RHODES use dynamic optimization to ob-

tain the signal settings. Further, existing literature include (not limited to) rolling

horizon type of control [99], model predictive control [100], store-and-forward models

for traffic control [101], mathematical programs with embedded traffic flow models

[102, 103, 104, 105, 106] and so on. Most optimization models are computationally

expensive and large scale implementation is often challenging. Additionally, most

control schemes do not account for dynamic feedback from the traffic environment to
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adjust the control scheme. In other words, control schemes do not use experience to

optimize the decisions.

Identifying traffic control as a fundamental sequential decision making problem,

researchers [107, 108, 109, 110, 111] applied the framework of Markov Decision Pro-

cesses (MDP) and deployed approximate dynamic programming (ADP) or reinforce-

ment learning techniques to solve the problem. RL based techniques are well suited

for dynamic environment like the road traffic networks. A major advantage can be

gained in terms of computational complexity because no optimization is necessary in

real-time. In addition, the implementation of RL-based algorithms can be paired up

with connected vehicle (CV) paradigm which is expected to play a significant role in

the next generation intelligent transportation systems.

The coordinated signal control problem well fits into the coordinated multi agent

system framework and researchers from diverse areas have studied the potential and

applicability of RL algorithms to solve the traffic control problem. [112] proposed

cooperative signal control scheme with a combination of evolutionary algorithm and

reinforcement learning techniques. [113] introduced a hierarchical multi agent system

to design a coordinated traffic light system. [114] proposed co-learning algorithms

at network level to minimize the waiting time for the vehicles. The concept of co-

learning was introduced that allows both cars and traffic lights to learn from the

environment. [108] proposed a single stage coordination game for the synchronization

of traffic signals. The concepts of evolutionary game theory are applied and the

analyst has to define the payoff matrices. [111] recently developed a neighborhood

coordinated RL based signal control that applies a joint decision framework. Other

approaches include distributed constrained optimization with centralized cooperative

[115], decentralized swarm based models [116], Tabu search [117], self organizing maps

[118], mixed approach of RL and supervised learning [109].

Application of graphical models in the area of multi-agent coordination (especially

to compute the best joint actions for multi-agents) is not common. Recently, max-plus

algorithm [119, 120] has drawn the attention of a handful of researchers to solve traffic
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control problem. Max-plus algorithm origins from the max-product or the max-sum

algorithms [121] which is common in graphical models. [122] applied the algorithm

as a coordinating strategy in the network-wide signal control problem. However, the

max-plus algorithm has two key limitations.

First, it is only applicable to tree-structured networks. For general cyclic networks

it cannot guarantee the convergence to an optimal solution, because the message

passing in max-plus algorithm is directional. For cyclic graphs, the message passing

can visit some node for multiple times. For some application it may converge, where

as for others, it may not. Since cyclic structures are not uncommon in real world road

networks, the quality of solution is compromised. Second, the same as the max-sum

algorithm, the max-plus algorithm only provides a loopy brief propagation. Loopy

brief propagation refers to the inexact messages received at a node. As there is loop in

the graph, the algorithm may stop according to some criterion even if the convergence

is not met. The message of a node is calculated using the most recently received

incoming message. Hence the algorithm only provides an approximate inference of

the exact message passing.

4.1.2 Contributions of the chapter

A potential alternative to max-plus is the junction tree based algorithm. In this

study, we extended the junction tree algorithm (JTA) to obtain the best joint actions

for the entire traffic network. Compared with the max-plus algorithm, JTA is an

exact inference procedure capable of dealing with graphs having loops. However,

JTA is originally developed to solve the general inference problem in graphical models.

Accordingly, it is not readily applicable to the coordination problems in the context

of traffic signal control.

To the best of our knowledge, JTA has not been applied to address the coordinated

signal control problem. The advantages of proposing the JTA based RL algorithm to

solve the coordinated signal control problem are as follows:
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(a) it is computationally efficient.

(b) it is applicable to general cyclic or acyclic networks.

(c) it provides an exact inference of best joint selection.

(d) it has an intrinsic property that has potential to assist traffic control decision

making, e.g. green wave corridor selection or link capacity improvement design.

Further, sustainable mobility has gained attention among the researchers [123, 124]

and practitioners as an important element of sustainable development. Air quality

and energy security in the context of urban transportation require effective policies

and efficient traffic operations. Control algorithms must focus not only on the mobil-

ity aspect but also on the environmental impact of the implemented schemes. This

research aims to assess the environmental benefits of the proposed control algorithm

using the state-of-art emissions simulator MOVES2010.

To summarize, the research goals are:

(a) To propose multi-agent RL based signal control algorithm where agents coordi-

nate their decisions for the benefit of the system

(b) To demonstrate the coordinated control algorithm as a potential application in

the CV environment

(c) To assess the environmental impacts of the proposed controller using a dynamic

emissions simulator (MOVES2010)

4.2 Introduction of Junction Tree Algorithm in signal coordination

The junction tree algorithm(JTA) originally comes from the area of machine learn-

ing in computer science. It is developed to solve the general inference problem in

graphical models, which is to calculate the conditional probabilities of a node or a set
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of nodes given the observed data. Hence JTA is not readily applicable to the coordi-

nation problems in the context of traffic signal control. To the best of our knowledge,

junction tree algorithm has not been developed to address the coordinated graph

problem as well.

However, the conditional probability inference problem in graphical models shares

similarity with the coordination problem. One typical way of calculating the condi-

tional probability is to apply the maximum a posteriori (MAP) method[125], which

is to maximize the posteriori probability of the data, as shown below:

maxP (E|A) = max
P (A|E)P (E)

P (A)
maxP (A,E) (4.1)

Where A is the observed data, E is the prior parameter. Hence, P (E|A) denotes the

posterior probability.

Maximizing the posterior probability is the same as maximizing the joint probabil-

ity, P (A,E), as P (A) is a constant. The joint probability P (A,E) can be expressed in

a general form by introducing the potential functions, which gives P (A,E) =
∏N

i=1 ψi.

N denotes the number of nodes. By further taking the logarithm, we get that (4.1)

is equal to:

MAP : max
N∑
i=1

lnψi (4.2)

On the other hand, the objective of the multi-agent reinforcement learning algo-

rithm is to maximize the linear summation of the local Q values, which is written

as:

maxQ = max
N∑
i=1

Qi (4.3)

Comparing (4) and (5), we see that the best action selection problem in coordi-

nated graph is analogous to maximizing the joint probability in probabilistic model.

Both of the objectives optimize the performance of the entire network by decompos-

ing the network into local sub-problems. Further more, both maintain the Markov

properties. In probabilistic models, the probability of a node is dependent on its
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adjacent node in a sequential manner. Similarly, in coordinated graph, the actions

taken by one node are dependent on the actions taken by its adjacent node sequen-

tially. Message-passing (also known as brief propagation) algorithms are promisingly

plausible in the area of coordinated graph problems, as they make full use of the

sequential dependencies between nodes. As an efficient message-passing algorithm,

the Junction Tree Algorithm has great potential in solving the coordinated signal

control problems. Solutions to the generalized vehicular traffic control mostly report

the schedule of the signal phases(stage) in the timing plan and optimal duration of

green time. A set of non-conflicting allowable movements is defined as phase or stage.

As described earlier, coordinated signal control systems require to make the decisions

from the system perspective. In other words, the agents (i.e., the controllers) work

towards a general goal through coordination.

4.3 JTA based RL framework to solve the signal coordination problem

In this section, we thoroughly discuss the JTA based RL approach to solve the

signal coordination problem. Firstly, we briefly explain the defined elements of RL in

the context of traffic signal control, including the definition of state, action, and re-

ward. Secondly, the best joint actions inference is obtained through the Junction Tree

Algorithm. Finally, we present the step-by-step procedure of the solution algorithm

to solve the problem.

4.3.1 Elements of the reinforcement learning framework

In the context of RL, the traffic network is the environment and the traffic con-

trollers act as agents. An agent takes action by activating a particular phase at the

decision interval and the state of the environment changes accordingly. The solution

algorithm has to determine the optimal policy (mapping between the phase-activation

and traffic states) that gives the maximum reward (e.g., average delay, number of

stops, etc). The reward is obtained directly from the simulator of the environment
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and one can observe the transition of the states. More details can be found in [126]

and [127]. Three major components (state, action, and reward) of the RL framework

are described as follows:

State definition

Before defining state, we need to define the residual queuing state for each lane

group served by the signal phases at the intersection. Residual queuing state for lane

i, is defined as:

wtp =
qti
J
× 1

li
(4.4)

where wtp denotes the residual queuing state for phase p at step t, qti denotes

the queue length for lane i at time t, J denotes jam density, and li denotes length

of lane. State in the context of signal control is a measure of the real time traffic

environment, or the evolution of traffic flow. Note that the evolution of traffic flow

is a continuous process, hence the state space is an infinite set. However, setting the

state with high dimensions increases the computational complexity of the problem

(curse of dimensionality). Here we define state at the phase level of an intersection

and characterize the state of each phase into three discrete congestion levels: low,

medium, and high. Specifically, the discretization of state for a phase is defined as:

πtp =


low if wtp ≤ θ1

medium else if wtp ≤ θ2

high else if wtp ≤ θ3

(4.5)

where πtp denotes the state of phase p at step t, and θ are configurable threshold

parameters.

Action definition

An agent takes an action by switching on any of available phases in the signal

timing plan. One should note that, there is no restriction on the sequence of the
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phases. Flexible sequence in signal timing plan has been used by previous researchers

and has been implemented in real world signalized intersections. Additionally,, the

algorithm follows the minimum and maximum green constraints.

Reinforcement learning algorithms in general require a balance between exploita-

tion and exploration in the strategies for selecting optimal action. To balance between

exploitation and exploration, we apply the ε− greedy method [126]. In this method,

the agents behaves greedily by choosing the action that gives the maximum state-

action value in most cases except at some cases it chooses a random action. The

probability of this random behavior is ε and the probability of selecting the optimal

action converges to greater than 1− ε.

Reward definition

Rewards can take many forms such as delays, stops, queue lengths. In this study,

we define the length of all the queues for each phase as the reward for taking an

action. Queue length is defined as the length of stopped vehicles at the intersection

on red in real time.

4.3.2 Best joint action inference from JTA

Junction tree is a clique tree possessing the property that for every pair of cliques

V and W , all cliques on the path between V and W contain V ∩W . The concept of

clique refers to a subset of nodes contained in the graph where each pair of nodes are

connected (in the context of signal control, it refers to a subset of signalized inter-

sections). The general junction tree framework (the Hugin algorithm) contains the

following five principal steps [125, 128].

a.Moralization

The moralization step applies to directed graphs. It converts a directed graph into

an undirected graph by adding a link between any pair of variables with a common
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child, and dropping the direction of the original links. The resulting graph is the

moral graph.

b.Introduction of potential

Consider a directed chain as shown in Figure 1 (a), we get the joint probability

as:

p(U) = p(A|B)p(B|C)p(C|D)p(D) (4.6)

Fig. 4.1. (a)Directed chain network.(b)Cluster network

In the cluster graph network ( Figure 1 b), we introduce a new term named poten-

tial to describe the characterization of the cluster. Let ψ(A,B) = p(A|B), ψ(B,C) =

p(B|C), ψ(C,D) = p(C|D)p(D), ψ(B) = 1, ψ(C) = 1, (4.6) can be rewritten as:

p(U) =
ψ(A,B)ψ(B,C)ψ(C,D)

ψ(B)ψ(C)
(4.7)

c.Triangulation

From the moralization step, we obtain a cluster tree, however it is not sufficient

to show that we can form a junction tree out of the cluster graph. The triangula-

tion operation guarantees that the resulted junction graph has a junction tree. To

triangulate the graph, we ensure that every cycle or loop of length 4 or more has a

chord. After the triangulation operation, cliques are different from the original junc-

tion graph. The potential of the new clique will be the product of the potentials of
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original clique contained within the new clique.

d.Construction of junction tree

Note that not every clique tree obtained after the triangulation operation is a

junction tree. A clique tree is a junction if and only if it is a maximal spanning tree.

Hence we can construct a junction tree by finding the maximal spanning tree. To find

the maximal spanning tree, the weight of the tree is equal to the sum of cardinalities

of separators.

e.Propagation of messages

Initially, potentials for all the separator nodes are set at unity. One clique is

selected as a root clique. Message passing from root node to leaves is called forward

message passing, while message passing from leaves to root is called backward message

passing.

A node v can send exactly one message to a downstream neighbor w through

separator s when v has received messages from each of its upstream neighbors(the

structure of the nodes is shown in Figure 2).

Fig. 4.2. Message passing demonstration

Endow cliques v and w with potential ψv,and ψw, and separator s with potential

φs. In the forward message passing, we update the potential of s and w as:

φ
′

s = argv/s maxψv (4.8)

φ
′

w =
φ
′
s

φs
ψw (4.9)
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(4.8) maximize the potential ψv with respect to s and (4.9) re-scales the potential

on w. After the forward message updating, the backward updating is processed in a

similar way:

φ
′′

w = argw/s maxψ
′

w (4.10)

φ
′′

v =
φ
′′
s

φs
ψ
′

v (4.11)

Remark : The proposed JTA algorithm requires the realization of connected vehicle

environment for an effective implementation. The I2V communications allows the

controller to estimate the congestion level and accordingly the state for the JTA algo-

rithm. Note that, video cameras, or loop detectors can also provide similar informa-

tion. The key element in the context of coordinated control is the I2I communications.

By means of I2I communications, the controllers share information and take the best

joint decisions. The road side equipment (RSE) assists the coordination of the con-

trollers. Since the coordination primarily requires I2I communication, the impact of

the market share of equipped vehicles is expected to be minimal. The technology to

enable I2I can be either dedicated short range communications (DSRC) or cellular

networks. We acknowledge that the performance of the wireless technology (in terms

of latency, robustness, and scale) will impact the coordinated control. However, this

is beyond the scope of this chapter and will be a topic of our future research.
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1 Initialize: ψc = Qc, ∀c ∈ Cliques; ψs = Qs,∀c ∈ Separators; Check = 0;

2 while Check = 0 do

3 Forward message updating ;

4 for every agent i do

5 for all neighbors of forward direction, j = Γ(i) do

6 if j ∈ Cliques then

7 ψ
′
j = ψj

ψ
′
i

ψi

8 end

9 if j ∈ Separators then

10 ψ
′
j = maxI/j ψi

11 end

12 end

13 end

14 Backward message updating ;

15 for every leaf i do

16 for all neighbors of backward direction, j do

17 ψ
′′
j = maxI/j ψ

′
i;

18 Aj = argmaxI/j ψ
′
i

19 end

20 end

21 If every node in G(V,E) has been visited, Check = 1;

22 end

Algorithm 3: Junction Tree Algorithm to obtain best joint action
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4.3.3 The whole procedure of the JTA based RL framework

With all elements set up for the reinforcement learning framework, we are now

ready to present the whole picture of the framework. For the traffic dynamics in

the network, there are two distinct properties: the similarity of traffic pattern (e.g.,

the traffic pattern at a particular link on each Monday during 11am-noon) and het-

erogeneity in the network congestion. To account for these attributes, this research

deploys an average reward technique which is also known as advanced off-policy R-

Learning [126]. We refer to this algorithm as R-Markov Average Reward Technique

(R-MART). The step-by-step flowchart of the R-MART algorithm in the context of

the signal coordination problem is presented in Figure 4.3.

Like most RL based schemes, the proposed algorithm has two phases: learning

phase and implementation phase. The implementation phase takes place after the

learning phase. The key difference in the techniques stated above is the process

of updating the state-value function. During the learning phase the agents update

the state-action value by interacting with the environment. Balancing the explo-

ration and exploitation is important at this phase. Initially, the algorithm starts with

ε−greedy using higher ε value. Then the ε value gradually decreases towards the end

of the learning phase. During the implementation period, the algorithm emphasizes

on exploitation with very small value. Since the only change from the learning to im-

plementation phase is the action selection strategy, only the learning phase algorithm

is described in the flowchart.
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Fig. 4.3. Flow chart of the JTA based RL algorithm
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Fig. 4.4. (a)Center line representation of the network (b)Zooming in
of one intersection

4.4 Test case study

This research uses traffic simulation tool VISSIM [129], which is a widely used

traffic flow simulator by practitioners and researchers in traffic engineering area, to

mimic the environment. The rewards and other performance metrics are obtained

directly from VISSIM. Details about the modules in VISSIM (e.g., car-following,

lane-changing, traffic light control, etc.) can be found in VISSIM manual [129]. The

JTA based RL algorithm is coded in VB.net interacting with VISSIM through the

Component Object Model (COM) interface. Note that JTA algorithm can be applied

to any traffic flow model that simulates the environment.



91

Fig. 4.5. Triangulation of the test network

Fig. 4.6. Junction tree construction of the test network
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4.4.1 Network description

The test network containing 18 intersections is shown in Figure 4.4 (a). The road

segments in the network are of varied length ranging from 50 meters to 260 meters,

and are of varied lane patterns (e.g., exclusive left lane, yielded right lane). The

enlargement of one intersection is provided in Figure 4.4 (b). The preliminary step

is to transform the given network into a junction tree structure network. The trans-

formation process does not require much effort since the connectivity of a common

traffic network is hardly dense (typically connectivity only establishes between phys-

ically adjacent intersections). To perform the transformation, we firstly triangulate

the network by connecting the diagonal intersections within a grid (as shown in Fig-

ure 4.5), then apply a maximum spanning tree search algorithm on the triangulated

network to obtain the final junction tree network (as shown in Figure 4.6).

In the test study, all 18 intersections in the test network are considered as co-

ordinated intersections. We consider four phases:(a) E-W+W-E bound through and

right turn, (b) N-S+S-N bound through and right turns, (c) Dual left from E-S+W-N

bound, (d) dual left from S-W+N-E bound. The performance of JTA algorithm is

tested at three levels of congestion: low, medium, and high. Traffic demand is input

into the network through the 18 link origins in Figure 4.4. The congestion levels of

low, medium, and high are reflected on the range of the demand input, which are 500

vph to 600 vph, 600 vph to 800 vph, and 900 vph to 1200 vph, respectively. We do

not use the dynamic traffic assignment (DTA) feature of VISSIM (as DTA is not the

focus of this study) but model the route choice behavior by setting the turning ratios

of intersections as exogenously determined parameters.

4.4.2 Measures of effectiveness (MOEs) and experiment design

The evaluation metrics are: average delay per vehicle, average stopped delay at

intersection per vehicle, and the average number of stops per vehicle. Note that, the

number of stops is expressed as a fraction in the results. This is because the total
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number of stops is averaged over the total number of vehicles passing the intersec-

tion during the simulation period. Moreover, the algorithms are also evaluated with

respect to vehicular emissions including CO, GHG, NOx, volatile organic compounds

(VOC), PM10 and total fuel consumption. We use MOtor Vehicle Emission Simulator

(MOVES2010b), developed by the U.S. EPA [130] to estimate the emissions.

To demonstrate the benefits of coordinated learning based algorithm, we com-

pare the results from JTA algorithm with two specific classes of controllers: learning

based controller without coordination, and real-time adaptive controller. Q-leaning

based control schemes [107] without coordination are quite common in the literature.

This research adapts Q-learning with an additional feature of neighborhood informa-

tion sharing. The controller can share congestion information with its neighborhood

controllers. Further, a variant of the Longest-Queue-First (LQF) algorithm [131] is

chosen as a representative of real-time adaptive controller. To improve the efficiency

of the LQF algorithm certain changes were made. The changes include provision for

minimum and maximum green in the signal timing plan and adjustment for repetitive

phases for the case when a particular approach is highly congested compared to all

other approaches. Note that, there exist other learning based, and real-time adaptive

controllers in the literature and practice. It is not feasible to compare with all other

algorithms and accordingly, we choose these two as representative control schemes.

4.4.3 Statistical tests

It is important to conduct statistical tests to justify the findings from simulation

based results. A sample containing 10 simulation runs (each with a different random

seed) is collected from VISSIM. With unknown standard deviation we assume Student

t distribution for the tests. The mean values of travel delay, stopped delay, and

number of stops are reported at 95% confidence interval. The range of values in the

population is determined as follows:
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X̄ − tα/2(
s√
n

) < µ < X̄ + tα/2(
s√
n

) (4.12)

Where,

X̄ = mean of the sample,

s = standard deviation of the sample,

µ = mean of the population,

n = sample size (10 in our case),

tα/2 = value from t distribution using degrees of freedom (n− 1).

Table 4.1 shows an example for JTA algorithm. The values represent the range in

population. For instance, Table 4.1 reports the population mean range for stopped

delay per vehicle at high demand as 5.17 < µ < 5.75. This implies that, with 95%

confidence the population mean of stopped delay per vehicle at high demand lies

between 5.17 and 5.75 seconds. Note that, similar tables can be produced for other

algorithms. We report Table 1 as a sample.

4.4.4 Assessment of results at the system level

Independent (Q-learning) vs. coordinated (JTA) RL algorithms

Table 4.2 compares the system level metrics for JTA and Q-learning. Our test

results show that both average delays and stopped delays per vehicle are lower for JTA

when compared with Q-learning. We observe similar trends at all levels of congestion.

Further, JTA yields fewer number of stops per vehicle at low and medium congestion

levels. However, Q-learning has fewer stops per vehicle at high congestion level. At

high congestion, JTA coordinates the actions of the controllers so that the queue

lengths of the intersections can be minimized. To prevent queue spill-back in the

downstream intersections, it is possible that JTA restricts vehicular flow at upstream

intersections resulting in higher number of stops at high congestion.
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Table 4.1.
Mean values of performance measures at 95% confidence interval for
JTA algorithm (delay and stopped delay measures are expressed in
seconds per vehicle)

Congestion level Performance metric Mean value Population mean range

Delay 6.24 5.99 < µ < 6.47

Low Stopped Delay 3.03 2.85 < µ < 3.21

No. of Stops 0.47 0.46 < µ < 0.48

Delay 6.33 6.04 < µ < 6.62

Medium Stopped Delay 2.88 2.67 < µ < 3.09

No. of Stops 0.48 0.47 < µ < 0.49

Delay 11.22 10.73 < µ < 11.71

High Stopped Delay 5.46 5.17 < µ < 5.75

No. of Stops 0.78 0.73 < µ < 0.82

Further, we also report the results for the Max-plus [120] algorithm. Although

the results show better performance for JTA compared with Max-plus, a rigorous

conclusion cannot be made. Both Max-plus and JTA follow similar principles for

coordination. The difference lies only in the convergence property for cyclic networks.

To justify the better performance of JTA compared with Max-plus, we need to run

numerous cases (both cyclic and acyclic networks) for significantly long durations.

Note that, our goal is provide an alternative to Max-plus that can ensure convergence

for cyclic networks.

The better performance of JTA at system level can be attributed to its ability

to coordinate decision made by the agents (i.e., the signal controllers). Q-learning

without any coordination allows the controller to take decisions that may be optimal

to the local intersection only. On the contrary, JTA allows controllers to take decisions

that aim to optimize the performance of the system as a whole.
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The results from our experiment indicate that coordinated learning of signal con-

trollers can lead to reduced delays at system level.

Table 4.2.
Independent vs. coordinated control: comparison between JTA and Q-learning

Congestion Algorithm Delay Stopped delay Stops

level (in seconds) (in seconds)

Low Q-learning 6.81 3.59 0.48

Max-plus 6.55 3.31 0.48

JTA 6.24 3.03 0.47

Medium Q-learning 9.60 5.60 0.58

Max-plus 6.36 2.89 0.48

JTA 6.33 2.88 0.48

High Q-learning 14.98 11.42 0.56

Max-plus 11.83 5.90 0.79

JTA 11.22 5.46 0.78

Learning based vs. real-time adaptive controllers

Table 4.3 compares the results from JTA with the real-time LQF controller. Also,

we report the results of fixed timing plan (Webster’s formula) which is commonly used

in urban networks. At all levels of congestion in our experiment, JTA yields better

system metrics when compared with LQF and fixed timing plans. Only exception

is that average number of stops at low and high levels of congestion, where LQF

performs better than JTA. This may result from the fact that JTA uses queue length

as the reward and there is no explicit consideration of number of stops in the reward

for the analyses reported here.

Learning based algorithms differ from adaptive real-time approaches in several

ways. Major advantages of learning based algorithms include: a) memory from previ-



97

ous experiences offering more efficient improvements, b) direct interactions with the

environment aiming at long term rewards, c) no involvement of optimization modules

that significantly reduces the complexity for large scale implementation. The learning

based controller may not initially perform well. When it is being trained sufficiently,

the performance gets better with time (see Figure 4.7) .

Table 4.3.
Learning based vs. real-time adaptive controllers: comparison be-
tween JTA and LQF

Congestion Algorithm Delay Stopped delay Stops

level (in seconds) (in seconds)

LQF 7.07 3.99 0.44

Low Fixed timing 15.79 11.93 0.58

JTA 6.24 3.03 0.47

LQF 10.34 6.45 0.54

Medium Fixed timing 17.15 12.60 0.68

JTA 6.33 2.88 0.48

LQF 14.93 9.55 0.71

High Fixed timing 25.67 17.56 1.32

JTA 11.22 5.46 0.78

4.4.5 Assessment of results at the intersection level

Although system level metrics indicate better performance by the JTA, it is im-

portant to explore the performance measures at the intersection level. For the sake

of brevity, this sections explain the results for four randomly chosen intersections in

the network.
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Average delay comparison

Figures 4.7 shows the average delays with time for the intersections 1, 4, 7, and 12

respectively. For all the intersections LQF performs worse than JTA and Q-learning.

Intersection 7 has a marginal better performance for JTA compared with Q-learning.

For the other intersections, average delay with time shows almost the same trend for

JTA and Q-learning.

Further, one can observe the inconsistent patterns for the LQF algorithm. For

intersection 4, 7 and 12, we observe a hike for the LQF algorithm. The graphs repre-

sent the high congestion level in Figure 7. Unlike JTA and Q-learning, decisions are

made locally for LQF. Even for the Q-learning, it learns over time to take the optimal

action at congested condition accounting for the state in adjacent intersections. LQF

primarily seeks the queue information at all approaches and approaches with longer

queues get priority. At high congestion, it is possible to have all approaches having

long queues in which the algorithm rotates the phases as fast as possible. Still it is

feasible to have some phases with higher delays. This may cause the peaks in delays.

Stopped delay comparison

Figure 8 shows the stopped delays with time for intersections 1, 4, 7, and 12 re-

spectively. For all the intersections LQF performs worse than JTA and Q-learning.

JTA performs better than Q-learning for intersection 1 and intersection 7. For inter-

section 12, the performance with time is almost the same. At the beginning of the

simulation Q-learning performs significantly better than the other two algorithms.

Number of stops

Figure 9 shows the average number of stops with time for intersections 1, 4, 7, and

12 respectively. Intersection 7 does not have significant difference among the three

algorithms in the performance in the long run. LQF performs worse than Q-learning
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and JTA for the other two intersections. For intersection 12, the average number of

stops is lower for Q-learning compared to JTA. However it starts to go up at the time

lapses. This indicates the effect of coordinated learning vs. single agent learning as

in Q-learning. The long term results are better for JTA.
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Fig. 4.7. Average delay comparison of different algorithms for inter-
section 1, 4, 7, and 12
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Fig. 4.10. Different activity patterns for vehicles on the same link

4.4.6 Assessment of environmental impact

The morning peak hour (8:00 am to 9:00 am) is simulated with higher level of

congestion with default meteorological data (from MOVES) of Tippecanoe county,

Indiana for the month of August in 2012. Passenger cars with gasoline fuel are

considered in the analysis. Link driving schedules are used to estimate the emissions.

Link driving schedules are constructed with the time-dependent speed profiles of

vehicles on the links. The speed profiles on signalized intersections can take different

forms based on the activities of the vehicles. Some vehicles stop at red and some do

not based on the arrival pattern of vehicles at the signalized intersections. Figure

4.4.6 shows four representative link driving schedules of a particular link.
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We estimated emissions for all the links in the network. All intersections in the

test network are signalized and overlapping of links is obvious. Therefore, we report

the emissions for all links instead of identifying each intersection separately. Table

4.4 shows the computed emissions for all links of the network. For each row the least

emissions value is underlined to identify the algorithm producing least emissions.

Although the values obtained are only for an hour, generally the analysis is done for

the entire day or for the week. Therefore, the improvements will be much higher for

a day or for the week.

Table 4.4.
Total emissions for all links in the network (computed from MOVES2010b)

Pollutant JTA Q-Learning LQF Fixed control

CO (g/hour) 232776 233852 265711 269186

GHG (kg/hour) 106313 107116 137045 139535

NOx (g/hour) 20384 20446 21659 21871

VOC(g/hour) 8522 8571 10291 10452

PM10 1397 1402 1545 1562

The speed profiles affects significantly the emissions from on-road vehicles. Accel-

eration profiles, idling activities, and variance in speed are three major factors that

impact emissions. JTA coordinates actions of the controller to have less delays in

the network and maximal throughput for the intersections. Accordingly, the speed

profiles are improved in terms of less idling and less variation in speed. As a result,

the network has less vehicular emissions

The following conclusions can be made:

(a) Learning based algorithms yield lower emissions than the fixed and adaptive

controllers.

(b) To cut down GHG emissions JTA is more effective than the other algorithms
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(c) For NOx and VOC, the differences for average emissions among the algorithms

are very small. However when accumulated for all links the savings become

significant.

4.5 Concluding remarks

This research develops a coordinated RL-based signal control algorithm, namely

the JTA, in a multi-agent framework. We apply the junction tree algorithm for learn-

ing based coordinated signal control that guarantee convergence for general traffic

networks. The agents take control decisions accounting for the benefit of the system.

The test results show significant advantages of coordinated learning over independent

learning of agents. Additionally, the JTA can be implemented in large scale networks

without a exponential state-space RL framework.

The proposed algorithm explicitly requires the facilitation of the Connected Ve-

hicle (CV) environment and can be seen as an important application in CV based

ITS. By means of the multi-agent based reinforcement learning algorithm, the agents

(controllers) coordinate their actions to achieve the system level goals. The results

from a test network containing 18 intersections show better performance of the JTA

algorithm over adaptive (LQF) and single-agent RL based control (Q-learning). The

key contributions are as follows:

First, the primary contribution of this research is the development of a coordi-

nated RL based algorithm with convergent property for both cyclic and acyclic traffic

networks. Additionally, the results show that the JTA algorithm perform at least as

good as the max-plus algorithm [120]. Note that, max-plus cannot always guarantee

convergence for cyclic networks.

Second, JTA has never been implemented in context vehicular traffic control to

the best of the authors’ knowledge. We demonstrated an application of graphical

models in context of traffic signal controls that initiates a new path in the traffic

control research.
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Third, the vehicular emissions are estimated using the state-of-art tool MOVES to

explore the environmental benefits of the algorithm. Instead of average speed based

technique we account for different vehicular activities on link (Figure 4.4.6). Our

test results indicate that, JTA not only improves mobility but also cuts down GHG

emissions from the network significantly. Therefore, the JTA algorithm justifies itself

as a suitable candidate that ensures sustainable mobility in traffic networks.

Along the stream of this study, several elements of future research can be identi-

fied. (1)The results reported here are from a hypothetical network. The primary focus

of this research is the development of coordinated algorithm with learning feature and

convergent property for general networks and demonstration of the proof-of-concept.

Results from real world implementation would make our conclusions stronger. (2)The

CV environment can be modeled with more details using wireless communications

simulation tools. This would help to assess the resilience and stability of the control

schemes with variation in communication strengths. Moreover, the proposed algo-

rithm does not explicitly consider environmental objectives in the reward functions.

Learning algorithms with fuel consumption or emissions objective can get to the next

dimension of sustainable mobility. (3)Additionally, it would be interesting to assess

the variance of performance metrics at intersection level. Although the system is im-

proved, some intersections may always experience poor operations. Modified schemes

can be developed that optimize the system ensuring desired level of performance at

local intersections.
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5. AUTONOMOUS INTERSECTION CONTROL: A

LINEAR PROGRAMMING FORMULATION

This chapter develops a novel linear programming formulation for autonomous inter-

section control (LPAIC) accounting for traffic dynamics within a connected vehicle

environment. Firstly, a lane based bi-level optimization model is introduced to prop-

agate traffic flows in the network, accounting for dynamic departure time, dynamic

route choice, and autonomous intersection control in the context of system optimum

network model. Then the bi-level optimization model is transformed to the linear

programming formulation by relaxing the nonlinear constraints with a set of linear

inequalities. One special feature of the LPAIC formulation is that the entries of the

constraint matrix has only values in -1, 0, 1. Moreover, it is proved that the con-

straint matrix is totally unimodular, the optimal solution exists and contains only

integer values. Further, it shows that traffic flows from different lanes pass through

the conflict points of the intersection safely and there are no holding flows in the

solution. Three numerical case studies are conducted to demonstrate the properties

and effectiveness of the LPAIC formulation to solve autonomous intersection control.

5.1 Introduction

Connected vehicle (CV) technology grows rapidly since its inception owing to the

development of wireless communication technology, especially the Dedicated Short

Range Communications (DSRC) technology. DSRC has great potential in the area

of intelligent transportation systems (ITS), as it facilitates the inter-vehicle com-

munication (IVC). The CV technology is the first step towards the next generation

transportation system featuring self-driving vehicles, auto highways, auto parking

lots, and auto intersection managements. On the one hand, the CV technology
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greatly improves the transportation system. According to the U.S. Department of

Transportation’s (DOT) Research and Innovative Technology Administration (RITA,

2014), the CV technology will potentially reduce 81 % of all-vehicle target crashes,

83 % of all light-vehicle target crashes, and 72 % of all heavy-truck target crashes

annually. It will also improve the congestion problem in US which consumes up to

4.2 billion hours and 2.8 billion gallons of fuel annually. Due to this benefit, the

U.S. DOT National Highway Traffic Safety Administration [1] plans to mandate IVC

technology on every single vehicle by 2016. On the other hand, the CV technology

brings new challenges to the area of traffic control. A key motivation of this study is

to address the intersection control problem under the CV environment.

5.1.1 Related work

[132] examined the impact of Cooperative Adaptive Cruise Control under the

CV environment and found that both the traffic flow stability and efficiency are

improved. However, the study is limited to the cooperation of only connected vehi-

cles. [133, 134, 135] proposed the multi-agent framework for autonomous intersection

management (AIM) where vehicles cooperate not only with other vehicles but also

with infrastructure (e.g., the intersection controller). In AIM, autonomous vehicles

and intersection controller are modeled as intelligent agents. Before reaching the

intersection, vehicle agents send requests to signals ahead of the intersection. In

consequence, the intersection agent reserves conflict-free trajectories for vehicles to

safely pass through the intersection. It is shown that AIM tremendously improves

traffic throughout in isolated intersections. [136] further examined the performance

of AIM in the case of multi-intersections and significant improvements were also ob-

served as compared to conventional signal control. Following this research stream

but from a different perspective, [137] developed the Cooperative Vehicle Intersection

Control (CVIC) system. In the framework, autonomous intersection control is formu-

lated as an optimization problem with the objective to minimize the total length of
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overlapped trajectories. To solve the optimization problem, the active-set algorithm

and interior point algorithm are proposed. However, these two algorithms may not

necessarily output collision-free solutions due to the complexity of the optimization

problem (both the objective function and constraints are nonlinear and non-convex).

Accordingly, a Genetic Algorithm based solution is included in the final solution set

of the problem. Still the final solution set may contain solutions that cause vehicle

trajectory collision. To guarantee the safety of vehicle movements, an accident-free

scheme is incorporated in the control strategies of the intersection controller. Later

[138] extended the CVIC framework to the case of multi-intersections and investigated

the safety and environmental benefits of autonomous intersection control. Notice that

the traffic flow models in the above literature are all second-order traffic flow mod-

els. For example, in [133, 134], the acceleration schedule for the driver agent needs

to be determined in the modelling component called First-Come-First-Service policy.

In [137, 138], the microscopic traffic simulator VISSIM is integrated to model traf-

fic flows in the network. Though second-order traffic flow model provides detailed

output at the individual vehicle level, it may compromise more computational effort,

as well as increase the difficulty of resolving the problem. On the contrary, the first

order traffic flow models are more computationally efficient and more favorable for

analytical analysis. The cell transmission model (CTM) developed by [139, 140] is

one of the widely used first order traffic flow models. It provides a convergent approx-

imation to a simplified version of the LWR hydrodynamic model [78, 79], whereby the

fundamental diagram of traffic flow and density is assumed to be a piecewise linear

function. The model is capable of capturing the traffic propagation phenomena such

as spill back, kinematic wave, and physical queue. CTM has been used for various

dynamic problems in the last decade. To name a few, [141, 142] incorporated CTM

into the user equilibrium dynamic traffic assignment problem using the variational

inequality approach. [143] efficiently solved the dynamic user optimal problem em-

bedding CTM. [144, 145] formulated the cell-based dynamic user equilibrium problem

using complementarity theory. One limitation of CTM lies in its uniform cell based
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discretization structure. [146] addressed the issue by presenting the link transmission

model (LTM). [147] proposed a link based dynamic network loading model which is

equivalent to CTM. Other link based first order dynamic network loading models

include the merge and diverge model [148], multiclass model [149], continuous time

model [150]. For a more comprehensive review, please refer to [151, 152]. Note that

CTM is originally developed in the nonlinear form for traffic simulation. [153] trans-

formed the nonlinear and bi-level structure CTM into a linear programming problem,

whereby the nonlinear constraints and the bi-level structure are relaxed with a set of

linear inequalities. One problem due to the linear relaxation is known as the holding

back problem [154]. [155] verified that Hos algorithm [156] can be utilized to elimi-

nate the unnecessary holding flows in the network. [157] proved that the original cell

based system optimal DTA problem is equivalent to the earliest arrival flow (EAF)

problem. [158] utilized the concept of fair propagation and proposed a novel formu-

lation that completely eliminates the holding-back phenomenon for networks with

multiple OD pairs. Most recently, [159] resolved the holding-back problem by intro-

ducing penalty labels to the objective function of the linearized CTM formulation.

The penalty label provides sufficient incentive for the formulation to completely re-

move the holding flows. Besides network analysis, CTM has also been widely applied

in the area of traffic control management. Among the wealth of literature, [160, 161]

modeled the signal control problem as a mixed integer linear programming problem

embedding the CTM model. However the mixed integer programming problem is a

NP hard problem. It is difficult to find or prove the existence of global optimal solu-

tions. [162] addressed the uncertainty from demand by proposing the robust system

optimal signal control model. Still, it is a difficult task to find an optimal solution

of the problem. As acknowledged by the authors, the quality of solutions from the

commercial solver changes with the increase of the number of scenarios.
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5.1.2 Contributions of the chapter

One limitation from the above literature on autonomous intersection control lies

in the complexity of the formulated problem. Generally the complexity of the prob-

lem is inherent due to the special requirement of autonomous intersection control:

the vehicle trajectories must not intercept at the conflict points of the intersection,

otherwise collision occurs. Satisfying the requirement usually causes the problem to

be nonlinear, non-convex, and intractable. Consequently, the problem belongs to the

class of NP-hard optimization problems and requires considerable computational ef-

forts to find exact optimal solutions. Another limitation from the literature is that

the study of autonomous intersection control (e.g., [133, 134, 137, 138] and the study

of dynamic traffic assignment (e.g., [141, 142, 144, 145]) are always viewed separately

although clear linkages exist between dynamic network assignment and autonomous

control algorithms. This chapter fills the research gap by proposing a linear program-

ming formulation accounting for both autonomous intersection control and a system

optimum based dynamic traffic. Firstly, stemming from [146, 147] we propose a new

lane based traffic flow model. To account for conflict-free vehicle movements in au-

tonomous intersection, we introduce the complementarity constraint to the model,

resulting in a nonlinear and bi-level formulation. The traffic flow propagation in the

model is proved to be consistent with the previous study [146]. Then the bi-level op-

timization formulation is transformed to the linear programming version (LPAIC) by

relaxing the nonlinear constraints with a set of linear equations. One special feature

of the LPAIC formulation is that the entries of the constraint matrix only consists of

-1, 0, 1. Moreover, it is found that the LPAIC formulation has several nice properties:

• The matrix of the constraint domain is proved to be totally unimodular, imply-

ing the polytope of the formulation is integral.

• There exists optimal solution to the LPAIC formulation, and the optimal solu-

tions are integers.
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• The intersection safety is guaranteed, i.e., traffic flows from different phases do

not have conflict points concurrently.

• There are no holding-back flows in the solution.

• The formulation captures dynamic departure time and dynamic route choice

behavior in the context of system optimum.

To demonstrate the properties and performance of the LPAIC formulation, we

have constructed three numerical case studies including an X shape network, an

isolated intersection, and a grid network.

Moreover, it is important to note that currently the concept of autonomous in-

tersection is still in its infancy, however, the realization in the real world may not be

in the distant future. As predicted from various publications (Broggi, 2012), traffic

lights will be eliminated and 75% of vehicles will be autonomous vehicles by the year

2040. The LPAIC formulation in this chapter provides preliminary and important

insights on the implementation of autonomous intersection in the real world. The key

points are as below:

• The output of the LPAIC formulation includes the time-dependent traffic flow

that travels through the intersection. The traffic flow is at the individual vehicle

level. In the real world, it can be realized by the cooperation between inter-

section controller and connected vehicles (or autonomous vehicles) through the

V2I communication.

• In the real world application, let the intersection be installed with the dis-

tributed controller that is able to access the privacy-protected information (e.g.,

speed, position, destination) of approaching connected vehicles through the V2I

communication. The controller then applies the LPAIC formulation to obtain

traffic flow solutions. The traffic flow solution is time-specific. It can be viewed

as the time schedule (it is similar to the reservation system proposed by (Dres-

ner and Stone, 2008)) of individual vehicles passing through the intersection.
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Then the controller communicates the time schedule back to the approaching

connected vehicles which will adjust the speed and obey the schedule. Finally

connected vehicles pass through the intersection safely and efficiently without

the need for traffic lights.

• Distinct from the previous studies (e.g., Dresner and Stone, 2008; Lee and Park,

2012) which require special treatments on exceptional cases such as solution fail-

ures due to the complexity of the optimization problem, the LPAIC formulation

bypasses such issue due to its linear nature. Given the extensive research in the

area of LP, it is efficient to solve the LPAIC formulation and obtain the exact

solution.

The rest of the chapter is structured as follows. Section 5.2 is devoted to the

introduction of a lane based traffic flow model from [146, 147]. Section 5.3 trans-

forms the model into the linear programming formulation by relaxing the nonlinear

constraints with linear equations. It is proved that the optimal solution of the linear

programing problem exists and is consisting of integers. Section 5.4 conducts three

numerical studies to demonstrate the properties and performance of the formulation

including the ordinary lane, an isolated intersection, and a grid network. Finally,

Section 5.5 summarizes the findings of the chapter and discusses the directions for

future research.
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Sets:

C : Set of all lanes

CR,S : Set of origin, or destination lanes

C −O,D,M : Set of ordinary, or diverging, or merging lanes

E : Set of all connectors

EO,D,M : Set of ordinary, or diverging, or merging lane connectors

EF : Set of conflict lane connectors

Γ−1(i) : Set of predecessors of lane i

Γ(i) : Set of successors of lane i

U : Set of all OD pairs

R : Set of all paths

Rw : Set of paths for OD pair w

Parameters:

S : Saturation flow rate

T : Size of time step

Tf : Time horizon for traffic flow modeling

Td : Time horizon for departure time choice.

N t
i : Jam density of lane i at time t

Qt
i : Inflow or outflow capacity of lane i at time t

Wi : Shockwave speed of lane i

Vi : Free flow speed of lane i

hri : Penalty label of path r at lane i

Dw : Total demand of original lane i

Variables:

xr,ti : Lane occupancy of lane i at time t on path r

yr,ti,j : Flow from lane i to j at time t on path r

xti : Aggregate lane occupancy of lane i at time t

yti,j : Aggregate flow from lane i to j at time t
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5.2 A lane based traffic flow model for autonomous intersection control

5.2.1 Assumptions of the formulation

Assumption 5.2.1 All vehicles and intersections in the consideration are installed

with wireless communication devices to facilitate the Vehicle to vehicle (V2V) com-

munication and vehicle to infrastructure (V2I) communication in the network.

Assumption 5.2.2 The communication network is fully connected during the time

period, and there are negligible transmission delays, packet loss, interference, etc, in

the communication process of V2V and V2I.

Assumption 5.2.3 Vehicles pass through the intersection according to the traffic

flow propagation from the LPAIC formulation. This is achieved by vehicles coop-

erating with one another and with the intersection controller through the wireless

communication under the CV environment.

Assumption 5.2.4 The vehicle movements or the traffic flow propagation is based

on system optimum routing in the dynamic traffic network. In this study, the objective

is to minimize the total travel time.

Assumption 5.2.5 The other major assumptions are similar to that in the cell trans-

mission model (CTM). For instance, the traffic flow is homogeneous, there is no lane

changing, the fundamental diagram is assumed as a piece-wise linear function, etc.

5.2.2 Lane based traffic flow modeling

Stemming from [146, 147], this chapter develops a new lane based traffic flow

model featuring dynamic departure time, dynamic route choice, and autonomous

intersection control. Similar to [146, 147], the lane based traffic flow model is a

discrete time model where the time space is discretized into time steps. However,

one special requirement is imposed on the resolution of time step in this study: the
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time step size is determined in the way that the outflow capacity is one unit per time

step. For instance, if the saturation flow rate is 1800 veh/hour (or 0.5 veh/second),

then the size of time step is determined as 2 seconds such that the outflow capacity

is one ( 0.5× 2 = 1) vehicle per time step. Moreover, the traffic flow propagation in

the network is lane based. The number of vehicles within the lane is defined as the

occupancy of the lane, denoted as xti, i ∈ C . The number of vehicle moving from

one lane to another is defined as the traffic flow of the lane connector, denoted as

yti,j, (i, j) ∈ E . The traffic flow propagation is realized by updating temporal values

of xti, i ∈ C and yti,j, (i, j) ∈ E in the network.

Fig. 5.1. Demonstration of conflict points in a typical 4-lane 4-leg intersection

Further, we specify conflict lane connectors which represent the paired lanes that

have conflict points in the intersection. Conflict points indicate the potential collision
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areas of the intersection where traffic flows from different phases use the same road.

To ensure safety, it must guarantee that vehicles do not go through the conflict points

at the same time. For demonstration purposes, Figure 5.1 shows the example of a

typical 4-leg and 4-lane intersection. The red points represent conflict points. As

shown in the figure, there are 20 conflict points for approaching vehicles from east

(E), west (W), south (S), and north (N) bound. For example, lane connector (1, 12)

corresponds to the through movement from North bound, and lane connector (13,

8) corresponds to the through movement from the West bound. Traffic flows cannot

propagate on these two conflict lane connectors concurrently, otherwise collisions

occur. In other words, we must have yt1,12 > 0, yt13,8 = 0 , or yt1,12 = 0, yt13,8 > 0 , or

yt1,12 = yt13,8 = 0 for any t. Mathematically, such relationship can be written in the

complementarity form as 0 ≤ yt1,12⊥yt13,8 ≥ 0,∀t. Generalizing this example, let EF

denote the set of paired conflict lane connectors, then the complementarity constraint

for conflict-free traffic flows is written as:

0 ≤ yti,j⊥ytk,l ≥ 0,∀(i, j, k) ∈ EF , ∀t (5.1)

For the updating of lane occupancies, we apply the flow conservation constraints.

Specifically, we adopt the same logic as in CTM [139, 140] and [147]:

Demand satisfaction constraint:

Td∑
t=1

∑
r∈Rw

∑
i∈CR

∑
j∈Γ(i)

yr,ti,j = Dw,∀w ∈ U (5.2)

Aggregation of lane occupancy and outflow constraints:

xti =
∑
∀r

xr,ti ,∀i ∈ C (5.3)

yti,j =
∑
∀r

yr,ti,j ,∀(i, j) ∈ E (5.4)

Lane occupancy constraints:

xr,ti = xr,t−1
i −

∑
j∈Γ(i)

yr,t−1
i,j ∀i ∈ CR (5.5)
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Sink lanes:

xr,ti = xr,t−1
i +

∑
k∈Γ−1(i)

yr,t−1
k,i ∀i ∈ CS (5.6)

Ordinary lanes:

xr,ti = xr,t−1
i + yr,t−1

k,i − yr,t−1
i,j ∀i ∈ CO, k ∈ Γ−1(i), j ∈ Γ(i) (5.7)

Merging lanes:

xr,ti = xr,t−1
i +

∑
k∈Γ−1(i)

yr,t−1
k,i − yr,t−1

i,j ∀i ∈ CM , j ∈ Γ(i) (5.8)

Diverging lanes:

xr,ti = xr,t−1
i + yr,t−1

k,i −
∑
j∈Γ(i)

yr,t−1
i,j ∀i ∈ CD, k ∈ Γ−1(i) (5.9)

For the updating of traffic flows connecting different lanes, we derive the traffic

flow updating procedure for ordinary lane connectors and show that it is consistent

with the previous study (Yperman, 2007), then develop similar equations for diverging

and merging lane connectors.

Ordinary lane connectors, ∀ (i, j) , (j, l) ∈ EO :

yr,ti,j = min

xr,t+1−Li/Vi
i −

t−1∑
k=t+1−Li/Vi

yr,ki,j , Q
t
i, Q

t
j, Nj − xtj −

 t−1∑
k=t+1−Li/Wi

ykj,l


(5.10)

Proposition 5.2.1 The traffic flow updating procedure in (10) is consistent with the

flow updating procedure in LTM (Yperman, 2007).

Proof (a) In chap 4, equation 4.31 (Yperman, 2007), the sending flow in the link

model is formulated as:
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Si (t) = min

((
N

(
x0
i , t+ ∆t− Li

vf,i

)
−N

(
xLi , t

))
, qM,i∆T

)
(5.11)

Where Si (t) represents sending flow of link i at time t, x0
i andxLi represent the

entry and exit location of link i, Li represents the length of link i, vf,i represents

the free flow speed of link i, qM,i represents the link capacity of link i, and N(·)

represents the accumulative vehicle numbers. Notice that in the context of this study,

the accumulative number of vehicles is considered as the aggregation of traffic flows,

which gives:

N

(
x0
i , t+ ∆t− Li

vf,i

)
=

t−Li/Vi∑
k=1

yr,kl,i , l ∈ Γ−1(i) (5.12)

N
(
xLi , t

)
=

t−1∑
k=1

yr,ki,j (5.13)

Moreover, according to the definitions in this chapter, qM,i∆T = Qi . Thus,

substitute (12) and (13) into (11), we have:

Si (t) = min

t−Li/Vi∑
k=1

yr,kl,i −
t−1∑
k=1

yr,ki,j , Qi

 , l ∈ Γ−1(i), j ∈ Γ(i) (5.14)

Note from (5.7), we have:

x
r,t+1−Li/Vi
i =

t−Li/Vi∑
k=1

yr,kl,i −
t−Li/Vi∑
k=1

yr,ki,j , l ∈ Γ−1(i), j ∈ Γ(i) (5.15)

Substitute (5.15) into (5.14), we get:

Si (t) = min

xr,t+1−Li/Vi
i −

t−1∑
k=t+1−Li/Vi

yr,ki,j , Q
t
i

 , l ∈ Γ−1(i), j ∈ Γ(i) (5.16)

(b) Similarly, when it turns to receiving flow in the link model, the constraint

(chap 4, equation 4.35, (Yperman, 2007)) on the receiving flow is formulated as:

Rj (t) = min

((
N

(
xLj , t+ ∆t+

Lj
wj

)
+ kjamLj −N

(
x0
j , t
))

, qM,j∆T

)
(5.17)
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Where Rj (t) represents sending flow of link j at time t, kjam represents the jammed

density of the link and wj (of negative value) represents the shock wave speed of link

j. Following the same procedure as (5.12) - (5.16), we obtain:

Rj (t) = min

Nj − xtj −

 t−1∑
k=t+1−Li/Wi

ykj,l

 , Qj

 (5.18)

Combining (5.16) and (5.18), we have (5.10). This ends the proof.

As the proposed traffic flow model is consistent with LTM, it is capable of cap-

turing the traffic propagation phenomena such as spill back, kinematic wave, and

physical queue. However, note that (10) only applies to ordinary lanes. For diverging

and merging lanes, the popular approach is to exogenously determine a set of time-

dependent turning proportions for these links (Daganzo, 1995, 1994). Here we apply

the approach from (Zhu and Ukkusuri, 2013; Ziliaskopoulos, 2000), which is more

flexible in the sense that the turning proportions either for diverging lane connecters

or merging lane connectors are determined to optimize the total system cost.

Diverging lane connectors, ∀ (i, j) ∈ ED :

max
∑
j∈Γ(i)

yr,ti,j (5.19)

∑
j∈Γ(i)

yr,ti,j ≤ x
r,t+1−Li/Vi
i −

t−1∑
k=t+1−Li/Vi

yr,ki,j ,∑
j∈Γ(i)

yr,ti,j ≤ Qt
i,

yr,ti,j ≤ Qt
j, j ∈ Γ(i)

yr,ti,j ≤ Nj − xtj −

(
t−1∑

k=t+1−Li/Wi

ykj,l

) (5.20)

Merging lane connectors, ∀ (i, j) ∈ EM :

max
∑

i∈Γ−1(j)

yr,ti,j (5.21)
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yr,ti,j ≤ x
r,t+1−Li/Vi
i −

t−1∑
k=t+1−Li/Vi

yr,ki,j ,∑
i∈Γ−1(j)

yr,ti,j ≤ Qt
j,

yr,ti,j ≤ Qt
i, i ∈ Γ−1 (j)∑

i∈Γ−1(j)

yr,ti,j ≤ Nj − xtj −

(
t−1∑

k=t+1−Li/Wi

ykj,l

) (5.22)

Remark 5.2.6 Due to the complex constraints of Equation (1), (10), (19), and (21),

it is hard to obtain an exact optimal solution to the problem. One popular approach

is to reformulate the problem as an optimization problem with complementarity con-

straints. Then the problem becomes a mathematical program with equilibrium con-

straints (MPEC). Note that MPEC problems are usually intractable and difficult to

solve.

5.2.3 The nonlinear optimization formulation

Similar to [153, 159], the objective of the problem is to minimize the total travel

time. Thus the whole formulation is presented as:

Nonlinear optimization formulation for autonomous intersection control (NAIC):

min z(x) =
∑
∀t

∑
∀i∈C\CS

xti (5.23)

Subject to: (5.1) - (5.10), (5.19) - (5.22).

5.3 Linear programming formulation of the lane based traffic flow model

5.3.1 Linear programming formulation for autonomous intersection con-

trol

The nonlinear nature of complementarity constraints (Equation (5.1)), minimum

constraints (Equation (5.10)), as well as the bi-level optimization structure (Equa-

tion (5.19) and (5.21)), increase the difficulty of analytical analysis for the problem.
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Following the previous work by [153, 159], we transform the nonlinear optimization

problem into a linear programming problem, whereby the nonlinear constraints are

relaxed with a set of linear inequalities. It is worthy to note in advance that the

complementarity constraints (i.e., Equation (5.1)) would be implicitly addressed in

the formulation, as revealed later in Proposition 5.3.2 in Section 5.3.2.

Linear programming formulation for autonomous intersection control (LPAIC):

min z(x) =
∑
∀t

∑
∀i∈C\CS

hix
t
i (5.24)

Subject to:

Lane occupancy constraints: (5.2) - (5.9)

Lane connector constraints:

Ordinary lane connectors, ∀ (i, j) ∈ EO :

yr,ti,j ≤ x
r,t+1−Li/Vi
i −

t−1∑
k=t+1−Li/Vi

yr,ki,j ,

yr,ti,j ≤ Qt
i,

yr,ti,j ≤ Qt
j,

yr,ti,j ≤ Nj − xtj −

(
t−1∑

k=t+1−Li/Wi

ykj,l

) (5.25)

Diverging lane connectors, ∀ (i, j) ∈ ED : (5.20) Merging lane connectors, ∀ (i, j) ∈

EM : (5.22) Conflict lane connectors, ∀ (i, j, k, l) ∈ EF :

yti,j + ytk,l ≤ 1 (5.26)

Non-negativity constraints:

xti ≥ 0, yti,j ≥ 0,∀i ∈ C, (i, j) ∈ E (5.27)

Remark 5.3.1 The objective function in (5.24) is different from the NAIC formu-

lation in (5.23). In (5.24) we have introduced the penalty label hi. The purpose of
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introducing this penalty label is to remove the holding flows from the traffic flow prop-

agation (Zhu and Ukkusuri, 2013). The determination principle of the penalty label

is that hi must be strictly positive and strictly greater than that of the downstream

lane:

0 < hj < hi,∀i ∈ C; j ∈ Γ(i) (5.28)

In addition, the difference between hi and hj needs to be made small enough that the

solution also applies to the case of not introducing penalty labels (Zhu and Ukkusuri,

2013).

5.3.2 Properties of the LPAIC formulation

For the sake of brevity, we denote the domain of the LPAIC formulation as:

AX ≤ b;

X ≥ 0
(5.29)

Where X = [x,y],x,y represents the set of all variables, xti, y
t
i,j,∀i ∈ C, (i, j) ∈ E .

Moreover, AX ≤ b,X ≥ 0 represents all the linear relationships of the constraints of

the LPAIC formulation.

In this study, the meaning of occupancies (i.e., xti ) and flows (i.e., yti,j ) is cor-

responding to the number of vehicles. Hence we are interested in integer values for

all the valuables. Following this logic, when presetting the values of parameters, e.g.,

Qi, Ni ,etc, it is required to assign integer values.

Proposition 5.3.1 The constraint matrix of the LPAIC formulation, i.e., A , is

totally unimodular.

Proof Firstly, the entries in A are all within -1, 0, +1. Next, consider a general

variable, yr,ti,j , (i, j) ∈ EO . It appears in seven rows of A corresponding to Equation

(5.4), (5.7), and (5.25), namely, one in (5.4), two in (5.7), and four in (5.25). If we

divide these rows into two subsets. Subset 1 contains (5.4), (5.7), and half of (5.25).
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Subset 2 contains the other half of (5.25). Hence the summation of the coefficients

of yr,ti,j in Subset 1 and Subset 2 are 3 and 2, respectively. Thus the difference is 1.

Similar logics can be applied to other variables. In all, according to the Ghouila-

Houris Characterization (Theorem 19.3, [163]), A is totally unimodular.

Theorem 5.3.2 There exists an optimal solution for the LPAIC formulation, de-

noted as X∗ . Moreover, X∗ are integers, i.e., X∗ ∈ Zn .

Proof (1) As coefficients of the objective function are all positive and X is feasible

and bounded, the objective function is bounded from below. Following Theorem

4.2.3 [164], there exists an optimal solution for the LPAIC formulation. (2) From

proposition 5.3.1, we have A is totally unimodular. Moreover, b is an integer vector.

Directly following Lemma 8.2.4 [164], we get that X∗ are integers, i.e., X∗ ∈ Zn .

Proposition 5.3.2 Let X∗ = argLPAIC (X), then yti,jy
t
k,l = 0,∀ (i, j, k, l) ∈ EF ,∀t

.

Proof From constraint (5.26), we have yti,j + ytk,l ≤ 1. From Theorem 5.3.2, yti,j, y
t
k,l

are integer. Accordingly, yti,jy
t
k,l = 0,∀ (i, j, k, l) ∈ EF ,∀t .

Proposition 5.3.2 implies that the LPAIC formulation strictly satisfies the comple-

mentarity constraints (i.e., Equation (5.1)) in the NAIC formulation. In other words,

optimal solution of the LPAIC formulation ensures that traffic flows pass through the

conflict points of the intersection safely.

Proposition 5.3.3 Consider the following linear programming formulation:

min z(x) =
∑
∀t

∑
∀i∈C\CS

xti

s.t.

AX ≤ b;

X ≥ 0

(5.30)

There exists the set of hi, i ∈ C , such that X∗ = argLPAIC (X) also serves as the

optimal solution of (5.30).
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Proof Consider hi, i ∈ C as a set of parameters that can vary. Then the LPAIC

formulation becomes a parametric linear program of (5.30). According to Lemma 6.2

[165], there exists a nontrivial and positive range for hi, i ∈ C such that the optimality

of (5.30) maintains.

Proposition 5.3.4 Let (x∗,y∗) = LPAIC (x,y) , then

yti,j = min
{
xti, Q

t
i, Q

t
j, δ
(
N t
j − xtj

)}
, (i, j) ∈ EO (5.31)

yti,j = min
{
xti, Q

t
i

}
, and

∑
i∈Γ−1(j)

yti,j = min
{
Qt
j, δ
(
N t
j − xtj

)}
, (i, j) ∈ EM (5.32)

∑
j∈Γ(i)

yti,j = min
{
xti, Q

t
i

}
, andyti,j = min

{
Qt
j, δ
(
N t
j − xtj

)}
, (i, j) ∈ ED (5.33)

Proof Please refer to a similar proof in (Zhu and Ukkusuri, 2013).

Interpretation: There is no holding-back flows in the optimal solution of the LPAIC

formulation.

Theorem 5.3.3 Let (x∗,y∗) = LPAIC (x,y) , then (x∗,y∗) = NAIC (x,y) . In-

terpretation: the optimal solution of the LPAIC formulation also serves as the solution

of the NAIC formulation.

Proof This immediately follows from Proposition 5.3.2, 5.3.3, and 5.3.4.

Remark 5.3.4 For implementation of autonomous intersection in the real world,

traffic flows should follow the solution from the LPAIC formulation. This is achiev-

able through the inter-vehicle communication system. Firstly, intersections need to be

installed with distributed controllers and vehicles need to be equipped with wireless

communication devices. Controllers are able to communicate with vehicles through



125

the DSRC based communication. When vehicles approach the intersection, the con-

troller will access the privacy-protected information (e.g., speed, position, destination,

etc) of the vehicle and apply the LPAIC formulation to obtain the solution. The so-

lution is time-specific at the individual vehicle level. For instance, yti,j indicates the

traffic flow from lane i to lane j at time t . It can be viewed as the time schedule that

the vehicle moves from one end to the other end of the intersection. Notice that the

LPAIC formulation is an LP problem. It can be solved efficiently in no time. Then the

controller broadcasts the time schedule of vehicle movements back to the approaching

vehicles. After receiving the time schedule, vehicles will need to corporately adjust

speed in order to pass through the intersection safely and efficiently.

5.4 Numerical case studies

5.4.1 X shape network demonstration

Fig. 5.2. The X shape network (upper level is lane-based; lower level is cell-based)

The representation of the X shape network is shown in Figure 5.2. It is consisting

of diverging and merging lanes. The purpose of constructing this simple case is to

demonstrate the accuracy of the LPAIC formulation in traffic flow propagation. This
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is done by showing the consistency of the traffic flow outputs between the LPAIC

formulation, LTM, and CTM, since the latter two are well-accepted traffic flow simu-

lation models. In Figure 5.2, the upper level represents the lane-based network, and

the lower level represents the cell-based network. These two representations represent

the same network. For example, cell 1 is the same as lane 1, and the combination of

cell 3.1-3.4 (4.1-4.4) in the lower level forms lane 3 (4) in the upper level. The dark

lanes (cells) represent the originations or destinations, and the light lanes (cells) rep-

resents ordinary lanes (cells). The detailed setting for the network is as below. The

saturation rate is 1800 veh/hour. The time step is 2-second. Hence outflow capacity

is one vehicle/time step (as required in the LPAIC formulation). The ratio between

the shock wave speed and the free flow speed is fixed at one. The holding capacity is 6

for cell 1 to cell 6, and lane 1. Proportionally, the holding capacity is 24 for lane 3 and

lane 4. Since cells (lanes) 5 and 6 are destinations, the capacity is set to infinity. The

departure time horizon is 20 time steps, and the whole time horizon is 30 time steps.

The demand input is generated randomly according to the Bernoulli process as shown

in Appendix Table 5.6. Table 5.6 also presents the occupancy outputs of the network

from the LPAIC formulation and LTM. They are exactly the same. Appendix Table

5.7 presents the occupancy output from CTM. The dark area of Table 5.7 indicates

the occupancy of the accumulated cells in parallel with the lane based representation

in the LPAIC formulation. It is seen that the results in Table 5.7 are exactly the

same as those in Table 5.6. Therefore it is concluded that the LPAIC formulation

propagates traffic flow consistently as LTM and CTM in this demonstrative example.

This finding is in accordance with the statement in Proposition 5.2.1.

5.4.2 Isolated intersection

In order to show the mobility benefit of applying autonomous intersection control,

we have constructed this isolated intersection case (Figure 5.1). For the performance

measure of mobility, we apply the total travel time as the indicator since it consti-
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tutes the objective of the LPAIC formulation. The comparison is conducted between

the autonomous intersection control (i.e., the LPAIC formulation) and the actuated

longest queue first (LQF) signal control [131]. As shown in Figure 5.1, we consider

the typical 4-lane 4-leg isolated intersection. The settings of the intersection are

consistent with the network in Section 5.4.1 unless specified elsewhere. The holding

capacity is 24 for all the lanes except the destination lanes (the capacity is set to infin-

ity). The departure time horizon is 60 time steps, and the whole time horizon is 120

time steps. The demand input is the same for both LPAIC and LQF, and is generated

randomly according to the biased Bernoulli process. In the experiment design, we

have constructed five scenarios according to different volume/capacity (V/C) ratios

ranging from 0.4 to 0.8. The V/C ratio corresponds to the probability of success for

the Bernoulli trial in generating the demand input. For the sake of space, we do not

present the solution outputs (they are confirmed to be integers) of the LPAIC formu-

lation but present the results of total travel time between LQF and LPAIC as shown

in Table 5.1. Overall, it is seen that autonomous intersection control outperforms

actuated signal control across all the V/C ratio cases. Especially, the improvement is

as high as up to 18.8% in the 0.4 V/C ratio case. One interesting finding is that the

difference between LQF and LPAIC is decreasing when the V/C ratio increases. In

other words, the advantage of autonomous intersection control over actuated signal

control is becoming less when the traffic congestion is worsening. Intuitively, vehicles

are forced to go through the stop-and-go process when the intersection is heavily

congested regardless of any control strategy. Accordingly, autonomous intersection

control may not gain significantly more benefits over actuated control. Such finding is

also observed from the previous work [133]. It is worthwhile to perform a sensitivity

analysis on the performance of autonomous intersection control, however, it is out of

the scope of this chapter. We leave this topic to future research.
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Table 5.1.
Total travel time (in units of time steps) comparison with different V/C ratio

V/C LQF LPAIC Difference

0.4 3039 2468 -18.79%

0.5 6643 5466 -17.72%

0.6 8010 6664 -16.80%

0.7 10863 9508 -12.47%

0.8 10957 9991 -8.82%
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Fig. 5.3. The 12-node grid network

5.4.3 Grid network

The third example is a grid network consisting of 12 nodes, 17 single-lane links

and 4 OD pairs, as shown in Figure 5.3. The setting of the network is consistent with

Section 4.2 unless specified elsewhere. Node 1 and 3 are origin nodes, and node 10 and

12 are destination nodes. The route choice setting for different OD pairs are listed in

Table 5.2. The purpose of constructing the grid network example is to demonstrate

the LPAIC formulation’s capability of accounting for dynamic departure time and

route choice behavior. To serve this purpose, we design two scenarios as following.

1) Vary the demand. 2) Accident on one network link.

Varied demands scenario

In this scenario, we vary the demand input of the network. Demand case 1 is the

base case with demand input for OD pair (1,10), (3,10), (1,12), and (3,12) as 15, 6, 4,

and 10, respectively. Then the demand of case 2 is twice of that of case 1. Similarly,

demand cases 3 and 4 are 3 and 4 times of that of case 1. Across all demand cases,
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Table 5.2.
Route choices setting for the grid network

OD Route number Nodes in the Route OD Route number Nodes in the Route

(1,10) 1 1-4-7-10 (1,12) 1 1-4-5-8-11-12

2 1-2-5-8-11-10 2 1-4-7-8-11-12

3 1-4-5-8-11-10 3 1-2-5-8-11-12

4 1-4-7-8-11-10

(3,10) 1 3-2-5-8-11-10 (3,12) 1 3-6-9-12

2 3-6-5-8-11-10 2 3-2-5-8-11-12

3 3-6-9-8-11-10 3 3-6-5-8-11-12

4 3-6-9-8-11-12
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Table 5.3.
Route choices for various demand cases

OD pair Route #
Demand Cases

1 2 3 4

(1,10) 1 14 25 37 49

2 1 5 8 11

3 0 0 0 0

4 0 0 0 0

(1,12) 1 0 0 0 0

2 0 0 0 0

3 6 12 18 24

(3,10) 1 0 2 4 7

2 4 6 8 9

3 0 0 0 0

(3,12) 1 10 20 30 40

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

the departure time horizon is 60 time steps, and the whole time horizon is 120 time

steps. For the sake of brevity, here we only present the traffic assignment solution

(i.e., route choices) for all the 4 demand cases in Table 5.3. From Table 5.3, we

see that almost all the vehicles pick the shortest route in demand case 1 since the

demand load is lowest. When the demand increases, the traffic flow spreads from the

original shortest route (the one under demand case 1) to other routes (see, e.g., OD

pair (1,10), (3,10)), as the original shortest route may not be the shortest due to the

increasing demand. However, for OD pair (1,12) and (3,12), vehicles still take the

original shortest routes. It implies that the shortest route remains the same.
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Accident case

In this case, we assume that an accident happens on lane 8. Due to the accident,

the flow capacity from lane 8 to lane 9 is constrained to be zero from time step 5

to 10. The departure time horizon is 30 time steps, and the whole time horizon is

40 time steps. The total demand inputs for (1,10), (3,10), (1,12), and (3,12) are 10,

11, 9, and 8, respectively. The results of the departure rates for the two scenarios

are shown in Table 5.4 and Table 5.5, respectively. As seen from the comparison of

Table 5.4 and Table 5.5, in the non-accident scenario, all 9 units of traffic traveling

from node 1 to node 12 take route 3. However, when there is an accident at lane 8

and the flow capacity from link 8 to 9 is affected, 2 units of traffic will take route 1

instead of route 3. For the case of OD pair (3,10), we also see that the route choice

behavior is different in the two scenarios. Moreover, for the OD pair (3,12), though

all 8 units of traffic would pick route 1 for both non-accident and accident cases, the

departure rates are different, as highlighted in dark in Table 5.5. The encouraging

results from both the varied demand case and the accident case demonstrate the

benefit of applying the proposed formulation in dynamic traffic assignment related

areas such as network design, traffic control management, and evacuation.

5.5 Concluding remarks and discussions

The recent growth in wireless-enabled traffic network offers useful technologies

that are valuable for more efficient traffic control strategies. Overcoming the tra-

ditional stop-and-go traffic flow pattern, autonomous intersection control is greatly

beneficial for the transportation system. However, one should also acknowledge the

difficulty of finding the conflict-free control strategies. One limitation from most,

if not all, of the literature on autonomous intersection control lies in the complex-

ity of the formulated problem. This chapter contributes significantly to the area of

autonomous intersection control by proposing a linear programming formulation ac-

counting for both autonomous intersection control and dynamic traffic assignment.
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Table 5.4.
Departure rates under the non-accident scenario

OD pair Route #
Time

Sum
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1,10) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 10

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1,12) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 9

(3,10) 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 4

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 7

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3,12) 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 8

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5.5.
Departure rates under the accident scenario

OD pair Route #
Time

Sum
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1,10) 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 10

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1,12) 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 7

(3,10) 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2

2 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 9

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3,12) 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 8

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Firstly, based on the previous work from (Yperman, 2007; Zhu and Ukkusuri, 2014)

we propose a new lane based traffic flow model that is capable of capturing most of

the traffic realisms, e.g., traffic shock-waves, spill back effects due to heavy conges-

tion. The formulation is in a nonlinear form and has a bi-level structure to account

for conflict-free vehicle movements in the network. Then the bi-level optimization

formulation is transformed to the linear programming problem by relaxing the non-

linear constraints with a set of linear equations. One special feature of the LPAIC

formulation is that the entries of the constraint matrix are consisting of values in

{-1,0,1}. This feature brings the LPAIC formulation several nice properties. E.g.,

the matrix of the constraint domain is totally unimodular; the optimal solutions are

integers; the intersection safety is secured, i.e., traffic flows from different phases do

not go through the conflict points concurrently, etc. In the second part of the chap-

ter, we have provided three numerical case studies. The first case is an X shape

network consisting of diverging and merging lanes. It is confirmed that the traffic

flow propagation from the LPAIC formulation is identical with that from the LTM

model and the CTM model. The second case is a 4-lane 4-leg isolated intersection.

In terms of travel time reduction, the autonomous intersection control outperforms

actuated signal control over different V/C ratio scenarios. It is also found that the

difference between autonomous intersection control and actuated signal control is de-

creasing when the V/C ratio increases. The third test case is a grid network with

multiples OD pairs. We have designed the non-accident and accident scenarios. It

shows that the route choice and departure time behavior are different under these

scenarios. This chapter is a starting point of applying linear programming in the area

of autonomous intersection control. One interesting extension is to apply the LPAIC

formulation in traditional signal control. One challenge in this extension is how to

capture the minimum and maximum green time in signal control. Note that the

LPAIC formulation is readily applicable to traditional signal control if there is no re-

quirement on the range of green time. The second valuable topic is to investigate the

sensitivity analysis to demonstrate the benefits of autonomous intersection control.
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It is found that the gains from autonomous intersection control are decreasing when

the V/C ratio increases. The third future research direction is to utilize the LPAIC

formulation to address the dynamic traffic assignment (DTA) problem. The LPAIC

formulation in this chapter is limited to the area of system optimum. How to adjust

the formulation to account for user equilibrium (UE) behavior is an important ex-

tension that deserves future study. Last but not the least, it is worthwhile to address

the lane changing issue. Lane changing behavior is realistic and necessary in traffic

flow modeling. However, we are unable to capture it in the proposed formulation due

to the complexity and nonlinear nature of the lane changing constraint. The LPAIC

formulation will be more complete and powerful if there is a way to transform the

nonlinear constraint of lane changing to a linear form.



137

5.6 Appendix:

Table 5.6.
Occupancy output of the LPAIC formulation and LTM (both are the same)

Time Demand1 Demand2 Lane3 Lane4

0 0 0 0 0

1 0 1 0 0

2 0 0 0 0

3 1 0 1 0

4 0 1 1 0

5 0 0 2 0

6 0 1 3 0

7 0 1 2 1

8 1 0 3 1

9 0 0 3 2

10 0 0 3 3

11 1 0 3 2

12 1 0 2 3

13 0 1 2 3

14 0 0 2 3

15 1 0 3 3

16 0 0 3 2

17 0 0 3 2

18 1 0 2 2

19 0 0 1 3

20 0 1 2 3

21 0 0 1 3

22 0 0 2 2

23 0 0 2 1

24 0 0 1 2

25 0 0 1 1

26 0 0 0 2

27 0 0 0 2

28 0 0 0 1

29 0 0 0 1

30 0 0 0 0
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Table 5.7.
Occupancy output of CTM

Time Demand1 Demand2 C3.1 C3.2 C3.3 C3.4 Sum C4.1 C4.2 C4.3 C4.4 Sum

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 0 0 0 1 0 0 0 0 0

4 0 1 0 1 0 0 1 0 0 0 0 0

5 0 0 1 0 1 0 2 0 0 0 0 0

6 0 1 1 1 0 1 3 0 0 0 0 0

7 0 1 0 1 1 0 2 1 0 0 0 1

8 1 0 1 0 1 1 3 0 1 0 0 1

9 0 0 1 1 0 1 3 1 0 1 0 2

10 0 0 1 1 1 0 3 1 1 0 1 3

11 1 0 0 1 1 1 3 0 1 1 0 2

12 1 0 0 0 1 1 2 1 0 1 1 3

13 0 1 1 0 0 1 2 1 1 0 1 3

14 0 0 1 1 0 0 2 1 1 1 0 3

15 1 0 1 1 1 0 3 0 1 1 1 3

16 0 0 0 1 1 1 3 0 0 1 1 2

17 0 0 1 0 1 1 3 1 0 0 1 2

18 1 0 0 1 0 1 2 1 1 0 0 2

19 0 0 0 0 1 0 1 1 1 1 0 3

20 0 1 1 0 0 1 2 0 1 1 1 3

21 0 0 0 1 0 0 1 1 0 1 1 3

22 0 0 1 0 1 0 2 0 1 0 1 2

23 0 0 0 1 0 1 2 0 0 1 0 1

24 0 0 0 0 1 0 1 1 0 0 1 2

25 0 0 0 0 0 1 1 0 1 0 0 1

26 0 0 0 0 0 0 0 1 0 1 0 2

27 0 0 0 0 0 0 0 0 1 0 1 2

28 0 0 0 0 0 0 0 0 0 1 0 1

29 0 0 0 0 0 0 0 0 0 0 1 1

30 0 0 0 0 0 0 0 0 0 0 0 0
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Part III: Traffic Impact Analysis
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6. EFFICIENT AND FAIR SYSTEM STATES IN

DYNAMIC TRANSPORTATION NETWORKS

This chapter sets out to model an efficient and fair transportation system accounting

for both departure time choice and route choice of a general multi OD network within

a dynamic traffic assignment environment. Firstly, a bi-level optimization formula-

tion is introduced based on the link-based traffic flow model. The upper level of the

formulation minimizes the total system travel time, whereas the lower level captures

traffic flow propagation and the user equilibrium constraint. Then the bi-level formu-

lation is relaxed to a linear programming formulation that produces a lower bound

of an efficient and fair system state. An efficient iterative algorithm is proposed to

obtain the exact solution. It is shown that the number of iterations is bounded,

and the output traffic flow solution is efficient and fair. Finally, two numerical cases

(including a single OD network and a multi-OD network) are conducted to demon-

strate the performance of the algorithm. The results consistently show that the travel

time of different departure rates of the same OD pair are identical and the algorithm

converges within two iterations across all test scenarios.

6.1 Introduction

Advances in intelligent transportation systems (ITS) promise to enable advanced

traveler information systems (ATIS) and the related travel guidance (e.g., route

choice, departure time choice) systems for individual travelers. Particularly, with

the recent development of information and communication technology, the person-

alized guidance customized to the need of individual drivers is rapidly becoming a

reality. However, individual users may not comply with the guidance if the guidance

is not efficient and fair.
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Personalized traffic guidance system aims to provide travelers with real-time traf-

fic information and reliable guidance information on route selection and departure

time choice. Usually, the traffic information in any guidance system can be classified

into two categories: the descriptive information (that faithful represents the system

state) and the prescriptive information (that provides useful guidance to the indi-

vidual users). (1) Descriptive information typically refers to the traffic state data

collected through traffic sensors including loop detectors, camera video processing,

the Global Positioning System (GPS), and so on. Especially, GPS is widely used in

automotive navigation. Almost all the smart phones are equipped with GPS-based

positioning functionalities. Meanwhile, the recent development of ITS emphasizes the

application of Dedicated Short Range Communications (DSRC) in vehicle-to-vehicle

and vehicle-to-infrastructure wireless communications, which may significantly rein-

force the traffic information propagation in the network. (2) Prescriptive information

is typically transitioned from descriptive information through a modeling and com-

puting process. Most current versions of GPS navigation devices provide prescriptive

guidance based on static data. More recently real-time information based guidance

has been provided by few private firms in the United States (e.g., Google Map, Inrix,

Telenav, and Dash). However, the real-time guidance is based on the reactive infor-

mation of current network state or limited predictive models that do not account for

user behavior. It is likely that the continued growth and acceptance of navigation

devices will hinge upon the capability of such devices to accurately predict future

system states and consistently provide reliable guidance to travelers.

As an increasing number of travelers start using navigation devices, the limitation

of static or limited-predictive models could undermine the true benefits realizable

through these devices. There is a pressing need for navigation devices to provide reli-

able (both efficient and fair) guidance to travelers. The personalized travel guidance

systems are envisaged as a tool that will assist travelers make efficient travel decisions

by providing network state information both pre-trip and en-route. This paradigm of

personalized guidance raises many fundamental research questions in terms of fairness
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and efficiency, well beyond the traditional traffic flow modeling and estimation. A key

fundamental research question in dynamic transportation networks is: can we char-

acterize and compute system states which are close to system optimal (i.e., efficient)

but does not make any individual user worse off (i.e., fair)? To answer this question,

we need to solve a combined system optimum and user equilibrium problem.

6.1.1 Related work

Note that the study of this chapter is in the context of dynamic traffic assignment

(DTA). DTA plays an important role in transportation network modeling since it

provides a clear representation of time varying conditions in traffic networks. Based

on the behavioral assumption of individual user’s travel decision making, DTA prob-

lems can be classified into two categories: the dynamic system optimal problem and

the dynamic user equilibrium problem. (1) For the dynamic system optimal (DSO)

problem, [166, 167] modeled the traffic flow propagation with a nonlinear exit-flow

function that is also non-convex. [168] reformulated the M-N model [166, 167] as a

convex non-linear program by relaxing the non-convex exit-flow function with a set

of inequity constraints. Then [169] proposed a marginal cost approach to solve the

non-linear optimization problem of DSO. But the analysis is based on a point queue

model. Later different approaches [170, 171, 172, 173] based on the physical queue

model have been developed to compute the path marginal cost. (2) For the dynamic

user equilibrium (DUE) problem, [174] formulated the problem as an equivalent con-

tinuous time optimal control problem. [175] firstly proposed a variational inequality

formulation considering both simultaneous route choice and departure time decisions.

[41, 42] incorporated the cell-based model into the user equilibrium dynamic traffic

assignment problem using the variational inequality approach. [176] efficiently solved

the dynamic user optimal problem embedding cell transmission model. [43, 44] formu-

lated the cell-based dynamic user equilibrium problem using complementarity theory.
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However, most of the above models are nonlinear and intractable. Solving a

nonlinear DSO or DUE problems usually requires a specialized algorithm. From a

different direction, to avoid the nonlinearity of the problem, a handful of researchers

investigated in developing DTA models based on linear programming. For the DSO

problem, [177] transformed the nonlinear cell-based SODTA formulation into a linear

programming problem, whereby the nonlinear constraints and the bi-level structure

are relaxed with a set of linear inequalities. One problem due to the linear relaxation is

known as the holding back problem [178]. [179] proposed a variant of the M-N model

[166, 167] using a piecewise linear exit-flow function, and verified that Ho’s algorithm

[180] can be applied to eliminate the unnecessary holding flows in the network. Most

recently, [181] resolved the holding-back problem by introducing penalty labels to the

objective function of the linearized formulation. For the DUE problem, [182] firstly

formulated the cell-based DUE problem in a linear programming formulation. In the

formulation, a Mt vector is associated with the arrival flows in the objective function

to provide incentives to the traffic flow to arrive the destination as soon as possible.

One limitation of the formulation lies in the difficulty of obtaining a proper Mt vector

for a large network.

There is limited literature addressing the combined problem of system optimum

and user equilibrium. Solving the combined problem is a challenging task even in the

case of static traffic assignment. [183, 184] formulated the problem as minimizing the

maximum latency of flows in networks with congestion. It is showed that in static

traffic assignment, even in a single OD network with a linear link cost function, the

combined system optimum and user equilibrium problem is NP hard. [185] firstly

proposed a constrained system-optimum model that guarantees user fairness, and

developed a constrained shortest path algorithm to solve the optimization problem.

However, the model and the algorithm are limited to the case of static traffic assign-

ment. A sound method of studying the combined problem of system optimum and

user equilibrium in the context of dynamic traffic assignment remains to be explored.
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6.1.2 Contributions of the chapter

This chapter sets out to model a transportation system that is both efficient (from

the system’s perspective) and fair (from an individual user’s perspective) within a dy-

namic traffic assignment environment. The modeling framework is capable of account-

ing for dynamic departure time and route choice at the network level. Contributions

of the chapter are summarized as below.

• We propose a bi-level optimization formulation based on the link transmission

model [37, 186]. At the upper level, the objective is to optimize the total system

travel time of the traffic flow at the network level (efficient). At the lower level,

the objective is to propagate traffic flows in the network and equilibrate the

travel cost of individual users (fair).

• The bi-level optimization formulation is relaxed to a linear programming formu-

lation where the nonlinear constraints are replaced by a set of linear inequality

constraints. The linear programming (LP) relaxation produces a lower bound

of an efficient and fair system state.

• Based on the lower bound of the LP relaxation, an efficient iterative algorithm

is proposed to obtain the exact solution of an efficient and fair system state.

Every iteration, the algorithm produces a new and tighter lower bound on the

efficient and fair system state. It is proved that the number of iterations of the

algorithm is bounded and the travel time cost of different departure rates under

the same OD pair are the same.

• Two numerical case studies including a single OD network [177] and a multi-OD

[187] network are conducted to demonstrate the performance of the algorithm.

The results consistently confirm that the traffic flow solution is efficient and

fair. Moreover, it takes no more than two iterations for all the test scenarios.

The rest of the chapter is structured as below. Section 6.2 is devoted to the for-

mulation of an efficient and fair transportation network. The bi-level optimization
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formulation is firstly introduced, and then is relaxed to a linear programming formula-

tion. Section 6.3 introduces an efficient algorithm to obtain the solution of an efficient

and fair system state. Section 6.4 conducts numerical studies on two test networks

to demonstrate the performance of the algorithm including a single OD network and

a multi-OD network. Finally, Section 6.5 concludes the chapter and discusses future

research directions of this study.
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Notations:

Sets

Z : Set of all links

ZG,S,O,D,M : Set of origin, destination, ordinary, diverging, or merging links

E : Set of all connectors

EO,D,M : Set of ordinary, diverging, or merging link connectors, respectively

Γ−1(i) : Set of predecessors of link i

Γ(i) : Set of successors of link i

U : Set of all OD pairs

Po,d : Set of all paths of OD (o,d)

Parameters

δ : Size of the time step

T : Entire time horizon

Td : Time horizon of departure time choice, Td ≤ T

Ni : Jam density of link i

Q : Maximum out flow of an OD pair at any departure time

Sti : Inflow or outflow capacity of link i at time t

Wi : Shock wave speed of link i

Vi : Free flow speed of link i

Do,d : Total demand of OD pair (o,d) during the departure period

Li : Length of link i

ε : Tolerance of fairness

Variables

xo,d,pi (t̄, t) : Occupancy (number of vehicles) of link i at time t on path p de-

parted at time t̄ of OD (o,d)

yo,d,pi,j (t̄, t) : Flow from link i to j at time t on path p departed at t̄ of (o,d)

xi(t) : Aggregate occupancy of link i at time t

yi,j(t) : Aggregate flow from link i to j at time t

ro,d(p, t̄) : Departure rate at departure time t̄ of path p of OD (o,d), t̄ ∈ [1, Td].

Note that ro,d,p(t̄) =
∑
∀t y

o,d,p
o,j (t̄, t), o ∈ ZG, j ∈ Γ(o)

co,d(p, t̄) : Travel cost of departure rate ro,d,p(t̄) at departure time t̄ of path p

of OD (o,d), t̄ ∈ [1, Td]

lo,d(p, t̄) : Average travel time of departure rate at departure time t̄ of path p

of OD (o,d), t̄ ∈ [1, Td]

lo,davg(k) : Average travel time of all departure rates of OD (o,d) at k iteration
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6.2 Formulation of an efficient and fair transportation network

6.2.1 Assumptions

Assumption 6.2.1 The departure rate of all paths at any departure time under the

same OD pair is non-negative and no greater than Q, i.e.,

0 ≤
∑
∀p∈Po,d

ro,d(p, t̄) ≤ Q, ∀(o, d) ∈ U, t̄ ∈ [0, Td] (6.1)

and the total demand Do,d is a positive integer multiple of Q, i.e.,
Do,d

Q
∈ Z+.

Assumption 6.2.2 The outflow capacity of any link at any time is a nonnegative

integer multiple of Q, i.e., ∀i ∈ Z, ∀t ∈ [0, T ],
Sti
Q
∈ {0,Z+}.

Remark 6.2.3 The outflow capacity of a link is allowed to be zero in order to capture

the traffic realism of capacity drops in the real world. For example, if the end of the

link is a signalized intersection, the capacity becomes zero when the traffic light is

red. For another example, the outflow capacity of a link may become zero for a while

when an accident occurs.

6.2.2 Bi-level optimization formulation

In this study, we apply the link based traffic flow model [37, 186] to propagate

traffic flows in the network. However, it is worth to note that the methodology of this

chapter is also readily applicable to other types of traffic flow model, as long as the

traffic flow model can be formulated in a linear form (e.g., [27, 177, 181]). The link

based traffic flow model is a discrete time model where the time space is discretized

into time steps. Traffic flow propagation in the network is link based. The number of

vehicles within the link is defined as the occupancy of the link, denoted as xi(t), i ∈ Z.

The number of vehicle moving from one link to another is defined as the traffic flow

of the link connector, denoted as yi,j(t), (i, j) ∈ E. The traffic flow propagation is re-

alized by updating temporal values of xi(t), i ∈ Z and yi,j(t), (i, j) ∈ E in the network.
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The bi-level optimization formulation of an efficient and fair network (BOEFN):

min z1 =
T∑
t=1

∑
i∈Z\{ZG,ZS}

xi(t) (6.2)

Subject to:

Demand satisfaction constraint:

Td∑
t̄=1

∑
p∈Po,d

ro,d(p, t̄) = Do,d (6.3)

Aggregation of link occupancy and outflow constraints:

xi(t) =
∑

(o,d)∈U

∑
p∈Po,d

Td∑
t̄=1

xo,d,pi (t̄, t),∀i ∈ Z (6.4)

yi,j(t) =
∑

(o,d)∈U

∑
p∈Po,d

Td∑
t̄=1

yo,d,pi,j (t̄, t),∀(i, j) ∈ E (6.5)

Link occupancy constraints:

Source links, ∀i ∈ ZG, p ∈ Po,d, t̄ ∈ [0, Td]:

xo,d,pi (t̄, t) = xo,d,pi (t̄, t− 1)−
∑
j∈Γ(i)

yo,d,pi,j (t̄, t− 1) (6.6)

Sink links, ∀i ∈ ZS, p ∈ Po,d, t̄ ∈ [0, Td]:

xo,d,pi (t̄, t) = xo,d,pi (t̄, t− 1) +
∑

k∈Γ−1(i)

yo,d,pk,i (t̄, t− 1) (6.7)

Ordinary links, ∀i ∈ ZO, p ∈ Po,d, t̄ ∈ [0, Td]:

xo,d,pi (t̄, t) = xo,d,pi (t̄, t− 1) + yo,d,pk,i (t̄, t− 1)− yo,d,pi,j (t̄, t− 1), k ∈ Γ−1(i), j ∈ Γ(i) (6.8)

Merging links, ∀i ∈ ZM , p ∈ Po,d, t̄ ∈ [0, Td]:

xo,d,pi (t̄, t) = xo,d,pi (t̄, t− 1) +
∑

k∈Γ−1(i)

yo,d,pk,i (t̄, t− 1)− yo,d,pi,j (t̄, t− 1), j ∈ Γ(i) (6.9)

Diverging links, ∀i ∈ ZD, p ∈ Po,d, t̄ ∈ [0, Td]:

xo,d,pi (t̄, t) = xo,d,pi (t̄, t− 1) + yo,d,pk,i (t̄, t− 1)−
∑
j∈Γ(i)

yo,d,pi,j (t̄, t− 1), k ∈ Γ−1(i) (6.10)
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Link connector constraints:

Ordinary link connectors, ∀(i, j) ∈ EO, p ∈ Po,d, t̄ ∈ [0, Td]

max yo,d,pi,j (t̄, t) (6.11)

yo,d,pi,j (t̄, t) ≤ xo,d,pi (t̄, t+ 1− Li

Vi
)−

∑t−1

k=t+1−Li
Vi

yo,d,pi,j (t̄, k)

yi,j(t) ≤ Sti

yi,j(t) ≤ Stj

yi,j(t) ≤ Nj − xj(t)−
∑t−1

k=t+1− Li
Wi

yj,l(k)

(6.12)

Diverging link connectors, ∀i ∈ ZD, p ∈ Po,d

max yo,d,pi,j (t̄, t) (6.13)

∑
j∈Γ(i) y

o,d,p
i,j (t̄, t) ≤ xo,d,pi (t̄, t+ 1− Li

Vi
)−

∑t−1

k=t+1−Li
Vi

yo,d,pi,j (t̄, k)∑
j∈Γ(i) yi,j(t) ≤ Sti

yi,j(t) ≤ Stj, j ∈ Γ(i)

yi,j(t) ≤ Nj − xj(t)−
∑t−1

k=t+1− Li
Wi

yj,l(k), j ∈ Γ(i)

(6.14)

Merging link connectors, ∀j ∈ ZM , p ∈ Po,d

max yo,d,pi,j (t̄, t) (6.15)

yo,d,pi,j (t̄, t) ≤ xo,d,pi (t̄, t+ 1− Li

Vi
)−

∑t−1

k=t+1−Li
Vi

yo,d,pi,j (t̄, k), i ∈ Γ−1(j)∑
i∈Γ−1(j) yi,j(t) ≤ Stj

yi,j(t) ≤ Sti , i ∈ Γ−1(j)∑
i∈Γ−1(j) yi,j(t) ≤ Nj − xj(t)−

∑t−1

k=t+1− Li
Wi

yj,l(k), l ∈ Γ(j)

(6.16)

User equilibrium constraints :

To compute the path travel time, if ro,d(p, t̄) > 0, p ∈ Po,d, o ∈ ZG, d ∈ ZS, t̄ ∈

[1, Td], then:

lo,d(p, t̄) =

∑T
t=1

∑
i∈Γ−1(d) t · y

o,d,p
i,d (t̄, t)−

∑Td
t=1

∑
j∈Γ(o) t · y

o,d,p
o,j (t̄, t)

ro,d(p, t̄)
(6.17)
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User equilibrium condition, ∀p ∈ Po,d, t̄ ∈ [1, Td]:

0 ≤ ro,d(p, t̄)⊥lo,d(p, t̄)− l∗ ≥ 0 (6.18)

Nonnegative constraints: yo,d,pi,j (t̄, t) ≥ 0, i ∈ Z, j ∈ Γ(i), (o, d) ∈ U, p ∈ Po,d, t̄ ∈

[0, Td], t ∈ [0, T ].

2

Remark 6.2.4 The traffic flow updating procedure of link connectors, i.e., (6.12) -

(6.16) is consistent with the flow update procedure of the LTM model [186].

Proof. A similar proof can be found at [37]. 2

Remark 6.2.5 Constraint (6.18) is a complementarity constraint. It is mathemat-

ically equal to: ro,d(p, t̄) ≥ 0, lo,d(p, t̄) − l∗ ≥ 0, and ro,d(p, t̄)(lo,d(p, t̄) − l∗) = 0. It

essentially indicates that if ro,d(p, t̄) > 0, lo,d(p, t̄) = l∗; if lo,d(p, t̄) > l∗, r
o,d(p, t̄) = 0.

Remark 6.2.6 Equation (6.17) computes the average travel time of the departure

rate of path p departed at time t̄. It is computed by dividing the difference between

the accumulative arrival travel time and the accumulative departure travel time over

the departure rate. In (6.17),
∑Td

t=1

∑
j∈Γ(o) t · y

o,d,p
o,j (t̄, t) represents the accumulative

time of the traffic departs at origin o, and
∑T

t=1

∑
i∈Γ−1(s) t · y

o,d,p
i,s (t̄, t) represents the

accumulative time this traffic arrives at destination d. Similar approach to compute

path travel time can also been seen in [42, 44]. Figure 6.1 presents an example to

demonstrate the idea. In this example, supposing 2 units of traffic flow depart at

time 1 from O to D. One unit arrives at time 7, and the other unit arrives at time 9.

Thus the average travel time is (7 + 9− 2)/2 = 7.

6.2.3 Linear programming relaxation

Similar to the relaxation scheme in [37, 177], we relax the nonlinear constraints of

the bi-level optimization program with a set of linear inequities. The linear relaxation
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Fig. 6.1. A demonstrative example of average path travel time calculation

formulation is presented as below. It is worth to note that the linear relaxation does

not produce the solution of an efficient and fair network, but provides a lower bound

of the solution. We will present the algorithm of computing the efficient and fair

system state later in Section 6.3.1.

The linear programming relaxation of an efficient and fair network :

min z2 =
∑
∀(o,d)

∑
∀p

∑
∀t̄

co,d(p, t̄) (6.19)

Subject to:

Demand satisfaction constraint: (6.3)

Aggregation of link occupancy and outflow: (6.4), (6.5)

Link occupancy constraints: (6.6), (6.7), (6.8), (6.9), (6.10)

Link connector constraints: (6.12), (6.14), (6.16)

Constraints from Assumption 1: (6.1)

User equilibrium constraints, ∀p ∈ Po,d, t ∈ [1, Td]:
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co,d(p, t̄) =
T∑
t=1

∑
i∈Γ−1(d)

t · yo,d,pi,d (t̄, t)−
Td∑
t=1

∑
j∈Γ(o)

t · yo,d,po,j (t̄, t) (6.20)

∑
∀p∈Po,d

co,d(p, t̄)

Q
Do,d ≤

∑
∀p∈Po,d

Td∑
t=1

co,d(p, t̄) (6.21)

Nonnegative constraints: yo,d,pi,j (t̄, t) ≥ 0, i ∈ Z, j ∈ Γ(i), (o, d) ∈ U, p ∈ Po,d, t̄ ∈

[0, Td], t ∈ [0, T ].

2

Lemma 6.2.7 The accumulative departure rate of all paths p ∈ Po,d at any depar-

ture time t̄ is either 0 or Q, i.e.,
∑

∀p∈Po,d

ro,d(p, t̄) ∈ {0, Q}, t̄ ∈ [0, Td].

Proof. From Assumption 1, 0 ≤
∑
∀p∈Po,d ro,d(p, t̄) ≤ Q. From Assumption 2, the

bottleneck of the network is either zero or greater than Q, and the objective is to

minimize the total system travel time. Thus,
∑

∀p∈Po,d

ro,d(p, t̄) ∈ {0, Q}. 2

Lemma 6.2.8 Let co,d∗ (p, t̄) denote the solution of the LP relaxation. If
∑

∀p∈Po,d

co,d∗ (p, t̄) >

0, then
∑

∀p∈Po,d

co,d∗ (p, t̄) = c∗,∀t̄ ∈ [0, Td].

Proof. Let c̄o,d∗ (p, t̄) denote the co,d∗ (p, t̄) that is positive. Then, from (6.21), we have:∑
∀p∈Po,d

c̄o,d∗ (p, t̄)

Q
≤
∑
∀p

∑
∀t̄

c̄o,d∗ (p, t̄)

Do,d
(6.22)

Moreover, define γo,d(t̄) ≥ 0, such that (6.22) can be rewritten as:∑
∀p∈Po,d

c̄o,d∗ (p, t̄)

Q
=
∑
∀p

∑
∀t̄

c̄o,d∗ (p, t̄)

Do,d
− γo,d(t̄) (6.23)

where 0 ≤ γo,d(t̄) ≤
∑

∀p∈Po,d

co,d∗ (p,t̄)
Q

, t̄ ∈ [0, Td].
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Sum up both sides of (6.23) over t̄, we have:

∑
∀p
∑
∀t̄
c̄o,d∗ (p, t̄)

Q
=
Do,d

Q

∑
∀p

∑
∀t̄

c̄o,d∗ (p, t̄)

Do,d
−
∑
∀t̄

γo,d(t̄) (6.24)

⇒
∑
∀p
∑
∀t̄
c̄o,d∗ (p, t̄)

Q
=
∑
∀p

∑
∀t̄

c̄o,d∗ (p, t̄)

Q
−
∑
∀t̄

γo,d(t̄) (6.25)

⇒
∑
∀t̄ γ

o,d(t̄) = 0 (6.26)

Since γo,d(t̄) ≥ 0, we get γo,d(t̄) = 0. Thus:

∑
∀p∈Po,d

c̄o,d∗ (p, t̄) =
Q

Do,d

∑
∀p

∑
∀t̄

c̄o,d(p, t̄) (6.27)

2

Remark 6.2.9 The proof of Lemma 2 is triggered by a simple example as below.

Suppose there are three positive variables a, b, and c, with the constraint: 0 < a, b, c ≤

d, where d = a+b+c
3

. The interest here is to prove that a = b = c = d. Firstly, let

a = d−γ1, b = d−γ2, and c = d−γ3, where γ1,2,3 ≥ 0. Then a+b+c = 3d−
∑

i=1,2,3 γi,

which can be simplified to:
∑

i=1,2,3 γi = 0. Thus γ1,2,3 = 0, and we have a = b = c =

d. The proof of Lemma 2 is simply a generalized version of the proof of this example.

6.3 On computing an efficient and fair system state

6.3.1 An algorithm to obtain an efficient and fair system state

Firstly, we present an important extra constraint as below:

co,d(p, t̄) ≥ ro,d(p, t̄)LBo,d(k) (6.28)

where LBo,d(k) is an exogenous constant, denoting the lower bound of the travel time

at equilibrium for OD (o,d) at the k iteration.

Then we add this constraint to the LP relaxation. For the sake of brevity, we

denote the domain of the LP relaxation plus constraint (6.28) as: AY ≤ b,Y ≥ 0,

where Y represents the set of variables of the LP relaxation, and AY ≤ b,Y ≥ 0
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represents all the linear constraints of the LP relaxation plus constraint (6.28). Thus,

the updated LP formulation (denoted as LP2) can be written as:

min z2 =
∑
∀(o,d)

∑
∀p
∑
∀t̄ c

o,d(p, t̄) (6.29)

S.t. : AY ≤ b,Y ≥ 0 (6.30)

Next, it is vital to obtain an estimate of LBo,d(k). At the initial stage, let k =

0, LBo,d(k) = 0. Then the LP2 formulation reduces to the LP relaxation. After

solving the LP relaxation, we compute the average travel time of OD pair (o,d)

as lo,davg(k) =
∑
∀p

∑
∀t̄ c

o,d(p,t̄)

Do,d . Then update LBo,d(k + 1) = dlo,davg(k)e, where dlo,davg(k)e

denotes the nearest integer greater than or equal to lo,davg(k). Summary of the algorithm

is presented in Algorithm 1.

1 Initialize: k = 0, LBo,d(k) = 0, check = 1 while check > 0 do

2 k = k + 1; Solve LP2 to obtain lo,davg(k) =
∑
∀p

∑
∀t̄ c

o,d(p,t̄)

Do,d ;;

3 IfLBo,d(k) < dlo,davg(k)e Update: LBo,d(k + 1) = dlo,davg(k)e;;

4 check = 0;;

5 end

Algorithm 4: Towards an efficient and fair system state

Proposition 6.3.1 At each iteration k, LBo,d(k) is an lower bound of the travel time

for OD (o,d) under the condition of an efficient and fair system state.

Proof. We prove this proposition by the principle of mathematical induction.

In the initial stage, k = 1, and the LP2 formulation reduces to the LP relaxation.

It is obvious that the LP relaxation is a lower bound of the efficient and fair system

state.

Assuming that LBo,d(k), k ≥ 1 is an lower bound of an efficient and fair system

state. In the (k + 1) iteration, the LP relaxation is solved with the lower bound of

LBo,d(k) and outputs a new lower bound lo,davg(k + 1). LBo,d(k + 1) takes the value
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of the nearest inter great than or equals to lo,davg(k + 1), because the time space is

discretized to time steps and the travel time is an integer multiple of the time steps.

Thus, LBo,d(k + 1) is also a lower bound. 2

Proposition 6.3.2 The number of iterations of Algorithm 1 is upper bounded by

max{lo,d∗ (p, t̄) : ∀(o, d) ∈ U, p ∈ Po,d, t̄ ∈ [0, Td]}, where lo,d∗ (p, t̄) denotes the solution

of an efficient and fair system state.

Proof. Firstly, it is easy to see that ∃(o, d) ∈ U, such that LBo,d(k+1) ≥ LBo,d(k)+1.

Otherwise, LBo,d(k) = dlo,davg(k)e, the iteration stops.

Thus, in the worst scenario, when LBo,d(k) reaches max{lo,d∗ (p, t̄) : ∀(o, d) ∈ U, p ∈

Po,d, t̄ ∈ [0, Td]}, the algorithm ends. 2

Remark 6.3.1 Note that after the first iteration, LBo,d(1) = dlo,davg(1)e. Thus the

remaining number of iterations equals to max{lo,d∗ (p, t̄),∀(o, d) ∈ U, p ∈ Po,d, t̄ ∈

[0, Td]}−dlo,davg(1)e. It is worthwhile to note that dlo,davg(1)e provides a tight lower bound

on the solution, because of which this algorithm converges very fast in practice. Of

all the tests in the numerical case studies of Section 6.4, the number of iterations is

less than or equal to two.

Lemma 6.3.2 Algorithm 1 stops at lo,davg(k) = dlo,davg(k)e.

Proof. As shown in line 5, Algorithm 1 ends when LBo,d(k) = dlo,davg(k)e. Firstly, from

(6.28), we have:

co,d(p, t̄) ≥ ro,d(p, t̄)d
∑
∀p
∑
∀t̄ c

o,d(p, t̄)

Do,d
e (6.31)

⇒
∑
∀p∈Po,d

co,d(p, t̄) ≥
∑
∀p∈Po,d

ro,d(p, t̄)d
∑
∀p
∑
∀t̄ c

o,d(p, t̄)

Do,d
e (6.32)

⇒
∑
∀p∈Po,d

co,d(p, t̄) ≥ Qd
∑
∀p
∑
∀t̄ c

o,d(p, t̄)

Do,d
e (From Lemma 1) (6.33)
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From (6.27) of Lemma 2, we have:

Q

Do,d

∑
∀p
∑
∀t̄ c

o,d(p, t̄) ≥ Qd
∑
∀p
∑
∀t̄ c

o,d(p, t̄)

Do,d
e (6.34)

⇒ Q

Do,d

∑
∀p
∑
∀t̄ c

o,d(p, t̄) = Qd
∑
∀p
∑
∀t̄ c

o,d(p, t̄)

Do,d
e (6.35)

⇒ lo,davg(k) = dlo,davg(k)e (6.36)

2

Theorem 6.3.3 Any sequence of the departure rate pattern generated by Algorithm

1 converges to the solution of an efficient and fair system state.

Proof.

(1) Fair.

From Lemma 6.3.2, when Algorithm 1 ends, LBo,d(k) = lo,davg(k). From (6.28), we

have:

co,d(p, t̄)

ro,d(p, t̄)
≥ lo,davg(k) (6.37)

Now, introduce a new set of variable, µo,d(p, t̄) ≥ 0, such that:

co,d(p, t̄)

ro,d(p, t̄)
≥ lo,davg(k) + µo,d(p, t̄) (6.38)

⇒ co,d(p, t̄) ≥ ro,d(p, t̄)lo,davg(k) + ro,d(p, t̄)µo,d(p, t̄) (6.39)

⇒
∑
∀p∈Po,d co,d(p, t̄) ≥

∑
∀p∈Po,d

ro,d(· )lo,davg(k) +
∑
∀p∈Po,d

ro,d(· )µo,d(· ) (6.40)

⇒
∑
∀p∈Po,d co,d(p, t̄) ≥ Qlo,davg(k) +Qµo,d(p, t̄) (6.41)

⇒ Q

Do,d

∑
∀p
∑
∀t̄ c

o,d(p, t̄) ≥ Q

Do,d

∑
∀p

∑
∀t̄

co,d(p, t̄) +Qµo,d(p, t̄) (6.42)

⇒ µo,d(p, t̄) = 0 (6.43)

Further, from (6.38), we have:

co,d(p, t̄)

ro,d(p, t̄)
= lo,davg(k) (6.44)

Note that lo,d(p, t̄) =
co,d(p, t̄)

ro,d(p, t̄)
. Thus, lo,d(p, t̄) = lo,davg(k), ∀p ∈ Po,d, t̄ ∈ [0, Td].
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(2) Efficient.

From Proposition 1, at every iteration, Algorithm 1 produces the lower bound of

an efficient and fair system state. Thus the output of Algorithm 1 is the most efficient

system state under the condition that the solution is fair. 2

6.3.2 ε-tolerant fairness

The solution of Algorithm 1 requires that all the departure rates of the same

OD experience the equal and minimum travel time. Here we propose the notion of

tolerance-based fairness adapted from the behavioral notion of bounded-rationality

[188]. The tolerance-based fairness only requires the travel time of all departure rates

of the same OD to be within an acceptable tolerance level (i.e., ε) from the minimum

travel time [189]. The tolerance ε is an exogenous parameter capturing the network

user’s behavior of tolerating unfairness. To model the ε-tolerant fairness, we firstly

obtain the solution of an efficient and fair system state, then solve the LP2 formulation

with the modified constraint (6.21) and (6.28) as below:∑
∀p∈Po,d

co,d(p, t̄) ≤ Q

Do,d

∑
∀p∈Po,d

Td∑
t=1

co,d(p, t̄) + εQ (6.45)

co,d(p, t̄) ≤ ro,d(p, t̄)
(
LBo,d
∗ + ε

)
(6.46)

where LBo,d
∗ denotes the solution of Algorithm 1.

6.4 Numerical studies

In this section, we construct two types of test networks: a single OD network [177]

and a multi-OD network [187] to demonstrate the performance of the proposed frame-

work in modeling an efficient and fair transportation system for a general network.

For the purpose of comparison, we compare the results under the condition of efficient

and fair system state with the results under the condition of system optimal (SO).

To obtain the solution under the SO condition, we directly solve the LP relaxation

formulation without the user equilibrium constraint (6.21).
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6.4.1 Test network 1: [177]’s network

The network representation of [177]’s network is shown in Figure 6.2. The settings

of this test case are as follows. The size of time interval is 2 s, and the saturation rate

is 1800 veh/h. Thus the outflow capacity is 1 vehicle per time step. The jam density

for link 1 and 10 is of a large value 100, while for other links, the holding capacity is

10 units. The outflow capacity of link 4 and 5 is time-variant to capture the effect of

signal (or accident): 0 for time step (5-10), 1 for all other time step. The ratio of free

flow speed and shock wave speed is fixed at 1. The value of β is 0.001. The initial

state for the network is empty. The total demand is 25 for a departure time period

of 30 time steps. Details of the parameter setting are provided in Table 6.1.

2

3 4

6 9

5 7

8

1 10

Route 1

Route 2

Route 3

Fig. 6.2. Test network 1 [177]

Table 6.2 presents the value of variables ro,d(p, t̄) (i.e., departure rate) and lo,d(p, t̄)

(i.e., the average travel time cost corresponding to departure rate ro,d,p(t̄)) under the

condition of efficient and fair system state. All the values of ro,d,p(t̄) are equal to

either 0 or 1, indicating that the departure rate is either 0 or 1. Further, all the

values of lo,d,p(t̄) are either 0 or 11, indicating that the travel time cost is the same

for different departure rates (i.e., the solution is at equilibrium).

Similarly, Table 6.3 presents the value of variables ro,d(p, t̄) and lo,d(p, t̄) under the

system optimal (SO) condition. It is obvious that the values of lo,d,p(t̄) of different

departure time are not the same, indicating that the travel time of different departure
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rates is not at equilibrium. Further, the total system travel time (TSTT) is 248, less

than that (275) of an efficient and fair system state.

It is worthwhile to point out that Algorithm 1 converges fast. It takes only one

iteration for all the tests in this test network, and no more than two iterations for all

the tests in test network 2 of the next section. The fast convergence of Algorithm 1

mainly thanks to the tight lower bound from the LP relaxation formulation.

Table 6.1.
Parameter settings of test network 1

Links 1 2 3 4 5 6 7 8 9 10

Li 2 2 2 4 2 2 2 2 2 2

Ni 100 10 10 10 10 10 10 10 10 100

Qi 1 1 1 - - 1 1 1 1 1
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Table 6.2.
Departure rate (i.e., ro,d(p, t̄)) and average travel time (i.e., lo,d(p, t̄))
of test network 1 under efficient and fair system state (TSTT: 275)

ro,d(p, t̄) lo,d(p, t̄)

Departure time Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

1 1 0 0 11 0 0

2 1 0 0 11 0 0

3 1 0 0 11 0 0

4 1 0 0 11 0 0

5 0 1 0 0 11 0

6 0 1 0 0 11 0

7 0 1 0 0 11 0

8 0 1 0 0 11 0

9 0 1 0 0 11 0

10 0 1 0 0 11 0

11 0 1 0 0 11 0

12 0 1 0 0 11 0

13 0 1 0 0 11 0

14 0 1 0 0 11 0

15 0 1 0 0 11 0

16 0 1 0 0 11 0

17 1 0 0 11 0 0

18 1 0 0 11 0 0

19 1 0 0 11 0 0

20 1 0 0 11 0 0

21 1 0 0 11 0 0

22 1 0 0 11 0 0

23 1 0 0 11 0 0

24 1 0 0 11 0 0

25 1 0 0 11 0 0
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Table 6.3.
Departure rate (i.e., ro,d(p, t̄)) and average travel time (i.e., lo,d(p, t̄))
of test network 1 under SO condition (TSTT: 248)

ro,d(p, t̄) lo,d(p, t̄)

Departure time Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

1 1 0 0 7 0 0

2 1 0 0 7 0 0

3 1 0 0 7 0 0

4 1 0 0 7 0 0

5 0 0 1 0 0 10

6 0 0 1 0 0 10

7 0 0 1 0 0 10

8 0 0 1 0 0 10

9 0 0 1 0 0 10

10 0 0 1 0 0 10

11 0 0 1 0 0 10

12 0 0 1 0 0 10

13 0 0 1 0 0 10

14 0 0 1 0 0 10

15 0 0 1 0 0 10

16 0 1 0 0 11 0

17 1 0 0 13 0 0

18 1 0 0 15 0 0

19 1 0 0 10 0 0

20 1 0 0 14 0 0

21 1 0 0 7 0 0

22 1 0 0 10 0 0

23 1 0 0 12 0 0

24 1 0 0 7 0 0

25 1 0 0 11 0 0
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6.4.2 Test network 2: [187]’s network

The second test network is from [187] with 13 nodes, 19 links and 4 OD pairs,

as shown in Figure 6.3. The settings for the network are as following. The size of

the time step is taken at 6 s. The saturation flow is still 1800 vph. The maximum

accumulative departure rate Q is set at 3 vehicles/time step. Other parameters are

the same as defined in test network 1, unless specified otherwise. The route choices

for the network are listed in Table 6.4.
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Fig. 6.3. Test network 2 [187]

The purpose of constructing test network 2 is to demonstrate the proposed frame-

work’s capability of handling a generalized multi-OD network. In the experiment

design, we consider two demand scenarios as presented in Table 6.5. Moreover, we

consider that the outflow capacity of link 1, 7, and 10 drops to zero (due to traffic

signal or accident) during time step (1∼5), and the outflow capacity of link 4, 6, and

14 drops to zero during time step (10∼15).
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Table 6.4.
Route choices of different ODs of test network 2

OD Route NO. Sequence of links OD Route NO. Sequence of links

(1,2) 1 1-4-13 (4,2) 1 5-6-7-8-13

2 1-3-7-8-13 2 5-6-7-12-16

3 1-3-11-15-16 3 5-6-11-15-16

4 2-10-14-15-16 4 9-14-15-16

(1,3) 1 1-3-11-15-18 (4,3) 1 5-6-11-15-18

2 2-6-11-15-18 2 5-10-14-15-18

3 2-10-14-15-18 3 9-17-19

Table 6.6 and Table 6.7 present the value of departure rate ro,d(p, t̄) and average

travel time lo,d(p, t̄) for demand scenario 2 (results of demand scenario 1 are omitted

for the sake of space) under the efficient and fair system state. Note that in this test

network, Q = 3. From Table 6.6, the summation of values of ro,d(p, t̄) over all paths

are equal to either 0 or 3, indicating that the accumulative departure rate is either

zero or 3. Further, from Table 6.7, all the values of lo,d(p, t̄) are either zero or the

same for the same OD, indicating that the travel time cost is the same for different

departure rates under the same OD (i.e., the solution is at equilibrium).

Table 6.5.
Demand scenarios of test network 2

OD Demand 1 Demand 2

(1,2) 30 45

(1,3) 9 15

(4,2) 30 45

(4,3) 9 15
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Table 6.6.
Departure rate (i.e., ro,d(p, t̄)) for demand scenario 2 of test network
2 under efficient and fair system state

Departure time
OD(1,2) OD(1,3) OD(4,2) OD(4,3)

R1 R2 R3 R4 R1 R2 R3 R1 R2 R3 R4 R1 R2 R3

1 2.17 0.83 0 0 1.12 1.88 0 3 0 0 0 0.78 0 2.22

2 3 0 0 0 3 0 0 3 0 0 0 0 0 3

3 3 0 0 0 3 0 0 3 0 0 0 0 0 3

4 0 3 0 0 3 0 0 1.69 1.31 0 0 0.51 0 2.49

5 1.17 1.83 0 0 3 0 0 3 0 0 0 0 0 3

6 3 0 0 0 0 0 0 3 0 0 0 0 0 0

7 3 0 0 0 0 0 0 3 0 0 0 0 0 0

8 3 0 0 0 0 0 0 3 0 0 0 0 0 0

9 3 0 0 0 0 0 0 3 0 0 0 0 0 0

10 3 0 0 0 0 0 0 3 0 0 0 0 0 0

11 3 0 0 0 0 0 0 3 0 0 0 0 0 0

12 3 0 0 0 0 0 0 3 0 0 0 0 0 0

13 3 0 0 0 0 0 0 3 0 0 0 0 0 0

14 3 0 0 0 0 0 0 3 0 0 0 0 0 0

15 3 0 0 0 0 0 0 3 0 0 0 0 0 0

Table 6.8 and Table 6.9 present the value of departure rate ro,d(p, t̄) and average

travel time lo,d(p, t̄) for demand scenario 2 under the system optimal condition. From

Table 6.8, the departure rates (i.e., ro,d(p, t̄)) are equal to either 0 or 3, indicating

that the departure rate is either 0 or 3. Table 6.9 shows that the average travel time

(i.e., lo,d(p, t̄)) are different for different departure rates (i.e., the solution is not at

equilibrium). Further, the total system travel time (TSTT) is 2130, less than that

(2250) of an efficient and fair system state.



165

Table 6.7.
Average travel time (i.e., lo,d(p, t̄)) for demand scenario 2 of test net-
work 2 under efficient and fair system state (TSTT: 2250)

Departure time
OD(1,2) OD(1,3) OD(4,2) OD(4,3)

R1 R2 R3 R4 R1 R2 R3 R1 R2 R3 R4 R1 R2 R3

1 18 18 0 0 17 17 0 22 0 0 0 13 0 13

2 18 0 0 0 17 0 0 22 0 0 0 0 0 13

3 18 0 0 0 17 0 0 22 0 0 0 0 0 13

4 0 18 0 0 17 0 0 22 22 0 0 13 0 13

5 18 18 0 0 17 0 0 22 0 0 0 0 0 13

6 18 0 0 0 0 0 0 22 0 0 0 0 0 0

7 18 0 0 0 0 0 0 22 0 0 0 0 0 0

8 18 0 0 0 0 0 0 22 0 0 0 0 0 0

9 18 0 0 0 0 0 0 22 0 0 0 0 0 0

10 18 0 0 0 0 0 0 22 0 0 0 0 0 0

11 18 0 0 0 0 0 0 22 0 0 0 0 0 0

12 18 0 0 0 0 0 0 22 0 0 0 0 0 0

13 18 0 0 0 0 0 0 22 0 0 0 0 0 0

14 18 0 0 0 0 0 0 22 0 0 0 0 0 0

15 18 0 0 0 0 0 0 22 0 0 0 0 0 0
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Table 6.8.
Departure rate (i.e., ro,d(p, t̄)) for demand scenario 2 of test network
2 under SO condition

Departure time
OD(1,2) OD(1,3) OD(4,2) OD(4,3)

R1 R2 R3 R4 R1 R2 R3 R1 R2 R3 R4 R1 R2 R3

1 3 0 0 0 0 3 0 0 0 3 0 0 3 0

2 3 0 0 0 3 0 0 3 0 0 0 0 0 3

3 3 0 0 0 3 0 0 0 0 3 0 0 0 3

4 0 3 0 0 3 0 0 0 3 0 0 0 0 3

5 0 3 0 0 3 0 0 3 0 0 0 0 0 3

6 3 0 0 0 0 0 0 3 0 0 0 0 0 0

7 3 0 0 0 0 0 0 3 0 0 0 0 0 0

8 3 0 0 0 0 0 0 3 0 0 0 0 0 0

9 3 0 0 0 0 0 0 3 0 0 0 0 0 0

10 3 0 0 0 0 0 0 3 0 0 0 0 0 0

11 3 0 0 0 0 0 0 3 0 0 0 0 0 0

12 3 0 0 0 0 0 0 3 0 0 0 0 0 0

13 3 0 0 0 0 0 0 3 0 0 0 0 0 0

14 3 0 0 0 0 0 0 3 0 0 0 0 0 0

15 3 0 0 0 0 0 0 3 0 0 0 0 0 0
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Table 6.9.
Average travel time (i.e., lo,d(p, t̄)) for demand scenario 2 of test net-
work 2 under SO condition (TSTT: 2130)

Departure time
OD(1,2) OD(1,3) OD(4,2) OD(4,3)

R1 R2 R3 R4 R1 R2 R3 R1 R2 R3 R4 R1 R2 R3

1 22 0 0 0 0 13 0 0 0 12 0 0 22 0

2 10 0 0 0 18 0 0 14 0 0 0 0 0 14

3 11 0 0 0 19 0 0 0 0 12 0 0 0 14

4 0 14 0 0 17 0 0 0 13 0 0 0 0 14

5 0 14 0 0 14 0 0 32 0 0 0 0 0 10

6 21 0 0 0 0 0 0 0 0 18 0 0 0 0

7 24 0 0 0 0 0 0 26 0 0 0 0 0 0

8 12 0 0 0 0 0 0 31 0 0 0 0 0 0

9 21 0 0 0 0 0 0 27 0 0 0 0 0 0

10 15 0 0 0 0 0 0 24 0 0 0 0 0 0

11 10 0 0 0 0 0 0 21 0 0 0 0 0 0

12 10 0 0 0 0 0 0 29 0 0 0 0 0 0

13 15 0 0 0 0 0 0 27 0 0 0 0 0 0

14 12 0 0 0 0 0 0 24 0 0 0 0 0 0

15 14 0 0 0 0 0 0 20 0 0 0 0 0 0

Table 6.10 presents the total system travel time (TSTT) for different values of

ε-tolerance. When ε = 0, there is no tolerance and the solution is exactly the same

as the efficient and fair system state. When 0 < ε < 2, the TSTT gradually improves

with the increase of tolerance ε. When ε is increased to 2 or greater than 2, the TSTT

is the same as the system optimal (SO) solution. The results are in accord with our

expectation that the value of ε-tolerance governs the relaxation of the equilibrium

constraint. The equilibrium constraint is relaxed more with the increase of the ε-

tolerance. Eventually, when the ε-tolerance is increased to a certain threshold, the

equilibrium constraint places no effect on the formulation due to the relaxation, and

the formulation is reduced to the SO formulation.
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Table 6.10.
Efficient and ε-tolerant system states

TSTT (time steps)

ε-tolerance (time steps) Demand 1 Demand 2

0 1302 2250

0.5 1267 2175

1 1246 2155

1.5 1236 2140

≥ 2 1227 (SO) 2130 (SO)
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6.5 Conclusions

With the advance in communication and computing technologies, personalized

travel guidance to drivers is rapidly becoming a reality. To fully utilize the benefit of

guidance devices and encourage users to comply with the guidance, there is a pressing

need to provide efficient and fair guidance to attain the system state close to system

optimal and individual users do not worse off. Addressing the need, this chapter

models a transportation system that is both efficient (system optimal) and fair (user

equilibrium) within the dynamic traffic assignment environment. The formulation is

capable of accounting for dynamic departure time and route choice for a generalized

multi-OD network. The key contribution is that we propose a linear programming

formulation that produces a tight lower bound of an efficient and fair system state,

then we develop an efficient iterative algorithm to obtain the exact solution. Firstly,

a bi-level optimization formulation based on a link-based traffic flow model is intro-

duced. At the upper level, the objective is to optimize the total system travel time

of the traffic flow at the network level (efficient). At the lower level, the objective

is to equilibrium the travel cost of individual users (fair). Then the bi-level formu-

lation is relaxed to a linear programming formulation which produces a lower bound

of the efficient and fair system state. Based on the lower bound, we further develop

an efficient algorithm to obtain the solution of an efficient and fair system state. It

is shown that the number of iterations of the algorithm is bounded and the traffic

flow output of the algorithm is at equilibrium. In the numerical case studies, we

construct two test networks including a single OD network and a multi-OD network.

For the tests, the algorithm converges within two iterations, indicating that the LP

relaxation formulation produces a tight lower bound on the solution of an efficient

and fair system state. Moreover, the results of various tests confirm that the average

travel cost of every departure rate is either zero or the same under the same OD. For

test work 2, we also test the efficient and ε-tolerant system state, it shows that the

total system travel time decreases with the increase of the tolerance (less than two
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time steps). When the tolerance reaches two time steps or more, the TSTT is the

same as the system optimal solution.

There are multiple future research directions of this study:

1. This study is motivated by the need of providing an efficient and fair person-

alized travel guidance to travelers. However, users’ decision making process is

a complex process. Users may not necessarily comply with guidance even if

the guidance is both efficient and fair. How to capture user’s decision making

behavior in the formulation will be an interesting topic.

2. We have not investigated the impact of information guidance into the formula-

tion. Providing more information does not necessarily lead to improved system

outcome due to the self-interest driven reactions of individual agents. There is

a need to understand at a fundamental level how information can be collected,

synthesized and disseminated in ways that are easily consumable by a large

number of self-interested agents to yield globally fair and efficient outcomes.

3. This study considers users as a homogeneous class. In the real world, users

can be classified into multiple classes depending on the transportation mode

(e.g., bus, truck, passenger car), various value of time, various tolerance levels

of early or late arrival, and so on. Hence it will be more realistic to incorporate

the heterogeneity of users into the formulation in the future study.
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7. SUMMARY

The connected vehicle (CV) and autonomous vehicle (AV) technology have the po-

tential to greatly improve the transportation system in terms of safety, efficiency,

and sustainability. This dissertation aims to develop a systematic tool designated

for connected and autonomous vehicles, integrating the simulation of traffic dynam-

ics, traffic control strategies, and impact analysis at the network level of the next

generation transportation system.

Part I of the dissertation is devoted to the traffic flow modeling of the connected

vehicles and autonomous vehicles. This task is the foundation step for transportation

planning, optimized network design, efficient traffic control strategies, etc, for the

next generation transportation system. Chapter 2 proposes a cell-based simulation

approach to model the proactive driving behavior of connected vehicles. Firstly, a

state variable of connected vehicles is introduced to track the trajectory of connected

vehicles. Then the exit flow of cells containing connected vehicles is adjusted to sim-

ulate the proactive driving behavior, such that the traffic light is green when the

connected vehicle arrives at the signalized intersection. Extensive numerical simu-

lation results consistently show that the presence of connected vehicles contributes

significantly to the smoothing of traffic flow and vehicular emission reductions in

the network. Chapter 3 proposes an optimal estimation approach to calibrate con-

nected vehicles’ car-following behavior in a mixed traffic environment. Particularly,

the state-space system dynamics is captured by the simplified car-following model

with disturbances, where the trajectory of non-connected vehicles are considered as

unknown states and the trajectory of connected vehicles are considered as measure-

ments with errors. Objective of the reformulation is to obtain an optimal estimation

of states and model parameters simultaneously. It is shown that the customized state-

space model is identifiable with the mild assumption that the disturbance covariance
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of the state update process is diagonal. Then a modified Expectation-Maximization

(EM) algorithm based on Kalman smoother is developed to solve the optimal estima-

tion problem. The performance of the EM algorithm is validated through simulation

data.

Part II of the dissertation contributes to proposing efficient traffic control strate-

gies to better off the next generation transportation system. This task pushes the

next generation transportation system to a better performance state in terms of traf-

fic safety, travel time saving, vehicular emission reduction, etc. Chapter 4 develops

a novel reinforcement learning algorithm for the challenging coordinated signal con-

trol problem. Traffic signals are modeled as intelligent agents interacting with the

stochastic traffic environment. The model is built on the framework of coordinated

reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement

learning is proposed to obtain an exact inference of the best joint actions for all the

coordinated intersections. The algorithm is implemented and tested with a network

containing 18 signalized intersections in VISSIM. Results show that the JTA based

algorithm outperforms independent learning (Q-learning), real-time adaptive learn-

ing, and fixed timing plans in terms of average delay, number of stops, and vehicular

emissions at the network level. Chapter 5 develops a novel linear programming formu-

lation for autonomous intersection control (LPAIC) accounting for traffic dynamics

within a connected vehicle environment. Firstly, a lane based bi-level optimization

model is introduced to propagate traffic flows in the network, accounting for dynamic

departure time, dynamic route choice, and autonomous intersection control in the

context of system optimum network model. Then the bi-level optimization model

is transformed to the linear programming formulation by relaxing the nonlinear con-

straints with a set of linear inequalities. One special feature of the LPAIC formulation

is that the entries of the constraint matrix has only values in -1, 0, 1. Moreover, it is

proved that the constraint matrix is totally unimodular, the optimal solution exists

and contains only integer values. Further, it shows that traffic flows from differ-

ent lanes pass through the conflict points of the intersection safely and there are no
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holding flows in the solution. Three numerical case studies are conducted to demon-

strate the properties and effectiveness of the LPAIC formulation to solve autonomous

intersection control.

Part III of the dissertation moves on to the impact analysis of connected vehicles

and autonomous vehicles at the network level. This task assesses the positive and

negative impacts of the system and provides guidance on transportation planning,

traffic control, transportation budget spending, etc. In this part, the impact of dif-

ferent penetration rates of connected vehicle and autonomous vehicles is revealed on

the network efficiency of a transportation system. Chapter 6 sets out to model an

efficient and fair transportation system accounting for both departure time choice

and route choice of a general multi OD network within a dynamic traffic assignment

environment. Firstly, a bi-level optimization formulation is introduced based on the

link-based traffic flow model. The upper level of the formulation minimizes the to-

tal system travel time, whereas the lower level captures traffic flow propagation and

the user equilibrium constraint. Then the bi-level formulation is relaxed to a linear

programming formulation that produces a lower bound of an efficient and fair system

state. An efficient iterative algorithm is proposed to obtain the exact solution. It is

shown that the number of iterations is bounded, and the output traffic flow solution is

efficient and fair. Finally, two numerical cases (including a single OD network and a

multi-OD network) are conducted to demonstrate the performance of the algorithm.

The results consistently show that the travel time of different departure rates of the

same OD pair are identical and the algorithm converges within two iterations across

all test scenarios.

Along the line of this dissertation, there are a number of interesting research

directions for future research.

• In part I (traffic flow modeling), we have only simulated one type of proactive

speed adjustment scheme (i.e., the connected vehicle decreases speed to arrive

the signalized intersection exactly at the end of the red traffic light). It is worth-

while to investigate other types of speed adjustment scheme as well. Further,
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we have assumed that the traffic flow (both connected and non-connected ve-

hicles) propagates on determined routes. However, as connected vehicles are

more informed about the traffic situation in the downstream network, they may

alternate routes dynamically during the trip. The most important feature of

connected vehicles lies in the exchanging of short range and real time traffic

information, based on which connected vehicles can alter routes or departure

time. Incorporating both the cooperative driving behavior and the route choice

behavior of connected vehicles will be an interesting topic.

• In part II (traffic control strategies), the CV environment can be modeled with

more details using wireless communications simulation tools. This would help

to assess the resilience and stability of the control schemes with variation in

communication strengths. Further, the proposed LPAIC formulation is limited

to the area of system optimum. How to adjust the formulation to account for

user equilibrium (UE) behavior is an important extension that deserves future

study. Last but not the least, it is worthwhile to address the lane changing

issue. Lane changing behavior is realistic and necessary in traffic flow modeling.

However, we are unable to capture it in the proposed formulation due to the

complexity and nonlinear nature of the lane changing constraint. The LPAIC

formulation will be more complete and powerful if there is a way to transform

the nonlinear constraint of lane changing to a linear form.

• In part III (impact analysis), the study is motivated by the need of providing

an efficient and fair personalized travel guidance to travelers. However, users’

decision making process is a complex process. Users may not necessarily comply

with guidance even if the guidance is both efficient and fair. How to capture

user’s decision making behavior in the formulation will be an interesting topic.



BIBLIOGRAPHY



175

Bibliography

[1] NHTSA, “U.S. Department of Transportation Issues Advance Notice of Pro-

posed Rulemaking to Begin Implementation of Vehicle-to-Vehicle Communica-

tions Technology,” 2014.

[2] A. Broggi, “IEEE News Releases,” 2012.

[3] NHTSA, “National Highway Traffic Safety Administration. Preliminary State-

ment of Policy Concerning Automated Vehicles.” 2013.

[4] RITA, “Connected Vehicle Research in the United States,” 2014.

[5] H.-Y. Huang, P.-E. Luo, M. Li, D. Li, X. Li, W. Shu, and M.-Y. Wu, “Perfor-

mance Evaluation of SUVnet With Real-Time Traffic Data,” IEEE Transactions

on Vehicular Technology, vol. 56, no. 6, pp. 3381–3396, 2007.

[6] C. Lochert, A. Barthels, A. Cervantes, M. Mauve, and M. Caliskan, “Multiple

simulator interlinking environment for IVC,” in Proceedings of the 2nd ACM

international workshop on Vehicular ad hoc networks - VANET ’05. New York,

USA: ACM Press, Sep. 2005, p. 87.

[7] PTV, “PTV Vision software suite (VISUM/VISSIM).” PTV AG Traffic Mo-

bility Logistics., 2005.

[8] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network

and Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions

on Mobile Computing, vol. 10, no. 1, pp. 3–15, Jan. 2011.

[9] A. Varga, “The OMNeT++ Discrete Event Simulation System,” Proc. European

Simulation Multiconf. (ESM 01), 2001.



176

[10] D. Krajzewicz, G. Hertkorn, C. Rossel, and P. Wagner, “SUMO (Simulation

of Urban MObility); An Open-Source Traffic Simulation,” Proc. Fourth Middle

East Symp. Simulation and Modelling (MESM 02), pp. 183–187, 2002.

[11] F. Knorr and M. Schreckenberg, “Influence of inter-vehicle communication on

peak hour traffic flow,” Physica A: Statistical Mechanics and its Applications,

vol. 391, no. 6, pp. 2225–2231, Mar. 2012.

[12] G. Kliot, “Technion extensions of the JiST/SWANS simulator,” 2010. [Online].

Available: http://www.cs.technion.ac.il/ gabik/Jist-Swans/

[13] S. I. Guler, M. Menendez, and L. Meier, “Using connected vehicle technology

to improve the efficiency of intersections,” Transportation Research Part C:

Emerging Technologies, vol. 46, pp. 121–131, 2014.

[14] N. Goodall, B. Smith, and B. Park, “Traffic signal control with connected vehi-

cles,” Transportation Research Record: Journal of the Transportation Research

Board, no. 2381, pp. 65–72, 2013.

[15] NHTSA, “National Motor Vehicle Crash Causation Survey. U.S. Department

of Transportation, Report DOT HS 811 059,” 2008.

[16] ——, “Traffic Safety Facts 2012: Alcohol-Impaired Driving. Dept of Transporta-

tion (US), National Highway Traffic Safety Administration (NHTSA). Avail-

able at URL: http://www-nrd.nhtsa.dot.gov/Pubs/811870.pdf. Access date:

11/17/2014.” 2012.

[17] A. Ceder, “Relationships between road accidents and hourly traffic flowii: Prob-

abilistic approach,” Accident Analysis & Prevention, vol. 14, no. 1, pp. 35–44,

1982.

[18] D. Lord, A. Manar, and A. Vizioli, “Modeling crash-flow-density and crash-

flow-v/c ratio relationships for rural and urban freeway segments,” Accident

Analysis & Prevention, vol. 37, no. 1, pp. 185–199, 2005.



177

[19] C. Wang, M. A. Quddus, and S. G. Ison, “Impact of traffic congestion on

road accidents: a spatial analysis of the m25 motorway in england,” Accident

Analysis & Prevention, vol. 41, no. 4, pp. 798–808, 2009.

[20] Z. Zheng, S. Ahn, and C. M. Monsere, “Impact of traffic oscillations on freeway

crash occurrences,” Accident Analysis & Prevention, vol. 42, no. 2, pp. 626–636,

2010.

[21] D. C. Gazis, R. Herman, and R. B. Potts, “Car-Following Theory of Steady-

State Traffic Flow,” Operations Research, vol. 7, no. 4, pp. 499–505, Aug. 1959.

[22] P. Gipps, “A behavioural car-following model for computer simulation,” Trans-

portation Research Part B: Methodological, vol. 15, no. 2, pp. 105–111, Apr.

1981.

[23] M. Brackstone and M. McDonald, “Car-following: a historical review,” Trans-

portation Research Part F: Traffic Psychology and Behaviour, vol. 2, no. 4, pp.

181–196, Dec. 1999.

[24] G. Newell, “A simplified car-following theory: a lower order model,” Trans-

portation Research Part B: Methodological, vol. 36, no. 3, pp. 195–205, Mar.

2002.

[25] S. T. Waller, M. Ng, E. Ferguson, N. Nezamuddin, and D. Sun, “Speed harmo-

nization and peak-period shoulder use to manage urban freeway congestion,”

2009.

[26] A. Talebpour, H. S. Mahmassani, and S. H. Hamdar, “Speed harmonization:

effectiveness evaluation under congested conditions,” Transportation Research

Record: Journal of the Transportation Research Board, vol. 2391, no. 1, pp.

69–79, 2013.



178

[27] F. Zhu and S. V. Ukkusuri, “Accounting for dynamic speed limit control in a

stochastic traffic environment: a reinforcement learning approach,” Transporta-

tion Research Part C: emerging technologies, vol. 41, pp. 30–47, 2014.

[28] E. Van den Hoogen and S. Smulders, “Control by variable speed signs: Results

of the dutch experiment,” 1994.
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[164] J. Matousek and B. Gärtner, Understanding and Using Linear Programming.

Springer, 2006.

[165] G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Exten-

sions. Springer, 2003.

[166] D. K. Merchant and G. L. Nemhauser, “A model and an algorithm for the

dynamic traffic assignment problems,” Transportation science, vol. 12, no. 3,

pp. 183–199, 1978.



195

[167] ——, “Optimality conditions for a dynamic traffic assignment model,” Trans-

portation Science, vol. 12, no. 3, pp. 200–207, 1978.

[168] M. Carey, “Optimal time-varying flows on congested networks,” Operations

research, vol. 35, no. 1, pp. 58–69, 1987.

[169] M. Carey and A. Srinivasan, “Externalities, average and marginal costs, and

tolls on congested networks with time-varying flows,” Operations Research,

vol. 41, no. 1, pp. 217–231, 1993.

[170] M. Ghali and M. Smith, “A model for the dynamic system optimum traffic

assignment problem,” Transportation Research Part B: Methodological, vol. 29,

no. 3, pp. 155–170, 1995.

[171] S. Peeta and H. S. Mahmassani, “System optimal and user equilibrium time-

dependent traffic assignment in congested networks,” Annals of Operations Re-

search, vol. 60, no. 1, pp. 81–113, 1995.

[172] Z. S. Qian, W. Shen, and H. Zhang, “System-optimal dynamic traffic assign-

ment with and without queue spillback: Its path-based formulation and solution

via approximate path marginal cost,” Transportation research part B: method-

ological, vol. 46, no. 7, pp. 874–893, 2012.

[173] K. Doan and S. V. Ukkusuri, “Dynamic system optimal model for multi-od traf-

fic networks with an advanced spatial queuing model,” Transportation Research

Part C: Emerging Technologies, vol. 51, pp. 41–65, 2015.

[174] B.-W. Wie, T. L. Friesz, and R. L. Tobin, “Dynamic user optimal traffic assign-

ment on congested multidestination networks,” Transportation Research Part

B: Methodological, vol. 24, no. 6, pp. 431–442, 1990.

[175] T. L. Friesz, D. Bernstein, T. E. Smith, R. L. Tobin, and B. Wie, “A variational

inequality formulation of the dynamic network user equilibrium problem,” Op-

erations Research, vol. 41, no. 1, pp. 179–191, 1993.



196

[176] S. T. Waller and A. K. Ziliaskopoulos, “A combinatorial user optimal dynamic

traffic assignment algorithm,” Annals of Operations Research, vol. 144, no. 1,

pp. 249–261, 2006.

[177] A. K. Ziliaskopoulos, “A linear programming model for the single destination

system optimum dynamic traffic assignment problem,” Transportation Science,

vol. 34, no. 1, pp. 37–49, 2000.

[178] S. Peeta and A. K. Ziliaskopoulos, “Foundations of dynamic traffic assignment:

The past, the present and the future,” Networks and Spatial Economics, vol. 1,

no. 3-4, pp. 233–265, 2001.

[179] Y. M. Nie, “A cell-based merchant–nemhauser model for the system optimum

dynamic traffic assignment problem,” Transportation Research Part B: Method-

ological, vol. 45, no. 2, pp. 329–342, 2011.

[180] J. K. Ho, “A successive linear optimization approach to the dynamic traffic

assignment problem,” Transportation Science, vol. 14, no. 4, pp. 295–305, 1980.

[181] F. Zhu and S. V. Ukkusuri, “A cell based dynamic system optimum model with

non-holding back flows,” Transportation Research Part C: Emerging Technolo-

gies, vol. 36, pp. 367–380, 2013.

[182] S. V. Ukkusuri and S. T. Waller, “Linear programming models for the user and

system optimal dynamic network design problem: formulations, comparisons

and extensions,” Networks and Spatial Economics, vol. 8, no. 4, pp. 383–406,

2008.

[183] J. R. Correa, A. S. Schulz, and N. E. S. Moses, “Computational complexity, fair-

ness, and the price of anarchy of the maximum latency problem,” in Proceedings

of the 10th International Integer Programming and Combinatorial Optimization

Conference, vol. 3064, 2004, pp. 59–73.



197

[184] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses, “Fast, fair, and efficient flows

in networks,” Operations Research, vol. 55, no. 2, pp. 215–225, 2007.
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