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trie gefärdet sind. Diese Beobachtungen haben dazu motiviert einen Beitrag in diesem
Forschungsgebiet zu leisten.

Diese Arbeit hätte nicht ohne die große Unterstützung und Mitwirkung einiger Personen
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Chapter 1

Introduction

If people are in danger due to threats like a large forest fire, volcanic eruption, flooding or
chemical accident, the dislocation (evacuation) of people from their current position (e.g.
their homes, workplaces) to a more secure location outside the endangered area may be
the only option to ensure safety. In this context, several decisions about how to prepare
and how to organize the movement of possibly thousands of people have to be made. For
example, safe destinations have to be defined and equipped with basic needs, people have
to be assigned to safe destinations and routes to safe destinations have to be defined and
signposted. Depending on the car ownership in the affected region, people may evacuate
by vehicle, by foot or by public transit (if still operating). However, some people may not
be able to evacuate on their own (e.g. patients in hospitals or residents of nursing homes)
so that special services in terms of shuttle buses or ambulances are needed to take those
people out of the endangered area.
In the case of emergency situations in urban areas, it can be assumed that the car owner-
ship allows everyone to evacuate by vehicle. Available storage room within vehicles also
allows the evacuees to take valuables with them so that the evacuation by car will be the
first choice of the evacuees. Unfortunately, the existing street network in urban areas is
often overloaded even by everyday traffic, but the network load during an evacuation can
be assumed to be even higher. Thus, the efficient usage of sparse road capacities during
an evacuation is of major importance to ensure a fast and secure evacuation process. This
work focuses on the question, how traffic should be routed through a street network in
order to minimize danger for evacuees during an evacuation. We make use of methods of
combinatorial optimization as well as simulation to handle this problem.

1.1 Evacuation Planning

The “Centre for Research on the Epidemiology of Disasters” (CRED) maintain the “Emer-
gency Events Database” (EM-DAT) that contains information about the occurance and
the effects of reported natural and technological (i.e. anthropogenic) disasters worldwide
from 1900 to today, see http://www.emdat.be/. The CRED is a World Health Organiza-
tion (WHO) collaborating centre with international status under Belgian law.
Long-range trends adapted from the EM-DAT database clearly show that the number of
natural and technological disasters during the last decades massively increased, affecting
more and more people. The most frequently reported natural disasters are storms (e.g.
hurricane “Katrina” in the Gulf coast region, USA, 2005), floods (e.g. flooding in the
state of Queensland, Australia, 2010/2011), epidemics (e.g. bacterial infectious diseases,
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Zimbabwe, 2008) and earthquakes (e.g. Haiti, 2010). Most of technological disasters are
caused by fires or explosions. More detailed information can be obtained from the his-
tograms of the CRED in Appendix A.
Suchlike disasters represent potential danger for people which may require protective ar-
rangements in order to ensure safety for affected people. Depending on the disaster itself,
the United States Federal Emergency Management Agency (FEMA) differentiates in the
“Guide for All-Hazard Emergency Operations Planning” between two basic protective
alternatives, namely evacuation and in-place protection (sheltering in-place), see FEMA
(1996). For selecting the most advisable alternative, the FEMA suggests to take potential
health risks due to exposure, speed of onset and persistence as well as the potential usage
of barriers (e.g. closed windows and doors) into consideration. Thus, in the case of a
threat by hazardous materials, it may beneficial to let people shelter in place instead of
evacuating them, because the received exposure might be higher, when people are located
outside (in a vehicle) compared to stay in place with closed windows/doors and using a
wet towel for respiratory protection. The same holds also for some natural disasters (e.g.
tornadoes), where sheltering in the basement (if available) would be a better choice than
to evacuate in most cases. On the other side, for a large number of disasters like flooding,
hurricanes (with flooding), volcanic eruptions or large (forest) fires an evacuation would
be the preferable option to ensure safety, since primarily safe places to shelter may be
destroyed during the disaster.
According to Stepanov and MacGregor Smith (2009), the process of evacuation can be
divided into seven consecutive phases, see Figure 1.1.

Figure 1.1: Evacuation Phases (Stepanov and MacGregor Smith (2009))

The first phase deals with the detection of an (unforeseeable) threat that causes the
evacuation. Phase II and Phase III can be regarded as the official decision to evacuate
and the delivery of the evacuation order to the population. Afterwards, both potential
evacuees as well as officials prepare for the actual evacuation (e.g. preparing the journey
to a shelter or positioning traffic guidances) in Phase IV. The last three phases (Phase V
– Phase VII) consists of the evacuation itself as well as the arrival and registration of the
evacuees at a safe destination.
In this work, we will focus on Phase V (and partially on Phase VI). We assume the
existence of a threat that requires the evacuation of the endangered area in order to
protect the population. Moreover, we assume that the decision to evacuate has been made
and that the entire population already has been informed to prepare for the imminent
evacuation. The next phase contains the movement of evacuees through the network.
For evacuation scenarios with only few evacuees and sufficient road capacities, it may
be relatively simple to route traffic efficiently through the network. However, for large-
scale evacuation scenarios with thousands of evacuees as well as large and complex street
networks, an efficient traffic routing through the network can not be obtained easily.
Taking into consideration that urban road networks are even overloaded by everyday
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traffic, it should be the major objective for evacuation planners to utilize the existing road
network capacities as efficient as possible, since the traffic load caused by an evacuation
can be expected to be even higher.
Southworth (1991) postulates that (among other information about traffic routing, leaving
behavior and car ownership) the knowledge about the transportation infrastructure and
the spatial distribution of the population is of major interest in the context of evacuation
planning. Additionally, information about the locations and capacities of shelters must
be present. On the basis of these information, a sequential evacuation planning procedure
can be defined, see Figure 1.2.

Traffic Assignment

Traffic Routing

Evacuation Schedule

Supply with Goods (Food, Medicine)

Allocation of Evacuees to Shelters

Definition of Endangered Area and Shelters

Figure 1.2: Sequential Evacuation Planning Procedure (based on Lahmar et al. (2006))

At the beginning, the endangered area and possible locations and capacities of shelters
must be determined. This must be carried out under consideration of space requirements,
access to basic needs (e.g. water, food, housing) and danger, see Saadatseresht et al.
(2009). Afterwards, the next step of the sequential planning procedure contains the as-
signment of evacuees to shelters. As we will discuss in the literature review (Chapter 2),
one possible solution for this problem is to assign evacuees to their nearest safe destina-
tion. If the assignment of evacuees to shelters is fixed, the traffic routing determines the
driving direction of each road. In the case of an evacuation, the original road network
functionality may be reorganized by so-called ”‘contraflow”’ operations that reverse the
driving direction of lanes in order to increase road network capacities, see Wolshon (2001).
This method is well approved in the United States, thus practiced by states frequently
endangered by hurricanes, see Urbina and Wolshon (2003). In the next step, the traffic as-
signment performs the allocation of evacuees/traffic flows to evacuation routes within the
scope of the previously fixed traffic routing. At this point, each household knows, which
shelter should be approached and which route (to the assigned shelter) should be taken.
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Nevertheless, there is still some planning potential left open since the departure time of
each household can be varied. If departure times are taken into account during evacuation
planning, a (unique) departure time can be assigned to each household. The motivation
to perform scheduled/staged evacuations (in contrast to simultaneous evacuations) is the
potential reduction of total evacuation time, see Chen and Zhan (2008). The last step of
the sequential planning procedure for evacuation planning involves the supply of evacuees
in shelters with basic needs (e.g. food, housing, medicine).
It is apparent, that a large amount of interdependencies between the presented planning
steps exist (indicated by dashed lines with arrows in Figure 1.2). Primarily, the assignment
of evacuees to shelters, traffic routing and traffic assignment strongly affect each other.
For example, an assignment that allocates evacuees to their nearest shelter massively con-
strains the traffic routing (and traffic assignment) since a large number of possible traffic
routings following different assignment strategies are not applicable any more. Moreover,
Han et al. (2006) demonstrated that suchlike assignments can be suboptimal since effects
that will be apparent in succeeding planning steps (i.e. traffic routing/assignment) are
neglected. As a second example, if the traffic routing is fixed, the traffic assignment must
be performed within narrow confines since the driving directions are fixed and turning
movements are mostly specified. Already these two examples illustrate that the problem
of assigning evacuees to shelters, routing traffic as well as assigning traffic should be solved
within an integrated approach to cover the existing interdependencies and to provide an
evacuation plan that efficiently uses road capacities.

1.2 Chapter Synopsis

This thesis is built upon the preceding work of Kimms and Maassen (2011b, 2009, 2010a,b,
2011a). We focus on mathematical optimization models for assigning evacuees to shel-
ters, routing traffic and assigning traffic (tasks in the dashed box in Figure 1.2) in one
step. Thus, tasks for planning and equipping emergency shelters are neglected. Moreover,
heuristic solution procedures and extensions for covering rescue teams and pedestrians will
be presented. Our approaches should be regarded as pre-incident planning approaches
since time is needed for preparation (collecting data, building networks, etc.) and solving
the optimization problems. Thus, several evacuation plans for different scenarios should
be prepared in advance so that the implementation of a chosen plan can be carried out
right after the incident detection. Additionally, we assume that the entire population will
be informed simultaneously and that the car ownership allows everyone to evacuate by car
(except if pedestrian traffic will be taken into account, see Chapter 7).
The text is structured as follows: Chapter 2 contains a comprehensive literature review,
covering aspects of evacuation planning with vehicles, evacuation planning with pedestri-
ans and simulation-based optimization approaches. Afterwards, a basic cell-transmission
based evacuation planning model (CTEPM) will be introduced in Chapter 3. Additionally,
this chapter includes the application of the presented model to a real-world case study as
well as a sensitivity analysis on the basis of a microscopic traffic simulation. In the follow-
ing Chapter 4, several weaknesses of the previously introduced model will be addressed.
Moreover, a simulation-based optimization approach will be developed and tested for a
real-world example. To allow the applicability of our evacuation planning models to larger
instances, two heuristic solution procedures will be introduced and evaluated in Chapter
5. Chapter 6 and Chapter 7 extend the evacuation planning models by integrating rescue
team traffic (Chapter 6) and pedestrian traffic (Chapter 7). Finally, Chapter 8 contains
some summarizing conclusions and an outlook on future research.



Chapter 2

Literature Review

The need for evacuation planning exists in environments of different size, e.g. large scale
evacuations in urban or rural areas by vehicles, medium scale evacuations of pedestrians
from buildings, ships and stadiums or small scale evacuations of pedestrians from single
rooms, e.g. restaurants. Although a large amount of literature can be found regarding
these topics, a large portion rely either on optimization approaches, simulation approaches
or combined simulation-based optimization approaches for traffic routing and/or traffic
assignment in emergency situations. Extensive reviews of evacuation planning approaches
can be found in Bretschneider (2011) and Hamacher and Tjandra (2001). To give a brief
overview in this work, we will also discuss literature dealing with evacuation planning and
simulation-based optimization approaches. Since a large part of the presented work bases
on the Cell-Transmission approach by Daganzo (1994) and Daganzo (1995), we will also
focus on this approach in the literature review.

2.1 Evacuation Planning

Independent of the diversity of considered traffic participants (e.g. vehicles, pedestri-
ans,...), we roughly classify methods of evacuation planning as displayed in Figure 2.1.

Routing
Predefined No Predefined 

En RouteAssignment
Traffic 

Evacuation
Planning

Traffic Routing
and Assignment

Routing

Figure 2.1: Classification of Evacuation Planning Approaches
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At the first level, we divide by the existence of a predefined evacuation routing. If the
evacuation routing is already predetermined (e.g. by a preceding procedure or simply
using a non-emergency everyday life traffic routing with the possibility of lane-reversals),
the remaining problem consists of assigning traffic within the given routing possibilities.
This can be done under consideration of a given objective function (e.g. minimization of
total evacuation time).
If the evacuation routing is not fixed in advance, we differentiate between the simultane-
ous determination of evacuation routing and the assignment of traffic to the evacuation
routing as well as making routing decisions by the evacuees en route. In comparison to
the traffic assignment problem with a fixed evacuation routing, the problem of defining an
evacuation routing and assigning traffic simultaneously can be regarded as more integrated
approach since meaningful interdependencies exist, see Figure 1.2 and the discussion in
Section 1. If routing decisions are made en route by evacuees, no planning in terms of fix-
ing an evacuation routing and assigning traffic has to be made. Thus, suchlike approaches
can be regarded as the illustration of evacuations without planning.
If evacuation planning in the narrower sense takes place (i.e. in terms of traffic routing
and/or traffic assignment), optimization approaches (partially supplemented by simula-
tions) are often applied. For the case of en route decisions by evacuees, usually traffic
simulations are used since there is no need for optimization.
As we will see in the following, there are several works in literature that are not fitting
into this classification perfectly, for example, if traffic routing and traffic assignment are
carried out separately, but within an integrated framework. On other hand, there are
e.g. traffic assignment models that predetermine the predecessors and successors of street
segments (i.e. defining the traffic routing), but also allow lane-reversals which also has an
impact on traffic routing.

2.1.1 Evacuation Planning with Vehicles

En Route
Sheffi et al. (1982) were one of the first to cope with evacuation planning in a broader
sense. They propose the macroscopic simulation model NETVACI to estimate the total
evacuation time for a given region taking network topology, intersection design and con-
trol as well as dynamic route selection behavior of evacuees into account. The network
is modeled as a graph with links (representing one-way roads) and nodes (representing
intersections). The authors apply the model to the network of a 10-mile evacuation zone
around a nuclear power plant with approximately 10,000 affected vehicles.
Later, Sinuany-Stern and Stern (1993) investigate the influence of traffic factors (e.g.
“friction” between vehicles and pedestrians or car ownership), route choice mechanisms
(shortest paths vs. myopic behavior) and evacuation circumstances (population size) on
the microscopic traffic simulation SNEM. The concept of the simulation model is similar
to Sheffi et al. (1982) although the level of detail has been increased and different traffic
participants are considered in SNEM. The model is applied to a real world network (Di-
mona, Isreal) and all results refer to this case study. The authors find out that the usage
of a myopic route selection behavior leads to more realistic results than assigning vehi-
cles to shortest paths to safe destinations. In addition, increase of population results in
disproportionate longer evacuation times. The consideration of “friction” between pedes-
trians and vehicles also increases the evacuation time. To the best of our knowledge, only
Sinuany-Stern and Stern (1993) discuss the problem of evacuation planning with vehicles
and pedestrians simultaneously.
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Georgiadou et al. (2007) examine the evacuation from a major industrial site, also ac-
counting for health consequences, e.g. in terms of received doses of contaminated air.
The simulation is modeled as a discrete state stochastic Markov process and the consid-
ered evacuation network is built up of nodes and connecting links between them. The
movement of evacuees from one node to another node is simulated as a random process
en route, while the transition probability to proceed from one node to another depends
on current traffic conditions. For an artificial network, the authors perform a sensitivity
analysis to investigate the effects of different population sizes, node capacities and vehicle
speeds on the total evacuation time. For a real-world case study in a densely populated
area in West Attica (Greece), the authors study the sensitivity of the expected number of
fatalities as a function of warning time for different road capacities.
Chen and Zhan (2008) focus on examining the effects of staged evacuations using the traffic
simulation software Paramics. Again, the authors assume that routing decisions are made
by the drivers en route under consideration of traffic conditions. Moreover, the simulation
allows one to consider different types of driver behavior, ranging from conservative to ag-
gressive. In their study, the authors consider an artificial grid road network, an artificial
ring road network as well as real world network based on the city of San Marcos, Texas
(USA). The results of simulations indicate that the simultaneous evacuation start (i.e. a
non-staged evacuation) leads to the shortest total evacuation time, if no congestion oc-
curs. However, if the population density is higher (leading to a greater risk of congestion),
the staged evacuation time is superior for the grid road network and for the real world
network. In contrast, a staged evacuation shows no advantage for the ring road network.

Traffic Routing and Assignment
A general framework for evacuation planning in the narrower sense is proposed by Yamada
(1996). The author defines the major problem of evacuation planning to be the assignment
of traffic participants to exits. The evacuation network is modeled as a graph with nodes
and arcs. The first model assigns evacuees to safe destinations by shortest paths using
the algorithm from Dijkstra (1959), thus leading to an evacuation plan with the minimum
traveling distance. The second model is a simple network flow optimization model with
capacity restrictions of safe destinations that also minimizes the total traveling distance.
In evacuation planning, often several safe destinations exist. However, it is not clear, to
which destination evacuees should travel. As discussed, one possible solution is to assign
evacuees to their closest exit. However, Han et al. (2006) demonstrate that the assignment
of evacuees to the nearest exit can be suboptimal. The authors integrate the destination
choice into the optimization problem by adding an artificial super sink that is connected
to all possible destinations with dummy links with zero cost and travel time. In a case
study for Knox County, Tennessee (USA) with a population of approximately 382,000,
Han et al. (2006) illustrate the benefits of their one-destination-approach for different
routing strategies. They take advantage of the internal path-processing methodologies of
the simulation software Dynasmart-P to perform the traffic assignment. It turns out that
the assignment of evacuees to one “super-destination” is superior to the assignment to
the nearest exits. Moreover, Han et al. (2006) show that the dynamic route choice taking
real-time traffic conditions into account outperforms the static route choice that fixes the
paths of evacuees at the very beginning of the evacuation.
In the case of an evacuation, evacuees may desire to consolidate with other family mem-
bers before evacuating together. Murray-Tuite and Mahmassani (2003) and Murray-Tuite
and Mahmassani (2004) address this circumstance by integrating this behavior into the
traffic routing approach. The authors propose to successively solve two linear optimiza-
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tion models to determine the location of the meeting point for the family members of each
household and to generate a so called trip chain for the vehicle of each household. The
results from these models (i.e. set of origins, trip chain and destination for each house-
hold) are then loaded as inputs for traffic simulation into Dynasmart-P. Murray-Tuite and
Mahmassani (2004) apply their framework to the south-central portion of Fort Worth,
Texas (USA) with approximately 20,000 households and 30,000 vehicles.
Kim and Shekhar (2008) present an evacuation planning model based on graph theory.
The evacuation network is defined as a directed graph with nodes and edges. Each node
has an initial occupancy (population in this node) and a given capacity. Each edge also
has a given capacity, travel time and an initial direction. Now, the problem consists of
constructing a network configuration (including contraflow) by assigning a desired driving
direction to each edge. The authors prove NP-completeness for their problem and develop
a greedy as well as a bottleneck relief heuristic. A case study for the region of Monticello,
Minnesota (USA) with approximately 42,000 evacuees is conducted.
Similar to the work of Kim and Shekhar (2008), Andreas and Smith (2009) also consider
a directed graph with nodes and edges for formulating an evacuation planning problem as
the problem of finding an evacuation tree. By using the tree concept, very simple evacua-
tion plans are generated since no diverging processes are allowed. Moreover, the authors
consider a discrete set of possible evacuation scenarios in their optimization problem that
differ e.g. in terms of population, travel times and capacities. Thus, assuming penalty
costs for usage of edges in the evacuation tree in the objective function, the optimization
problem minimizes the expected penalty costs for a given set of scenarios. To solve this
optimization problem, the authors introduced a solution algorithm based on Benders de-
composition.
Stepanov and MacGregor Smith (2009) present a framework for evacuation planning under
multiple objectives (i.e. minimization of excess total traveling distance and excess total
evacuation time) that separates traffic routing and traffic assignment. Possible evacuation
routes for each origin-destination pair are computed by the k shortest paths algorithm
from Eppstein (1999). Afterwards, an IP model – supplemented by time delay functions
from a M/G/c/c queuing model – assigns evacuees from each origin to one of the k shortest
paths to a destination. Afterwards, the obtained evacuation plan is evaluated in a simula-
tion by crucial values, e.g. total traveling distance, total evacuation time and congestion
levels. For a sample case study with 4,500 households, the authors compare their solution
framework with the assignment of traffic to shortest paths. It turns out that the total
evacuation time and blocking effects can be significantly reduced in return to a moderately
increase of total traveling distance.
Evacuation planning may not only consist of traffic planning for evacuating vehicles. In-
stead, rescue teams (e.g. bomb disposal experts, fire fighters) have to be considered to
curtail the origin of danger in the case of large fires or chemical accidents. Xie and Turn-
quist (2009) present an integrated approach for evacuation planning with rescue teams. In
a first step, routes for rescue teams are determined by a simple shortest path algorithm.
Afterwards, their optimization model – structured as a bi-level problem – for determin-
ing the traffic routing and assignment is solved. The upper level problem is formulated
as a lane-based discrete network design model that minimizes the total evacuation time
taking lane-reversals and the avoidance of crossing conflicts into account. The lower level
problem assigns traffic to the network based on a stochastic traffic flow equilibrium frame-
work. They propose a combination of a Lagrangian relaxation and a tabu search based
approach to solve this (non-convex) optimization problem. They apply their framework
to the same network as Kim and Shekhar (2008), i.e. Monticello, Minnesota (USA) with
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approximately 42,000 evacuees.
Later, Xie et al. (2010) and Xie and Turnquist (2011) consider the simpler case of evac-
uation planning without rescue teams. In both works, a bi-level network design opti-
mization problem is introduced. Similar to a previous work, the authors again consider
lane-reversals as well as the avoidance of crossing conflicts and the upper level problem
again minimizes the total evacuation time. Subsequently, the lower level problems in both
models solve the traffic assignment problem reaching a user-equilibrium. In Xie et al.
(2010), the lower level problem is built on the cell-transmission theory by Daganzo (1994)
and Daganzo (1995), while the lower level problem in Xie and Turnquist (2011) is designed
as a mixed integer network flow problem. In both works, the authors propose a combined
Lagrangian relaxation tabu search based solution procedure to solve the bi-level optimiza-
tion problems. Case studies for Monticello, Minnesota (USA) are conducted.
Bretschneider and Kimms (2012) and Bretschneider and Kimms (2011) present lane-based
dynamic network flow models for evacuation planning. The network modeling shows some
similarities to the works of Cova and Johnson (2003), Xie et al. (2010) and Xie and Turn-
quist (2011). The authors also allow lane-reversals and avoid crossing conflicts in both
works. Bretschneider and Kimms (2011) propose a relaxation based heuristic followed by
an additional adjustment heuristic to ensure feasibility of the solution. Bretschneider and
Kimms (2012) modify the dynamic network flow model into a pattern-based dynamic net-
work flow model. The basic idea of using patterns is to use a discrete set of possible traffic
flow patterns for intersections and roads (between intersections) and to assign exactly one
pattern to each intersection and road so that a feasible evacuation plan is defined. The
authors develop a two-stage heuristic that determines traffic routing and vehicle flows on
a less detailed network in the first step. Afterwards, the results from the first step (i.e. the
driving direction and capacities of roads) are used as inputs for the second step where the
evacuation plan for the original network is determined. Their solution procedures show
very promising performance in large computational studies. More detailed information
can be found in Bretschneider (2011).

Traffic Assignment
Although not considering the case of an evacuation, the seminal work of Ziliaskopou-
los (2000) should be mentioned here since it builds the basis for numerous publications.
The model presented by Ziliaskopoulos (2000) is a single destination system optimum dy-
namic traffic assignment problem based on the cell-transmission model (CTM) by Daganzo
(1994). The basic idea of the CTM is to model a given network with cells of equal size.
The size of a cell corresponds to the distance that can be traveled by a vehicle under light
traffic in one period of time. Hence, the planning horizon is divided into a discrete set of
periods of equal length. Under consideration of traffic flow capacities, vehicles move from
one cell to another representing the traffic flow.
Ukkusuri and Waller (2008) also consider traffic assignment problems built upon the CTM
approach. They compare a single destination dynamic user equilibrium network design
problem to a dynamic system optimal network design problem similar to the traffic as-
signment model by Ziliaskopoulos (2000). Moreover, they extend their model to cover
demand uncertainties within a stochastic programming approach.
A common attribute of traffic assignment models based on the CTM approach is the
knowledge of the evacuation routing in advance in terms of knowledge about predeces-
sors and successors of a street segment. In some works, the general driving direction of
a street is defined in advance and in other works, a standard traffic routing (as applied
in (non-emergency) everyday life situations) with lane-reversal possibilities is assumed.
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Thus, if contraflow operations are considered within traffic assignment models, the traffic
routing can also be affected since the driving direction on lanes can be changed. In order
to illustrate the knowledge about predecessors and successors of a street segment, suchlike
approaches are discussed at this point.
Cova and Johnson (2003) introduce a lane-based network flow optimization model for
evacuation planning. The increase of detail due to the explicit consideration of lanes al-
lows one to avoid crossing conflicts and to limit the number of merging traffic streams
at nodes. Similar to Yamada (1996), Cova and Johnson (2003) also minimize the total
traveling distance. The authors apply their mixed-integer optimization model to a nine-
intersection sample network and compare the obtained solution to other routing strategies
via microscopic traffic simulations (Paramics). Moreover, they demonstrate real-world
applicability of their model by calculating a lane-based evacuation plan for an area of Salt
Lake City, Utah (USA).
The work of Tuydes and Ziliaskopoulos (2004) extend the dynamic traffic assignment
model by Ziliaskopoulos (2000) to be applicable to evacuation planning problems. More-
over, they incorporate lane reversibility into their optimization model so that higher flow
and storage capacities of cells are possible. In a subsequent work, Tuydes and Ziliaskopou-
los (2006) present a tabu search heuristic to solve the traffic assignment problem with lane
reversibility for real-world instances. In a case study of evacuating approximately 33,000
vehicles from the city of Evanston, Illinois (USA), the authors compare evacuation times
with and without contraflow possibilities. On the basis that evacuees were assigned to
their nearest safe destination, total system traveling time can be reduced by 20%.
A simulation-based optimization approach for a traffic assignment problem with evacua-
tion scheduling is presented by Sbayti and Mahmassani (2006). The authors distinguish
between two user classes, those who have to be evacuated and those who have not to be
evacuated but follow their everyday activities. The model assigns departure times, safe
destinations and the path to a safe destination to evacuees. It has to be noticed, that
the set of available paths must be known in advance. The aim of the presented model
is to minimize the total evacuation time for evacuees. The presented simulation-based
optimization procedure utilizes Dynasmart-P to evaluate evacuation plans (i.e. departure
times and paths assignments). As long as the stopping criterion is not met, the iterative
procedure reassigns departure times, destinations and paths to destinations to evacuees.
Sbayti and Mahmassani (2006) demonstrate the real-world applicability of their model in
a case study in Fort Worth, Texas (USA) with a total vehicle demand of approximately
47,000 vehicles and different demands for evacuating vehicles.
The work of Chiu et al. (2007) is also based on the seminal work of Ziliaskopoulos (2000).
The presented traffic assignment model is transformed into a single destination traffic
assignment model for evacuation purposes. The transformation to a single destination
problem is performed similar to Han et al. (2006) by adding a super sink to a given
network, that is linked with all “regular” safe destinations. This procedure allows one
to include the assignment of evacuees to safe destinations into the optimization process.
However, the evacuation routing must still be known in advance.
Liu et al. (2008) introduced a comprehensive framework for evacuation planning. The
embedded optimization module utilizes a revised formulation of the CTM approach by
Daganzo (1994) to assign network flows. In a first step, major corridors/arterials for evac-
uation are selected. The second step assigns vehicles to (predetermined) access streets
of corridors. Afterwards, traffic signals will be optimized in order to maximize traffic
throughput on arterials. The last step evaluates the generated evacuation plan and iden-
tifies potential bottlenecks. For a case study in Washington D.C. (USA), the authors find
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out that the preassignment of evacuees to access streets – provided by the local depart-
ment of transportation – is suboptimal, since evacuation times on major arterials differ
significantly.
Kalafatas and Peeta (2009) provide a cell-transmission based optimization model for evac-
uation planning with lane reversibility on a detailed network representation. Lane reversals
are covered by incorporating a set of so-called network design options. Depending on the
selection of certain network design options, lane-reversals are applied in the evacuation
network. For an artificial test network, the authors investigate the effects of different
numbers of reversed lanes, population size and population distribution.

2.1.2 Evacuation Planning with Pedestrians

The movement of pedestrians is different compared to the movement of vehicles. For
example, there are no “lanes” when people evacuate from an area (although lane forma-
tions by pedestrians themselves can be observed when pedestrians evacuate from a long
corridor, see Burstedde et al. (2001)), people can almost instantly accelerate and decel-
erate and people show some unique behavioral patterns, e.g. “faster-is-slower” effect due
to increased blocking clusters (Parisi and Dorso (2005)), self-organization-effects due to
interactions between pedestrians called “social force” (Guo and Huang (2008)), herding
behavior in panic situations (Kirchner and Schadschneider (2002)) or the tendency to es-
cape chaotically or ordered (Song et al. (2006)).
As we will see in the following, large portions of the literature focus on the simulation of
pedestrian evacuations from a single room, so that no evacuation planning in the narrower
sense takes place. Instead, pedestrians made decisions on where to go en route, taking
their direct environment into consideration. If evacuations of pedestrians from larger areas
are of interest, methods of optimization are also often used to determine the evacuation
routing.
Due to the diversity of unique characteristics of pedestrian movements, various approaches
for the microscopic simulation of pedestrians in emergency situations have been developed
to cover important effects simultaneously. Reviews of evacuation planning for pedestri-
ans can be found in Gwynne et al. (1999) and Lee et al. (2003). The work of Hamacher
and Tjandra (2001) contains a more general review of frameworks for evacuation planning
which can also be applied to pedestrian evacuation planning. As can be seen in the review
of Zheng et al. (2009), the most commonly used models for simulating pedestrian move-
ments are cellular automata models, lattice gas models, social force models, fluid-dynamic
models, agent-based models and game theoretic models. The last three approaches are
rarely used compared to the first three approaches. Since the agent-based models are also
often combined with the cellular automata and social force model, we will focus on the
cellular automata model, lattice gas model and the social force model in the following.
The cellular automata approach by Nagel and Schreckenberg (1992) was originally in-
tended to describe vehicle traffic on a microscopic level of detail. The basic idea of this
model is to divide a given street into cells of the size of a vehicle. Each cell can either be
empty or occupied by a vehicle. The simulation updates periodically with a fixed period
length. Thus, vehicle movements through a street are generated by vehicles moving from
cell to cell during the planning horizon. Although this approach shows some similarities to
the CTM by Daganzo (1994), major differences exist in terms of cell size, flow propagation
and the level of detail. Large-scale applicability of this approach for traffic illustration has
been demonstrated, see Nagel and Rickert (2001).
This approach can be applied to pedestrian traffic with slight pedestrian-specific adjust-
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ments of cell size, movement speed and period length. A major difference between the
simulation of evacuating vehicles and the simulation of evacuating pedestrians is the num-
ber of possible moving directions. On a single lane, cells are ordered in a row. Thus,
vehicles on a single lane have only one alternative to proceed (i.e. the driving direction).
In terms of pedestrian evacuation, a grid of cells is assumed, where pedestrians have eight
possible moving directions, because each cell is surrounded by eight neighboring cells.
Burstedde et al. (2001) make use of the cellular automata model to simulate pedestrian
movements within a single room with one exit and without obstacles. In order to consider
social interactions between pedestrians, the authors add a so called “static floor field” and
a “dynamic floor field”. These floor fields can be interpreted as additional layers above the
original grid. The static floor field represents a constant level of attractiveness for cells,
e.g. high attractiveness for the exit and low attractiveness for cells far away from the
exit. Thus, it can be regarded as the knowledge of the pedestrians about the surrounding.
The dynamic floor field also represents the attractiveness of a cell, but in this field, the
attractiveness is not constant over time. In detail, the attractiveness increases with an in-
creasing number of pedestrians passing this cell. Thus, the dynamic floor field dynamically
affects the transition probability, because more attractive cells (in terms of the floor field)
have a higher probability to be visited. Hence, this modification of the cellular automata
approach allows to consider herding behavior in groups of pedestrians. The authors also
incorporate diffusion and decay of the dynamic floor field in their simulation model to
limit the temporal interaction range of the dynamic floor field.
Kirchner and Schadschneider (2002) adopt the approach from Burstedde et al. (2001) and
investigate the sensitivity of the model parameters for the case of pedestrians evacuating
from a large room with two exits. They find out that both, the knowledge about the
location and a certain degree of herding behavior in combination results in the shortest
evacuation times.
Varas et al. (2007) also use the cellular automata model with a static floor field to simulate
pedestrian evacuations. They consider several aspects to make the model more realistic,
e.g. using a random process to choose between two possible destination cells of the same
attractiveness. On the basis of this model, they study the effect of obstacles as well as
door sizes and door positions in the case of evacuating a large classroom. It turns out that
larger and well-positioned doors help to reduce the evacuation time.
Zheng et al. (2010) also employ the cellular automata model as the basic concept for their
pedestrian simulation. Additionally, they also take a static floor field and social forces (as
described above) into account. The authors also consider obstacles during the evacuation
of pedestrians from a large room, but they regard the obstacle in terms of a partition wall
as an instrument to lower evacuation time instead of a handicap for pedestrians. They find
out that too short partition walls have less coordination effects on pedestrian flows, but if
the partition wall is too long, increased jamming of pedestrians in front of the bottleneck
between the wall of the room and the partition wall can be observed.
The basic concept of using a grid to divide a given area into cells that can be passed in
one time step is also used by Yue et al. (2011). They enhance this concept by introducing
a direction-parameter and an empty-parameter to take effects of pedestrian jams into ac-
count. Moreover, they apply a cognition coefficient to consider the ability of pedestrians
to recognize jams around exits. The resulting “Dynamic Parameter Model” is then used
for investigating the effects of asymmetrical exit layouts.
An other approach to simulate the movement of pedestrians is the lattice gas model. These
models are a special case of cellular automata, see Zheng et al. (2009). Often, lattice gas
models are combined with social force models to incorporate interactions between pedes-
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trians and other pedestrians as well as obstacles or walls.
Song et al. (2006) introduce the so-called “multi-grid model” using the basic ideas of the
lattice gas model. Additionally, they refine the lattice so that a pedestrian does not occupy
only one grid, but nine (3 × 3) grids with a “center” located in the middle. By doing
so, Song et al. (2006) are able to incorporate more detailed rules for simulating extrusion,
repulsion and friction between pedestrians. They also consider a variable which represents
the tendency to evacuate ordered or chaotically, called drift. They found out that a more
chaotic behavior of pedestrians leads to increasing evacuation times compared to an or-
dered evacuation, where pedestrians were forming queues in front of an exit that reduce
blocking clusters.
Guo and Huang (2008) also use the basic concept of the lattice gas model to simulate pedes-
trian movements, but they address the problem of inexactly computation of the moving
distance and evacuation time when pedestrians move diagonally through the lattice. They
overcome this weakness by introducing the “mobile lattice gas model” that allows mobile
positions for the surrounding lattices. Similar to Song et al. (2006), they also integrate
social forces into their model in terms of repulsion and friction. Both works are applied
to the evacuation of single rooms, where realistic results with typical pedestrian behavior
patterns – e.g. blocking clusters – can be observed.
The social force model for the simulation of pedestrian dynamics is introduced by Helbing
and Molnár (1995). The authors assume that the movement of pedestrians is basically in-
fluenced by three major forces. They propose that pedestrians would like to reach a given
destination, that pedestrians are keeping distance to other pedestrians and obstacles (e.g.
walls) and that pedestrians are attracted by other pedestrians. In order to integrate a
certain degree of randomness, the authors also add a fluctuation term which represents
random variations of the pedestrians’ behavior.
Parisi and Dorso (2005) adopt the social force model by Helbing and Molnár (1995).
Among other things, they investigate the relationship between the door size and the ex-
istence of blocking clusters. It turns out that the probability of finding blocking clusters
only goes to zero for very wide doors and that the stability of blocking clusters decrease
with increasing door size. These effects finally result in reduced evacuation times, when
exit doors become larger.

The previously presented approaches for evacuation planning with pedestrians focuses
on microscopic simulation of pedestrians evacuating from a single room. Hence, these
approaches work well, when the realistic predictions of pedestrians behavior are needed.
Nevertheless, when larger areas (e.g. large buildings or ships) need to be evacuated,
egress routes first have to be determined. This task is usually carried out by optimization
approaches on a lower level of detail.
Karbowicz and Macgregor Smith (1984) present a mathematical optimization model for
evacuation planning in buildings. The model assigns pedestrians to egress routes in a way
that total evacuation time and total traveling distance will be minimized. The authors also
propose a simulation-based optimization procedure based on a k shortest path algorithm
that reassigns evacuees to alternative egress routes if significant queuing appears. This
iterative procedure stops, if the actual level of queuing is below a prespecified level of
queuing.
The work of Sinuany-Stern and Stern (1993) dealing with the simultaneous evacuation of
vehicles and pedestrians has already been discussed in Section 2.1.1.
Yamada (1996) develop two approaches for evacuation planning, namely the allocation of
evacuees to their nearest exits and a simple network flow model taking capacity restrictions
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of shelters into account. Originally designed for evacuation planning with pedestrians
only, these approaches can be applied to evacuation planning with pedestrians as well as
evacuation planning with vehicles due to its highly aggregated formulation.
Fang et al. (2011) define a multi-objective evacuation routing problem on the basis of a
hierarchical directed network. The optimization problem minimizes the total evacuation
time, total evacuation distance and the cumulative congestion during evacuation. They
develop a modified ant colony optimization approach that shows promising performance
for the evacuation of a stadium.

2.1.3 Further Related Problems

As discussed above, large portions of literature focus on traffic routing and/or traffic
assignment in the context of evacuation planning. However, other tasks in evacuation
planning have also to be solved, see Figure 1.2. In the following, we will present several
approaches covering the problem of shelter planning, the supply with medical services and
how public transport can be integrated into evacuation planning.
Sherali et al. (1991) present a location-allocation model for selecting a set of shelters out
of potential locations and routing traffic in order to minimize the total evacuation time.
The authors assume that each possible shelter has a limited capacity for evacuees and
that each shelter requires a predetermined amount of (limited) staff to be operated. The
resulting optimization model is a network flow model considering limited capacities for
shelters.
Kongsomsaksakul et al. (2005) also consider the shelter choice in their evacuation plan-
ning approach. They present a bi-level optimization framework. Similar, to Sherali et al.
(1991), the upper level chooses a set of shelters from a given set of possible safe desti-
nations. Subsequently, the lower level determines the assignment of evacuees to shelters
and the traffic routing simultaneously. To solve this optimization problem, the authors
develop a genetic algorithm based heuristic procedure.
Saadatseresht et al. (2009) suggest the extensive use of a geographical information system
(GIS) for evacuation planning within a three-stage planning approach. The first step de-
termines safe destinations taking available space, basic living requirements and danger into
account. The second step allocates potential candidate (safe) destinations to each building
block. The paths between each building block and potential destinations are computed by
a shortest path algorithm. The last step contains a multiobjective optimization problem
that assigns each building block to a safe destination. A case study for an area of Tehran
(Iran) with approximately 22,000 evacuees is conducted.
A two-stage stochastic programming model for shelter planning within an evacuation
is presented in Li et al. (2011). The authors differentiate between existing permanent
shelters, new permanent shelters and temporary shelters as well as distribution centers
supplying the shelters. The first stage of their approach assigns locations and capacities
(in terms of staff and commodities) and held resources to new permanent shelters. Here,
fix and variable costs for building new shelters and holding inventory are minimized. In
the second stage, evacuees are assigned to all type of shelters so that transportation costs
for evacuees and resource distribution as well as surplus/shortage costs for resources will
be minimized. A heuristic procedure for solving the two-stage stochastic programming
model is proposed and tested in a case study in the Gulf coast region (USA).

If a disaster strikes an unprepared populated region, many casualties may need medical
services. In suchlike situations, medical capacities (e.g. ambulances and health personnel)
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must be utilized efficiently to keep the number of fatalities low.
Jia et al. (2007) model the problem of allocating medical resources (medical facilities) to
so-called “demand points” as a maximal covering facility location problem. They assume
that each demand point can be covered at a certain service level depending on the distance
between the medical facility and the demand point. Moreover, the maximum number of
facilities is limited and possible locations for medical facilities must be known in advance
so that only a subset of these locations will be used as facilities. The authors proposed
several heuristic solution procedures which are tested for a large case study in Los Angeles
County, California (USA).
An approach for the localization and distribution of medical supply under consideration of
multiple scenarios is presented in Mete and Zabinsky (2010). The authors propose a two-
stage stochastic programming model that selects warehouses (for storing medical supply)
and determines inventory levels for each medical supply type in each warehouse in the first
stage. The objective is to minimize the warehouse operating costs plus the expected value
of the objective of the second stage problem. The second stage contains the distribution
of medical supply from warehouses to hospitals so that the total transportation duration
and penalties of unfulfilled demand will be minimized. A real-world case study for the
city of Seattle, Washington (USA) is presented.

Most of the presented literature only considers the evacuation by vehicle and/or by foot
out of an endangered area. However, in urban areas, the public transportation system
(e.g. metro, bus) represents a mass transit with the potential to get a large number of
persons out of an endangered area quickly.
Sayyady and Eksioglu (2010) consider the evacuation via public transport only. They
formulate a static network flow problem as a mixed-integer linear optimization problem to
determine the routing of public transport vehicles under consideration of limited capacities
(evacuees per vehicle, total number of available vehicles). Moreover, the authors suggest
to use a tabu search based heuristic procedure to solve large instances of the optimization
problem. A case study for Fort Worth, Texas (USA) is performed to prove real-world
applicability.
Bish (2011) introduces a bus-based evacuation planning approach in terms of two math-
ematical programming formulations. The author assumes that buses (initially located at
yards) transport evacuees from pickup locations to shelters with limited capacities so that
the total evacuation time will be minimized. The presented models are classified within
the known literature of vehicle routing problems and two heuristic solution procedures are
developed and tested for artificial scenarios.
In Bretschneider (2011), shuttle buses are considered within an evacuation planning ap-
proach. The presented model differentiates between public lanes (i.e. for evacuation traffic
and shuttle buses) and emergency lanes (i.e. only for shuttle buses). Since the existence of
a feasible solutions can not be guaranteed if all crossing avoidance constraints within inter-
sections will be kept, penalty costs are introduced to rate the existence of crossing conflicts
within intersections. The author propose a four-staged heuristic solution procedure that
shows promising performance in a computational study.
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2.2 Simulation-based Optimization

Real-world optimization problems are often difficult to solve due to complex interactions
which can not be handled analytically in a closed form and due to stochastic influences,
see Mayer (2011). Here, simulations are the method of choice to evaluate the objective
value and to check the feasibility of a solution. If (optimum) solutions for such kind of
problems are desired, simulation-based optimization procedures should be applied. These
methods often take the outcome of a simulation into account to improve the solution in
an iterative process. In the following, we will present frequently applied simulation-based
optimization methods and give examples for applications.
In general, we assume the following optimization (minimization) problem, see Fu et al.
(2008). Maximization problems can be treated similar.

min
θ∈Θ

J(θ) (2.1)

Here, θ is a p-dimensional solution vector within the feasible solution space Θ. For complex
optimization problems, we usually have no knowledge about the convexity or linearity of
J(θ) and Θ. Instead, in the context of simulation-based optimization, we assume that J(θ)
can be represented by the expected value of the sample performances L(θ, ω), themselves
depending on the solution vector θ and the simulation replication ω, see equation (2.2).

J(θ) = E[L(θ, ω)] (2.2)

The simulation replication ω represents the uncertainty/randomness in the model. It
can also be interpreted as a certain scenario, i.e. a feasible (deterministic) realization of
uncertain parameters. We will use this notation in the following when simulation-based
optimization methods will be discussed. In detail, we will focus on the response surface
method, sample path optimization, stochastic approximation, ranking and selection, ran-
dom search and metaheuristic approaches. The following explanations of these methods
are mainly taken from Fu (2002), Fu et al. (2008) and Mayer (2011).

Response Surface Method
The basic principle of the response surface method (RSM) is to obtain a functional re-
lationship – i.e. the response surface – between the input and the output (response) of
the simulation. If two variables are considered, the response surface will look like a hilly
landscape, where the height of the landscape denotes the response for given values for
the variables. If the complete domain is relevant, neural networks or regression methods
are often used to determine the entire response surface. However, if this is not possible,
an (iterative) sequential response surface method can be applied instead. The basic idea
is to construct a response surface for a small part of the entire domain and to use the
information gained from this local area to select a new promising local area that can be
investigated in the next iteration. Suchlike procedures often make use of gradient estima-
tion/steepest descent method to determine in which area the response surface should be
investigated next. The procedure closes with a detailed search in the last response surface,
if no more promising local areas exist.
Jaluria (2009) proposes the response surface method for the application in thermal systems
since relationships in chemical processes are often non-linear, but steady-going. Thus, a
well-approximating response surface can be constructed with a relatively low number of
measuring points.
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Sample Path Optimization
The sample path optimization (SPO) deals with the application of deterministic opti-
mization methods to originally non-deterministic problems. This is possible because of
the transition from stochastic optimization model to a deterministic optimization model.
Let us assume that a total of m different scenarios exist and that we consider the first n
of them, i.e. ω = (ω1, . . . , ωn, . . . , ωm), then we can compute the mean of L(θ, ωi) (i.e.
E[L(θ, ωi)]) for the first n scenarios (i.e. the sample path) by equation (2.3).

Ln(θ) =
1

n

n∑

i=1

L(θ, ωi) (2.3)

If each L(θ, ωi) is an independent and unbiased estimator of J(θ), then Ln(θ) will converge
to J(θ) for a sufficiently large n, see Fu (2002).
In other words, we use a finite set of different scenarios with deterministic realizations
of originally non-deterministic parameters and compute the mean value of all scenarios
for a given solution θ. This approach allows one to take advantage of the methods for
deterministic optimization.
Sample Path Optimization methods are often used in supply chain planning. Jung et al.
(2004) develop an simulation-based optimization approach on the basis of sample path
optimization to cope with the problem of determining safety stock levels under uncertain
demand so that a given customer satisfaction level will be met.

Stochastic Approximation
The stochastic approximation can be regarded as a gradient based search method for
non-deterministic/non-linear optimization problems. Taking the current solution as a
reference, the stochastic approximation iteratively computes a new solution θn+1 according
to equation (2.4), see Fu (2002).

θn+1 =
∏

Θ

(θn − an∇̂J(θn)) (2.4)

Here,
∏

Θ denotes the projection of the new solution θn+1 back in the constraint set, if
θn+1 would be located outside the feasible region. Moreover, an denotes the step size
and ∇̂J(θn) represents the estimated gradient of the objective function of the current
solution. The i-th gradient of the objective function can be estimated by the one-sided
finite difference (FD) (eqn. (2.5)), the two-sided symmetric difference (SD) (eqn. (2.6))
and by the method of simultaneous perturbations (SP) (eqn. (2.7)), see Fu (2002).

(∇̂J(θ))i =
Ĵ(θ + ciei)− Ĵ(θ)

ci
(2.5)

(∇̂J(θ))i =
Ĵ(θ + ciei)− Ĵ(θ − ciei)

2ci
(2.6)

(∇̂J(θ))i =
Ĵ(θ + ∆)− Ĵ(θ −∆)

2∆i
(2.7)

Here, Ĵ(θ) is the estimation of the objective function considering solution θ. In the equa-
tions (2.5) and (2.6), ci is a positive scalar and ei is the unit vector. ∆ = [∆1, . . . ,∆p]
denotes a p-dimensional perturbation vector, e.g. the symmetric Bernoulli Distribution,
see equation (2.7). It should be noticed that the number of required simulation runs to
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compute the estimation of the gradient differ significantly with p + 1 for the FD, 2p for
the SD and 2 for the SP, see Fu (2002).
The stochastic approximation is used for problems in different applications. Schwartz et al.
(2006) consider a supply chain planning problem with supply and demand uncertainties.
They use the stochastic approximation in combination with the method of simultaneous
perturbations (SPSA) to manage inventory levels. Graf and Kimms (2011) apply the
simultaneous perturbation stochastic approximation to the problem of determining book-
ing limits for capacity control in the context of revenue management for strategic airline
alliances.

Ranking and Selection
In contrast to previously discussed simulation-based optimization methods, ranking and
selection contains no search for improved solutions, but an – usually exhaustive – eval-
uation of a given set of alternative solutions. Hence, ranking and selection methods are
methods of comparison rather than of optimization. Gosavi (2003) suggests to consider
not more than 20 solution alternatives.
Similar to the sample path optimization where a given number of scenarios is taken into
account, we can estimate the objective function for a given solution under consideration
of S scenarios by equation (2.8).

LS(θ) =
1

S

S∑

i=1

L(θ, ωi) (2.8)

The difference to the sample path optimization is the absence of any optimization process.
Instead, the ranking and selection method simply computes the estimation of the objective
function of all solution alternatives – each considering S scenarios – and selects the best
solution. A variant of this approach additionally requires the definition of an indifference
zone and a confidence interval to assist the selection of the best solution.
Ahmed and Alkhamis (2002) combined the ranking and selection method with a simulated
annealing algorithm to solve a general discrete stochastic optimization problem and an
inventory optimization problem with uncertain demands.

Random Search
The random search can be regarded as the counterpart of a local search for deterministic
problems. Starting with an initial solution θ̂ ∈ Θ, the neighborhood of this solution N(θ̂)
can be obtained by modifying the original solution θ̂ according to predetermined rules.
In order to guarantee the convergence of this method to a global optimum, Andradóttir
(1996) proposed to define the neighborhood of θ̂ (N(θ̂)) to contain all θ ∈ Θ\{θ̂} so that,
in fact, a global search would be performed.
A possible random search for minimization problems works as follows, see Fu (2002): Start-
ing with θ̂ as an initial (and currently best) solution, the random search now iteratively
selects a new solution θi ∈ N(θ̂) and evaluates this new solution by the estimation of the
objective function Ĵ(θi). If the estimation of the objective function of the new solution
Ĵ(θi) outperforms the estimation of the objective function of the currently best solution
Ĵ(θ̂) (i.e. Ĵ(θi) < Ĵ(θ̂) for minimization problems), then θ̂ ← θi and a new neighborhood
of θi as the new best solution will be defined. Now, the next iteration starts with the
selection and evaluation of a new solution out of the new neighborhood N(θ̂). The proce-
dure stops, if the stopping criterion (e.g. a given number of iterations or a given number
of iterations without improvements) is reached and the best solution θ̂ will be returned.
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A framework for choosing high quality solutions for discrete stochastic optimization prob-
lems using the random search method can be found in Alrefaei and Alawneh (2005). The
authors combine their approach with a simulated annealing algorithm to solve a discrete
stochastic optimization problem containing a M/M/1 queuing model.

Metaheuristic Approaches
Procedures belonging to the class of metaheuristic solution approaches are characterized
by general search techniques that can be applied to a large number of different problems.
Typical examples of metaheuristic approaches are genetic algorithms (GA), simulated
annealing (SA) and tabu search (TS), see Domschke and Drexl (2005). Usually, these
approaches construct new solutions (or a population of solutions) by given rules (e.g.
mutation and crossover in GA or definition of neighborhoods in SA and TS) and evaluate
these solutions. Depending on the type of problem, the evaluation of a solution can be done
by calculating the objective function value in case of a deterministic optimization problem
or by estimating the objective function via simulation, if non-deterministic (stochastic)
optimization problems have to be solved. In the latter case, the simulation can be regarded
as a black box that only evaluates solutions, see April et al. (2003).
Li (2009) combines a genetic algorithm with a circuit simulator for the optimization of low
noise amplifier designs. The author uses the weighted deviation of the simulation results
of a given circuit design from a target specification as the fitness score.

2.3 Summary

The number of cited works dealing with evacuation planning illustrate, that this type of
problem represents an interesting field of research. Taking the basic thoughts about evac-
uation planning for urban areas from Section 1 into account, the following advantages and
disadvantages can be derived.
As inherent to their functional principle, traffic simulation approaches are not capable
of any optimization process. On the other hand, traffic simulation approaches allow a
much more realistic illustration of traffic, especially when microscopic simulations are
used. Hence, these approaches are the method of choice to evaluate a given evacuation
plan and to provide helpful information within a simulation-based optimization approach.
Traffic assignment optimization models allows one to assign traffic within a given traffic
routing framework in a way that minimizes/maximizes an objective function (e.g. total
evacuation time). A large portion of the presented work considering traffic assignment
problems is built upon the CTM approach from Daganzo (1994). This approach – that
was originally intended to be used as a macroscopic traffic simulation model – integrates
basic traffic dynamics into an optimization approach. Hence, the CTM seems to be a
good compromise between computational complexity (the CTM can be embedded into an
optimizational approach) and reasonable traffic illustration.
Some works taking traffic routing and traffic assignment into consideration lack of an ade-
quate traffic representation. In the beginning, static network flow problems were proposed
(see e.g. Yamada (1996) or Cova and Johnson (2003)). Later, combinations of optimization
and simulation methods were partially combined (see e.g. Murray-Tuite and Mahmassani
(2003), Murray-Tuite and Mahmassani (2004) or Stepanov and MacGregor Smith (2009))
to allow a more realistic illustration of traffic and to evaluate the solutions generated by
optimization approaches by a traffic simulation.
These observances motivates us to utilize the basic ideas of the CTM approach by Da-
ganzo (1994) to formulate evacuation planning models that simultaneously determines the
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traffic routing and traffic assignment in the case of an evacuation in one step. Since the
traffic representation of the CTM approach is clearly outperformed by microscopic traffic
simulations, we will combine a CTM based evacuation planning model with a microscopic
traffic simulation to benefit from the advantages of both approaches. The basic idea of
our CTM based evacuation planning model has also been adapted to a related problem,
see Kimms et al. (2011) for traffic guiding in the case of big events.



Chapter 3

Cell-Transmission-Based
Evacuation Planning

In this chapter, a basic evacuation planning model based on the cell-transmission approach
by Daganzo (1994) will be presented, compare Kimms and Maassen (2011b). First, we
introduce the reader to the basic ideas behind the Cell-Transmission-Model (CTM). After-
wards, the Cell-Transmission-Based Evacuation Planning Model (CTEPM) will be formu-
lated and discussed. In a first step, we use the CTEPM to compute the evacuation routing
as well as the traffic assignment and in a second step, a microscopic traffic simulation will
be applied to obtain a more realistic illustration of traffic flows during an evacuation.
To demonstrate real-world applicability of our approach, we will compute and simulate
an evacuation plan for a neighborhood in the city of Duisburg, Germany. A sensitivity
analysis is performed to investigate the effects of changing evacuation circumstances (i.e.
departure pattern, population size, initial traffic loading).

3.1 Cell-Transmission Basics

Daganzo (1994) studied the evolution of traffic over a one–way highway without any inter-
mediate entrances or exits and proposed the cell transmission model in this context. This
model bases on the hydrodynamic traffic flow model by Lighthill and Whitham (1955) and
Richards (1956). Since we will use the cell transmission model as a basis for our work, we
will briefly review the underlying ideas of Daganzo’s cell transmission model: The high-
way to be studied is to be divided into sections (cells) and I is the set of section numbers.
These sections are inspected in snapshots which are taken every tick of a clock. The length
of the sections are set equal to the distances traveled in light traffic by a vehicle in one
clock tick which means that a vehicle can advance from one section to the next with each
tick if the traffic is light. Let clock tick t be the end of the time window ]t − 1; t] which
is referred to as period t, and let xit be the number of vehicles in section i at clock tick t.
Under light traffic and unidirectional flow we observe a flow of vehicles yi,i+1,t which leave
from section i in period t which reach section i+1 during period t+1. Due to our applica-
tion, all values xit and yi,i+1,t must fulfill the non–negativity condition. To model queuing
Daganzo introduced two parameters: Nit, the maximum number of vehicles that can be
present in section i at the same time, and Qit, the maximum number of vehicles that can
flow into section i during a period. Using this notation the flows must fulfill the following
three conditions: (i) yi,i+1,t ≤ xit, (ii) yi,i+1,t ≤ Qi+1,t, and (iii) yi,i+1,t ≤ Ni+1,t − xi+1,t.
Boundary conditions for the first and the last section can be specified easily. With these
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recursive relations between sections, Daganzo run a simulation of the traffic along a one–
way highway without intermediate entrances and exits. In a sequel to the above cited
paper, Daganzo (1995) studied an extension of the cell transmission model that can be
used to simulate traffic in road networks, but we will not review the details here. As dis-
cussed in Chapter 2, several authors presented optimization methods based on Daganzo’s
cell transmission model, e.g. Ziliaskopoulos (2000), Tuydes and Ziliaskopoulos (2004),
Tuydes and Ziliaskopoulos (2006) or Chiu et al. (2007). Ziliaskopoulos (2000) considers a
dynamic traffic assignment problem which is confined to one single destination and where
the integrality condition of the traffic flows (number of vehicles) is relaxed. Tuydes and
Ziliaskopoulos (2004) and Tuydes and Ziliaskopoulos (2006) use the dynamic traffic as-
signment problem formulation and allow lane reversals, i.e. the redirection of lanes. Chiu
et al. (2007) present a linear programming model with multiple destinations (leading to
a super sink) and solved a small example. In contrast to the optimization model that we
will define in this chapter, the work of Chiu et al. (2007) is more restrictive with regard to
the following aspects: It is not taken into account that the level of danger differs within
the considered area. The orientation of traffic flow is predefined (cells have successors and
predecessors), but the orientation is not a result of the computation. Departure times are
only indirectly considered by observing the vehicle outflow from source cells.
The contribution of the following approach is twofold:

• Daganzo’s idea of considering road sections and flows between these sections is mod-
ified to formulate an optimization problem for evacuation that is more general than
previous work for computing possible traffic routes in complex street networks as
well as assignments to safe destinations. So, the cell transmission approach is used
for optimization and not for simulation in our model.

• Given the possible traffic routes from the previous step, a simulation which is more
detailed than Daganzo’s work is done to predict the traffic’s evolution in complex
street networks. Thus, the traffic simulation is based on an optimized network design.

3.2 Cell-Transmission-Based Evacuation Planning Model

3.2.1 Notation

Assume that a street network is given so that the endangered zone is a subnetwork of
the given network and safe destinations are part of the given network as well. A real–
world street network is modeled as a graph where nodes of the graph represent equal–sized
sections of a street and edges in the graph indicate that two sections are close to each other
in reality (see Figure 3.1 for an illustration). The nodes in the graph, i.e. the sections of
the streets, are numbered. Let I = {1, ..., |I|} be the index set of the cells where |I| denotes
the super sink. A parameter βij = 1 indicates that sections i ∈ I and j ∈ I are adjacent
to each other (the order of indices is irrelevant and hence βij = βji). If two sections i ∈ I
and k ∈ I are not adjacent the value βik is 0.
Similar to Daganzo’s cell transmission model we assume a clock and take a snapshot of
the situation at every clock tick. The time interval between two consecutive clock ticks is
one period by definition. The size of the sections represented by a node in the graph is
chosen such that a vehicle can pass this distance within one period if the traffic is light.
If, for instance, the speed of a vehicle under light traffic is 13.89 meters per second (= 50
kilometers per hour) and the time interval between two consecutive clock ticks is assumed
to be 9 seconds then a graph node represents a section of length 125 meters. If we further



3.2 Cell-Transmission-Based Evacuation Planning Model 23

30 km/h

clock ticks every 9 seconds

125m

75m

i j k

βij = 1 = βji

2 lanes:

Qit = 2× 7
Nit = 2× 22

50 km/h 50 km/h

30 km/h

Figure 3.1: An Illustration of the Graph Representation of a Street Network

assume that the street section consists of a single lane and an average vehicle has a length
of 4.5 meters and the distance between two consecutive vehicles with speed 13.89 meters
per second is, say, 13.3 meters, the maximum number of vehicles traveling with normal
speed on one lane in the same section is about 7 (≈ 125/(4.5 + 13.3)) which means that
no more than 7 vehicles can enter this section within one period. In a traffic jam where
vehicles move slowly or not at all we may observe a distance between two vehicles of just
one meter on average which means that about 22 vehicles (= ⌊125/5.5⌋) at most can be
on one lane inside the same section. Likewise, if we consider a street where the light traffic
speed is 30 kilometers per hour, one section represents 75 meters of the street (again, the
clock ticks every 9 seconds). Given the number of lanes for each section, we have parame-
ters Nit for the maximum number of vehicles in section i, Qit for the maximum number of
vehicles which can enter section i in one period or which can leave section i in one period.
See again Figure 3.1 for an illustration. These parameters have an index t, because the
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capacity of a section may vary over time (e.g. streets may be unusable after some time).
In the following, we assume that storage and flow capacities will be constant over time.

Further notation is necessary to formulate a mathematical programming formulation of
the evacuation problem. Let T = {1, ...} be the index set of the clock ticks taken into
account where |T | is an upper bound for the time needed to evacuate all. Ei is the number
of vehicles to be evacuated from section i ∈ I. We can assume E|I| = 0, because nobody
is located within the super sink. Since the danger for being in different sections may be
different, a weight cit ≥ 0 is used to specify the danger in section i in period t (the higher
the weight, the greater the danger). Of course, even if the danger in section i is constant
over time one may choose values cit = ci · t which increase with t to avoid unnecessary
waiting. We can assume c|I|,t = 0, because there is no danger at a safe place (= super
sink).
The decision variables of the evacuation problem are zit the number of residing, leaving
or waiting vehicles which use section i in period t, xit the number of residing vehicles in
section i at clock tick t (the end of period t) — assume xi1 to be the given number of
vehicles on street segment i before the evacuation starts —, yijt the number of vehicles
which leave section i in period t and reach section j in period t + 1 — please note that it
is sufficient to consider only those flow variables yijt where βij = 1 holds —, and bit the
number of vehicles out of Ei which start to move in period t.

3.2.2 Model Formulation

The mathematical programming formulation of a cell-transmission-based evacuation plan-
ning model (CTEPM) which determines the traffic routing, which (indirectly) assigns
traffic to the existing lanes, which assigns vehicles from parts of the network to safe des-
tinations, and which determines when vehicles start to move reads as follows:

min
∑

i∈I

∑

t∈T

citzit (3.1)

subject to

zit = xit +
∑

j∈I

yijt + (Ei −
t∑

τ=1

biτ ) i ∈ I; t ∈ T (3.2)

xit = bit + xi,t−1 +
∑

j∈I

yji,t−1 −
∑

j∈I

yijt i ∈ I; t = 2, . . . , |T | (3.3)

zit ≤ Nit + (Ei −
t∑

τ=1

biτ ) i ∈ I; t ∈ T (3.4)

∑

t∈T

bit = Ei i ∈ I (3.5)

x|I|,|T | =
∑

i∈I

Ei +
∑

i∈I

xi1 (3.6)

yijt ≤ Nitβij i, j ∈ I; t ∈ T (3.7)
∑

j∈I

yjit ≤ Nit − xit i ∈ I; t ∈ T (3.8)

∑

j∈I

yjit ≤ Qit i ∈ I; t ∈ T (3.9)
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∑

j∈I

yijt ≤ Qit i ∈ I; t ∈ T (3.10)

zit ≥ 0 i ∈ I; t ∈ T (3.11)

xit ≥ 0 i ∈ I; t ∈ T (3.12)

yijt ≥ 0 i, j ∈ I; t ∈ T (3.13)

bit ≥ 0 i ∈ I; t ∈ T (3.14)

xi1 = 0 i ∈ I (3.15)

yij1 = 0 i, j ∈ I (3.16)

bi1 = 0 i ∈ I (3.17)

The objective (3.1) is to minimize the weighted number of residing, leaving or waiting ve-
hicles in all sections over time. The weights for the sections take into account the danger
in a section (sections with low danger (i.e. low ci-values) are preferred) and the time of
use (early flow (i.e. low values for t) is preferred). The number of vehicles which use a
section in a period is defined to be the sum of those which remain in the section at the
end of a period, the number of those which leave the section in that period, and those
which wait for departure — see (3.2). The number of vehicles which remain in section i
at the end of a period — see (3.3) — equals the number of vehicles which start to move in
the period plus the number which were in the section the previous period plus the num-
ber of vehicles which enter from other sections minus the number of vehicles which leave
the section in that period. Because of (3.4) the number of vehicles which use a section
must not exceed the capacity limit of the section where vehicles waiting for departure are
assumed to occupy no street capacity. All vehicles within the endangered network must
start to move (3.5). Due to (3.6) all vehicles reach a safe destination. Traffic can flow
from one section to another only if these two sections are linked (3.7). The restrictions
(3.8) make sure that the inflow into a section does not lead to an excessive capacity usage
in the section, i.e. empty space must be available. Inflow (3.9) and outflow (3.10) capacity
limits are taken into account as well. The domains of the decision variables are defined by
(3.11)–(3.14). Boundary conditions to avoid any vehicle movement before the evacuation
starts are stated in (3.15)–(3.17).

Please note that we define all decision variables as non-integer so that the optimization
problem becomes an LP. In fact, it may happen that some variables take non-integer values
but for our example with only integer parameters, all variables – which are relevant for
the simulation – were set to integer values automatically. These variables are mainly the
cumulated number of vehicles traveling from cell i to j, because these variables determine
how many vehicles will travel on given street connections. We use ηij =

∑
t∈T yijt to

denote the total number of vehicles traveling from cell i to cell j during the complete
planning horizon. Moreover, driving directions and lane allocations have to be determined
for the simulation. Let ϕij = 1 (ϕij ∈ {0, 1}) if vehicles travel from cell to i to cell j
(ηij > 0) and let ǫij (ǫij ∈ N0) denote the number of lanes used between two cells. We

compute ǫij with ǫij =
⌈

ymax
ij

(Qi/li)

⌉
where ymax

ij is the maximum amount of vehicles traveling

from cell i to cell j (on all lanes) considering all periods and (Qi/li) is the maximum
vehicle flow capacity per lane where li is the number of lanes in cell i. Please note that we
assume that vehicle flow capacities are not changing within the planning horizon so that
using Qi (instead of Qit) is sufficient. Moreover, we assume that the vehicle flow capacity
per lane (Qi/li) is the same for all cells i ∈ I.
A possible heuristic postprocessing approach to overcome issues caused by non-integrality
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of ηij (ϕij and ǫij are set automatically to integer values) consists of a simple static network
flow model which uses the (integer and/or non-integer) ηij values from the CTEPM as a
starting point to generate a less as possible modified solution consisting only of integer
values for the cumulated number of vehicles traveling between two cells, see Chapter 4.2.2.
Since suchlike adjustments were not necessary for our instances, we took the original ηij

values from the CTEPM. We have used the commercial software package GUROBI to
solve instances of this model formulation optimally.
Please note that the model allows feasible solutions with traffic flows in opposite directions
between two street segments, i.e. yijt > 0 for some period t does not imply yjit′ = 0 for
all periods t′. Also, typical solutions let the traffic from a particular street section flow
to a limited number of exits. Please note that the model allows that vehicles from one
street section flow to different exists which means that at some intersections we observe a
divergent traffic flow. Hence, if such a solution is implemented, one needs to control the
traffic in a proper way (such rules may be that vehicles on some lanes must make a left
turn while vehicles on other lanes must make a right turn or a policeman directs some
vehicles to the left and some others to the right).
The described optimization model assumes deterministic data and many aspects that are
due to the dynamic nature of traffic are considered roughly at best. The creation of traffic
jam, for instance, is taken into account by means of capacity constraints, i.e. street sections
cannot contain more than a limited number of cars and the number of cars which move
from one section to another within one period is limited as well, but this is a very rough
description of real behavior. Also, capacity restrictions at junctions are not explicitly
modeled by street sections, because the size of a junctions is relatively small compared to
the street segments. Hence, most of the congested traffic will be observed on the lanes
that are taken into account in the model. In reality there are many dynamic aspects which
have an impact on the observed traffic. For example, the speed of the vehicles depends
on the traffic density and lane-changing movements are performed under consideration of
free space in the destination lane. Such aspects are not fully covered by the proposed
optimization model. Hence, we use parts of the output of the optimization as an input
for a second phase where traffic is simulated to get a better picture of what will happen if
the evacuation begins. How this works is described in detail in the next section.

3.3 Microscopic Traffic Simulation

To perform the traffic simulation, we use the open source SUMO (Simulation of Urban
MObility) microscopic road traffic simulation package by the Institute of Transportation
Systems at the German Aerospace Center. SUMO takes advantage of the car-following
behavior model by Krauß et al. (1997)/Krauß (1998) and the lane changing model by
Krajzewicz (2009). As already explained in the previous section, three categories of values
from the optimization part are passed to the traffic simulation, namely ηij to denote the
total number of vehicles traveling from cell i to cell j, ϕij values indicating whether a
connection from cell i to cell j is used by escaping vehicles and ǫij values assigning an
integer number of lanes to two cells where a traffic flow exists. The information contained
in the values of the zit, xit and bit variables from the optimization part is ignored. Thus,
the optimization model described in the previous section can be seen as a heuristic for
finding a directed street network for which traffic simulation is performed.
The road network in the SUMO simulation can be described by the terms edges and nodes.
Each street segment can be represented by at least one edge and every intersection rep-
resents one node in the network. A close up of the simulation visualization is illustrated
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in Figure 3.2. Vehicles are represented by triangles moving across street segments and
junctions. Dots at one side of a triangle indicate forthcoming turning movements.

Figure 3.2: Detail View of Sumo Visualization

Each street segment is characterized by a given number of available lanes and a starting
as well as an ending node, i.e. two junctions. However, it has to be noticed that the
length of a street segment in the simulation is not the same as in the optimization part
because the simulation allows to model street segments in much smaller steps (and thus
better matching the effective length of a street segment) than a standard cell size in the
optimization part. According to the optimization part, we assume that vehicles travel
with a driving speed of 50 km/h (≈13.89 m/s) and 30 km/h (≈8.33 m/s) depending on
the street segment itself and that all vehicles have the same length of 4.5m. Of course,
other values for driving speeds and vehicle length can also be applied, if desired.
The car following model Krauß et al. (1997)/Krauß (1998) belongs to the class of so-called
“safe-distance models” which are characterized by the assumption that a driver adjusts his
driving speed in due consideration to the distance to the vehicle ahead. Thereby the model
allows to include assumptions regarding driving behavior, e.g. acceleration, deceleration
(braking), response time before acting and target driving speed.
The lane allocation is performed by a relatively simple rule. If vehicles turn right (left)
at the end of the street, all right-turning (left-turning) lanes have to be located as far as
possible to the right (left) side of the street. The allocation of lanes with vehicles driving
straight ahead is located in the center of the street trying to interfere with left- or right
turning lanes as few as possible. It also has to be mentioned that vehicle flows may cross
each other at junctions which would be a huge risk in real world situations, because no
traffic lights exist in our approach. The traffic simulation rules in SUMO ensure a smooth
traffic flow throughout the complete simulation so that no accidents occur. However, we
are not aware of any publications which deal with traffic flow simulation where accidents
play a key role. In practice, if two vehicle flows cross each other at a junction, one vehicle
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flow will wait until there is enough free space to enter the previously blocked junction.
These relations are also displayed in Figure 3.3.

(a) Junction with Allocation of Driving Directions (b) Junction with Blocked Traffic Flows

Figure 3.3: Lane Allocation and Blocking at Junctions

Figure 3.3 (a) displays a junction before the evacuation starts. It can be easily seen that
the allocation of driving directions to lanes is performed in the previously introduced
manner. Moreover, the solution from the optimization part leads to a huge risk due to
crossing traffic streams. In Figure 3.3 (b), it can be recognized that one traffic stream is
blocked as long as vehicles from the crossing traffic stream pass the junction. If enough
free space is available, the waiting vehicles enter the junction so that the vehicles from
other traffic stream have to wait.
The starting time of vehicles is part of the optimization process. However, for the SUMO
simulation, we assume that the number of evacuees which have left their homes till a
certain point of time can be modeled by means of a gamma distribution with parameters
α and β. For α = 3 and β = 3 the peak of the density function is (α − 1)β = 6, i.e.
that during the sixth minute most evacuees will leave their homes. Of course, all resulting
numbers are considered to be minutes. When high traffic density in certain areas of the
endangered network exist, residents may have to wait to start the evacuation due to not
enough space to enter the network. Suchlike observations mainly occur for very fast leaving
behaviors, e.g. setting α = 3 and β = 1 resulting in slower departure patterns as originally
computed by the gamma distribution.

3.4 Case Study: Duisburg (Neudorf), Germany

3.4.1 Basic Information and Assumptions

To test the proposed optimization and simulation procedures, we have implemented the
models with commercial and open source software. For the optimization part we have
used GUROBI 3.0.1 and the simulation was done with SUMO 0.11.1. All computational
tests were done on an Intel X9100 (3.06 Ghz) with 8 GB RAM running Windows Vista
(64-bit).
We tested a hypothetical evacuation scenario with data of a real–world–sized problem.
The neighborhood around the University of Duisburg–Essen was used as an example. We
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know that approx. 26,000 people live in the Duisburg–Neudorf neighborhood and we as-
sumed that on average three persons share one vehicle which means that 8,801 vehicles are
simulated. The distribution of these people was given to us by the city administration, see
Figure 3.4. In total, there are eight exits where evacuees can escape from the endangered
network. An illustration of the simulation model for the Duisburg–Neudorf case can be
found in Appendix B.

Figure 3.4: Population Density in Duisburg–Neudorf
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In the cell transmission model based mathematical program the network of Duisburg–
Neudorf turned out to require |I| = 256 sections including the super sink |I| and we set
|T | = 76. Moreover, we assume a uniformly distribution of danger of cit = ci · (t− 1) with
ci = 100 for all cells within the endangered network and c|I|,t = 0 for the super sink |I|.
The objective function has been extended by two additional terms to ensure a “straight-
forward” solution and to avoid “unpractical” vehicle flows. If two adjacent cells share the
same level of danger, unnecessary vehicle movements between these cells may occur. This
would not correspond to a desired “straight-forward” solution so that the term

+10−6 ·
∑

i∈I

∑

j∈I

∑

t∈T

yijt (3.18)

has been added to the objective function to avoid unnecessary vehicle movements. In order
to avoid odd situations where vehicle use adjacent cells as short cuts to bypass bottlenecks
we also added the following term to the objective function.

+10−6 ·
∑

i∈I

∑

j∈I:
βij=1

∑

k∈I:
βik=
βjk=1

∑

t∈T

(yijt + yjkt) (3.19)

As an example, imagine a t-junction with three cells, see Figure 3.5. The model formulation
allows traffic flows, where vehicles first move from cell i and cell j and then move from
cell j to cell k. To reduce suchlike situations, the term has been added to the objective
function.

i k

j
k

i j

Figure 3.5: Undesired Situations in Evacuation Plans

Using these extensions to the objective function, the GUROBI solver found an optimal
solution in about 67 seconds.

In the optimization model, it makes no difference whether vehicles are waiting at home or
if these vehicles are waiting within the cell if streets are congested since we assume that all
cells share the same level of danger at each time. Therefore, there exist a large number of
different (optimal) solutions with different leaving patterns. In order to display extreme
situations with extremely fast and extremely slow departures, we added an additional term

+/− 10−6 ·
∑

i∈I

∑

t∈T

(Ei −
t∑

τ=1

bi,τ ) (3.20)

to the objective function in order to “push” the optimum solution into the desired direction
of generating very fast or very slow departures without degrading the original objective
function value. As can bee seen in Figure 3.6, departure times generated by the cell
transmission based model (i.e. the bit variables) differ significantly from the departure
times which are expected in the gamma distribution for α = 3 and β = 1.



3.4 Case Study: Duisburg (Neudorf), Germany 31

Figure 3.6: CTEPM Based versus Gamma Distributed Embarkation

In all cases, the cell transmission based model loads the road network very fast, especially
at the very beginning of the evacuation. In contrast, the gamma distribution assumes that
at the very beginning of the evacuation process almost no vehicles enter the network which
is a more realistic assumption since some time is needed for preparation. In the following,
the CTEPM with fast departures loads approximately 75% of the total population into
the network within the first seconds. In the case of very slow departures and for the case
without influencing the departure pattern by (3.20) significantly less vehicles depart in
the same time horizon. In detail, only about 10% (20%) of the total population departs
within the first seconds. After this first initial traffic loading, all departure patterns show
a comparable behavior since all departure patterns are characterized by an almost linear
rising until all vehicles are departed. In comparison to the gamma distribution using
α = 3 and β = 1 the slow departure pattern and the uninfluenced departure pattern
show the strongest accordance with relatively large deviations at the very beginning of
the evacuation. Of course, the difference between the departure pattern from the CTEPM
and the gamma distribution using α = 3 and β = 3 would be even larger. The slow
departure pattern also demonstrates the point in time, where all vehicles should have left
their homes at the latest (after approximately 500 seconds) so that the evacuation lasts
not longer than necessary because of late vehicles traveling on empty roads. However, the
departure times of the CTEPM are not expected to be observed in reality, so that the
more established gamma distribution (see Lindell (2008)/Yazici and Ozbay (2008)) will
be used in all simulation runs.

3.4.2 Sensitivity Analysis

A part of the result of the optimization problem is now used as input for the second phase,
the simulation. From the optimization phase we get the information what street segment
can be used in what direction and in which directions turns can be made at intersections.
With this input we start phase two, the simulation, to integrate more realistic traffic
dynamics which are included in the SUMO traffic simulation. A simulation run for the
Duisburg–Neudorf example took approx. 20 seconds.
We have simulated the evacuation problem in Duisburg–Neudorf with three different
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departure time scenarios (the underlying gamma distribution has parameters (α, β) ∈
{(3, 1), (3, 3), (3, 5)}. Figure 3.7 illustrates the effect of these parameter settings by giving
the probability distribution and the density function.

Figure 3.7: Different Departure Time Scenarios

Furthermore, we have varied the population size Π ∈ {100%, 90%, 70%}, i.e. the number of
vehicles to be considered (for Π = 100% we evacuate the aforementioned 8,801 vehicles).
In addition to that, we study the impact of the number of vehicles already on the road
when evacuation starts (the initial occupation on major street segments is varied with
Σ ∈ {0%, 15%, 40%} of the street capacity).

(a) Exit 1–8 (b) Cumulated

Figure 3.8: Number of Evacuated Vehicles for (α, β) = (3, 3),Π = 100% and Σ = 0%

Figure 3.8 shows the increase of the number of evacuated vehicles over time when (α, β) =
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(3, 3), Π = 100% and Σ = 0% as a point of reference. Under these circumstances, the
simulation reveals that all vehicles are evacuated after approx. 25.5 minutes (after a bit
more than 10 minutes about 50% of the vehicles escaped from the endangered zone). The
vehicle load of the destinations differs mainly because of different capacities (different
number of lanes) at these exits.
If we vary the departure behavior, i.e. the parameters (α, β), we can observe if and how the
vehicle arrivals over time changes. Figure 3.9 provides our findings. The most interesting
observation is that if the departure of the vehicles is sped up ((α, β) = (3, 1) versus (α, β) =
(3, 3)), the total time to evacuate all decreases from 25.5 minutes to 20.5 minutes although
the difference in the departure pattern is much higher. The almost parallel evolution of
the corresponding curves in the arrival pattern suggests that the maximum traffic flow is
achieved in both cases so that the theoretical advantage of faster departing times could
not be transfered to the arrivals. However, if the delay is too long ((α, β) = (3, 5)) then
the total evacuation time increases again because of the late vehicles.

(a) Departure (b) Arrival

Figure 3.9: Impact of Different Departure Patterns for Π = 100% and Σ = 0%

Figure 3.10 shows what happens if we vary the size of the population to be evacuated given
the parameters (α, β) = (3, 3). As we see, the population size does not affect the evolution
of the relative number of evacuated vehicles over time much. This may be, because the
street capacity is not a bottleneck in this scenario (given the underlying population size).
Therefore, we also tested the impact of the population size for the parameters (α, β) =
(3, 1) where we have learned from Figure 3.9 already that street capacity is a problem.
Figure 3.11 shows the results for this study. Now we see what was expected: If the street
capacity is scarce then a lower number of vehicles results in shorter total evacuation times.
It is interesting to note, however, that 70% of the vehicles is evacuated after approx. 11
minutes if 8,801 vehicles (Π = 100%) is assumed, but evacuating a total of approx. 6,160
vehicles (Π = 70%) takes approx. 13 minutes (both cases with (α, β) = (3, 1)). Thus,
the best delay with which vehicles depart not only depends on the street capacity (as
suggested by Figure 3.9), but also on the total number of vehicles. Hence, finding a good
departure schedule depends on the infrastructure as well as on the capacity load.
All computational tests so far have assumed that all streets are empty if the evacuation
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(a) 100% Population (b) To-Be-Evacuated Population

Figure 3.10: Impact of the Population Size for (α, β) = (3, 3) and Σ = 0%

(a) 100% Population (b) To-Be-Evacuated Population

Figure 3.11: Impact of the Population Size for (α, β) = (3, 1) and Σ = 0%

starts (Σ = 0%). This, of course, is not very realistic, but we can easily take an initial
occupation of the streets into account. Figure 3.12 provides some insights into the impact
of traffic already on the streets when the evacuation begins.
For Σ = 15% we have 462 additional vehicles and for Σ = 40% we have 1294 additional
vehicles to evacuate (these numbers depend on the available capacities on the lane seg-
ments and due to rounding we get 1294 6= 462 · (40/15)). We observe no differences in
total evacuation time. The reason is that due to some delayed departure of the residents
((α, β) = 3, 3)) the time shortly after start of the evacuation is mainly used to clear the
streets from the initial traffic.
To investigate this further, we used a departure pattern (α, β) = (3, 1) as well. Figure 3.13
shows the outcome of our tests. Now, small differences are existent leading to a slightly
increased evacuation time (+2 minutes) in the case of a large initial traffic load compared
to no initial traffic. However, the initial traffic again uses mostly the time short after the
evacuation start to escape.
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(a) 100% Population (b) To-Be-Evacuated Population

Figure 3.12: Impact of the Initial Street Occupation for (α, β) = (3, 3) and Π = 100%

(a) 100% Population (b) To-Be-Evacuated Population

Figure 3.13: Impact of the Initial Street Occupation for (α, β) = (3, 1) and Π = 100%



Chapter 4

Extended Cell-Transmission-Based
Evacuation Planning Model

This chapter addresses four major weaknesses of the CTEPM, namely (i) the usage of
a fixed single cell size, (ii) missing consideration of lanes, (iii) missing limitations for
traffic flows and (iv) possible traffic flow redirections during the evacuation and shows
how to overcome them. Stimulated by this, we formulate the extended Cell-Transmission-
Based Evacuation Planning Model (ExCTEPM) and a new optimization model to facilitate
this model in terms of choosing the optimum cell size. Additionally, we will present an
iterative simulation-based optimization approach in order to evaluate and to enhance
results in a more realistic environment. This approach takes advantage of a standalone
vehicle reallocation optimization model, additional traffic flow limitations as well as the
microscopic traffic simulation known from Chapter 3. A heuristic postprocessing approach
to ensure usability of computed solutions in the traffic simulation will be presented as
well. We will demonstrate the effectiveness of this approach in a real-world example. The
content of this chapter can also be found in Kimms and Maassen (2009).

4.1 Extending the CTEPM

The CTEPM has some major weaknesses. On the one hand, the use of cells with a fixed
single size may lead to several disadvantages in terms of an unnecessary high number of
(relatively small) cells to meet a predetermined accuracy level in network representation
and to excessive amounts of constraints and variables in the optimization model caused
by the very high number of required cells, respectively. On the other hand, missing
consideration of lanes, limitations for merging and diverging traffic flows as well as traffic
flow redirections during the planning horizon may result in solutions that may be optimal
regarding the optimization model, but may also be inappropriate or even infeasible in real-
world applications. We will discuss these issues in detail in Section 4.1.2. In the following
text we will first show how to implement multiple cell sizes into the model and demonstrate
the benefits of this approach. Subsequently, explicit consideration of lanes as well as traffic
flow limitations will be discussed and implemented to formulate the ExCTEPM.

4.1.1 Multiple Cell Sizes

In order to represent a given network with the CTEPM, it is necessary to choose a cell
size which matches the length of the network arcs adequately. As can easily imagined, this
will lead to a tradeoff between the number of cells (which immensely affects the number

36
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of side constraints and variables) and the accuracy of the network representation. In this
chapter, we will extend the CTEPM by the usage of multiple cell sizes whereas larger
cell sizes will be integer multiples of the reference (standard) cell size due to the discrete
nature of the Cell-Transmission approach.

75m

clock ticks every 9 seconds

125m

75m

125m 125m

Figure 4.1: Network Representation Using One Cell Size

250m

clock ticks every 9 seconds

125m

150m

Figure 4.2: Network Representation Using Two Cell Sizes

Figures 4.1 and 4.2 illustrate this idea in the case of a very small network. There, we
model four street sections at 50 km/h and 30 km/h driving speed, respectively. As can
be seen easily, the number of required cells can be lowered from eight to five cells. In this
example, vehicles need two periods to pass large cells, of course.
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In the mathematical formulation, we assume to use |N | different cell sizes, where a certain
cell size n is n-times larger than cell size 1. For example, |N | = 3 leads to three different
cell sizes (and three set of cells, namely I1, I2, I3), where all cells i ∈ I2 (I3) will be two-
times (three-times) larger than cells i ∈ I1, if the same driving speed is assumed. As can
be seen in Figure 4.1 and 4.2 several cells can be combined to a larger cell without any
loss in network representation accuracy.
This approach results in the following advantages: firstly, the accuracy of the network
representation using the same number of cells can be improved since a smaller standard
cell size (and integer multiples of this cell size) tends to match the underlying arc lengths
more accurate, if the same number of cells is used as before. Moreover, the same accuracy
in network representation can be achieved with less cells since standard sized cells can be
merged into one larger cell. Secondly, the computational effort can be reduced due to a
usually smaller number of required cells. Admittedly, the mathematical formulation of the
(extended) CTEPM will get more complex, but the advantages of the reduced number of
cells still prevail as can be seen later in this section and in Section 4.1.5.
We will first recapitulate the CTEPM as written in Section 3.2. Afterwards, we will
introduce two different approaches to capture multiple cell sizes in the CTEPM.

Parameters:

T = {1, . . . , |T |} index set of periods (where |T | is the index of the last period
of the planning horizon)

N = {1, . . . , |N |} index set of different cell size multipliers (where |N | denotes
the maximum cell size)

I = {1, . . . , |I|} index set of cells
In index set of cells of cell size n (

⋃
n∈N In = I )

|I| index of super sink
IS index set of sink cells (IS = {i ∈ I : βi,|I| = 1})
cit danger of being at cell i in period t (cit ≥ 0)
βij = βji = 1, if a traffic flow from cell i to cell j

(and vice versa) can be established (0, otherwise)
Nit maximum vehicle capacity of cell i (on all lanes) in period t
Ei number of vehicles starting their evacuation in cell i (derived from

population in cell i)
Qit maximum number of in- and outflowing vehicles (on all lanes) per

period into / from cell i in period t
xi1 number of vehicles en route at cell i at the end of

period 1, i.e. before the evacuation starts

Decision Variables:

zit number of vehicles residing, leaving or waiting in cell i in period t
xit number of residing vehicles at cell i at the end of period t
yijt number of vehicles leaving section i in period t and reaching section j

in period t + 1
bit number of vehicles starting their evacuation at cell i in period t

Given this notation, the CTEPM can be formulated as follows:
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min
∑

i∈I

∑

t∈T

zit · cit (4.1)

subject to

zit = xit +
∑

j∈I

yijt + (Ei −
t∑

τ=1

biτ ) i ∈ I ; t ∈ T (4.2)

xit = bit + xi,t−1 +
∑

j∈I

yji,t−1 −
∑

j∈I

yijt i ∈ I ; t = 2, . . . , |T | (4.3)

zit ≤ Nit + (Ei −
t∑

τ=1

biτ ) i ∈ I ; t ∈ T (4.4)

xit ≤ Nit i ∈ I ; t ∈ T (4.5)
∑

t∈T

bit = Ei i ∈ I (4.6)

x|I|,|T | =
∑

i∈I

(Ei + xi1) (4.7)

∑

i∈I

yijt ≤ (Njt − xjt) j ∈ I ; t ∈ T (4.8)

∑

i∈I

yijt ≤ Qjt j ∈ I ; t ∈ T (4.9)

∑

j∈I

yijt ≤ Qit i ∈ I ; t ∈ T (4.10)

yijt ≤ Nit · βij i,j ∈ I ; t ∈ T (4.11)

zit, xit, bit ≥ 0 i ∈ I ; t ∈ T (4.12)

yijt ≥ 0 i,j ∈ I ; t ∈ T (4.13)

xi1 = 0 i ∈ I (4.14)

bi1 = 0 i ∈ I (4.15)

yij1 = 0 i ∈ I ; j ∈ I (4.16)

The objective function (4.1) minimizes total danger for all vehicles during the complete
planning horizon. Here, the parameter cit might be related to some key figures, e.g.
the probability that an area will be reached by a tsunami wave or the concentration
of hazardous material at a certain point of the planning horizon, see Chakraborty and
Armstrong (1995) and Zhang et al. (2000). The case of cit = ci · t may be used for
scenarios with no movement of danger during the planning horizon, e.g. a preventive
evacuation. However, using general values for cit is more flexible since it allows to capture
movement of danger during in the planning horizon, e.g. movement of a hazardous plume
over time. The calculation of all vehicles residing, leaving or waiting in cell i is done in
equation (4.2). Vehicle-flow-constraints have to be defined with respect to the cell size n.
For n = 1, the standard vehicle flow constraint from the single cell size CTEPM can be
adopted (see (4.3)), whereas the number of residing vehicles at the end of period t equals
the number of vehicles starting their evacuation in period t plus the number of residing
vehicles in cell i at the end of period t-1 plus the number of inflowing vehicles reaching
cell i in period t minus the number of outflowing vehicles leaving cell i till the end of
period t, respectively. This vehicle flow equation also allows vehicle holding, if this would
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be beneficial with regards to the objective value. Moreover, (4.4) ensures that the number
of vehicles (incl. all vehicles that have not left their homes, yet) in a cell i during a period
t does not exceed the maximum capacity of this cell plus the number of vehicles which
have not entered the network so far. Similar to (4.4), constraint (4.5) forces the number
of vehicles in cell i at the end of period t to be lower than the maximum capacity of this
cell. (4.6) determines the departure schedule for each cell and that all residents will leave
their homes. Furthermore, equation (4.7) assures that each vehicle (residents in vehicles
in terms of Ei and initial traffic (e.g. due to rush hour traffic) in terms of xi1) will be
evacuated. Here, it is important that |T | is sufficiently large so that all vehicles can escape
within the planning horizon. In (4.8), the maximum number of cell-changing vehicles
is limited to the remaining capacity (=maximum vehicle capacity minus the number of
vehicles at the end of a period) of the corresponding cells. As stated in (4.9) and (4.10)
the maximum number of in- and outflowing vehicles additionally must be limited by the
in- and outflow capabilities of a cell. In the following, we assume that flow capacities
are constant over time so that using Qi (instead of Qit) is sufficient. Furthermore, traffic
flows can stream from a cell i to cell j, if and only if, a physical connection between these
cells exist, i.e. these cells are adjacent – see (4.11). (4.12) and (4.13) finally determine
the domains of the decision variables. Please note that it is sufficient to consider only
those flow variables yijt where βij = 1 holds. In order to assure that no vehicle movements
occur in the first period – where the evacuation has not started yet –, boundary conditions
(4.14)–(4.16) fix the decision variables xit, bit and yijt to zero in the first period. However,
if initial traffic is existent, (4.14) has to be specified for all affected cells.
Although zit, xit, bit and yijt can be defined to take only integer values, we decided to relax
integrality. Firstly, this relaxation helps to reduce computational effort due to less integer
variables. Secondly, in all computational tests throughout this chapter – all parameters of
the ExCTEPM are set to integer values – all variables which will be used in the succeeding
simulation runs take only integer values automatically, so that there was no need to restore
integrality constraints of the decision variables. In detail, three variables are passed to the
simulation, see Chapter 3. First, let ηij denote the total number of vehicles traveling from
cell i to cell j during the complete planning horizon, i.e. ηij =

∑
t∈T yijt. Secondly, the

driving direction is expressed by ϕij (ϕij ∈ {0, 1}) indicating if a connection from cell i to
cell j is used (ϕij = 1). Thirdly, assigned lanes between cell i and cell j are denoted by
ǫij (ǫij ∈ N0). The variables zit, xit, bit from the optimization part will be ignored in the
simulation. Since ϕij and ǫij are set to integer values by definition, only ηij may take non-
integer values. In such cases, we developed a simple postprocessing approach (see Section
4.2.2) which uses the (integer and / or non-integer) ηij values from the optimized solution
as a starting point to construct a slightly modified (feasible) solution only consisting of
integer values for ηij .
The CTEPM (and later the ExCTEPM) also optimizes departures times (in terms of bit)
for each cell. However, in evacuation scenarios evacuees may not attend orders, especially
those affecting their own safety. Hence, departure times shall be regarded as parameters
following a prespecified departure distribution. Those circumstances can be easily adopted
in the ExCTEPM by adding further constraints, e.g. bmin

it ≤ bit ≤ bmax
it for all i ∈ I;t ∈ T

to the model formulation. Another problem may cover the fact that the capacities of exit
cells (i.e. safety zones) are limited. Suchlike aspects can be implemented by adding a
new constraint, e.g.

∑
t∈T yi,|I|,t ≤ Ki for all i ∈ IS to the model formulation where Ki is

the maximum capacity of the safe area behind exit cell i ∈ IS (IS = {i ∈ I : βi,|I| = 1}).
Notwithstanding, people have to leave houses which is a problem that is covered by building
evacuation literature. However, suchlike problems will not be modeled in detail in our
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approach.
In order to obtain feasible solutions, |T | must be chosen sufficiently large so that all
evacuees have the ability to escape within the planning horizon. A lower bound for |T |
can be computed by |T |LB =

∑
i∈I Ei/

∑
i∈IS

Qi. However, for our computational tests
we set |T | = 1.5 · |T |LB. However, larger values for |T | will not lead to any computational
issues.

4.1.1.1 Multiple Cell Sizes – Approach 1

The basic idea of this approach is to divide a cell into subcells, whereas the number of
subcells corresponds to the cell size of the cell (1, . . . , n). A vehicle needs at least one
period to pass a subcell so that n subcells lead to a minimum travel time of n periods.
In order to capture vehicle movement from subcell to subcell, a new decision variable yk

iit

must be introduced. This variable is an auxiliary flow variable which displays the number
of vehicles moving from subcell k to subcell k +1 in cell i in period t. Thus, there must be
n−1 additional flow variables for a cell of cell size n. Now, the CTEPM with multiple cell
sizes using this approach can be formulated by replacing equation (4.2) by (4.17), (4.3) by
(4.18) and adding three more constraints (4.19) – (4.21):

zit = xit +
∑

j∈I

yijt +
∑

n∈N

yn
iit + (Ei −

t∑

τ=1

biτ ) i ∈ I ; t ∈ T (4.17)

xit = bit + xi,t−1 +
∑

j∈I

yji,t−1 −
∑

j∈I

yijt i ∈ I1 ; t = 2, . . . , |T | (4.18)

xit = bit + xi,t−1 +
∑

j∈I

yji,t−1

−
n−1∑

k=1

yk
iit +

n−1∑

k=1

yk
ii,t−1 −

∑

j∈I

yijt n ∈ N : n ≥ 2 ; i ∈ In ;

t = 2, . . . , |T | (4.19)

yk
ii,t−1 = yk+1

iit n ∈ N : n ≥ 3 ; k = 1, . . . , n− 2 ;

i ∈ In ; t = 2, . . . , |T | (4.20)

yn−1
ii,t−1 =

∑

j∈I

yijt n ∈ N : n ≥ 2 ; i ∈ In ;

t = 2, . . . , |T | (4.21)

yn
iit ≥ 0 n ∈ N ; i ∈ I ; t ∈ T (4.22)

Equation (4.2) must by replaced by (4.17) in order to cover the vehicle movements from
subcell to subcell in the objective value. The standard vehicle flow equation (4.3) now only
holds for cells of size 1, see (4.18). For larger cells, an extended vehicle flow equation (4.19)
must be introduced. Vehicle flows from subcell to subcell are captured by (4.20) and (4.21).
However, this approach has some disadvantages in terms of traffic flow representation.
First, traffic holding is only possible in the first subcell, because of (4.20) and (4.21)
forcing traffic to flow from one subcell to the next subcell in successive periods. Secondly,
all evacuees starting their evacuation in a cell of cell size |N | ≥ 2 also have to pass all
subcells before they can leave the cell.
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4.1.1.2 Multiple Cell Sizes – Approach 2

The concept of the second approach to capture multiple cell sizes is to limit traffic outflow
with respect to traffic inflow of a cell so that a minimum travel time of n periods for a cell
of size n can be ensured. Because of (4.3), this assumption automatically holds for cells
with size 1. For cells of size n ≥ 2, we introduce constraint (4.23) to ensure a minimum
travel time of ni periods for a cell i of size ni. The CTEPM with multiple cell sizes using
the seconds approach can be formulated by adding the following constraint to the model
formulation (4.1)–(4.16):

∑

j∈I

t∑

τ=1

yijτ ≤
∑

j∈I

max(t−ni,1)∑

τ=1

yjiτ +

max(t−⌈ni/2⌉+1,1)∑

τ=1

biτ + xi1 i ∈ I : ni ≥ 2 ; t = 2, . . . , |T |

(4.23)

This constraint limits the cumulated number of vehicles leaving a cell i between period
1 and period t to the cumulated number of vehicles entering the cell between period 1
and period t− ni plus the vehicles starting their evacuation between period 1 and period
t− ⌈ni/2⌉+ 1 plus the initial street occupation in terms of xi1, where ni is the size of cell
i. This approach has several advantages compared to the first approach. First, no new
variables have to be introduced and less constraints are needed when cells of size |N | ≥ 3
are used. Secondly, waiting vehicles can escape from a cell immediately after the minimum
travel time has passed. Thirdly, evacuees start their evacuation in the “center” of a cell
if the term t− ⌈ni/2⌉+ 1 is used. However, this approach allows to modify the “starting
point” as desired by the decision maker.

4.1.1.3 Impact of Multiple Cell Sizes on Problem Size

To illustrate the effectiveness of both approaches, we calculate the optimum number of
cells for |N | ∈ {1, 2, 3, 4, 5, 10} in the case of three randomly generated networks of dif-
ferent size applying the cell size optimization model (4.37)–(4.47) that will be described
in detail in Section 4.1.4. On the basis of this number we also compute the number of
constraints and variables that would emerge in model (4.1)–(4.11) plus the corresponding
additional constraints to cover multiple cell sizes. The networks consist of 50, 100 and
150 street sections representing a total network length of 15.852m, 30.978m and 47.691m,
respectively. In addition, we assume 70% (30%) of the street sections allow a driving speed
of 50 km/h (30 km/h) and that the length of 50 km/h (30 km/h) sections can take all
integer values within the interval [100m, 700m] ([50m, 200m]). Furthermore, we force the
absolute deviation between the street sections lengths and the lengths of the corresponding
cells to be lower than 15% of the street sections length.
In the following, the number of constraints as well as the number of variables are calcu-
lated assuming a planning horizon of 600 seconds. The results for the first approach are
shown in Tables 4.1 – 4.3 and for the second approach in Tables 4.4 – 4.6. Bracketed
percentages display the relative reduction in comparison to the application of only one cell
size (|N | = 1), which equates the (standard) CTEPM defined before.

Two major findings can be derived from these tables: firstly, massive improvements in
terms of problem size reduction can be achieved, whereas the additional benefit decreases
with increasing values for |N |. Secondly, relative benefit is almost the same for all networks
and cell sizes |N |. Thirdly, relative reduction in problem size is much larger than the
relative reduction of cells in all cases.
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#Cell Sizes #Cells
Period
Length

#Constraints #Variables

|N | = 1 283 4.0 sec. 12,310,501 12,140,700

|N | = 2 153 (-45.9%) 4.0 sec. 3,692,861 (-70.0%) 3,601,200 (-70.3%)

|N | = 3 107 (-62.2%) 4.0 sec. 1,857,117 (-84.9%) 1,793,100 (-85.2%)

|N | = 4 94 (-66.8%) 4.0 sec. 1,454,348 (-88.2%) 1,398,150 (-88.5%)

|N | = 5 76 (-73.1%) 4.0 sec. 978,683 (-92.1%) 933,300 (-92.3%)

|N | = 10 53 (-81.3%) 4.0 sec. 513,208 (-95.8%) 481,650 (-96.0%)

Table 4.1: Size of Model Formulation (4.1), (4.4) – (4.11), (4.17) – (4.21) for a 50-Street-
Network

#Cell Sizes #Cells
Period
Length

#Constraints #Variables

|N | = 1 798 2.7 sec. 143,252,971 142,541,154

|N | = 2 425 (-46.7%) 2.7 sec. 41,032,045 (-71.4%) 40,653,346 (-71.5%)

|N | = 3 292 (-63.4%) 2.7 sec. 19,590,453 (-86.3%) 19,330,532 (-86.4%)

|N | = 4 233 (-70.8%) 2.7 sec. 12,607,357 (-91.2%) 12,400,138 (-91.3%)

|N | = 5 197 (-75.3%) 2.7 sec. 9,109,333 (-93.6%) 8,934,272 (-93.7%)

|N | = 10 131 (-83.6%) 2.7 sec. 4,198,561 (-97.1%) 4,082,461 (-97.1%)

Table 4.2: Size of Model Formulation (4.1), (4.4) – (4.11), (4.17) – (4.21) for a 100-Street-
Network

#Cell Sizes #Cells
Period
Length

#Constraints #Variables

|N | = 1 1,432 2.3 sec. 537,829,129 536,334,120

|N | = 2 758 (-47.1%) 2.3 sec. 151,537,691 (-71.8%) 150,747,075 (-71.9%)

|N | = 3 528 (-63.1%) 2.3 sec. 73,985,981 (-86.2%) 73,435,743 (-86.3%)

|N | = 4 416 (-70.9%) 2.3 sec. 46,223,009 (-91.4%) 45,789,840 (-91.5%)

|N | = 5 345 (-75.9%) 2.3 sec. 32,015,121 (-94.0%) 31,656,168 (-94.1%)

|N | = 10 204 (-85.8%) 2.3 sec. 11,596,405 (-97.8%) 11,384,820 (-97.9%)

Table 4.3: Size of Model Formulation (4.1), (4.4) – (4.11), (4.17) – (4.21) for a 150-Street-
Network

#Cell Sizes #Cells
Period
Length

#Constraints #Variables

|N | = 1 283 4.0 sec. 12,310,501 12,140,700

|N | = 2 153 (-45.9%) 4.0 sec. 3,692,861 (-70.0%) 3,580,200 (-70.5%)

|N | = 3 107 (-62.2%) 4.0 sec. 1,845,495 (-85.0%) 1,765,500 (-85.5%)

|N | = 4 94 (-66.8%) 4.0 sec. 1,437,362 (-88.3%) 1,367,700 (-88.7%)

|N | = 5 76 (-73.1%) 4.0 sec. 957,227 (-92.2%) 900,600 (-92.6%)

|N | = 10 53 (-81.3%) 4.0 sec. 484,898(-96.1%) 445,200 (-96.3%)

Table 4.4: Size of Model Formulation (4.1) – (4.11), (4.23) for a 50-Street-Network
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#Cell Sizes #Cells
Period
Length

#Constraints #Variables

|N | = 1 798 2.7 sec. 143,252,971 142,541,154

|N | = 2 425 (-46.7%) 2.7 sec. 41,032,045 (-71.4%) 40,563,700 (-71.5%)

|N | = 3 292 (-63.4%) 2.7 sec. 19,533,177 (-86.4%) 19,209,220 (-86.5%)

|N | = 4 233 (-70.8%) 2.7 sec. 12,521,443 (-91.3%) 12,262,324 (-91.4%)

|N | = 5 197 (-75.3%) 2.7 sec. 9,005,215 (-93.7%) 8,786,200 (-93.8%)

|N | = 10 131 (-83.6%) 2.7 sec. 4,060,477 (-97.2%) 3,914,542 (-97.3%)

Table 4.5: Size of Model Formulation (4.1) – (4.11), (4.23) for a 100-Street-Network

#Cell Sizes #Cells
Period
Length

#Constraints #Variables

|N | = 1 1,432 2.3 sec. 537,829,129 536,334,120

|N | = 2 758 (-47.1%) 2.3 sec. 151,537,691 (-71.8%) 150,554,718 (-71.9%)

|N | = 3 528 (-63.1%) 2.3 sec. 73,862,481 (-86.3%) 73,176,048 (-86.4%)

|N | = 4 416 (-70.9%) 2.3 sec. 46,035,549 (-91.4%) 45,493,344 (-91.5%)

|N | = 5 345 (-75.9%) 2.3 sec. 31,784,241 (-94.1%) 31,335,660 (-94.2%)

|N | = 10 204 (-85.8%) 2.3 sec. 11,287,525 (-97.9%) 11,021,508 (-97.9%)

Table 4.6: Size of Model Formulation (4.1) – (4.11), (4.23) for a 150-Street-Network

The results for the second approach shows great similarity to the first one. However, for
|N | ≥ 3 the number of constraints and variables is always lower.

4.1.2 Consideration of Lanes and Limiting Traffic Flows

Another major weakness of the CTEPM is related to the lack of explicit consideration of
lanes. In its standard form, flow capacity of a cell is determined by the flow capacity per
lane multiplied by the number of lanes. This might lead to problems, see Figure 4.3.

i

Figure 4.3: Consideration of Lanes and Traffic Flow Limitations - Example

Imagine that the total vehicle flow capacity (using all lanes) for cell i (see Figure 4.3)
will be 16 vehicles per period. The CTEPM without explicit consideration of lanes allows
that the total vehicle flow capacity per period can be divided into fractions, e.g. 6, 5 and
5 vehicles per period (6+5+5 = 16). When lanes are explicitly considered in the model,
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vehicle flow capacity per lane would be 16 / 2 = 8 vehicles per period per lane for cell
i. Thus, vehicle flows of 6,5 and 5 vehicles per period result in 6/8 = 0.75, 5/8 = 0.625
and 0.625 lanes which will of course not be viable in real world problems. Therefore it is
important to express the vehicle flow capacity per period of a cell i as integer multiples of
the vehicle flow capacity per lane.
Another important aspect of safe traffic routing covers the limitation of traffic flows. Traffic
flow limitation contains two essential aspects, namely merging / diverging of traffic flows
as well as time-dependent traffic flow redirection. The CTEPM has no such limitations
whereby solutions may be obtained where traffic flows merge and diverge very often or
even will be repeatedly redirected over time. As an illustrative example, imagine a four-
way junction with three four-lane streets and one two-lane street as the only available
exit, see Figure 4.3. If a total of 12 lanes (4 lanes from each different direction) will be
merged into two lanes at a junction, merging processes have to take place at the junction.
Of course, this would result in a traffic chaos. However, such solutions may be optimal
in a given optimization model if no corresponding constrains exist, but not in real world
applications. In detail, we limit traffic routing due to three major reasons: firstly, it is
not advantageous to allow an unlimited number of cells to be merged into just one cell
(e.g. directly in front of a sink cell as mentioned above). Secondly, conflicting traffic flows
in general as well as crossing traffic flows at junctions often exists due to multi-diverging
traffic flows and thirdly, the organization of an evacuation (e.g. positioning safety fences
for traffic flow routing) will be much simpler, if traffic flows are merged and diverged
only when necessary and if traffic flows are not redirected over time, respectively. Such
limitations will be implemented in the CTEPM in the following section.

4.1.3 ExCTEPM Model Formulation

Further parameters and variables are needed to consider lanes and restrict traffic flows:

Additional Parameters:

li number of lanes in cell i
p maximum number of outflowing traffic streams

Additional Decision Variables:

ϕij = 1, if traffic flows from cell i to cell j, 0 otherwise
ǫij number of used lanes between cell i and cell j

Given this notation the ExCTEPM with multiple cell sizes on the basis of Approach 2 can
be formulated in the following manner:

min
∑

i∈I

∑

t∈T

zit · cit (4.24)

subject to (4.2) – (4.8), (4.11) – (4.16), (4.23) and

yijt ≤
Qjt

lj
· ǫij i,j ∈ I ; t ∈ T (4.25)

yijt ≤
Qit

li
· ǫij i,j ∈ I ; t ∈ T (4.26)

∑

i∈I

ϕij ≤ lj j ∈ I (4.27)
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∑

j∈I

ϕij ≤ p i ∈ I (4.28)

ϕij + ϕjk ≤ 1 i,j,k ∈ I : βij = 1 ;βik = 1 (4.29)

ϕij ≤ βij i,j ∈ I (4.30)

ǫij ≤ ϕij ·min{li, lj} i,j ∈ I (4.31)
∑

i∈I

ǫij ≤ lj j ∈ I (4.32)

∑

j∈I

ǫij ≤ li i ∈ I (4.33)

ǫij ∈ N0 i,j ∈ I (4.34)

ϕij ∈ {0, 1} i,j ∈ I (4.35)

Due to the consideration of lanes in the ExCTEPM, constraints (4.9) and (4.10) are re-
placed by (4.25) and (4.26). These constraints limit the number of cell-changing vehicles
to the vehicle flow capabilities of the corresponding cells under consideration of allocated
lanes. Furthermore, the constraints (4.27)–(4.29) limit the traffic routing in multiple ways.
(4.27) ensures that the number of traffic flows streaming into cell j is not exceeding the
number of available lanes in cell j. Hence merging processes at junctions due to traffic
flows from different directions are not allowed any more. Constraint (4.28) bounds the
number of outgoing traffic streams from cell i to a fixed value p. A discussion of possible
values for p can be found in Section 4.3.2.
So far, the ExCTEPM may deliver solutions that are not feasible in real world applica-
tions, but in the optimization model as can be illustrated in a little example. Imagine an
intersections with three entrances / exits as shown in Figure 3.5. If vehicle streams exist
from cell i to cell k as well as from cell j to cell k, cell k represents a bottleneck for cell
i and j. If we further assume that the cell j (or cell i) has no ingoing traffic flows, the
ExCTEPM may generate a traffic stream from cell i to cell j that finally reaches cell k
to circumvent the emerging bottleneck in cell k, see Figure 3.5. Such infeasibilities can be
avoided by constraint (4.29) since it allows a traffic stream from cell i to cell j to cell k to
be created, if and only if no direct connection between cell i and cell k exist. In addition,
this constraint simplifies traffic routing by forcing every street section to be used only in
one direction, except cells with no external traffic inflow. In addition, (4.30) and (4.31)
assure that a traffic stream using a certain number of lanes from a cell i to a cell j only
can be established, if a connection (in terms of βij and ϕij , respectively) between these
cells exists. Finally, constraints (4.32) and (4.33) limit the number of used lanes between a
cell i and a cell j to the number of available lanes regarding both cells. Constraints (4.34)
and (4.35) determine the domain of the additional decision variables. A graphical illustra-
tion of parameters and decision variables used in the extended Cell-Transmission-Based
Evacuation Planning Model can be found in Figure 4.4.
These additional constraints help to guide traffic through the network in a safer and less
conflictual way. However, there might exist some situations where these constraints, es-
pecially constraint (4.27) and (4.32) might result in no feasible solution if the number of
lanes is relatively low and many junctions exist. As an example, imagine a t-junction with
three one-lane streets whereas two of these streets are deadlocks. Now, these two (dead-
lock) streets have to use the (non-deadlock) street in order to be evacuated, but suchlike
situations are forbidden by (4.27) and (4.32). In such cases, these constraints have to be
relaxed and a new constraint

∑
i∈I yijt ≤ Qjt for all cells j ∈ I and periods t ∈ T must be

added in order to ensure that traffic flow capacities are not exceeded.
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Figure 4.4: Graphical Illustration of Parameters and Decision Variables

Moreover, ϕij allows the avoidance of traffic crossing and traffic touching conflicts at
junctions as shown in Figure 4.5 by formulating (4.36). If a traffic stream from cell i to
cell j is established (solid line), no other crossing or touching traffic stream (dashed lines)
is allowed at this junction.

ϕij + ϕji + ϕuv + ϕvu ≤ 1 i,j,u,v ∈ I (4.36)

u

i

v

j

v

i

j

u

Figure 4.5: Traffic Crossing and Traffic Touching Conflicts at Junctions

Here, we assume that the cells i,j,u,v adjoin to the same junction, so that βij = βiu =
βiv = βju = βjv = βuv = 1 holds. Please note that this constraint also holds for different
values of p and for junctions with more than four entrances/exits since i, j and u, v pairs
of cells always exist, independent of the number of entrances/exits of a junction.
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4.1.4 Cell Size Optimization

Cell sizes have to be chosen adequately when a road network must be modeled as a cell
network. In this section, we will introduce a simple optimization model which determines
the optimum cell size(s) and the corresponding number of cells for a given road network.
Assuming a given driving speed s, a certain cell size always corresponds to a certain cycle
time (period length) with index k. Thus, a cell may represent different distances depending
on the chosen cycle time k. Table 4.7 shows five examples for s = 50 km/h = 13.89 m/s
and s = 30 km/h = 8.33 m/s.

k 1 2 3 4 5
cycle time 1.8 sec. 3.6 sec. 7.2 sec. 10.8 sec. 14.4 sec.

cell size s = 50 km/h 25m 50m 100m 150m 200m
cell size s = 30 km/h 15m 30m 60m 90m 120m

Table 4.7: Relation between Cell Size and Cycle Time (|N | = 1)

As can be easily derived from Table 4.7, smaller cycle times are leading to smaller cell
sizes, which enable us to represent a given network very accurate, by trend, but usually a
larger number of (small) cells is required due to the lower cell size.
If we are using multiple cell sizes as explained in Section 4.1.1, every cycle time k corre-
sponds to |N | different cell sizes for a given driving speed s. Moreover, we assume every
cell size of a given cycle time k to be a corresponding ”version” l of this certain cycle
time k with a length of gkl so that, for example, a cycle time k leads to (for |N | = 3 and
two different driving speeds) six versions with a length of (gk1, gk2, gk3, gk4, gk5, gk6). This
notation has to be interpreted in the following manner:

(

Cells at 50 km/h driving speed
︷ ︸︸ ︷

gk1︸︷︷︸
single size

, gk2︸︷︷︸
double size

, gk3︸︷︷︸
triple size

,

Cells at 30 km/h driving speed
︷ ︸︸ ︷

gk4︸︷︷︸
single size

, gk5︸︷︷︸
double size

, gk6︸︷︷︸
triple size

)

Due to the discrete nature of the ExCTEPM, the assumption that vehicles drive at 50
km/h and 30 km/h and taking gk1 (single cell size, 50 km/h driving speed) as a point of
reference, the following relations between these six versions exist:

gk2 = 2 · gk1

gk3 = 3 · gk1

gk4 = 0.6 · gk1

gk5 = 0.6 · gk2 = 1.2 · gk1

gk6 = 0.6 · gk3 = 1.8 · gk1

Given these considerations, Table 4.7 can be complemented as shown in Table 4.8.
It is now clear that the optimization of cell sizes is equivalent to the selection of the op-
timum cycle time, whereas conflicting objectives must be handled: on the one hand, cell
sizes of a cycle time k should be as small as necessary to match the corresponding arc
length perfectly, but on the other hand, cell sizes of this cycle time k should be as big as
possible so that only few cells are needed and that the number of variables and constraints
in the CTEPM and ExCTEPM model formulation can be kept low. In order to represent
a given network adequately, it is useful to determine a certain level of accuracy, i.e. for
example the maximum deviation between the length of a street section and the cumulated
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k 1 2 3 4 5
cycle time 1.8 sec. 3.6 sec. 7.2 sec. 10.8 sec. 14.4 sec. l

cell size (I1) s = 50 km/h 25m 50m 100m 150m 200m 1
cell size (I2) s = 50 km/h 50m 100m 200m 300m 400m 2
cell size (I3) s = 50 km/h 75m 150m 300m 450m 600m 3

cell size (I1) s = 30 km/h 15m 30m 60m 90m 120m 4
cell size (I2) s = 30 km/h 30m 60m 120m 180m 240m 5
cell size (I3) s = 30 km/h 45m 90m 180m 270m 360m 6

Table 4.8: Relation between Cell Size and Cycle Time (|N | = 3)

length(s) of cell(s) assigned to this street section. Hence, the following MIP model selects
the optimum cycle time in order to minimize the number of cells which are required to
represent the network under consideration of the predetermined level of accuracy.
Please note that the standard CTEPM is a special case of the ExCTEPM, if traffic flow
limitations are not considered. As such, the presented model can be used for the CTEPM
as well. We use the following notation for the optimization model:

Parameters:

K = {1, . . . , |K|} Index set of cycle times
S = {1, . . . , |S|} Index set of driving speeds
Js Index set of street sections at driving speed s
J =

⋃
s∈S Js Index set of street sections

Ps Index set of available versions which can be used at
street sections at driving speed s

P =
⋃

s∈S Ps Index set of available versions
gkl length [m] of version l of cycle time k
dj length [m] of street section j
oj maximum relative deviation between the length of street

section j and the (cumulated) length(s) of the corresponding cells
C maximum number of cells

Decision Variables:

βkjl number of used cells of version l and cell type k at street section j
γk = 1, if cell type (cycle time) k is used, 0 otherwise
Zj difference [m] between the length of street section j and the intended cell(s)

min
∑

k∈K

∑

j∈J

∑

l∈P

βkjl (4.37)

subject to

∑

j∈J

∑

l∈P

βkjl ≤ γk · C k ∈ K (4.38)

∑

k∈K

∑

l∈P

βkjl ≥ 1 j ∈ J (4.39)

∑

k∈K

γk = 1 (4.40)
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∑

k∈K

βkjl = 0 s ∈ S ; j ∈ Js ; l ∈ Ph:h 6=s (4.41)

dj −
∑

k∈K

∑

l∈P

gkl · βkjl ≤ Zj j ∈ J (4.42)

dj −
∑

k∈K

∑

l∈P

gkl · βkjl ≥ −Zj j ∈ J (4.43)

Zj ≤ oj · dj j ∈ J (4.44)

βkjl ∈ N0 k ∈ K ; j ∈ J ; l ∈ P (4.45)

γk ∈ {0, 1} k ∈ K (4.46)

Zj ≥ 0 j ∈ J (4.47)

The objective (4.37) is to minimize the total number of required cells. Constraint (4.38)
ensures that a version l of cycle time k only can be used, if the corresponding cycle time
is chosen to be used. To avoid infeasible solutions for a given set of cycle times due to too
small values for C ((4.39) forces every street section to be covered at least by one cell), a
lower bound for C can be calculated by (4.48):

C ≥

|S|∑

s=1

∑

j∈Js

⌈
dj

maxk∈K,l∈Ps
gkl

⌉
(4.48)

(4.40) fixes the number of used cycle times to one and equation (4.41) assures that no
inappropriate versions of cycle times are used. (4.42) as well as (4.43) calculate the actual
difference between the length of street section j and the length(s) of the corresponding
cells. An upper bound for this deviation is stated in (4.44). Finally, the domains of the
decision variables are stated in (4.45), (4.46) and (4.47).
Beside the objective stated in (4.37), other objectives are also implementable. For example,
the minimization of total deviation for a given C can be integrated by dropping (4.44)
and replacing the objective function (4.37) with (4.49)

min
∑

j∈J

Zj (4.49)

For a given maximum number of cells this objective function will minimize the sum of all
deviations between the length of street section j and the cell(s) intended to model this
street section. The lowest possible objective value is

∑
j∈J Zj = 0 , i.e. all cells match

perfectly the given street sections.
Another objective may cover the minimization of the largest deviation between a cer-
tain street section j and the corresponding cells. This objective can be implemented by
replacing (4.49) with (4.50)

min W (4.50)

and adding constraint (4.51):

W ≥ Zj j ∈ J (4.51)

In this case, W will be set to the largest Zj value whereas Zj denotes the deviation between
the length of street section j and the cell(s) intended to model this street section in the
ExCTEPM.
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If the (total/largest) deviation is minimized, additional constraints for automatic selection
of large cell sizes (where possible) can eliminate redundancy, see (4.52):

∑

k∈K

∑

L∈P(Ls)

∑

l∈L

βkjl ≤ 1 s ∈ S ; j ∈ Js ; Ls = {1, . . . , |Ps| − 1} (4.52)

4.1.5 Numerical Example

In order to illustrate the effect of multiple cell sizes as well as the explicit consideration of
lanes and traffic flow limitations, we will present a numerical example in this section. In
particular, four different cases will be computed:

1. Case: CTEPM with single cell size: (4.1) – (4.16).

2. Case: CTEPM with multiple cell sizes (Approach 1): (4.1), (4.4) – (4.16), (4.17) –
(4.22)

3. Case: CTEPM with multiple cell sizes (Approach 2): (4.1) – (4.16), (4.23)

4. Case: CTEPM with single cell size and consideration of lanes and traffic flow limi-
tations: (4.1) – (4.8), (4.11) – (4.16) and (4.25) – (4.36)

5. Case: CTEPM with multiple cell sizes (Approach 1), consideration of lanes and
traffic flow limitations: (4.1), (4.4) – (4.8), (4.11) – (4.16), (4.17) – (4.22) and (4.25)
– (4.36)

6. Case: CTEPM with multiple cell sizes (Approach 2), consideration of lanes and
traffic flow limitations (=ExCTEPM):(4.1) – (4.8), (4.11) – (4.16), (4.23) and (4.25)
– (4.36)

The considered test network consists of straight street sections of different lengths as
displayed in Figure 4.6. The driving speed is 13.89 m/s on all 50m/100m sections and
8.33m/s on all 30m/60m sections. Using a period length of 3.6 seconds, the resulting cell
sizes are 13.89m/s · 3.6s = 50m and 8.33m/s · 3.6s = 30m. All cells are two- or four-laned.
This network can be modeled in the single cell size CTEPM with 51 cells (including super
sink), see Figure 4.7. If we assume that multiple cell sizes can be used, larger cells of 60m
/ 100m can be defined, so that two adjacent cells on a street section can be replaced by
one larger cell. Now, the same network can be modeled with 35 cells (cell 1–18 single
sized, cell 19–34 double sized and a super sink), see Figure 4.8. In this case, cell sizes
of 50m/100m and 30m/60m match the street section lengths of the given road network
perfectly. We set cit = ci · t with ci = 100 for all cells except the super sink (ci = 0 for the
super sink) and |T | is set to |T | = 1.5 ·

∑
i∈I Ei/

∑
i∈IS

Qi = 1.5 · 2422/54 ≈ 67.
The computation times for solving the LPs (Case 1,2,3) optimally and MIPs (Case 4,5,6)
to a maximum mipgap of 0.1% are shown in Table 4.9.
The CTEPM and the CTEPM with multiple cell sizes are linear programs (LP) which can
be solved very fast using by GUROBI’s (see http://www.gurobi.com) simplex algorithm
(Case 1,2,3). Implementing lanes and traffic flow limitations into the model formulation
results in a mixed integer problem (MIP) due to the introduction of ϕij and ǫij , so that
GUROBI’s branch & bound algorithm must be applied (Case 4,5,6). This leads to much
larger computation times compared to the LPs. For all MIPs, GUROBI finds good (mip-
gap ≤ 0.1%) feasible solutions very fast. Using multiple cell sizes helps to reduce the
computation time significantly. In particular, computation time drops by 41.5% / 54.7%
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Figure 4.6: Random Street Network
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Figure 4.8: Random Street Network Representation with Two Cell Sizes

Model
Computation
Time [sec.]

#Constraints (after
AMPL’s Presolve)

#Variables (after
AMPL’s Presolve)

1. Case 5.3 19,914 22,960

2. Case 3.1 14,699 18,834

3. Case 2.4 14,683 17,746

4. Case 1919.6 40,056 23,352

5. Case 876.1 32,668 19,096

6. Case 505.8 32,652 18,008

Table 4.9: Computation Times for Random Network with One and Two Cell Sizes
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for the LPs and 54.4% / 73.6% for the MIPs. It should be mentioned that the application
of multiple cell sizes reduces the number of cells by 31% in this case. For other instances
(with larger reduction of cells due to multiple cell sizes), results may vary.
Another important aspect is the implementation of different driving speeds into the model.
Of course, any number of different driving speeds can be modeled in all model formulations.
Let us consider the random street network (Figure 4.6) again. For the sake of simplicity,
we may assume that the driving speed corresponds to the length of the street section, so
that street section lengths of 30m / 50m / 60m / 100m lead to driving speeds of 30km/h
/ 50km/h / 60km/h / 100km/h. The corresponding cell network will look identical to the
case of using two cell sizes in Figure 4.8, but there are significant differences in the model
formulation since now only single cell sizes with doubled driving speed (instead of doubled
cell sizes with standard driving speed) are used. Therefore, all larger cells can be passed
by one period instead of two periods. However, subsequent adjustments of driving speeds
may require different cell sizes which need to be defined in a way to match the given street
lengths adequately. In summary, any number of driving speeds can be combined with any
number of different cell sizes. We will present a framework to determine the “optimum”
cell sizes in the Section 4.3.2.

4.2 Simulation-Based Optimization Approach

When it comes to evacuation planning problems or traffic assignment problems in general,
complex and dynamic traffic behavior is very hard to capture in an optimizational envi-
ronment so that traffic simulations are the method of choice to evaluate solutions, see Han
et al. (2006), Liu et al. (2008), Sbayti and Mahmassani (2006), Stepanov and MacGre-
gor Smith (2009). Since there might exist a gap between the solution of the ExCTEPM
and its implementation in a microscopic traffic simulation, we will use the observations
gathered from the traffic simulation to modify the the evacuation routing in such a way
that the outcome of the traffic simulation approximates the outcome of the optimization
model in terms of exit occupation times.
We choose the exit occupation time as the key figure since for our real world example
the ExCTEPM tends to generate solutions where the exit occupation times are well bal-
anced. This result indicates that unused flow capacities at exits due to unbalanced exit
occupation times have to be avoided. It has to be mentioned that similar exit occupation
times may lead to different number of vehicles escaping through these exits because of
different flow capacities, e.g. different number of lanes. Admittedly, the optimal solution
of the ExCTEPM for extremely sparse networks may not result in perfectly balanced exit
occupation times since traffic flow limitations may force some exits to be used only by a
small number of vehicles. However, we assume that such affects will not appear in urban
areas since urban street networks are often strongly connected.
We will discuss the components (reallocation of vehicles and traffic flow limitations) as
well as the simulation-based optimization procedure itself in the following:

4.2.1 Components and Procedure

Vehicle Reallocation Model
The ExCTEPM allows to optimize traffic routing in road networks under consideration

of queuing effects on a mesoscopic level of detail. We will now introduce a reallocation
optimization model which will use data provided by our microscopic traffic simulation
(SUMO). In particular, we assume a district i to be defined as the set of cells escaping
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to exit i so that the number of districts is equal to the number of exits. We imply that
all districts are part of a connected network, i.e. there are no insurmountable obstacles
between districts, e.g. no options to cross a river by bridges or ferry boats. It has to be
made clear that the reallocation model does not determine the shape of the districts them-
self, because the shape of the districts is the outcome of the ExCTEPM. We formulate
the model using the following notation:

Parameters:

D Index set of district / exits
si number of vehicles using exit i (before reallocation)
pi largest index of period where exit i is still occupied (before reallocation)

Decision Variables:

wij number of vehicles reallocated from exit i to exit j
ei number of vehicles using exit i (after reallocation)
ti largest index of period where exit i is still occupied (after reallocation)
Z auxiliary variable

Based on this notation, the reallocation model can be formulated as a MIP model by:

min Z (4.53)

subject to

Z ≥ ti i ∈ D (4.54)

ei = si +
∑

j∈I

wji −
∑

j∈I

wij i ∈ D (4.55)

si

pi
=

ei

ti
i ∈ D (4.56)

wij ∈ N0 i,j ∈ D (4.57)

ei ∈ N0 i ∈ D (4.58)

ti ≥ 0 i ∈ D (4.59)

Z ≥ 0 (4.60)

The objective function (4.53) in combination with (4.54) minimizes the largest occupation
time of all exits. Thus, the reallocation model determines the number of vehicles escaping
through a certain exit in such a way that the overall occupation time for all exits will be
balanced. In equation (4.55), the number of vehicles allocated to exit i (after reallocation)
is calculated by the number of vehicles using exit i before reallocation plus the number of
vehicles using exit i instead of exit j minus the number of vehicles using exit j instead of
exit i. In addition, equation (4.56) approximates the index of period where exit i is not
occupied any more after reallocation. Here, we assume that the throughput is constant
over time so that the relation between escaped vehicles and the number of occupied periods
is linear. Lastly, (4.57) – (4.60) determine the domains of the decision variables.

Additional Traffic Flow Limitations
It may happen that junctions are too small so that a large number of different traffic flows
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may affect each other in terms of traffic blocking. Figure 4.9 displays such a case for a
four way junction where traffic from cell i to cell u may be blocked due to not enough
space on the junction.

j

i

v

u

Figure 4.9: Possible Routing at a Junction

Suchlike situations are forbidden by (4.36) so that these effects will not take place when
the ExCTEPM is solved. However, (4.36) makes the ExCTEPM also very hard to solve
so that a relaxation of this constraint is likely to be used within a heuristic procedure.
As will be seen later in this section, we will solve the ExCTEPM with a relaxed version
of (4.36) that only covers traffic crossing, but not traffic touching conflicts like shown in
Figure 4.9. If it comes to solutions where traffic is blocked due to missing space on a
junction, the original constraint (4.36) will be restored for this junction.

Simulation-Based Optimization Procedure
We can use the vehicle reallocation model and additional traffic flow limitations to create
an iterative solution heuristic composed of the these approaches, the ExCTEPM and the
microscopic traffic simulation. The procedure works in the following manner:

1. Solve the ExCTEPM ((4.1) – (4.8), (4.11) – (4.16), (4.23), (4.25) – (4.36)).

2. Evaluation of this solution using the simulation model.
(Result: Occupation time for each exit, number of vehicles at each exit and traffic
blocking if so).

3. Stop, if stopping criterion is reached. (Given number of iterations without improve-
ments.)

4. If total evacuation time is elongated due to blocked traffic streams on a junction,
restore the original version of (4.36) for this junction and go back to Step 1.

5. Solve the vehicle reallocation model ((4.53)–(4.60)) with the data from Step 2. Stop,
if relative reallocation is lower than a given percentage on all exit cells.

6. Set for all i ∈ IS :
∑

t∈T yi,|I|,t ≤ ⌈(1 + µ) · ei⌉.
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7. Fix routing decisions (number of lanes (ǫij) between two cells) for all cells i ∈ I\IS

representing more than 1% of total traffic (disregarding traffic to the super sink).

8. Return to Step 1.

Rounding in Step 6 is introduced to limit traffic flow of exit cells by an integer number
of vehicles. Otherwise, the optimization model tends create solutions with non-integer
values for yijt which are not suitable in the SUMO traffic simulation. Step 7 is inserted to
ensure that the most relevant traffic routing decisions stay the same when the reallocation
model is applied. Otherwise, other traffic routing decisions may lead to different traffic
throughput in highly frequented cells which are not covered in the reallocation model.
Fixing these decisions also results in less computation time as will be seen later in this
section. In addition, µ ≥ 0 is required to allow a certain degree of freedom in traffic
routing. We set µ = 0.025 in our computational study.

4.2.2 Postprocessing Model

In case of non-integer vales for ηij in the optimization of the (Ex)CTEPM, this postpro-
cessing optimization model generates a modified solution only consisting of integer values
for ηij . We introduce two new decision variables, namely η′ij and Aij . Let η′ij be the
total number of vehicles traveling from cell i to cell j after the postprocessing and let Aij

be the absolute difference between the number of vehicles traveling from cell i to cell j
before and after the postprocessing. On the basis of this notation, we can formulate the
postprocessing optimization model as follows:

min
∑

i∈I

∑

j∈I

Aij (4.61)

subject to

ηij − η′ij ≤ Aij i,j ∈ I (4.62)

ηij − η′ij ≥ −Aij i,j ∈ I (4.63)
∑

i∈I

η′ij + Ej =
∑

k∈I

η′jk j = 1, . . . , |I| − 1 (4.64)

∑

i∈I

Ei =
∑

i∈I

η′i,|I| (4.65)

η′ij ≤ ηij · Y i, j ∈ I (4.66)

η′ij ∈ N0 i, j ∈ I (4.67)

Aij ≥ 0 i, j ∈ I (4.68)

The objective function (4.61) minimizes the total deviation between assigned vehicles
before and after the postprocessing, whereas the deviation is calculated by (4.62) and
(4.63). A simple static vehicle flow equation is stated in (4.64) and equation (4.65) takes
care that all vehicles will be evacuated. To ensure that no new routes will be used after
the postprocessing, (4.66) limits vehicle flows to those cell pairs where traffic occurs before
the postprocessing. Here, Y is a large number, e.g. Y =

∑
i∈I Ei. The domain of the

decision variables is defined in (4.67) and (4.68).
We will demonstrate the functionality of this approach for a simple network consisting of
six cells where cell 6 is the super sink, see Figure 4.10. There are 10 vehicles starting in
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cell 1–5 each. A possible solution with non-integer values for ηij is displayed in Figure
4.11. The non-integer partitioning of the vehicles leaving cell 1 affects all vehicle flows,
although only integer numbers of vehicles leave from cell 2–5. After the postprocessing,
the number of vehicles traveling between cells are only integer values, see Figure 4.12. The
objective value for this instance is 1.2.

6

1 2

3 4

5

Figure 4.10: Sample Network for Postprocessing
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Figure 4.11: Cumulated Vehicle Flows before Postprocessing
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Figure 4.12: Cumulated Vehicle Flows after Postprocessing
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4.3 Computational Study

For our computational study, the ExCTEPM and the vehicle reallocation model were
coded in AMPL (see http://www.ampl.com) and solved with GUROBI 3.0.1 on a computer
using an Intel X9100 (3.06 Ghz), 8 GB memory and Windows Vista (64-bit).

4.3.1 Scenario Basics

We tested our simulation-based optimization procedure using data from the neighborhood
Neudorf in Duisburg, Germany, with a population of around 26,000 residents leading to
8,750 vehicles. The road network consists of one-, two- and four-lane streets at 50 km/h
and 30 km/h. In addition, eight exits can be used for evacuation purposes. Figure 3.4
in the preceding chapter shows an aerophoto of Neudorf including population density and
available exits.

We decided that it is not effective to include every small side- and dead-end street in the
ExCTEPM. As such we disregard small and sparsely populated street sections so that
the considered street network consists of 98 street sections with a total length of 23km
plus eight exit street sections (and a super sink). For all tests, we use an evacuation
scenario where 100% of residents have to be evacuated. Addionally, we assume that there
is no initial network traffic (e.g. due to rush hour traffic) and that departure times of all
residents can be described by a gamma distribution, see (4.69).

F (x̃) = 1− e−x̃/β
α−1∑

j=0

(x̃/β)j

j!
∀ x̃ ≥ 0 ; α ∈ N (4.69)

Although the departure pattern in the case of an evacuation is not very well explored in
literature, we decided to use a gamma distribution since two pertinent works by Lindell
(2008) and Yazici and Ozbay (2008) confirm our assumption. Moreover, we decided to
use α = 3 and β = 1 since these parameter settings are reasonable to show the benefits
of improved traffic routing which may be diluted, if vehicles are departing too slow, e.g.
α = 3 ; β = 3 or α = 3 ; β = 5.

4.3.2 Optimization Basics

To calculate the optimum cell size, we first have to determine what an optimum cell size
is. We will discuss three ideas in the following:

1. Minimum number of cells: In this case, each street section has to be modeled by
exactly one cell, where cells can have different sizes.

2. Maximum accuracy in network representation: Here, the standard cell size has to
be very small in order to match the lengths of the street sections adequately. Again,
multiple cell sizes can be used.

3. Shortest computation time: Number of cells and cell sizes have to be chosen in way
that minimizes computation time.

The minimum number of cells is determined by the number of street sections. Here, the
standard cell size negatively correlates with the accuracy in network representation, i.e.
higher accuracy leads to smaller standard cell sizes by trend. Smaller cells result in shorter
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periods so that the number of periods to cover a certain planning horizon increases. The
maximum accuracy in network representation is achieved, when all cells (of different size)
match the corresponding street sections perfectly (oj = 0% for all j ∈ J). However, in
extreme situations this may lead to cell sizes of about 1m which results in very high num-
ber of periods due to short periods. These considerations should demonstrate that the
problem size depends on the number of cells and the size of the cells which directly affects
the number of periods. However, it is very hard to determine the effects to an increasing
number of cells and periods so that the minimization of computation time by finding an
“optimal” trade-off between number of cells, size of cells and accuracy in network repre-
sentation is very difficult.
For our computational tests, we decide to minimize the number of cells. The number of
different cell sizes directly corresponds to the accuracy in network representation. We run
a short sensitivity analysis to capture these effects, see Table 4.10.

oj values
Cell size
(50km/h)

|N |
Period
length

Mean
Deviation

Total
Deviation

10% 30m 25 2.2s 6.7m 661m

15% 44m 16 3.2s 10.8m 1060.2m

20% 52m 13 3.7s 10.8m 1061.4m

25% 70m 9 5.0s 15.8m 1547m

30% 82m 7 5.9s 19.4m 1898.2m

35% 106m 5 7.6s 27.2m 2669.4m

40% 122m 4 8.8s 32.5m 3185m

Table 4.10: Sensitivity Analysis for Different Levels of Accuracy

We use the model (4.37) – (4.47) presented in Section 4.1.4 with a slightly modified ob-
jective function. In detail, we added +0.0001 ·

∑
j∈J Zj to the objective function. By

doing so, the gap between the length of a street section and the corresponding cell(s) will
be minimized, as long as no further cells are needed. This modification helps to reduce
total deviation when multiple cell sizes are used, because it may be beneficial to model
a certain street by a cell of size n = 5 instead of size n = 4, whereas both cell sizes
may be feasible in terms of (4.44). We set the accuracy level oj = 0.1, 0.15, . . . , 0.35, 0.4,
|K| = 100 and |S| = 2 (50km/h and 30km/h). First, we calculate the number of cells
with a single cell size for every driving speed for a given accuracy. By doing so, we can
derive the minimum (multiple) cell size desired to describe every street section by one cell
by maxk∈K,j∈J,l∈P βkjl. In a second run, we use the (minimum) multiple cell sizes for each
level of accuracy to model each street section by exactly one cell. Table 4.10 contains some
key figures of the sensitivity analysis.

The problem size of the ExCTEPM mainly depends on the number of cells and the number
of periods. As the number of cells is the same for all accuracy levels in Table 4.10, problem
size is only up the number of periods which correlates the standard cell size. We have
computed solutions for the case of oj = 0.25, 0.3, 0.35, 0.4 using the heuristic procedure
later in this section to demonstrate the effect of increased problem size (due to more
periods). The computation times are stated in Table 4.11.
On the basis that the ExCTEPM must be solved several times in the simulation-based
optimization approach in Section 4.2, we decided to set oj = 0.35 since this level of accu-
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oj values Computation Time [sec.]

25% 11,554

30% 15,578

35% 4,318

40% 2,885

Table 4.11: Computation Times for Different Levels of Accuracy

racy seems to be a good compromise between computation time and level of accuracy.
For adjacent cells i and j with equal level of danger (cit = cjt), the ExCTEPM (and
CTEPM) tends to generate solutions, where vehicles commute between these cells. This
phenomenon does not correspond to a desired ”straight-forward” solution. Therefore,
the term +10−5 ·

∑
i∈I

∑
j∈I

∑
t∈T yijt has been added to the objective function (4.24) to

avoid unnecessary vehicle movements. Moreover, a second term −10−6 ·
∑

t∈T x|I|,t has
been added to the objective in order to ensure that evacuating vehicles starting in sink cells
are not evacuating later than necessary. This may happen when sink cells and the super
sink share the same level of danger (cit) so that there is no difference between residing
in a sink cell or the super sink. During our computational tests, we also found out that
the second term helps to reduce computation time significantly, so that it will be kept for
our computational study. Furthermore, we assume that cit = ci · t holds and that danger
is distributed uniformly within the actual network, setting ci = 100 for all “regular” cells
and ci = 0 for the super sink.
Because of (4.33), different values for p will only affect cells with li > p so that only values
of p = {1, 2, . . . ,maxi∈I li} are useful. For this case study, we set p = 2 since a large
amount of cells is one- or two-laned (li = {1, 2}). For cells with four lanes, setting p = 2
will provide advantages in evacuation organization, see Figure 4.13 and 4.14.

j

i

v

u

Figure 4.13: Possible Routing at Intersec-
tion for p = 2

j

i

v

u

Figure 4.14: Possible Routing at Intersec-
tion for p = 3

By limiting p = 2 in Figure 4.13 evacuation organization is easier since the traffic from cell
i has to be splitted up only once in the middle of the street. For p = 3 – see Figure 4.14 –
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traffic from cell i has to be splitted up twice which is more difficult to organize compared to
p = 2. In addition, the network in our case study has four-way intersections at maximum
so that extremely diverging traffic flows as shown in Figure 4.14 would result in situations
where intersections are blocked for all other adjacent cells. It is important to notice that
there is no “wrong” value for p. In fact, p should be recognized as a design variable
which can be chosen by the decision maker to influence the design of the evacuation plan.
However, we found out that setting p = 1 may result in some computational issues, e.g.
long computation time or no feasible solution.
The procedure stops if

∣∣(
∑

t∈T yi,|I|,t − ei)
∣∣ /ei < λ for all i ∈ IS or no further improvement

could be achieved within a given number (ρ) of succeeding iterations. We set λ = 0.10
and ρ = 10.
Due to the large network size and high problem complexity, we solved the ExCTEPM by
a straight-forward two stage heuristic:

1. Step:

(a) Relax constraint (4.23).

(b) Remove the term +(Ei −
t∑

τ=1
biτ ) from (4.2) and (4.4).

(c) Reduce (4.36) only to traffic crossing conflicts.

(d) Solve remaining problem to a maximum mipgap of 1.0% and save ϕij and ǫij

values.

2. Step:

(a) Restore constraint (4.23).

(b) Restore the term +(Ei −
t∑

τ=1
biτ ) for (4.2) and (4.4).

(c) Solve remaining problem with ϕij and ǫij values from step 1 as parameters.

The concept of using multiple cell sizes helps to reduce the number of cells. However,
constraint (4.23) leads much longer computation times compared to case of using only
single cell sizes. Therefore, we relax this constraint in the first step. This simplifies the
network to cells with only single size. Please remember that a road network with only one
cell size and oj = 0.35 would result in a network of 245 cells (236 street cells, 8 exit cells
and one super sink) instead of 107 cells (98 street cells, 8 exit cells and one super sink)
when multiple cell sizes are used. A network of 245 cells would be very time consuming
to be solved compared to the network of multiple cell sizes, but only 107 cells. Of course,
constraint (4.23) will be restored in the second step. We calculate |T | analogue to the
numerical example, i.e. |T | = (8750/144) · 1.5 ≈ 91.
The results of the second step (i.e. ϕij , ǫij , ηij) are passed to the SUMO traffic simulation.

4.3.3 Simulation Basics

The ExCTEPM minimizes total danger for all evacuees during the planning horizon. In
order to adopt this objective as a performance measure for the results of the microscopic
traffic simulation, we used the following approach: Imagine a solution where the fraction
of rescued evacuees at a particular point of time (within total evacuation time Te) can be
described by a curve g(t) which is illustrated in Figure 4.15.
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Figure 4.15: Performance Measure

The grey shaded area in Figure 4.15 (Area A) is an indicator of the quality of a solution,
because its size depends on the number of rescued evacuees over time, described by the
curve g(t). According to the formulation of the objective function of the ExCTEPM,
we additionally weight the number of rescued evacuees at a period t with the amount of
elapsed time. The size of this area can be calculated using equation (4.70):

A =

∫ Te

0
(1− g(t)) · t dt (4.70)

We approximated (4.70) by the discretization A =
∑Te

t=0((
∑

i∈I Ei)− gt) · t with gt as the
number of rescued evacuees in period t.
In order to simplify the comparison between different solutions, we scaled all areas A, all
total evacuation times (Te) and the occupation time difference between the earliest and
latest exit (Rt) by dividing them by the corresponding values of the initial solution of the
simulation-based optimization procedure. As a result, area size A, total evacuation time
Te as well as time range Rt of this solution will be exactly 1. We use SUMO 0.11.1 for all
microscopic traffic simulations.

4.3.4 Performance

As a point of reference, we will use the initial solution of the procedure (Iteration 0) as
a benchmark for our computational study. In particular, the occupation time difference
between the earliest and latest exit Rt (originally Rt = 504s), the total evacuation time
Te (originally Te = 1, 346s) as well as the size of area A (originally A = 1.637 · 109) were
scaled to one. The results of the simulation-based optimization procedure are stated in
Table 4.12 and 4.13.

The results of the simulation-based optimization procedure are pleasing in many ways.
First of all, the initial solution of the ExCTEPM (without any feedback from simula-
tion results) shows nice results in the microscopic SUMO Traffic Simulation. Although
occupation times for all exits vary quite strong, total evacuation time is relatively low.
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Iteration E1 E2 E3 E4 E5 E6 E7 E8

0 1,333s 1,016s 930s 913s 948s 842s 1,327s 1,346s

1 1,084s 1,084s 1,067s 1,027s 1,239s 1,276s 1,566s 1,117s

2 1,119s 1,046s 1,079s 1,090s 1,246s 1,161s 1,148s 1,109s

3 1,283s 1,204s 1,021s 1,034s 1,057s 971s 1,132s 1,176s

4 1,093s 1,011s 1,027s 1,059s 1,279s 1,150s 1,234s 1,162s

5 1,189s 1,159s 1,110s 1,190s 1,045s 1,039s 1,109s 1,074s

Table 4.12: Exit Occupation Times for each Iteration

Iteration Rt Te A
Computation

Time
Event at the End of

Iteration

0 1.000 1.000 1.000 4,318s Reallocation

1 1.069 1.163 1.137 454s Restore (4.36)

2 0.397 0.926 0.955 218s Reallocation

3 0.619 0.953 0.974 212s Reallocation

4 0.532 0.950 0.972 191s Reallocation

5 0.300 0.884 0.938 164s STOP

Table 4.13: Performance of the Simulation-based Optimization Procedure

Computation time is much longer compared to succeeding iterations, because no major
traffic routing decisions are preassigned in this iteration. As no major blocking of traffic
streams on junctions exist, the reallocation model was applied. The evaluation of iteration
1 results in worsening of all key figures, in detail Rt increases by 6.9%, total evacuation
time by 16.3% and the performance measure by 13.7%. This deterioration is mainly
caused by massive traffic blocking directly in front of a four-lane exit, leading to strong
congestions during the evacuation. This observation demonstrates that traffic touching
conflicts also need to be considered in evacuation planning. Due to the determination of
many heavily occupied cell connections, computation time drops siginificantly compared
to iteration 0. In the following iteration, routing decisions from iteration 1 were adopted
and supplemented by the re-establishment of (4.36) for the congested exit cell in iteration
1. This modification results in significantly better results, i.e. the best solution up to now.
All key figures reach a new top mark, especially Rt could be improved by 60.3%. During
the next iterations, the reallocation model was applied multiple times, finally resulting in
a new best solution in iteration 5. Here, all key figures could be improved again, compared
to the incumbent solution in iteration 2. Rt reduces to 30.0% of the initial value, total
evacuation time to 88.4% and the performance measure to 93.8%. After iteration 5, the
procedure stops since the reallocation of vehicles would result in adjustments lower than
10.0% of the original allocation. The simulation with SUMO took between 11 and 14
seconds in each iteration. A graphical representation of the number of rescueed evacuees
over time can be found in Figure 4.16. We refused to display the charts of every iteration
since the results of iteration 3 and iteration 4 are similar to iteration 2.
The initial solution of the ExCTEPM performs quite well in terms of Rt, Te and A. On the
other hand, these results also indicate that traffic touching conflicts should be considered
in the model formulation. However, the reallocation model helps to enhance the initial
solution and to lower total evacuation time by more than 11%.



4.3 Computational Study 65

Figure 4.16: Number of rescued evacuees over time



Chapter 5

Heuristic Solution Procedures

Since the ExCTEPM is a deterministic optimization model, it can not cover stochastic
aspects or uncertainty in general. Moreover, the realism of traffic illustration in the Ex-
CTEPM is considerably lower than in microscopic traffic simulations. However, in Chapter
3 and Chapter 4 we showed, that the results of the (Ex)CTEPM work fine as input data
for succeeding microscopic traffic simulation software which includes more realistic traffic
behavior mechanisms. We also demonstrated the potential of the ExCTEPM since it is
a very versatile approach capable of generating high quality evacuation plans which are
applicable to real-world evacuation problems.
Nevertheless, the preceding chapter also demonstrates that the ExCTEPM is hardly appli-
cable to larger real-world scenarios because of large computation times even for moderately
sized instances. Although a simple heuristic solution procedure was applied, computational
effort and computational requirements were still high. Taking a closer look on the prob-
lem complexity, we observe that the ExCTEPM contains a path constrained network flow
problem which is known to be NP–complete, see Garey and Johnson (1979). Thus, the
problem described in the ExCTEPM also belongs to the class of NP-complete problems
so that finding optimal solutions for larger instances will be a difficult task.
To overcome these difficulties, we will present two heuristic procedures for solving the
ExCTEPM in this chapter, namely a shortest-path based heuristic as well as a static ver-
sion of the ExCTEPM. The latter shows some similarities to the original formulation of
the ExCTEPM, especially in its basic concepts, i.e. usage of cells, consideration of lanes,
etc. However, this approach is simpler since it lacks the dynamic character of the Ex-
CTEPM. In a computational study we will demonstrate the effectiveness of our approach
in nine real-world scenarios of different road network size, population and risk distribu-
tion, respectively. The following contents are based on the work of Kimms and Maassen
(2010a).

5.1 Extended Cell-Transmission-Based Evacuation Planning

For the sake of self-containedness of this chapter, we first recapitulate the notation and
model formulation of the ExCTEPM in the following. In its presented form, the model
(5.1) – (5.27) is identical to the model (4.1) – (4.8), (4.11) – (4.16), (4.23) and (4.25) –
(4.36) in Chapter 4. Thus, the explanation of the objective function and constraints is
exactly the same as discussed before.

66
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5.1.1 Notation

Sets and parameters:

T = {1, . . . , |T |} index set of periods (where |T | is the index of the last period
of the planning horizon)

N = {1, . . . , |N |} index set of different cell size multipliers (where |N | denotes
the maximum cell size)

I = {1, . . . , |I|} index set of cells
In index set of cells of cell size n (

⋃
n∈N In = I )

|I| index of super sink
IS index set of sink cells (IS = {i ∈ I : βi,|I| = 1})
cit danger of being at cell i in period t (cit ≥ 0)
βij = βji = 1, if a traffic flow from cell i to cell j

(and vice versa) can be established (0, otherwise)
Nit maximum vehicle capacity of cell i (on all lanes) in period t
Ei number of vehicles starting their evacuation in cell i (derived

from population in cell i)
Qit maximum number of in- and outflowing vehicles (on all lanes)

per period into / from cell i in period t
li number of lanes in cell i
ni size of cell i
p maximum number of outgoing traffic streams
xi1 number of vehicles en route at cell i at the end of

period 1, i.e. before the evacuation starts

Decision Variables:

zit number of vehicles residing, leaving or waiting in cell i in period t
xit number of residing vehicles at cell i at the end of period t
yijt number of vehicles leaving section i in period t and reaching section j

in period t + 1
bit number of vehicles starting their evacuation at cell i in period t
ϕij = 1, if and only if a connection from cell i to cell j will be used by

evacuation traffic
ǫij number of lanes used by an evacuation traffic stream from cell i to cell j

Given this notation the ExCTEPM can be formulated as follows:
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5.1.2 Model Formulation

min
∑

i∈I

∑

t∈T

cit · zit (5.1)

subject to

zit = xit +
∑

j∈I

yijt + (Ei −
t∑

τ=1

biτ ) i ∈ I ; t ∈ T (5.2)

xit = bit + xi,t−1 +
∑

j∈I

yji,t−1 −
∑

j∈I

yijt i ∈ I ; t = 2, . . . , |T | (5.3)

∑

j∈I

t∑

τ=1

yijτ ≤
∑

j∈I

max(t−ni,1)∑

τ=1

yjiτ

+

max(t−⌈ni/2⌉+1,1)∑

τ=1

biτ + xi1 i ∈ I : ni ≥ 2 ; t = 2, . . . , |T | (5.4)

zit ≤ Nit + (Ei −
t∑

τ=1

biτ ) i ∈ I ; t ∈ T (5.5)

xit ≤ Nit i ∈ I ; t ∈ T (5.6)
∑

t∈T

bit = Ei i ∈ I (5.7)

x|I|,|T | =
∑

i∈I

(Ei + xi1) (5.8)

∑

i∈I

yijt ≤ (Njt − xjt) j ∈ I ; t ∈ T (5.9)

yijt ≤ Nit · βij i,j ∈ I ; t ∈ T (5.10)

yijt ≤
Qjt

lj
· ǫij i,j ∈ I ; t ∈ T (5.11)

yijt ≤
Qit

li
· ǫij i,j ∈ I ; t ∈ T (5.12)

∑

i∈I

ϕij ≤ lj j ∈ I (5.13)

∑

j∈I

ϕij ≤ p i ∈ I (5.14)

ϕij + ϕjk ≤ 1 i,j,k ∈ I : βij = 1 ;βik = 1 (5.15)

ϕij ≤ βij i,j ∈ I (5.16)

ǫij ≤ ϕij ·min{li, lj} i,j ∈ I (5.17)
∑

i∈I

ǫij ≤ lj j ∈ I (5.18)

∑

j∈I

ǫij ≤ li i ∈ I (5.19)

ϕij + ϕji + ϕuv + ϕvu ≤ 1 i, j, u, v ∈ I : βij = βiu =

βiv = βju = βjv = βuv = 1 (5.20)

zit, xit, bit ≥ 0 i ∈ I ; t ∈ T (5.21)
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yijt ≥ 0 i,j ∈ I ; t ∈ T (5.22)

ǫij ∈ N0 i,j ∈ I (5.23)

ϕij ∈ {0, 1} i,j ∈ I (5.24)

xi1 = 0 i ∈ I (5.25)

bi1 = 0 i ∈ I (5.26)

yij1 = 0 i ∈ I ; j ∈ I (5.27)

5.2 Heuristic Approaches

In order to transfer high quality solutions of the ExCTEPM to large-scale instances,
heuristic procedures with relatively low memory requirements and short computation times
are needed. In this section, we introduce a shortest-path based heuristic as well as an
iterative heuristic based on a static version of the ExCTEPM, called static ExCTEPM.
Efficient solution procedures for the system optimum dynamic traffic assignment model in
the seminal work of Ziliaskopoulos (2000) are presented in Shen et al. (2007) and Zheng
and Chiu (2011). Shen et al. (2007) develop a dynamic network simplex method that is
supplemented by a point-queue model. Zheng and Chiu (2011) show that the proposed
problem is equivalent to the earliest arrival flow and can be efficiently solved by a network
flow algorithm for the earliest arrival flow on a time-expanded network.
However, since the ExCTEPM is a different optimization problem, we prefer an other
approach: In our opinion, the major difficulty in solving the ExCTEPM is to determine
in which direction vehicles should drive and where merging and diverging processes take
place. If the driving direction (in terms of ϕij) is fixed, the allocation of lanes (in terms of
ǫij) can be regarded as a “fine-adjustment”. Hence, finding almost optimal values for ϕij

is the most demanding task when solving the ExCTEPM and this is what both heuristics
do. The shortest-path heuristic determines ϕij values on the basis of the most frequently
used cell connections, whereas the static ExCTEPM heuristic computes ϕij values in such
a way that the maximum occupation time of all cell connections will be minimized. The
results of both heuristics – i.e. values for ϕij – are then used as input parameters for the
original ExCTEPM which dramatically reduces computation time since a large number of
integer variables are fixed.

5.2.1 Basics

When it comes to design of heuristic solution procedures, fundamental characteristics of
problem instances have to be taken into account. Evacuations are often caused by natural
disasters like floods or earthquakes or by human-caused threats like fire, chemical accidents
or terror attacks, respectively. All these events have in common that they appear as single
(local) events and that the measure of risk decreases with increasing distance. Hence,
we can argue that in the case of an evacuation there is a highly endangered emergency
planning zone (EPZ0) in the center of the threat (with very high measure of risk) which
actually raises the need for evacuation. Furthermore, the highly endangered EPZ (EPZ0)
is surrounded by “regular” EPZs (EPZ1, EPZ2, . . . , with (different) lower levels of risk)
which also have to be evacuated. Figure 5.1 illustrates these relations for a threat (e.g.
disarming a large unexploded bomb) in the center of an urban area with one highly
endangered EPZ and two less endangered EPZs.
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Figure 5.1: Possible Locations of Emergency Planning Zones (EPZh)

Figure 5.2: Other Possible Locations of Emergency Planning Zones (EPZh)

Formally, the sets EPZ0, EPZ1, EPZ2, . . . define a partition of the index set I, i.e. EPZh∩
EPZh′ = ∅ for h 6= h′ and

⋃
h EPZh = I. Let H denote the index set of the EPZs so

that |H| is the number of emergency planning zones. For ease of understanding, we will
denote the parameter cit as cEPZh

it to emphasize that cell i is located inside the EPZ h.
Three topics need special attention here. Firstly, we assume that the measure of risk
significantly varies with the distance to the center of risk. In detail, we imply that

cEPZh

it >> c
EPZh+1

jt h = 0, . . . , |H| − 1 ; i ∈ EPZh ; j ∈ EPZh+1 ; t ∈ T (5.28)

holds since almost every threat has “critical” distances which relate to certain levels of
risk. Additionally, we assume that the measure of risk within an EPZ is the same for every
cell (e.g. cEPZh

it = cEPZh

jt for all h = 0, 1, 2, . . . ; i, j ∈ EPZh; t ∈ T ) and that |I| ∈ EPZ|H|.
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Secondly, we have to point out that cit must be interpreted as a control variable for the
decision maker. In Section 4.1.1, we already discussed that e.g. cit might be related to
the concentration of hazardous materials in the air, but cit also allows the decision maker
to “control” the solution of the ExCTEPM taking practical experiences into account. For
example, the decision maker may share the opinion that a certain street segment should be
used less by evacuating vehicles – i.e. higher values for cit – because the road surface is in
worse condition compared to alternative street segments. Similarities to this approach can
be found in multicriteria optimization, where the weights of different (partially interfering)
objectives also represent a control variable for the decision maker.
Thirdly, it has to be noticed that the shape of the most endangered EPZ and the regular
EPZs do not have to be ring-shaped or uniform in general. In fact, the shape may de-
pend on several aspects, e.g. the kind of threat as well as meteorological, topographical,
demographical or political concerns. Interested readers can find more detailed informa-
tion on how to determine emergency planning zones in Golding and Kasperson (1988)
and Sorensen et al. (1992). In Figure 5.1, the threat (e.g. a large unexploded bomb) is
localized on a single spot and risk is uniformly distributed around the place of discovery
since all surrounding buildings have the same level of protection against a possible bomb
explosion. In the case of a city with a large river and an upcoming flood, the shape of the
EPZs may look like displayed in Figure 5.2. Of course, the floodwater would first hit the
area next to the river. Therefore, this area can be declared as the most endangered EPZ
(EPZ0). The measure of risk decreases with increasing distance to the river so that EPZ1

and EPZ2 can be specified as shown in Figure 5.2. The shape of the EPZs can also take
irregular forms, e.g. in the case of a Tsunami heading towards a city on a mountained
area, different levels of altitude may define the EPZs.

5.2.2 Shortest-Path based ExCTEPM

In the literature, shortest-path based approaches are likely to be used when dealing with
traffic routing / traffic assignment or evacuation problems, e.g. Chen and Feng (2000),
Karbowicz and Macgregor Smith (1984), Stepanov and MacGregor Smith (2009), Wang
and Cheng (2006), Yamada (1996). Furthermore, shortest-path algorithms are explored
very well (see Ahuja et al. (1993) and Fu et al. (2006) for reviews) and by now, state-
of-the-art shortest-path algorithms are capable of handling very large networks as can be
seen in Peyer et al. (2009) and Xu et al. (2007).
Since the calculation of shortest paths can be done easily, the main problem for a shortest-
path based heuristic is how to convert the knowledge of shortest paths into an evacuation
plan. For our purposes, shortest paths are expressed by a row of i → j pairs, e.g. if the
shortest path from cell 1 (starting cell) to the cell 20 (super sink) is 1→7→13→19→20 the
connections from 1→7, 7→13, 13→19, 19→20 are used. To determine shortest paths, our
shortest-path algorithm (a standard optimization model for shortest paths applications)
uses dij = (ci ·ni + cj ·nj)/(li + lj) as weights for i→ j pairs. After the computation of all
shortest paths (one shortest path per cell), a new parameter wij is computed by adding
the number of vehicles using the connection from cell i to cell j on their shortest paths.
In the following, the parameter wij will be used in an optimization model to determine,
which connections from cell i to cell j should be used in an evacuation plan.
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Additional Parameters:

Y = a large number, e.g.
∑

i∈I Ei

Additional Variables:

ηij = number of vehicles using the connection from cell i to cell j

max
∑

i∈I

∑

j∈I

wij · ϕij (5.29)

subject to (5.13)–(5.16), (5.20), (5.24) and

∑

i∈I

ηij + Ej =
∑

k∈I

ηjk j = 1, . . . , |I| − 1 (5.30)

∑

i∈I

ηi,|I| =
∑

i∈I

Ei (5.31)

ηij ≤ ϕij · Y i, j ∈ I (5.32)

ϕij + ϕji ≤ 1 i, j ∈ I (5.33)

ηij ≥ 0 i, j ∈ I (5.34)

The objective function (5.29) maximizes the number of vehicles using (at least parts of)
their shortest paths. A standard vehicle flow equation is stated in (5.30). Equation (5.31)
ensures that all vehicles will be evacuated and (5.32) restricts traffic flow (in terms of ηij)
to those connections from cell i to cell j which will be used in the evacuation plan. In
addition to vehicle flow constraints in the ExCTEPM, constraint (5.33) is needed to avoid
situations where traffic is routed in opposite directions between two cells. The domain of
the new decision variables is defined in (5.34).
One major weakness of this approach is the fact that the shortest path for each cell is
calculated independent of the shortest paths from other cells. On the one hand, traffic
capacities are taken into account by including li in the computation of wij . On the other
hand, the relation between the number of vehicles traveling from cell i to cell j and the
number of periods, which will be necessary to cope with the generated traffic volume in
these cells, is completely disregarded. Due to the nature of this approach, it is not able to
take the number of periods – a connection from cell i to cell j will be occupied due to a cer-
tain traffic volume – into account. The computational study in Section 5.3 will illustrate
that this fact will tremendously affect solution quality, for Scenarios 1–6: øgap = 88.9%.

A possible shortest-path based heuristic for solving the ExCTEPM can be designed in the
following manner:

1. Step: Calculate a shortest path from each cell i (i = 1, . . . , |I| − 1) to super sink |I|.
Result: wij values.

2. Step: Solve the MIP (5.13)–(5.16), (5.20), (5.24) and (5.29) – (5.34) with wij as
parameter. Result: Values for ϕij for all i, j ∈ I.

3. Step: Use ϕij values as input parameters for the ExCTEPM.
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Please note that we will not address the details of the computation of shortest paths
in this work, we refer to Ahuja et al. (1993) for further details. For our purposes, we
use a straightforward implementation of the shortest path problem in terms of a simple
linear optimization model which can be found in standard math programming text books.
This optimization model has been used in a standalone procedure coded in AMPL (see
http://www.ampl.com) to generate all shortest paths.

5.2.3 Static ExCTEPM

The minimization of risk for evacuees generally relates to the minimization of the occupa-
tion of the street network. The occupation of the street network can be expressed by the
number of periods it is used and the number of periods a certain connection between to
cells is used can be computed by (5.35).

ηij

min(Qi

li
,

Qj

lj
) · ǫij

= Mij i, j ∈ I (5.35)

where ηij is the total number of vehicles using the connection i → j (i.e. ηij =
∑

t yijt)
and Mij is the amount of time (measured in periods) this connection will be used under
maximum traffic flow. Additionally, we assume that road capacities don’t change within
the planning horizon, so that Qit → Qi and Qjt → Qj . In the original formulation of the
ExCTEPM, there was no need for the variable Mij , since the number of periods a certain
connection is used could be derived from yijt. Unfortunately, ηij , ǫij as well as Mij are
not known in advance since these values are the result of the optimization.
The objective (5.1) minimizes total risk for all evacuees in the complete planning horizon.
However, when the results of the ExCTEPM were evaluated in a traffic simulation, it
turned out that the occupancy rates of exits may be unbalanced, so that a reallocation
approach to balance occupancy rates was discussed and successfully applied in the preced-
ing chapter. The basic idea of this approach is to reallocate evacuees from highly occupied
exits to less occupied exits in order to minimize total evacuation time and to maximize
the number of escaped evacuees at each point of time in the planning horizon, whereby
worsening of the objective value will be accepted. Here, we will adopt this idea, but in-
stead of just balancing exit occupancy rates, we will consider every i→ j connection. The
occupancy rate of a specific i→ j connection can be calculated by (5.35). For the case of
minimizing maximum occupancy rates of all i→ j connections, (5.35) can be transformed
into (5.36) because ǫij ∈ N0:

ηij

min(Qi

li
,

Qj

lj
)
≤M · ǫij i, j ∈ I (5.36)

where Mij is substituted by M . By choosing the value of M , traffic flow can be controlled
as the following simple example illustrates, see Figure 5.3.

41 2 3

Figure 5.3: Basic Idea of Static ExCTEPM Heuristic

We assume that the population is 50 vehicles in cell 2 and 50 vehicles in cell 3. The
maximum flow capacity on all lanes is 10 vehicles per period for every cell. If M ≤ 10
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holds, all vehicles may travel to cell 1 (or cell 4) in order to escape. This solution would
be feasible since exactly 10 (the upper limit of M) periods (100 vehicles / 10 vehicles per
period) are needed between cell 1 and 2 as well as cell 2 and 3. Otherwise, if M ≤ 5
holds, the only feasible routing consists of 50 vehicles traveling from cell 2 to cell 1 and
50 vehicles traveling from cell 3 to cell 4. The former solution would not be feasible for
M ≤ 5. It is easy to notice, that evacuation time decreases to 50% and that connections
are uniformly occupied in the complete evacuation network.
Based on these thoughts, the Static ExCTEPM can be defined as follows:

min M (5.37)

subject to (5.13)–(5.20), (5.23), (5.24), (5.36) and

∑

i∈I

ηij + Ej =
∑

k∈I

ηjk j = 1, . . . , |I| − 1 (5.38)

∑

i∈I

Ei =
∑

i∈I

ηi,|I| (5.39)

ηij ≤ ǫij · Y i, j ∈ I (5.40)

ϕij + ϕji ≤ 1 i, j ∈ I (5.41)

ǫi,|I| = li i ∈ I : βi,|I| = 1 (5.42)

M ≥ 0 (5.43)

ηij ≥ 0 i, j ∈ I (5.44)

The objective (5.37) in combination with (5.36) minimizes maximum usage time of all
i → j connections. Equation (5.38) is a simplified static version of flow balance equation
(5.3). (5.39) ensures that all vehicles will leave the evacuation network and (5.40) restricts
traffic flows only to those i → j connections where at least one lane is established. Con-
straint (5.41) avoids traffic flows in opposite directions between two cells and (5.42) is a
preprocessing constraint as it fixes the number of established lanes from exit cells to the
super sink to the maximum number of lanes. (5.43) as well as (5.44) specify the domain of
ηij and M , respectively. It has to be noticed that this optimization problem is non-linear
due to constraint (5.36).

Since the objective just consists of a single variable, the optimization (= minimization)
process can be done by a binary search algorithm, see Davis (1969). The main advantage
of this procedure is the transformation of the non-linear optimization problem (5.13) –
(5.20), (5.23), (5.24), (5.36) – (5.44) to the linear constraint satisfaction problem (5.13) –
(5.20), (5.23), (5.24), (5.36), (5.38) – (5.44), since M can be defined as a parameter.

1. Solve Static ExCTEPM:

(a) Set a lower bound LB = 1, set an upper bound UB = |T |, set a test value
λ = (LB + UB)/2, set a stopping criterion, e.g. µ1 = 0.01 and µ2 = 0.5.

(b) Set M = λ and solve the constraint satisfaction problem (5.13) – (5.20), (5.23),
(5.24), (5.36), (5.38) – (5.44).

(c) If a solution exists: set UB = λ.
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(d) If no solution exists: set LB = λ.

(e) set λ = (LB + UB)/2.

(f) Go back to Step (b) if 1−(LB/UB) > µ1 and UB−LB > µ2, otherwise STOP.

The binary search algorithm iteratively cuts the (remaining) search space into halves until
one of the stopping criterions 1− (LB/UB) ≤ µ1 or UB − LB ≤ µ2 is met. The number
of required iterations depends on the values of |T |, µ1 and µ2.
As discussed at the beginning of Section 5.2 the purpose of the static ExCTEPM heuris-
tic is to generate values for all ϕij variables since these variables mainly determine the
evacuation plan. At this point, is must be clear that the outcome of the static ExCTEPM
model – i.e. values for all ϕij variables – is only intended to be used as input param-
eters for the original ExCTEPM. Hence, solutions computed on the basis of the static
ExCTEPM heuristic are always solutions of the original (dynamic) ExCTEPM which was
supplemented by prespecified (= fixed) values for all ϕij variables.

As explained earlier in Section 5.2.1, the measure of risk usually relates to the distance
to the center of risk. In the case of an evacuation with one highly endangered EPZ and
several regular EPZs, highly endangered areas (i.e. the most endangered EPZ) need to
be evacuated with higher priority since the risk of residing in the most endangered EPZ
is much higher than in regular EPZs or safe zones (see (5.28)). This relation also holds
between different EPZs so that more endangered areas have to be evacuated with higher
priority than less endangered areas in general. These considerations can be implemented
in the existing static ExCTEPM procedure by defining a set of EPZs h = 0, . . . , |H|,
composed of the most endangered EPZ and regular EPZs. Each cell in the evacuation
network belongs to exactly one EPZ h. Additionally, we assume that cit:i∈h >> cit:i∈h+1

for all h = 0, . . . , |H| − 1 holds so that cells within EPZ0 take the highest cit values of all
cells in the evacuation network. Again, we assume that |I| ∈ EPZ|H|.
It has to be mentioned that in the case of |H| > 1, there exist |H| “copies” of constraint
(5.36). Each copy h of (5.36) covers all cells i within EPZ0,. . . ,EPZh. Moreover, each
copy is also characterized by a unique Mh. If instances with multiple levels of risk are
solved, all Mh values are optimized successively by the binary search algorithm, starting
with M0. Here, it is important that a calculated value for Mh will still be present in the
calculation of all succeeding computations (e.g. Mh+1, Mh+2,. . .). This proceeding ensures
that already computed Mh values for highly endangered areas will be kept for succeeding
computations. Thus, all Mh values are considered in every iteration of the algorithm. For
a specific EPZ h, all values Mh′ (with h′ = 0, . . . , h− 1) have already been minimized by
the binary search and all values Mh′′ (with h′′ = h + 1, . . . , |H|) are still set to Mh′′ = |T |.
The previously introduced algorithm can be extended as stated below:

1. Set h = 0.

2. Solve Static ExCTEPM:

(a) Set a lower bound for EPZ h LBh = 1, set an upper bound for EPZ h UBh =
|T |, set a test value λ = (LBh + UBh)/2, set Mh′ = |T | for all h′ = h, . . . , |H|,
set a stopping criterion, e.g. µ1 = 0.01 and µ2 = 0.5.

(b) Set Mh = λ and solve the constraint satisfaction problem (5.13) – (5.20), (5.23),
(5.24), (5.36), (5.38) – (5.44).

(c) If a solution exists: set UBh = λ.
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(d) If no solution exists: set LBh = λ.

(e) set λ = (LBh + UBh)/2.

(f) Go back to Step (b) if 1− (LBh/UBh) > µ1 and UBh − LBh > µ2, otherwise
set Mh = UBh and go to Step 3/4.

3. Fix all routing decisions (ϕij values) for all cells i inside EPZs 0, . . . , h.

4. Set h = h + 1.

5. Go back to Step 2 if h < |H|+ 1, otherwise STOP.

The third step represents a slightly modified version of the original static ExCTEPM
heuristic. In its standard form, traffic routing – in terms of ϕij values – for all cells inside
EPZs 0, . . . , h is not fixed and has to be determined anew in each iteration h. (Please note
that there is a difference between the fixation ϕij-values and the fixation of Mh-values,
because ϕij determines the traffic routing and Mh the maximum occupation of cell con-
nections within an EPZ h.) This fact may lead to computational issues for large networks
(e.g. |I| > 300) if tight bounds exist for already computed EPZs h – in terms of preferably
low values for M0, . . . , Mh−1. Therefore, we added the third step, which fixes traffic rout-
ing decision in terms of ϕij for already computed EPZs. As this proceeding might affect
solution quality negatively due to reduced solution space for succeeding computations of
Mh values, it will only be applied for larger networks, i.e. Scenarios 8 and 9.
The assignment of a cell i to a EPZ h is raised by the parameter cit. In detail, we assume
that each EPZ is characterized by a predetermined measure of risk interval [cht, cht] so
that all cells i ∈ I : cht ≤ cit ≤ cht are part of EPZ h.
It has to be noticed that for the case of a Tsunami heading towards a city in a mountain
area, EPZs defined in respect to the altitude may lead to incoherent EPZs. However, our
approach can also be applied to such problems.

5.3 Computational Study

In order to prove effectiveness of our heuristic solution approaches, evacuation plans
for nine large real-world evacuation scenarios will be computed in this section. The
shortest-path based ExCTEPM as well as the static ExCTEPM heuristic were written
in AMPL. Runtime requirements are denoted as “solvetime” in subsequent tables and
are determined as the wall clock seconds. It turns out that CPLEX (see http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer) and GUROBI (see http://
www.gurobi.com) perform better in the case of the static ExCTEPM, if an objective func-
tion is added to the (constraint satisfaction) model, although this objective function or
the objective function value have absolutely no relevance for the constraint satisfaction
problem or the procedure itself. For this purpose, we use min

∑
i∈I

∑
j∈I ηij · dij with

dij = ((ci ·ni) + (cj ·nj))/(li + lj). Furthermore we will demonstrate a simple approach to
compute lower bounds, which will help to evaluate solution quality if the optimum solu-
tion is unknown. We also tested the performance of different commercial state-of-the-art
solvers, i.e. CPLEX 10.0.0 and GUROBI 3.0.1. It should be noticed that GUROBI runs
on two cores of the CPU whereas CPLEX uses only one core, leading to a theoretical
advantage of 50% in computation time for GUROBI. All tests were run on a computer
using an Intel X9100 (3.06 Ghz), 8 GB of memory and Windows Vista (64-bit).
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5.3.1 Basics

All real-world test scenarios take place in the city of Duisburg, Germany. This city is
located in the western part of the Ruhr area and it can be regarded as a typical urban
area because of high population density and the existence of an urban road system. The
first six instances (Scenarios 1–6) are limited to the district of Neudorf, which can be
found in the East of Duisburg. The last three instances (Scenarios 7–9) cover a larger area
of Duisburg, namely the districts of Neudorf, Duissern, Hochfeld, Dellviertel and the old
town. In detail, scenarios differ from each other in terms of network size, population size,
distribution of risk as well as the number of EPZs, see Table 5.1 with NL as total network
length, Veh. as total population (number of vehicles) in all cells and #Cells as the number
of cells in the evacuation network including one supersink (without population). Values
in brackets represent the number of vehicles starting in the corresponding cells.

Scenario NL Veh. #Cells #Cells EPZ0 #Cells EPZ1 #Cells EPZ2

1 23 km 8,750 107 106 (8,750) - -

2 23 km 13,102 107 106 (13,102) - -

3 23 km 8,750 107 13 (1,407) 93 (7,343) -

4 23 km 8,750 107 22 (2,500) 84 (6,250) -

5 23 km 8,750 107 4 (486) 9 (921) 93 (7,343)

6 23 km 8,750 107 7 (655) 11 (1,396) 88 (6,699)

7 83 km 25,856 339 338 (25,856) - -

8 83 km 25,856 339 54 (6,270) 284 (19,586) -

9 83 km 25,856 339 16 (1,340) 46 (4,414) 276 (20,102)

Table 5.1: Characteristics of Scenarios 1 – 9

The remaining parameters were set to the following values. We use the cell size optimiza-
tion approach from Section 4.1.4 to determine cell sizes (and flow capacities (Qi)) for all
scenarios:

• Scenarios 1,2,7: cEPZ0

it = 102 · t

• Scenarios 3,4,8: cEPZ0

it = 104 · t, cEPZ1

it = 102 · t

• Scenarios 5,6,9: cEPZ0

it = 106 · t, cEPZ1

it = 104 · t, cEPZ2

it = 102 · t

• Scenarios 1–9: c|I|,t = 0 · t

• p = 2

• Scenarios 1–6: Qi = li · 6 for cells with 50 km/h and 30 km/h driving speed.
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• Scenarios 7–9: Qi = li · 5 for cells with 50 km/h, 30 km/h and 100 km/h driving
speed.

• Values for |T | are calculated by dividing the total number of vehicles by the outflow
capacities of all cells leading to the super sink, e.g. 8750/144 = 60.76 for the case of
Scenario 1. Afterwards this value is multiplied by 1.5, e.g. 60.76 · 1.5 ≈ 91. It has
to be noticed that the factor 1.5 might be too low in some cases, normally leading
to no feasible solution, but in some rare cases also to feasible solutions with minor
degradations of the objective function value. In our computational study, we increase
the factor by steps of 0.5, leading to the factors 2, 2.5, 3, 3.5 and so on. On the
other hand, these large factors might increase the planning horizon to levels where
computational limits in terms of memory are reached. In such cases, we reduce the
factors in steps of 0.05 until a solution can be obtained.

Additionally, we compute the number of constraints and variables for each scenario with
AMPL to illustrate the dimensions of these instances. We set |T | = 91 for Scenarios 1,3–6
and |T | = 136 for Scenario 2. These values are calculated using the standard factor of 1.5
as discussed above.
For the computation of the number of constraints and variables in Scenarios 7–9, we set
|T | = 132. Originally, |T | for Scenarios 7–9 should have been set to |T | = 141 using again
a factor of 1.5. Due to computational limits we were not able to compute the number
of constraints and variables for Scenarios 7–9 using more than 132 periods representing a
factor of 1.4. However, these numbers may also provide a sufficient estimation of problem
size. Please note that this limitation has absolutely no relevance for the computational
study since we are solving the ExCTEPM using ϕij (and ǫij) as parameters. The number
of constraints and variables for each scenario can be found in Table 5.2. We also add the
number of variables and constraints which were eliminated by AMPL’s presolve.

After AMPL’s Presolve Eliminated by Before AMPL’s
Sc. |T | #Constraints #Variables AMPL’s Presolve Presolve

#Integer #Linear #Const. #Var. #Const. #Var.

1 91 141,118 1,044 74,973 84,894 23,594 226,012 99,611
2 136 210,778 1,044 112,593 113,514 23,909 324,292 137,546
3 91 141,118 1,044 74,973 84,894 23,594 226,012 99,611
4 91 141,118 1,044 74,973 84,894 23,594 226,012 99,611
5 91 141,118 1,044 74,973 84,894 23,594 226,012 99,611
6 91 141,118 1,044 74,973 84,894 23,594 226,012 99,611
7 132 624,393 3,164 332,517 517,796 241,717 1,142,189 577,398
8 132 624,393 3,164 332,517 517,796 241,717 1,142,189 577,398
9 132 624,393 3,164 332,517 517,796 241,717 1,142,189 577,398

Table 5.2: #Constraints and #Variables in Scenarios 1–9

The relative gap for every solution is computed by the following equation:

gap =
Sol − Solbest

Solbest
· 100 (5.45)

where Solbest is the objective function value of the best known feasible solution of the
ExCTEPM from our experiments and Sol is the the objective function value of the solution
of the ExCTEPM to be examined. This definition will lead to values of 0.0 for the best
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known solution, to values of gap ≥ 0 for feasible solutions and to values of gap ≤ 0 for
lower bounds. In order to scale all results to percent-values, multiplication by the factor
100 is included.
All solutions generated by our heuristics were evaluated using the original ExCTEPM with
a slightly extended objective function, i.e. min

∑
i∈I

∑
t∈T cit · zit +10−5 ·

∑
i,j∈I

∑
t∈T yijt

and −10−6 ·
∑

t∈T x|I|,t. The first additional term ensures that no unnecessary vehicle
movements occur, which might be the case if two adjacent cells share the same level of
danger. The second additional term ensures that vehicles are not evacuating later than
necessary. During our computational tests it also turned out that the second term helps
to decrease computation time of the ExCTEPM significantly. Both heuristics define an
evacuation plan by setting all ϕij values for all i, j ∈ I. The precise evacuation flows
(expressed by yijt) and the objective values are calculated in the original ExCTEPM with
ϕij as parameters. If multiple cell sizes are used, the computation of the final solution
in Scenarios 1–6 is carried out by two steps. In the first step, constraint (5.4) will be
relaxed and the remaining problem will be solved to a maximum mipgap of 0.1% using
ϕij values as parameters. The second step now uses the (integer) values of ϕij (from the
shortest-path or static ExCTEPM heuristic) and ǫij (from the first step) as parameters
to solve the original model formulation of the ExCTEPM including constraint (5.4). The
computation time for the second step is very short, since all former integer variables are
now fixed: Hence, the remaining problem becomes an LP. The second step can be missed,
if only single cell sizes are used since constraint (5.4) would not exist in this case.
During our computational study, it turned out that the solutions obtained by the shortest-
path based heuristic are not competitive compared to the solutions of the static Ex-
CTEPM. Thus, we only tested the static ExCTEPM for Scenarios 7–9. Moreover, we
also compare the results of using the static ExCTEPM in its original formulation and
the modified formulation which fixes routing decisions of previously computed EPZs. The
final solutions are computed in only one step which uses ϕij and ǫij values from the results
of the (modified) static ExCTEPM as parameters. This step corresponds to the second
step of the solution procedure for Scenarios 1–6 since only an LP has to be solved.

5.3.2 Computing Lower Bounds

Results of Section 5.3.4 will show that the original formulation of the ExCTEPM cannot
be applied to large real-world instances. Thus, there clearly is a need for lower bounds in
order to evaluate quality of the solutions generated by the shortest-path based ExCTEPM
and the static ExCTEPM. For our purposes, we use the original model formulation of the
ExCTEPM, but a simplified network. In detail, we replace every EPZ h and the super
sink |I| in the original evacuation network by exactly one cell i′ leading to a network with
|H|+ 1 cells. All required parameters can be derived from the original network:

• The number of vehicles evacuating from a cell i′ (representing EPZh) in the simpli-
fied network can be derived from the original network with Ei′ =

∑
i∈EPZh

Ei.

• The number of lanes connecting two cells i′ and j′ in the simplified network (rep-
resenting EPZh and EPZh+1) can be determined manually by simply allocating as
many lanes as possible from each cell at the outer border of EPZ h to lanes of cells
at the inner border of the surrounding EPZ h + 1. A mathematical formulation
would correspond to the following optimization model where ǫi′j′ is the number of
allocated lanes between EPZ h and EPZ g.
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ǫi′j′ = max
∑

i∈EPZh

∑

j∈EPZg

βij · ǫij (5.46)

subject to

∑

j∈EPZg

ǫij ≤ li i ∈ EPZh (5.47)

∑

i∈EPZh

ǫij ≤ lj j ∈ EPZg (5.48)

ǫij ∈ N0 i ∈ EPZh; j ∈ EPZg (5.49)

• βi′j′ = 1, if two cell i′ and j′ in the simplified network (representing EPZh and
EPZg in the original network) adjoin to each other, 0 otherwise. E.g. βi′j′ matrix
for Figure 5.1 looks like stated below:

βi′j′ 1 (EPZ0) 2 (EPZ1) 3 (EPZ2) 4 (Safe Area)

1 (EPZ0) - 1 0 0
2 (EPZ1) 1 - 1 0
3 (EPZ2) 0 1 - 1
4 (Safe Area) 0 0 1 -

Table 5.3: βi′j′ Values for the simplified network

As our tests include evacuation networks with three EPZs at maximum, the largest net-
works for computing lower bounds consist of four cells. Such dimensions can be handled
easily with the original ExCTEPM model formulation.

5.3.3 Medium Urban Road Network (Scenarios 1–6)

The district of Neudorf is characterized by a street network with a total length of ap-
proximately 23 kilometers. Based on information from 2006, there are around 26,000
residents living in Neudorf. The street network can be modeled with 107 cells. For all
computational tests using the static ExCTEPM, we set µ1 = 0.01 and µ2 = 0.5. In order
to bound computation time of the static ExCTEPM, we limit the number of explored
nodes to 75,000 and set a time limit of 1800 seconds per iteration. Based upon the in-
formation we gain from the lower bound solution, we could fine-adjust LB and UB to
closer values which would help to lower computation time. Since the first iterations of
solving the static ExCTEPM are solved extremely quickly, we resign these adjustments at
this point. For the computation of the objective function value of the ExCTEPM (with
parameters from the static ExCTEPM heuristic) as well as a starting point for the static
ExCTEPM heuristic, we use |T | = 91 for Scenarios 1,3–6 and |T | = 136 for Scenario 2,
each representing a factor of 1.5. The settings for |T | to compute the objective function
value of the ExCTEPM on the basis of the results from the shortest-path heuristic had
to be set higher, i.e. |T | = 182 (factor 3.0) for Scenario 1 and Scenario 4, |T | = 273/255
(factor 3.0/2.8) for Scenario 2, |T | = 152 (factor 2.5) for Scenario 3 and Scenario 5 as well
as |T | = 213 (factor 3.5) for Scenario 6. The computation of all shortest paths for the
shortest-path based heuristic took about 47 seconds (+/- 0.6 seconds) in each scenario.
The complete network is displayed in Figure 5.4.
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Figure 5.4: Medium Urban Road Network (Neudorf)
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5.3.3.1 Scenario 1

Scenario 1 can be interpreted as a standard scenario since no special risk distribution is
applied. In detail, the network is uniformly endangered, i.e. there is exactly one EPZ, see
Figure C.1. This case may represent a preventative evacuation.

gap [%] solvetime [s]

Static ExCTEPM (CPLEX) 0.07 360
Static ExCTEPM (GUROBI) 0.00 209
Shortest Path ExCTEPM 99.52 693
LB -13.12 < 1
LB ExCTEPM (CPLEX) -9.15 -
ExCTEPM (CPLEX) 0.000 > 21, 600(+7, 200)

Table 5.4: Scenario 1 Results

It can be easily recognized that the static ExCTEPM performs much better than the
shortest-path based heuristic. In fact, the static ExCTEPM delivers very good solutions
(gap < 10%) with both software packages, but with an advantage for GUROBI in terms
of computation time. The original ExCTEPM was not able to find a feasible solution
within 6 hours (21,600 seconds) of computation time, so that the solution obtained by the
static ExCTEPM was used as a starting point. After another 2 hours (7,200 seconds) of
computation time, CPLEX was not able to improve the solution. Our lower bound solution
is outperformed by the lower bound obtained by CPLEX after 2 hours of computation
time. Figure 5.5 displays the solution for a small piece of the network in Scenario 1. Stops
at the end of some arrows indicate barriers that can not be passed by vehicles.

Figure 5.5: Solution Example
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As the graphical representation of solutions always look similar to Figure 5.5, we renounce
to provide suchlike figures for other scenarios. Interested readers find a detailed graphi-
cal representation of an evacuation plan for Duisburg - Neudorf in Kimms and Maassen
(2011b). We also decide only to use the reference solution of our heuristics as a starting
point for the computation of the EXCTEPM since the computation of the EXCTEPM
seems to be not very promising if no feasible solution can be found within 6 hours of
computation time.

5.3.3.2 Scenario 2

Scenario 2 is very similar to Scenario 1 since risk is again distributed uniformly, see Figure
C.2. However, population size in Scenario 2 is 50% higher than in Scenario 1.

gap [%] solvetime [s]

Static ExCTEPM (CPLEX) 0.00 1,546
Static ExCTEPM (GUROBI) 0.15 1,050
Shortest Path ExCTEPM 100.38 1,090
LB -11.32 < 1
LB ExCTEPM (CPLEX) - -
ExCTEPM (CPLEX) 0.000 > 7, 200

Table 5.5: Scenario 2 Results

The results show some similarities to Scenario 1: Again, the static ExCTEPM outper-
forms the shortest-path based heuristic. The static ExCTEPM with CPLEX results in a
slightly better solution compared to GUROBI. The ExCTEPM was not able to enhance
the solution generated by our heuristic. Furthermore, CPLEX was not able to compute a
lower bound within 2 hours of computation time when the EXCTEPM was solved.

5.3.3.3 Scenario 3

This scenario is the first to include different levels of risk within the evacuation network.
In detail, there is a center of risk in the center of the network surrounded by a lower
endangered area, see Figure C.3. Due to the increased number of EPZs, more iterations
are required when the static ExCTEPM is applied.

gap [%] solvetime [s]

Static ExCTEPM (CPLEX) 0.00 933
Static ExCTEPM (GUROBI) 4.59 271
Shortest Path ExCTEPM 79.36 478
LB -31.34 < 1
LB ExCTEPM (CPLEX) -20.20 -
ExCTEPM (CPLEX) 0.000 > 7, 200

Table 5.6: Scenario 3 Results

The shortest-path heuristic shows again much worse results compared to the static Ex-
CTEPM. Furthermore, GUROBI and CPLEX deliver different solutions when the static
ExCTEPM is used. Although GUROBI achieves slightly lower values for Mh, the solution
worsens about 5% compared to the static ExCTEPM computed by CPLEX. This fact
shows that reaching the lowest feasible Mh values is no guarantee for obtaining the best
solution. Again, the original ExCTEPM was not able to enhance the solution obtained by



5.3 Computational Study 84

the static ExCTEPM and our lower bound performs worse than the lower bound of the
EXCTEPM after two hours of computation.

5.3.3.4 Scenario 4

This scenario also consists of two EPZs, but in contrast to Scenario 3, the center of risk
is located in the north-western part of Neudorf, see Figure C.4. Additionally, EPZ0 is
much larger in terms of residents and the number of cells compared to Scenario 3. Hence,
occupancy rate of exits might not be totally balanced since some exits are located nearby
the more endangered area EPZ0.

gap [%] solvetime [s]

Static ExCTEPM (CPLEX) 0.00 1,106
Static ExCTEPM (GUROBI) 10.44 386
Shortest Path ExCTEPM 145.51 629
LB -53.47 < 1
LB ExCTEPM (CPLEX) -30.98 -
ExCTEPM (CPLEX) 0.000 > 7, 200

Table 5.7: Scenario 4 Results

The results of Scenario 4 are interesting in many ways. Firstly, the shortest-path based
ExCTEPM performs extremely worse in comparison to Scenarios 1–3. Secondly, the gap
between the best known solution and the best lower bound is larger than in all scenarios
before. This might be caused by locating EPZ0 on the edge of the network. The static
ExCTEPM with GUROBI again obtains lower Mh values, but again the solution is about
10% inferior compared to the static ExCTEPM with CPLEX.

5.3.3.5 Scenario 5

Scenario 5 is the first scenario which includes three EPZs, see Figure C.5. Analogous to
Scenario 3, the most endangered EPZ (EPZ0) is situated in the center of the network,
surrounded by a small EPZ1. The number of residents and cells affected by a high measure
of risk is the same as in Scenario 3.

gap [%] solvetime [s]

Static ExCTEPM (CPLEX) 0.92 757
Static ExCTEPM (GUROBI) 0.00 676
Shortest Path ExCTEPM 74.50 414
LB -32.29 < 1
LB ExCTEPM (CPLEX) -2.21 -
ExCTEPM (CPLEX) 0.000 > 7, 200

Table 5.8: Scenario 5 Results

Results of Scenario 5 are surprising in several points. Firstly, the gap between the solution
of the shortest-path based ExCTEPM is much lower than in Scenario 4. Secondly, the
gap between the best known solution and the best lower bound is 2.21% which proves that
the static ExCTEPM obtained a near-optimal solution. Thirdly, the ExCTEPM lower
bound performs much better than our lower bound solution. In summary, it seems that it
is easier to compute a high quality solution (and to prove quality) for this instance than
for all previously discussed scenarios.
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5.3.3.6 Scenario 6

Scenario 6 is the consequential continuation of the previously introduced scenarios. Similar
to Scenario 5, three EPZs are taken into account, but here the center of risk is located in
the south-western part of the network, see Figure C.6.

gap [%] solvetime [s]

Static ExCTEPM (CPLEX) 0.00 3,339
Static ExCTEPM (GUROBI) 0.20 606
Shortest Path ExCTEPM 34.34 966
LB -52.36 < 1
LB ExCTEPM (CPLEX) -41.02 -
ExCTEPM (CPLEX) 0.000 > 7, 200

Table 5.9: Scenario 6 Results

The performance of the lower bounds, especially the lower bound computed by the Ex-
CTEPM, show some analogies to Scenario 4, which is also characterized by a center of
risk located on the edge of the evacuation network. This fact may lead to different or
unbalanced occupancy rates of exits. Additionally, GUROBI shows advantages in proving
feasibility / infeasibility during the computation of the static ExCTEPM. Furthermore,
the ExCTEPM was not able to enhance the solution generated by the static ExCTEPM
within 2 hours of computation, respectively.

5.3.4 Large Urban Road Network (Scenarios 7–9)

Around 77,000 residents are living in the districts of Neudorf, Duissern, Hochfeld, Del-
lviertel and the old town. The street network can be described by 339 cells of different
cell sizes representing a total network length of approximately 83 kilometers. Again, we
set µ1 = 0.01 and µ2 = 0.5. Additionally, we set the node limit of the B&B Tree to 75,000
nodes and we define a time limit of 1,800 seconds per iteration when the static ExCTEPM
is solved. We set |T | = 141 (factor 1.5) for the static ExCTEPM in Scenarios 7 and 8. Due
to computational limits, we have to lower this value for the computation of the solution
the ExCTEPM, i.e. we set |T | = 136 (factor 1.45). The static ExCTEPM heuristic in
Scenario 9 was conducted using |T | = 188 (factor 2.0).
Due to the fact that the shortest-path based ExCTEPM is outperformed by the static Ex-
CTEPM in Scenarios 1 – 6, we decided not to apply the shortest-path based ExCTEPM,
but only to use the static ExCTEPM heuristic for Scenarios 7-9. In contrast to Scenarios
1–6, we also derive lower bounds for the binary search algorithm from our lower bound
computation of the ExCTEPM. For Scenarios 7 and 8, we were able to compute the ob-
jective values of the ExCTEPM using ϕij and ǫij as parameters. However, in Scenario 9,
memory requirements were too high because of larger values for |T | so that no objective
values could be computed for this scenario. To give an idea of the solution quality we
compare the Mh values of the static ExCTEPM heuristic to those values from our lower
bound. Moreover, we apply the modified static ExCTEPM heuristic – which fixes traffic
routing for all EPZs h with already computed Mh-values – for the first time. Network
details can be extracted from Figure 5.6.
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Figure 5.6: Large Urban Road Network (Duisburg)

5.3.4.1 Scenario 7

This scenario consists of only one EPZ leading to uniformly distributed risk in the complete
network, see Figure C.7. The lower bound helps to reduce the number of iterations due
to improved initial values for LB in the binary search algorithm, see Section 5.3.4.

gap [%] solvetime [s]

Static ExCTEPM (GUROBI) 0.00 313
LB -24.89 < 1

Table 5.10: Scenario 7 Results

The static ExCTEPM (computed with GUROBI) finishes after about 313 seconds with a
very promising solution. Here, the solution time is relatively short compared to Scenarios
1 and 2 because we additionally use ǫij values (beside ϕij values) as input parameters
so that only an LP has to be solved after running the binary search algorithm. The gap
between the best known solution and our lower bound is larger compared to Scenario
1. We do not apply CPLEX to this problem in order to keep computation time as low
as possible. The difference between the M0-values from the lower bound and from the
heuristic solution is small, see Table 5.13.

5.3.4.2 Scenario 8

Analogous to Scenarios 3 and 4, this scenario also includes two EPZs. The center of risk
is situated in the south-western part of the network, right in the middle of the district
Hochfeld, see Figure C.8.
Although there is not much difference between the static ExCTEPM and the modified
static ExCTEPM in solution quality, differences in computation time are quite larger.
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gap [%] solvetime [s]

mod. Static ExCTEPM (GUROBI) 0.00 536
Static ExCTEPM (GUROBI) 3.77 4,629
LB -48.15 < 1

Table 5.11: Scenario 8 Results

Since the modification of the static ExCTEPM is effective only after the “first” EPZ,
values for M0 are the same. The gap between the lower bound and the best known
solution is relatively large compared to the results in Scenarios 1–6. This rising might be
caused by the significantly increased network size.

5.3.4.3 Scenario 9

This scenario is the most complex scenario in the computational study due to the large
network size and the existence of three EPZs. The center of risk is located in the north-
eastern part of the network, touching the districts Neudorf and Duissern, see Figure C.9.

LB static ExCTEPM mod. static ExCTEPM

M0 13 20.52 (+57.8%) 20.52 (+57.8%)
M1 30 65.18 (+117.3%) 59.63 (+98.8%)
M2 95 167.66 (+76.5%) 173.47 (+82.6%)

Table 5.12: Scenario 9 Results

The results from the static ExCTEPM and the modified static ExCTEPM differ sig-
nificantly in computation time and values for Mh. In detail, computation time for the
modified static ExCTEPM (static ExCTEPM) was 60.1 seconds (3,111 seconds). This
shows that the modification can have tremendous effects on solution quality (in terms of
Mh values) and computation time. This scenario also shows benefits and weaknesses of
the modified static ExCTEPM. On the one hand, the value for M1 is lower compared to
the standard static ExCTEPM although the M0 values are the same. This illustrates that
the fixation of traffic routing decisions in a previous step may lead to lower Mh values
in the succeeding computations due to easier finding of feasible solutions. On the other
hand, the modified static ExCTEPM achieves a higher value for M2, which might be the
result of already fixed traffic routing decisions reducing the search space compared to the
standard static ExCTEPM. As already mentioned in the discussion of Scenarios 4 and 6,
the situation of the center of risk on the edge of the network may affect the number of
vehicles using the nearby located exits. This may lead to unbalanced occupancy rates that
are not covered in the computation of the lower bound values for Mh.

5.3.5 Summary

The performance of the shortest-path based ExCTEPM is disappointing for every scenario,
except Scenario 6. In contrast, the static EXTEPM outperforms the shortest-path based
ExCTEPM in every scenario. Furthermore, the static ExCTEPM obtains very good or
even near optimal (Scenario 5) solutions in less computational time. If the same two
step solution procedure used in Scenarios 1-6 would have been applied to Scenarios 7–9,
computation times would have been a lot longer. However, using ϕij and ǫij values as
parameters, computation times for Scenarios 7 and 8 could be lowered significantly since
ǫij values were already determined. Attempts to apply the ExCTEPM to Scenario 9 fail
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because of too high memory requirements.
We also compare the ratio between the lower bound and the static ExCTEPM (GUROBI)
values for Mh with the ratio of these values in selected scenarios, see Table 5.13.

Lower Bound (mod.) static ExCTEPM

Scenario 1 M0 61 64.28 (+5.4%)
Scenario 7 M0 95 103.63 (+9.1%)

Scenario 4
M0 18 28.77 (+59.8%)
M1 61 76.23 (+25.0%)

Scenario 8
M0 44 54.61 (+24.1%)
M1 95 109.38 (+15.1%)

Scenario 6
M0 7 15.06 (+115.1%)
M1 13 35.10 (+170.0%)
M2 61 79.75 (+30.7%)

Scenario 9
M0 13 20.52 (+57.8%)
M1 30 59.63 (+98.8%))
M2 95 173.47 (+82.6%)

Table 5.13: Comparison between Scenarios (1 ⇔ 7), (4 ⇔ 8), (6 ⇔ 9)

We choose Scenario 1 (for comparison with Scenario 7), Scenario 4 (compared with Sce-
nario 8) and Scenario 6 (compared with Scenario 9) since the number and location of EPZs
are comparable. The relative differences are quite small, see Table 5.13.
The introduced method to deduce lower bounds on the basis of a simplification of the
original evacuation network turns out to work well, especially when only one EPZ exists.
For more than one EPZ, our lower bound is clearly outperformed by the lower bound from
the ExCTEPM. However, even for very large networks, this lower bound can be computed
with very little computational effort and helps to evaluate solution quality.



Chapter 6

Evacuation Planning with Rescue
Teams

The basic ideas of the Cell-Transmission-Model (CTM) by Daganzo (1994) were used in
in the previous chapters for evacuation planning in urban areas. However, no approach
considers the assignment of rescue teams which will be needed in case of fire fighting,
bomb disposal or evacuating public buildings like hospitals. In evacuation scenarios, traffic
capacities are limited and have to be used as efficiently as possible to reduce danger for the
population. Rescue teams usually have to enter the network in opposite driving direction
to evacuating vehicles so that difficulties in traffic routing are unavoidable.
To the best of our knowledge, the assignment of rescue teams in the scope of evacuation
planning is only discussed in Xie and Turnquist (2009) and Bretschneider (2011) up to
now. Xie and Turnquist (2009) present a (static) lane-based discrete network design model
which is combined with a stochastic traffic flow equilibrium framework. Due to its bi-level
structure and its combinatorial characteristics, this problem is non-convex. Therefore,
the authors develop a Lagrangian-based Tabu Search Heuristic which is preceded by a
shortest path heuristic to determine the rescue team routes. A similar problem can be
found in Bretschneider (2011). The author considers the problem of finding routes for
shuttle buses within an evacuation. Since crossing conflicts can not always be avoided
when shuttle buses are implemented, penalties for crossing conflicts are introduced.
In this chapter, we will introduce an extension for the ExCTEPM which allows to integrate
rescue team (contra-)flow into evacuation planning simultaneously. Two types of (in- and
outflowing) traffic participants (evacuating vehicles and rescue teams) will be considered.
On the basis of this model, we will integrate the assignment of rescue teams in a flexible
framework and reoptimize evacuation planning taking the rescue team route determination
into account. Due to the dynamic nature of our model, we will be able to generate time-
dependent schedules for rescue teams, to coordinate evacuation traffic and rescue traffic
simultaneously, to find optimal (i.e. least disruptive) routes for the rescue teams and to
reoptimize evacuation traffic routing under consideration of rescue team routes.
Another possible optimization approach might consist of “Bi-level programming” where
the shortest travel time of rescue team vehicles to destination cells will be determined
under the condition that total danger for evacuees will be minimized. Suchlike approaches
are reasonable in this context, but we will not get back to this approach in this work.
We present a three-staged heuristic procedure which is able to solve real world cases
with up to 8750 vehicles within reasonable time. This chapter is based on the work of
Kimms and Maassen (2010b). To ensure self-containedness of this chapter, we will repeat
some already introduced constraints and explanations. This procedure should also help
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to enhance readability since a large number of constraints will be utilized.

6.1 Integrating Rescue Team Traffic

Some disasters may include the need for routing rescue teams to the origin of danger in or-
der to limit even more danger for the population. However, the assignment of rescue teams
in evacuation scenarios is not trivial since the following questions have to be answered:

1. Where are rescue teams positioned?

2. Which route(s) will rescue teams use?

3. When will the route(s) be reserved for rescue teams?

4. How can street or lane closures be organized?

We want to discuss these questions briefly. Rescue teams can be located inside or outside
the considered urban street network which needs to be evacuated. Large urban areas
usually take advantage of an own fire department so that for example small or medium
fire fighting operations can be carried out by the local fire department. In the case of
larger fires or threats that exceed the capabilities of a local fire department in terms of the
number of fire fighters or special-trained experts (e.g. bomb disposal expert), additional
rescue teams outside the considered network must be called. Depending on the dimension
of the incident, external rescue teams have to choose one or more network entrance(s)
under consideration of evacuation traffic and distance to the operational area. Thus, the
number of required routes for rescue teams and the determination of the routes themselves
depend to the capacity and position of demanded (special-trained) rescue teams.
In this chapter, we will focus on scenarios where rescue teams “just” have to arrive at
the origin of danger at a predefined point of time at the latest. Here, street sections
must be reserved for rescue team traffic before rescue team traffic occurs. For safety
reasons, there should also be at least some time buffer between rescue team and evacuation
traffic. Suchlike scenarios additionally offer the ability to open originally closed streets
for evacuation traffic after rescue teams passed these streets, but again, there should be a
time buffer included.
The amount of rescue team vehicles is relatively low compared to the number of evacuating
vehicles. Thus, it actually should be sufficient to reserve only a single lane for rescue team
traffic. However, this would also lead to several problems. Firstly, evacuees may not accept
the need to reserve some lanes for rescue traffic. Instead, they may think that these lanes
(although closed for evacuation traffic) represent a faster way to escape leading to accidents
with rescue teams at worst. Secondly, routing rescue teams through a multi-lane street
network is even more complex than routing through streets. Especially turning moves
need special attention to avoid traffic crossing conflicts at junctions. Thus, we decided to
reserve whole street sections for rescue team traffic to avoid the last-mentioned difficulties.

6.2 ExCTEPM with Rescue Teams

Since the presented model in this chapter mainly bases on the discussed ExCTEPM, a
large portion of the notation is identical. However, new parameters and decision variables
are needed to cover rescue teams so that we will first introduce the complete notation.
Afterwards, the complete model formulation will be presented. Due to the increased
complexity of the model formulation, we will provide explanations in close proximity.
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6.2.1 Notation

Sets:

• Let I = {1, . . . , |I|} be the index set of cells in the evacuation network, where |I| is
a super sink for evacuation traffic. This set can be classified by relevance for rescue
teams, network exits and cell size.

• We denote IR (IR ⊂ I) as the index set of destination cells for rescue teams, i.e. the
set of cells with a positive demand for rescue teams.

• The subset IS (IS ⊂ I) is the index set of ”exit-cells“ including all cells connected
to the super sink |I| (IS = {i ∈ I : βi,|I| = 1}).

• The cell size of a cell can be integer multiples of a “standard” cell size, where
N = {1, . . . , |N |} is the index set of (integer) cell size multipliers. Hence, a cell of
size n can be passed in at least n periods and In is the index set of cells of cell size
n.

• The parameter ni indicates the size of cell i. More detailed explanations can be
found in Section 4.1.1.

• Furthermore, the index set of periods is T = {1, . . . , |T |}, where |T | is the index of
the last period.

Parameters: Each cell i (i ∈ I) can be described by several characteristics, namely

• the danger of being at cell i in period t cit (cit ≥ 0),

• the maximum vehicle capacity on all lanes Nit,

• the number of vehicles Ei starting their evacuation in cell i,

• the maximum number of in- and outflowing vehicles on all lanes per period into/from
cell i in period t Qit,

• the number of lanes li,

• the number of rescue team vehicles Pi which are positioned in cell i and

• the minimum demand of rescue team vehicles in cell i Di.

In addition, there are also some non-cell-specific parameters:

• βij (= βji = 1) denotes that cell i and cell j are connected so that a traffic flow from
cell i to cell j (and vice versa) can be established, βij(= βji) = 0 otherwise.

• Time buffers – measured in number of periods – between the occurance of rescue team
traffic and succeeding evacuation traffic (evacuation traffic and succeeding rescue
team traffic) are captured in δ+ (δ−).

• tr is a specific predetermined period in the planning horizon, where rescue team
vehicles must have arrived at destination cells at the latest.

• t̂i is necessary to consider traveling times of externally positioned rescue teams,
where t̂i +1 is the first period where rescue teams may travel from the super sink to
a network entrance cell i (i ∈ IS).
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Decision Variables: When we consider a cell in a certain period, the following actions
may take place. Residents start their evacuation, vehicles en route reside in this cell (e.g.
due to congestion) or vehicles leave / enter this cell. These processes are captured in the
following decision variables:

• The number of vehicles starting their evacuation at cell i in period t is bit.

• xit is the number of residing vehicles in cell i at the end of period t.

• yijt denotes the number of vehicles leaving cell i in period t and reaching cell j in
period t+1. Please note that it is sufficient to consider only those flow variables yijt

(and yr
ijt) where βij = 1 holds.

• zit covers these values by including all residing, leaving and waiting vehicles in cell
i in period t.

In terms of rescue team integration into evacuation planning, we decided to use a cell-based
integration of rescue traffic instead of lane-based integration due to the reasons annotated
in Section 6.1. Hence, a cell i in period t can either be used by evacuation traffic or rescue
team traffic, but not simultaneously. Therefore, we introduce two new binary decision
variables, namely

• σit denotes whether a cell i in period t can be used for evacuation traffic (σit = 0)
or rescue traffic (σit = 1).

• rijt is 1, if and only if rescue team traffic flows from cell i to cell j in period t,
otherwise 0.

The final evacuation plan can be derived from ϕij (ϕij ∈ {0, 1}) and ǫij (ǫij ∈ N0), where

• ϕij is 1, if evacuation traffic flows from cell i to cell j, 0 otherwise.

• ǫij represents the number of lanes between cell i and cell j used for evacuation traffic.

The assignment of rescue teams in the context of CTM-based evacuation planning can be
regarded as the interlocking of two interdependent CTM-based traffic routing problems.
Therefore, the decision variables for rescue team traffic, namely xr

it, yr
ijt, br

it, ϕr
ij and ǫr

ij

can be defined referring to the already known decision variables for evacuation traffic. The
final assignment plan for rescue teams can be derived from these variables.

6.2.2 Model Formulation

Based on the introduced sets, parameters and decision variables, the mixed integer linear
optimization model for Cell-Transmission-based evacuation planning with rescue teams
can be formulated as follows:

min
∑

i∈I

∑

t∈T

cit · zit (6.1)

The objective function (6.1) minimizes the number of vehicles exposed by a certain level
of danger cit in a period t and at a certain cell i. In detail, vehicles are more endangered
for larger values for ci and t. In Addition to (6.1), numerous constraints are needed:
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zit = xit +
∑

j∈I

yijt + (Ei −
t∑

τ=1

biτ ) i ∈ I ; t ∈ T (6.2)

xit = bit + xi,t−1 +
∑

j∈I

yji,t−1 −
∑

j∈I

yijt i ∈ I ; t = 2, . . . , |T | (6.3)

Equation (6.2) ensures that all vehicles residing, leaving or waiting in cell i are involved
in the objective function. (6.3) is a standard vehicle flow constraint, whereas the number
of residing vehicles at the end of period t equals the number of vehicles starting their
evacuation in period t plus the number of residing vehicles in cell i at the end of period
t− 1 plus the number of inflowing vehicles reaching cell i in period t minus the number of
outflowing vehicles leaving cell i, respectively. This definition also holds for rescue team
traffic with the corresponding decision variables, see (6.4).

xr
it = br

it + xr
i,t−1 +

∑

j∈I

yr
ji,t−1 −

∑

j∈I

yr
ijt i ∈ I ; t = 2, . . . , |T | (6.4)

Figure 6.1 outlines constraints (6.3) and (6.4) for a single cell with two lanes:

bjt (br
jt)

i j k
yijt (yr

ijt) yjkt (yr
jkt)xjt,zjt (xr

jt,z
r
jt)

Figure 6.1: Graphical Illustration of (6.3) and (6.4)

If cells of size n ≥ 2 are used, additional constraints are needed to capture travel times of
at least n periods for a cell of size n, see constraints (6.5) and (6.6).

∑

j∈I

t∑

τ=1

yijτ ≤
∑

j∈I

max(t−ni,1)∑

τ=1

yjiτ +

max(t−⌈ni/2⌉+1,1)∑

τ=1

biτ + xi1 i ∈ I : ni ≥ 2 ; t = 2, . . . , |T |

(6.5)

Constraint (6.5) limits the cumulated number of vehicles leaving a cell i between period
1 and period t to the cumulated number of vehicles entering the cell between period 1
and period t− ni plus the vehicles starting their evacuation between period 1 and period
t − ⌈ni/2⌉ + 1 plus the initial street occupation in terms of xi1, whereas ni is the size of
cell i. This constraint ensures that vehicles starting their evacuation in other cells need at
least n periods to pass this cell. Residents in cell i start their evacuation in the “center”
of the cell if the term t − ⌈ni/2⌉ + 1 is used. However, this approach allows to modify
the “starting point” as desired by the decision maker. Because of (6.3), this constraint
only needs to be defined for cells i of size ni ≥ 2. Of course, all these assumptions and
restrictions also apply to rescue team traffic, see (6.6).
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∑

j∈I

t∑

τ=1

yr
ijτ ≤

∑

j∈I

max(t−ni,1)∑

τ=1

yr
jiτ +

max(t−⌈ni/2⌉+1,1)∑

τ=1

br
iτ + xr

i1 i ∈ I : ni ≥ 2 ; t = 2, . . . , |T |

(6.6)

As every street section has only limited capacities for vehicles, corresponding constraints
are necessary:

zit ≤ Nit + (Ei −
t∑

τ=1

biτ ) i ∈ I ; t ∈ T (6.7)

xit ≤ Nit i ∈ I ; t ∈ T (6.8)

Constraint (6.7) ensures that the number of vehicles (incl. all vehicles that have not left
their homes, yet) in a cell i during a period t does not exceed the maximum capacity of
this cell plus the number of vehicles which have not entered the network so far. Similar to
(6.7), constraint (6.8) (and (6.9) for rescue team traffic) force the number of evacuation
(or rescue team vehicles) in cell i at the end of period t to be lower than the maximum
capacity of this cell.

xr
it ≤ Nit i ∈ I ; t ∈ T (6.9)

As discussed in Section 6.1, the position of rescue teams and the demand for rescue teams
have to be considered in the model formulation.

xr
it ≥ Di i ∈ IR ; t ∈ tr, . . . , |T | (6.10)

∑

t∈T

br
it ≤ Pi i ∈ I (6.11)

Constraint (6.10) guarantees that the demand for rescue teams in a cell i will be met
until a prespecified period in the planning horizon (tr) to the end of the planning horizon.
The position of rescue teams is captured in (6.11). This constraint limits the number of
departing rescue team vehicles to the available rescue team vehicles in cell i.
In the context of evacuation planning, it has to be ensured that all endangered persons
will leave their homes, see (6.12). Equation (6.13) secures that all evacuees will arrive at
safe destinations (i.e. the super sink |I|), where xi1 represents an initial occupation of
street sections before the evacuation starts, e.g. due to rush hour traffic. However, we
assume in the following that no initial traffic in terms of xi1 exists, see (6.54).

∑

t∈T

bit = Ei i ∈ I (6.12)

x|I|,|T | =
∑

i∈I

(Ei + xi1) (6.13)

The number of (evacuation or rescue team) vehicles leaving cell i and entering cell j in a
period t is limited in several ways:

∑

i∈I

yijt ≤ (Njt − xjt) j ∈ I ; t ∈ T (6.14)
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yijt ≤
Qjt

lj
· ǫij i,j ∈ I ; t ∈ T (6.15)

yijt ≤
Qit

li
· ǫij i,j ∈ I ; t ∈ T (6.16)

yijt ≤ Nit · βij i,j ∈ I ; t ∈ T (6.17)

(6.14) limits the number of cell-changing vehicles to the space in the destination cell j,
which is currently not occupied by residing vehicles. Moreover, constraints (6.15) and
(6.16) ensure that the number of cell-changing vehicles does not exceed the in- or outflow
capacities of the origin or destination cell. Constraint (6.17) additionally limits traffic flow
per period to Nit and existing connections. These explanations also apply to cell-changing
rescue team vehicles, see (6.18)– (6.21).

∑

i∈I

yr
ijt ≤ (Njt − xr

jt) j ∈ I ; t ∈ T (6.18)

yr
ijt ≤

Qjt

lj
· ǫr

ij i,j ∈ I ; t ∈ T (6.19)

yr
ijt ≤

Qit

li
· ǫr

ij i,j ∈ I ; t ∈ T (6.20)

yr
ijt ≤ Nit · βij i,j ∈ I ; t ∈ T (6.21)

During the introduction of all sets, parameters and decision variables at the beginning
of this section, we already discussed how to integrate rescue team traffic into evacuation
planning. We decided to implement a cell-based integration of rescue teams instead of a
lane-based integration and to add time buffers between rescue team and evacuation traffic.
By doing so, we aim to increase safety and to avoid accidents between evacuating vehicles
and rescue teams vehicles since evacuation traffic routes and rescue traffic routes may cross
or touch each other. (M ′ is a large number.)

∑

j∈I

t∑

τ=g(t)

yr
ijτ +

∑

j∈I

t∑

τ=g(t)

yr
jiτ +

t∑

τ=g(t)

xr
iτ ≤ σit ·M

′ i = 1, . . . , |I| − 1 ; t ∈ T

(6.22)

∑

j∈I

t∑

τ=gr(t)

yijτ +
∑

j∈I

t∑

τ=gr(t)

yjiτ +

t∑

τ=gr(t)

xiτ ≤ (1− σit) ·M
′ i = 1, . . . , |I| − 1 ; t ∈ T

(6.23)

Constraints (6.22) and (6.23) assure that cells can either be used for evacuation traffic or
rescue team traffic. Additionally, these constraints make sure that time buffers δ+ (δ−)
will be considered. The functions g(t) and gr(t) are defined as g(t) = max(1, t− δ+) and
gr(t) = max(1, t− δ−). Since interactions of (6.22) and (6.23) are more complex, a simple
example consisting of 12 periods with δ+ = 2, δ− = 3 and σit = 1 for t = 6, . . . , 9 (σit = 0,
otherwise) will be studied. For this purpose, we rewrite (6.22) and (6.23), respectively, as

t∑

τ=g(t)

LHS(6.22)
τ ≤ σit ·M

′ i = 1, . . . , |I| − 1 ; t ∈ T (6.24)



6.2 ExCTEPM with Rescue Teams 96

t∑

τ=gr(t)

LHS(6.23)
τ ≤ (1− σit) ·M

′ i = 1, . . . , |I| − 1 ; t ∈ T (6.25)

where

LHS(6.22)
τ =

∑

j∈I

yr
ijτ +

∑

j∈I

yr
jiτ + xr

iτ (6.26)

LHS(6.23)
τ =

∑

j∈I

yijτ +
∑

j∈I

yjiτ + xiτ (6.27)

Given this, Table 6.1 provides insight into which decision variables must be equal to zero
and which ones may have a positive value.

For σit = 0 in period 1,2,10,11,12, rescue traffic is prohibited by (6.22) and evacuation
traffic is allowed by (6.23). In period 6 and 7 with σit = 1, rescue traffic is possible due to
(6.22), but evacuation traffic is forbidden because of (6.23). The transition area between
evacuation traffic and rescue team traffic (and vice versa) can be found in period 3,4,5,8,9
with σit = 0 for t = 3, 4, 5 and σit = 1 for t = 8, 9. This transition is caused by δ−

prohibiting evacuation traffic in period 3,4,5 because of σi,6 = 1 and δ+ prohibiting rescue
team traffic in period 8 and 9 due to σi,10 = 0. In general we can say that evacuation
traffic will not flow in a period t′ with σi,t′ = 1 and the last δ− periods before a consecutive
row of σit = 1 starts.

Evacuation Traffic has also to be blocked at intersections, when rescue team traffic passes
this intersection. We use the constraints (6.28) and (6.29) to ensure that rescue team
traffic and evacuation traffic not use the same junction at the same time, also considering
the time buffers δ+ and δ−.

yr
ijt ≤ rijt ·M

′ i, j ∈ I ; t ∈ T (6.28)

min(|T |,t+δ+)∑

τ=max(1,t−δ−)

yuwτ ≤ (1− rijt) ·M
′ i, j, u, w ∈ I; t ∈ T : βij = βiu =

βiw = βju = βjw = βuw = 1 (6.29)

According to Section 4.1.2, logical constraints are needed to describe relations between
structural decision variables and to guarantee real-world-applicability:

ϕij ≤ βij i,j ∈ I (6.30)

ǫij ≤ ϕij ·min{li, lj} i,j ∈ I (6.31)

Constraint (6.30) secures that vehicles can flow from cell i to cell j if, and only if a con-
nection in terms of βij = 1 between these cells exist. Furthermore, the number of lanes
which will be used for evacuation flow between cell i and cell j is limited by ϕij and the
minimum number of lanes regarding cell i and cell j, see (6.31).

So far, evacuation plans may lead to odd situations which are not applicable in real world.
Imagine a small part of a network with traffic flows as shown in Figure 3.5. In this case, the
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t τ σit LHS
(6.22)
τ LHS

(6.23)
τ

1 1 0 ≤ 0 ≤M ′

Evacuation Traffic2 1 0 ≤ 0 ≤M ′

2 2 0 ≤ 0 ≤M ′

3 1 0 ≤ 0 ≤M ′

δ−

3 2 0 ≤ 0 ≤M ′

3 3 0 ≤ 0 ≤M ′

4 1 0 − ≤M ′

4 2 0 ≤ 0 ≤M ′

4 3 0 ≤ 0 ≤M ′

4 4 0 ≤ 0 ≤M ′

5 2 0 − ≤M ′

5 3 0 ≤ 0 ≤M ′

5 4 0 ≤ 0 ≤M ′

5 5 0 ≤ 0 ≤M ′

6 3 1 − ≤ 0

Rescue Team Traffic

6 4 1 ≤M ′ ≤ 0
6 5 1 ≤M ′ ≤ 0
6 6 1 ≤M ′ ≤ 0
7 4 1 − ≤ 0
7 5 1 ≤M ′ ≤ 0
7 6 1 ≤M ′ ≤ 0
7 7 1 ≤M ′ ≤ 0

8 5 1 − ≤ 0

δ+

8 6 1 ≤M ′ ≤ 0
8 7 1 ≤M ′ ≤ 0
8 8 1 ≤M ′ ≤ 0
9 6 1 − ≤ 0
9 7 1 ≤M ′ ≤ 0
9 8 1 ≤M ′ ≤ 0
9 9 1 ≤M ′ ≤ 0

10 7 0 − ≤M ′

Evacuation Traffic

10 8 0 ≤ 0 ≤M ′

10 9 0 ≤ 0 ≤M ′

10 10 0 ≤ 0 ≤M ′

11 8 0 − ≤M ′

11 9 0 ≤ 0 ≤M ′

11 10 0 ≤ 0 ≤M ′

11 11 0 ≤ 0 ≤M ′

12 9 0 − ≤M ′

12 10 0 ≤ 0 ≤M ′

12 11 0 ≤ 0 ≤M ′

12 12 0 ≤ 0 ≤M ′

Table 6.1: Example of (6.22) and (6.23) for a cell i with σit = 1 for t = 6, . . . , 9 (σit = 0,
otherwise), δ+ = 2 and δ− = 3
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ExCTEPM tries to circumvent the bottleneck from cell i to cell k by creating an additional
traffic flow from cell i to cell j finally reaching cell k. Such situations are undesired in
real world applications as they imply vehicles to turn over in cell j. However, suchlike
situations are forbidden by (6.32) as traffic flows from cell j to cell k (dashed line) can not
be established if traffic flows from cell i to cell j and connections between cell i, j and k
in terms of βij = βik = 1 exist.

ϕij + ϕjk ≤ 1 i,j,k ∈ I : βij = βik = 1 (6.32)

Of course, all constraints (6.30) – (6.32) also hold for rescue team traffic so that these
constraints can be adopted and slightly modified to match rescue team traffic, see (6.33)
– (6.35).

ϕr
ij ≤ βij i,j ∈ I (6.33)

ǫr
ij ≤ ϕr

ij ·min{li, lj} i,j ∈ I (6.34)

ϕr
ij + ϕr

jk ≤ 1 i,j,k ∈ I : βij = βik = 1 (6.35)

Evacuation plans should be designed in respect to traffic safety and practicability. There-
fore, in Section 4.1.2, we developed so-called “traffic flow limitation” constraints, see (6.36)
– (6.39).

∑

i∈I

ϕij ≤ lj j ∈ I (6.36)

∑

j∈I

ϕij ≤ p i ∈ I (6.37)

∑

i∈I

ǫij ≤ lj j ∈ I (6.38)

∑

j∈I

ǫij ≤ li i ∈ I (6.39)

Constraint (6.36) limits the number of ingoing traffic streams from other cells to cell j
to the number of lanes in cell j. By doing so, merging processes at junctions are not
appearing. The number of outgoing traffic streams from cell i to other cells is limited to
a value p, see (6.37). Again, we decided to set p = 2 in our computational studies, see
Section 4.3.2. Finally, the number of lanes used for ingoing (6.38) and outgoing (6.39)
traffic flows are limited to the number of lanes in the destination or origin cell, leading to
further reductions of nonessential merging and diverging processes. In contrast to (6.30) –
(6.32) where all constraints are adopted to rescue team traffic, only (6.38) and (6.39) will
be transfered to rescue team traffic at this point (see (6.40) and (6.41)) as rescue team
traffic is expected to show none or only few merging and diverging processes.

∑

i∈I

ǫr
ij ≤ lj j ∈ I (6.40)

∑

j∈I

ǫr
ij ≤ li i ∈ I (6.41)
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These constraints help to guide traffic through the network in a less conflictual and safer
way since merging processes at junctions will be avoided. However, as discussed in Section
4.1.3, there might exist some real-world scenarios where no feasible solution exist when
these constraints are applied, e.g. imagine a four-way junction with four one-lane streets,
three of them are deadlocks. If traffic from these three (deadlock) streets is flowing to-
wards the junction and these three independent traffic streams must be merged into the
non-deadlock street, it is easy to see that that kind of merging processes are forbidden by
(6.36). In such cases, we suggest to relax these constraints ((6.36), (6.38)) and to add the
constraint

∑
i∈I yijt ≤ Qjt for all cells j ∈ I and periods t ∈ T where (6.36) and (6.38)

have been relaxed. The relaxation of (6.36) and (6.38) ensures feasible solutions and the
new constraint assures that traffic flow capacities are not exceeded. Since suchlike infea-
sibilities are usually caused by traffic-merging constraints, rescue team traffic are usually
not affected by these observations due to the lack of merging processes. As we will see
in the Section 6.4, constraints (6.36) and (6.38) will be relaxed only for one single instance.

One major concern in terms of traffic safety and real-world-applicability are traffic crossing
or traffic touching conflicts at junctions. For four cells i, j, u, v at a junction as displayed
in Figure 4.5, it has to be ensured that no traffic crossing or traffic touching conflicts
regarding evacuation traffic and rescue team traffic exist.

ϕij + ϕji + ϕuv + ϕvu ≤ 1 i, j, u, v ∈ I : βij = βiu =

βiv = βju = βjv = βuv = 1 (6.42)

This constraint also holds for rescue team traffic, so that (6.43) can be formulated.

ϕr
ij + ϕr

ji + ϕr
uv + ϕr

vu ≤ 1 i, j, u, v ∈ I : βij = βiu =

βiv = βju = βjv = βuv = 1 (6.43)

Finally, (6.44) – (6.53) define the domain of all decision variables.

ǫij ∈ N0 i,j ∈ I (6.44)

ϕij ∈ {0, 1} i,j ∈ I (6.45)

zit, xit, bit ≥ 0 i ∈ I ; t ∈ T (6.46)

yijt ≥ 0 i,j ∈ I ; t ∈ T (6.47)

ǫr
ij ∈ N0 i,j ∈ I (6.48)

ϕr
ij ∈ {0, 1} i,j ∈ I (6.49)

xr
it, b

r
it ≥ 0 i ∈ I ; t ∈ T (6.50)

yr
ijt ≥ 0 i,j ∈ I ; t ∈ T (6.51)

rijt ∈ {0, 1} i,j ∈ I ; t ∈ T (6.52)

σit ∈ {0, 1} i ∈ I ; t ∈ T (6.53)

To assure that no vehicle movements occur before the evacuation starts – i.e. in period
t = 1, boundary conditions (6.54)–(6.56) fix the corresponding decision variables to zero.
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xi1 = 0 i ∈ I (6.54)

bi1 = 0 i ∈ I (6.55)

yij1 = 0 i ∈ I ; j ∈ I (6.56)

Of course, also rescue team traffic must be forbidden for period t = 1, see (6.57)–(6.59)

xr
i1 = 0 i ∈ I (6.57)

br
i1 = 0 i ∈ I (6.58)

yr
ij1 = 0 i ∈ I ; j ∈ I (6.59)

Enhancements: As discussed in Section 6.1, rescue teams may be positioned outside
the endangered network so that these rescue teams have to enter the network through
a cell i (i ∈ IS). These cells also represent exits for evacuation flow so that one major
decision in evacuation planning with rescue teams is to determine which cell i ∈ IS should
be used as an rescue team entrance. However, the availability of rescue teams may vary in
terms of earliest arrival time at a certain entrance cell and in terms of rescue team vehicle
capacity.

t̂i∑

t=1

yr
|I|,it = 0 i ∈ IS (6.60)

∑

t∈T

yr
|I|,jt ≤ P ′

j j ∈ IS (6.61)

Constraint (6.60) prevents all rescue team flows from the super sink |I| to a certain net-
work entrance cell i ∈ IS until a period t̂i (t̂i ≥ 1) with t̂i + 1 as the first period where
rescue teams may travel to the network entrance cell i (i ∈ IS). Limited vehicle capacities
in terms of P ′

j for outside positioned rescue teams are covered in (6.61).
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6.3 Heuristic Solution Approach

We already discussed at the beginning of Chapter 5 that the original formulation of the
ExCTEPM contains a path constrained network flow problem which is known to be NP-
complete, see Garey and Johnson (1979). Thus, finding optimal solutions for larger in-
stances will be a difficult task. Since the considered problem in this chapter can be
regarded as an enhanced ExCTEPM, a three-staged heuristic approach for solving the
evacuation planning problem with integrated rescue team traffic will be presented in this
section. This approach utilizes the ”static ExCTEPM“ heuristic, introduced in Chapter
5 which is facilitated by a shortest-path based heuristic to determine rescue team routes.

6.3.1 Basic Ideas

Frequent appearances of similar constraints for evacuation traffic and rescue team traffic
indicate that the present optimization problem consists of two interlocking CTM-based
routing problems. Firstly, evacuation planning for the complete network and secondly
rescue team route determination. Based upon these essential thoughts, we develop a
three-step heuristic procedure, which works in the following manner:

Step 1: Generate an evacuation plan for the complete network without rescue team traffic
by the static ExCTEPM heuristic, see Section 5.2.3.

Step 2: Determine rescue team route(s) by a shortest-path(s) based heuristic taking the
results from Step 1 into account.

Step 3: Generate an evacuation plan for the complete network with rescue team traf-
fic by a modified static ExCTEPM heuristic.

It should be noticed that our heuristic focuses on problems, where rescue team traffic just
have to arrive at a given set of cells in the network.

6.3.2 Step 1 – Evacuation Planning

This step contains the creation of an evacuation plan regardless of demand for rescue
teams and rescue team traffic. This problem has been studied in Chapter 5 and a fast
heuristic procedure named ”static ExCTEPM“ has been introduced. We will adopt this
approach here in its original form. The basic idea of the static ExCTEPM heuristic is to
transform the dynamic Cell-Transmission-based problem into a static Cell-based network
flow problem. In detail, we drop the dimension of time and introduce a new variable ηij to
denote the total number of vehicles using the connection from cell i to cell j. Hence, we do
not care about how many vehicles travel from one cell to another cell in a certain period,
but how many vehicles travel from one cell to another cell at all. By doing so, the model
formulation can be simplified and the number of decision variables and constraints reduces
significantly, because only traffic routing constraints and variables are needed. As the re-
sulting static optimization problem contains nonlinearities, a binary search algorithm is
applied, where the subproblem in each iteration is linear.

The static cell-based constraint satisfaction problem can be formulated as stated below,
where ηij denotes the total number of vehicles traveling from cell i to cell j (i.e. ηij =
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∑
t∈T yijt for i, j ∈ I) and M is the maximum amount of time (measured in periods), a

connection between two cells is used.

Find M and ηij

subject to (6.30) – (6.32), (6.36) – (6.39), (6.42), (6.44), (6.45) and

ηij

min(Qi

li
,

Qj

lj
)
≤M · ǫij i, j ∈ I (6.62)

∑

i∈I

ηij + Ej =
∑

k∈I

ηjk j = 1, . . . , |I| − 1 (6.63)

∑

i∈I

Ei =
∑

i∈I

ηi,|I| (6.64)

ηij ≤ ǫij · Y i, j ∈ I (6.65)

ϕij + ϕji ≤ 1 i, j ∈ I (6.66)

ǫi,|I| = li i ∈ I : βi,|I| = 1 (6.67)

M ≥ 0 (6.68)

ηij ≥ 0 i, j ∈ I (6.69)

Constraint (6.62) calculates the number of periods, a connection from cell i to cell j is
used and ensures that no connection is occupied longer than M periods. (6.63) is a simpli-
fied version of the vehicle flow equation (6.3) in the original model formulation and (6.64)
guarantees that all vehicles leave the evacuation network and arrive at the super sink |I|.
(6.65) restricts traffic flows only to those connections from cell i to cell j where at least one
lane is established, whereas Y is a large number, e.g. Y =

∑
i∈I Ei. Moreover, constraint

(6.66) avoids traffic flows in opposite directions between two cells. (6.67) is a preprocessing
constraint as it fixes the number of established lanes from exit cells to the super sink to
the maximum number of lanes. The domain of the decision variables is defined in (6.68)
and (6.69).
Normally, the objective function should be formulated as minM , but this implies that
M is a decision variable resulting in non-linearities in constraint (6.62). We overcome
this issue by defining M formally as a parameter, which will be minimized using a binary
search algorithm. This algorithm is already stated in Section 5.2.3.

During our computational tests, it turned out that the computation time can be lowered by
adding an objective function to the (constraint satisfaction) model, although this objective
function or the objective function value have absolutely no relevance for the constraint
satisfaction problem or the procedure itself. We use min

∑
i∈I

∑
j∈I ηij · dij with dij =

((ci · ni) + (cj · nj))/(li + lj).
In some evacuation scenarios, it may happen that the level of danger (i.e. cit) varies within
the network. In Section 5.2.1, we provide an extensive discussion on how to determine
Evacuation Planning Zones (EPZ) on the basis of different levels of danger and how the
knowledge of these zones can be implemented in the Static ExCTEPM heuristic. The
basic idea is that the binary search algorithm will be executed multiple times, each time
for a specific set of cells, whereas subsequent sets of cells always include the preceding
set(s). By doing so, a unique Mh value can be computed for each EPZh. For the sake of
simplicity, we refer to Section 5.2.3 at this point.
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The solution obtained from the static ExCTEPM – i.e. values for ϕij – will be used
as parameters for the original model formulation of the ExCTEPM ((6.1) – (6.3), (6.5),
(6.7), (6.8), (6.12), (6.13), (6.14) – (6.17), (6.30) – (6.32), (6.36) – (6.39), (6.42), (6.44) –
(6.47), (6.54)–(6.56)) to generate a feasible evacuation plan. It has to be mentioned that
the (remaining simplified) ExCTEPM with ϕij as parameters can be solved much faster
since a large number of integer variables are fixed. Afterwards, optimal values of decision
variables from the solved ExCTEPM were taken and passed to the next step (Step 2)

in terms of ŷit. This parameter is defined as ŷit =
∑

j∈I

∑|T |
τ=t(yijτ + yjiτ ) · ni for all

i ∈ I; t ∈ T capturing all vehicles using cell i in period t and all succeeding periods.

6.3.3 Step 2 – Rescue Team Route Determination

This step determines rescue team route(s) with respect to the evacuation plan created
in Step 1. We already demonstrate in Table 6.1 that evacuation traffic flow in cell i in
period t is prohibited for σit = 1. However, evacuation traffic is also prohibited in δ−

periods before so that a new binary auxiliary decision variable σ′
it is introduced to cover

all periods where evacuation traffic is forbidden. The corresponding optimization model
can be formulated as follows:

min

|I|−1∑

i=1

|T |∑

t=1

σ′
it · ŷit · ci +

∑

i,j,u,w=1,...,|I|−1:
j,u,w∈Ji,

ϕrp
ij =ϕuw=1

|T |∑

t=1

σ′
it · ŷut · cu (6.70)

subject to (6.4), (6.6), (6.9), (6.10), (6.11), (6.18) – (6.21), (6.22), (6.28), (6.33) – (6.35),
(6.40), (6.41), (6.43), (6.48) – (6.53), (6.57) – (6.59), (6.60), (6.61) and

σ′
it · (δ

− + 1) ≥
t+δ−∑

τ=t

σiτ i ∈ 1, . . . , |I| − 1 ; t ∈ T (6.71)

The objective function (6.70) minimizes the weighted disruption of evacuation traffic. The
first term covers all cells directly affected by rescue traffic and the second term includes
all cells indirectly concerned by rescue traffic because of traffic crossing or traffic touching
conflicts at junctions. Please note that the second term is defined only at junctions (implied
by the set Ji, i.e. at least four cells adjacent to the same junction so that βij = βiu =
βiw = βju = βjw = βuw = 1 holds), where a rescue team traffic stream (in terms of ϕrp

ij ,
see below for explanation of ϕrp

ij ) crosses or touches an evacuation traffic stream (in terms

of ϕuw). We added the term +10−5 ·
∑

i∈I

∑|T |
t=1(σit + σ′

it) to the objective function since
the model may set some σit or σ′

it values to 1 if ŷit = 0, although this would not be
necessary due to constraint (6.22) and maybe disadvantageous in the successive steps of
the heuristic. (6.71) calculates all periods, where no evacuation traffic is possible due to
the assignment of rescue team traffic and the time buffers before and after the occurance
of rescue team traffic.
The main difficulty with solving this optimization problem is the large number of binary
decision variables primarily caused by σit and rijt. We already know in advance that
many of these σit and rijt values will be 0 after optimization since rescue team traffic will
be integrated in a way interfering with evacuation traffic as little as possible. Thus, our
approach for solving this optimization problem is as follows:
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1. Rescue Team Route Determination:

(a) Set a bound Ω = ∞, set counter κ = 0, let ω be the objective value of (6.70),
let P = {∅}, let γ be the number of iterations without solution improvements
before terminating.

(b) Calculate (new) routing φ /∈ P from the super sink |I| to all cells i ∈ IR with
Di ≥ 1. Result: ϕrp

ij and ηrp
ij values.

(c) Solve Rescue Team Route Determination with ϕrp
ij and ηrp

ij values as parameters
and additional constraints (6.86)–(6.91).

(d) If ω < Ω, set Ω = ω, set κ = 0, otherwise set κ = κ + 1.

(e) Add current rescue team routing φ to P .

(f) Go back to step (b) if κ < γ, otherwise STOP.

The calculation of the shortest path(s) in step (b) is conducted by a simple network flow
model using the following notation.

Parameters:

dij “weight” of using the connection from cell i to cell j, dij =
∑|T |

t=1(ŷit + ŷjt)

Decision variables:

ϕrp
ij =1, if and only if a connection from cell i to cell j is used as a rescue team

route, otherwise 0
ηrp

ij total number of rescue team vehicles traveling from cell i to cell j

vi auxiliary value of cell i to avoid cycles

Based on this notation, the mixed integer linear optimization model for determining
route(s) for rescue teams can be stated as follows:

min
∑

i∈I

∑

j∈I

ϕrp
ij · dij (6.72)

subject to
∑

i∈I

ηrp
ij + Pj −Dj =

∑

k∈I

ηrp
jk j ∈ I (6.73)

ηrp
ij ≤ ϕrp

ij · Y i, j ∈ I (6.74)

ϕrp
ij ≤ ηrp

ij i, j ∈ I (6.75)

ϕrp
ij ≤ βij i, j ∈ I (6.76)

ϕrp
ij + ϕrp

jk ≤ 1 i, j, k ∈ I : βij = βik = 1 (6.77)

ϕrp
ij + ϕrp

ji + ϕrp
uv + ϕrp

vu ≤ 1 i, j, u, v ∈ I : βij = βiu =

βiv = βju = βjv = βuv = 1 (6.78)
∑

j∈I

ϕrp
ij ≤ li i ∈ I (6.79)

∑

i∈I

ϕrp
ij ≤ lj j ∈ I (6.80)
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v|I| = 1 (6.81)

vj + |I| ≥ vi + 1 + (|I| · ϕrp
ij ) i, j ∈ I : i 6= j (6.82)

ϕrp
ij ∈ {0, 1} i, j ∈ I (6.83)

vi ≥ 0 i ∈ I (6.84)

ηrp
ij ≥ 0 i, j ∈ I (6.85)

The objective function (6.72) minimizes the potential interfering of rescue team traffic
with evacuation traffic. A standard vehicle flow equation is stated in (6.73). Constraints
(6.74) and (6.75) ensure that ϕrp

ij = 0 if ηrp
ij = 0, ϕrp

ij ≥ 1 if ηrp
ij ≥ 1 and vice versa.

Furthermore, constraint (6.76) restricts rescue team traffic only to existing connections
from a cell i to a cell j. The constraints (6.77) and (6.78) correspond to (6.35) and (6.43)
in the original model formulation. In order to assure that constraint (6.40) and (6.41)
will be met, slightly modified versions of these constraints are stated in (6.79) and (6.80).
Cycles in rescue team routes will be avoided by constraint (6.81) and (6.82). The domain
of the decision variables is stated in (6.83) – (6.85).

σit = 0 i ∈ I ; t = 1, . . . |T | :
∑

j∈I

ϕrp
ij + ϕrp

ji = 0 (6.86)

σ′
it ≤ σit i ∈ I ; t = 1, . . . |T | :

∑

j∈I

ϕrp
ij + ϕrp

ji = 0 (6.87)

ϕr
ij ≤ ϕrp

ij i, j ∈ I (6.88)

ǫr
ij ≤ ϕrp

ij ·min(li, lj) i, j ∈ I (6.89)

rijt = 0 i, j ∈ I ; t = 1, . . . |T | : ϕrp
ij = 0 (6.90)

|T |∑

t=1

yr
ijt = ηrp

ij i, j ∈ I (6.91)

The constraints (6.86)–(6.91) have a preprocessing character since these constraints fix
many integer variables to zero. In detail, (6.86) and (6.87) fix σit and σ′

it to zero, if cell i
is not part of the shortest path(s) in terms of ϕrp

ij and ϕrp
ji . Afterwards, constraints (6.88)

and (6.89) also fix the corresponding ϕr
ij and ǫr

ij variables to zero, if the connection from
cell i to cell j is not part of the rescue team route(s) in terms of ϕrp

ij . Equation (6.90) fixes
rijt values to zero, when cell i and cell j are not part of the rescue team traffic route(s)
and (6.91) ensures that rescue teams will use exactly the route that is intended to be used
by the shortest path(s) calculations.
Some aspects need special attention here: Firstly, it is sufficient to consider the periods
from 1, . . . , tr + δ+ since all σit values with t > tr + δ+ can be set to 0 or 1 depending on
the route determination before tr. Please note that the preprocessing constraints (6.86)–
(6.91) should be defined for the same planning horizon as the decision variables to ensure
that as much variables as possible will be fixed by these constraints. Secondly, adding
the (preprocessing) constraints (6.86)–(6.91) as well as reducing the planning horizon to
1, . . . , tr + δ+ lead to massive reductions in problem size, computational effort and solving
time.

6.3.4 Step 3 – Evacuation and Rescue Team Planning

The integrated evacuation and rescue team planning utilizes information gained from Step
1 and Step 2 resulting in an evacuation planning problem with restricted routing options
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due to rescue team traffic. We assume that the evacuation plan in Step 1 (without rescue
teams) shows considerable accordance with the final evacuation plan in Step 3 (with rescue
teams). Now, the task is to route traffic differently, when conflicts between evacuation
traffic (from Step 1) and rescue team traffic (from Step 2) exist. In detail we create two
new parameters, namely σ̃i and r̃ij . σ̃i represents the number of periods, where evacuation
traffic in a cell i in Step 1 is not possible due rescue team traffic and the parameter r̃ij

denotes the number of periods during the complete planning horizon, where a junction is
blocked for evacuation traffic due to rescue team traffic. These parameters are calculated
as follows:

1. Compute σ̃i

(a) Set i = 0, σ̃i = 0 for all i ∈ I

(b) Let i = i + 1, t = 0

(c) Let t = t + 1

(d) Let σ̃i = σ̃i + 1, if ŷit > 0 and σ′
it > 0

(e) Go back to step (c), if t < |T |, otherwise proceed to step (f)

(f) Go back to step (b), if i < |I| − 1, otherwise STOP.

r̃ij =
∑

t∈1,...,|T |

rijt + δ+ + δ− i, j ∈ 1, . . . , |I| − 1 :
∑

t∈1,...,|T |

rijt > 0 (6.92)

These parameters are necessary because our static ExCTEPM heuristic for solving Step
3 of the heuristic procedure can be regarded as a static optimization problem which also
needs “static” (i.e. not time dependent) parameters as an input. Since σ′

it and rijt depend
on a period t, new parameters were introduced. On the basis of these new parameters, we
can formulate a modified static ExCTEPM heuristic as follows:

Find M and ηij

subject to (6.30) – (6.32), (6.36) – (6.39), (6.42), (6.44), (6.45), (6.63) – (6.69) and

ηij

min(Qi

li
,

Qj

lj
)
≤ max(0, M −max(σ̃i, σ̃j)) · ǫij i, j ∈ I (6.93)

ηij

min(Qi

li
,

Qj

lj
)
≤ max(0, M − ˜ruw) · ǫij i, j, u, w ∈ I : βij = βiu =

βiw = βju = βjw = βuw = 1 (6.94)
ηij

min(Qi

li
,

Qj

lj
)
≤ (tr − σ̃i) · ǫij i ∈ IR ; j ∈ I (6.95)

This constraint satisfaction problem is formulated similar to Step 1 with two major differ-
ences in (6.93), (6.94) and (6.95). Analogue to (6.62), (6.93) again calculates the number
of periods a connection from cell i to cell j is used and that no connection is occupied
more than M −max(σ̃i, σ̃j) periods. Here, we take into account that a connection from
cell i to cell j can not be used like in Step 1, if evacuation traffic is interfered by rescue
team traffic in terms of σ̃i and σ̃j . Hence, we reduce the vehicle flow capacity of a con-
nection from cell i to cell j by the maximum number of periods evacuation traffic will
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not be possible due to rescue team traffic in cell i and cell j. Constraint (6.94) takes
into account that junctions can also not be used as before, if rescue team traffic uses this
junction. Moreover, all cells with positive demand for rescue teams – i.e. i ∈ IR – must
be evacuated after tr − σ̃i periods at the latest since these cells are closed for evacuation
traffic till the end of the planning horizon, see (6.95). Again, we added the same objective
function to the (constraint satisfaction) model as in Step 1, i.e. min

∑
i∈I

∑
j∈I ηij · dij

with dij = ((ci · ni) + (cj · nj))/(li + lj).
Finally, the resulting ϕij values as well as values for all ϕr

ij , σit and rijt variables from
Step 2 are passed to the original model formulation presented in Section 6.2, see (6.1) –
(6.61).
The complete heuristic procedure is illustrated in Figure 6.2 and a few aspects need more
attention. The computation of the ExCTEPM in Step 1 and the ExCTEPM with Rescue
Team Traffic in Step 3 is conducted in two steps, if multiple cell sizes are used. In the first
step, we use the values of ϕij in Step 1 of the heuristic (and additionally ϕr

ij , σit and rijt

in Step 3 of the heuristic) as parameters and relax the constraints for multiple cell sizes,
namely (6.5) in Step 1 as well as (6.5) and (6.6) in Step 3. We then solve the remaining
model with ǫij and ǫr

ij as integer variables to a maximum mipgap of 0.1%. In the sec-
ond step, we use the previously determined values for ǫij and ǫr

ij as parameters, restore
constraint (6.5) and (6.6) and solve the remaining LP. If only a single cell size is used,
the second step can be omitted. Another discussion point is that the heuristic may not
generate feasible solutions straightaway, especially in the case of sparse networks with long
deadlockstreets. Therefore, we add a loop after Step 3 of the heuristic to ensure feasibility.

6.3.5 Numerical Example

We will illustrate the complete procedure for a small example: The considered network
consists of 12 cells (plus the super sink in cell 13) of the same cell size with three exits.
Two-lane cells are cells 1-5 as well as 9-12 and four-lance cells are cells 6-8. Cells 6 and 9
are located in the highly endangered zone. Both cells have a demand for two rescue team
vehicles each. We set cit = ci · t with ci = 104 for cells within the most endangered zone,
ci = 102 for all remaining cells and ci = 0 for the super sink. The number of vehicles
starting is not important to be known precisely. We have chosen it randomly between 10
and 100. In total this example resulted in 786 vehicles. Rescue team traffic is not limited
in terms of (6.60) and (6.61). Moreover, we assume that flow and vehicle capacities are
constant over time.
The solutions for each step obtained by our heuristic procedure for this sample are pre-
sented in Figures 6.3 – 6.5. In the first step, only evacuation traffic is considered. The solid
arrows represent evacuation flows and the numbers in brackets indicate in which periods
the corresponding connection is occupied. Here, it is easy to see that the occupancy rate
of all exits is almost identical since all exits are used the same number of periods. On the
basis of these evacuation flows, rescue teams are assigned in Step 2, indicated by non-solid
arrows. In this step, rescue team traffic is scheduled as late as possible (tr = 13) using a
two-lane cell (instead of a four-lane cell, e.g. cell 8) in order to affect evacuation flow as
little as possible. In the last step, a new evacuation plan is designed taking rescue team
traffic into account. Since cell 12 is not available for evacuation traffic in periods 9–12,
other exits have to compensate this loss of capacity. Therefore, more vehicles are escaping
through cell 1 and cell 8 leading to reasonable changes in the evacuation plan compared
to Step 1.
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Figure 6.2: Heuristic Procedure and Information Exchange
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Figure 6.3: Example Network with Solution from Step 1
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Figure 6.4: Example Network with Solution from Step 2



6.4 Computational Study 110

(2,5,6,14,15)

1 2 3

4 5

6 7 8

9 10

11

12

13

(11)

(12)

(10)

(2−16)
(2−17)

(2−16)

(2−15)

(2−7)

(2−4)

(2−8,13−16)

(8,11,12,14,15) (7−10)

(2,6,9,12,14)

(2−11,13,15)

(5,12,13)

Figure 6.5: Example Network with Solution from Step 3

6.4 Computational Study

Our computational experiments are comprised of three parts. The first part uses small
examples which can be solved optimally. Moreover, we illustrate the sensitivity of the
objective function (6.1) to wrong decisions in a simple network. The second part deals
with the application of our heuristic approach to the same network introduced in the
first part. Thirdly, we will illustrate applicability of our approach for larger instances,
which can not be solved optimally due to computational limits. All tests were run on a
computer using an Intel X9100 (3.06 Ghz), 8 GB of memory and Windows Vista (64-bit).
All optimization models and procedures were coded in AMPL (see http://www.ampl.com)
using the GUROBI 3.0.1 solver (see http://www.gurobi.com).

6.4.1 Sensitivity of the Objective Function

Our small test network consists of 44 cells (plus the super sink) of the same size including
five exits (1, 10, 16, 38, 44). The number of lanes per cell can be derived from the shape of
the cells, whereas slim (wide) cells consist of two (four) lanes. The number of evacuating
vehicles per cell is a random number between 10 and 90 leading to a total number of 2,111
vehicles. The most endangered zone ranges over cells 18, 22, 26, 27, 28, 31, 32 (box with
broken line). Again, we set cit = ci · t with ci = 104 for cells within the most endangered
zone, ci = 102 for all remaining cells and ci = 0 for the super sink. Cells 22 and 27 have
a positive rescue team demand and no capacity limits for rescue teams exist. Again, we
assume that flow and vehicle capacities are constant over time. We set |T | = 35 and
tr = 13. We apply no rescue team traffic limitations in terms of (6.60) and (6.61). The
optimum solution for this network with 100% population is displayed in Figure 6.6.
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Figure 6.6: Test Network with Optimum Solution for 100% Population

In order to investigate sensitivity of the objective function (6.1) to wrong decisions, we
calculate the optimum solution for this instance and add one, two or three decisions which
disagree with the optimum solution. If non-optimal decisions were fixed in the optimiza-
tion process, the objective values increases, leading to a positive gap. Here, we want to
show that the evacuation planning with rescue teams problem reacts sensible to deviations
from the optimum solution. Results are shown in Table 6.2, 6.3 and 6.4.

The relative gap for every solution is computed by the following equation:

gap =
Sol − Solbest

Solbest
· 100 (6.96)

where Solbest is the objective function value of the best known feasible solution from our
experiments and Sol is the objective function value of the solution to be examined. This
definition will lead to values of 0.0 for the best known solution, to values of gap > 0 for
feasible solutions and to values of gap < 0 for lower bounds. In order to scale all results
to percent-values, a multiplication with the factor 100 is included.
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100 % Population 75% Population 50% Population
Decisions Gap Gap Gap

1 ϕ13,7 = 0 1.3% 0.9% 0.2%
2 ϕ5,4 = 0 0.5% 0.6% 0.2%
3 ϕ40,39 = 0 9.7% 8.1% 5.0%
4 ϕ9,5 = 0 0.5% 0.6% 0.2%
5 ϕ32,36 = 0 17.5% 20.6% 26.1%
6 ϕ35,40 = 0 8.8% 7.5% 4.6%
7 ϕ18,7 = 0 1.5% 0.9% 0.2%
8 ϕ31,35 = 0 13.1% 15.3% 16.2%
9 ϕ24,20 = 0 1.8% 2.3% 0.4%
10 ϕ4,3 = 0 3.8% 2.9% 0.7%

Max 17.5% 20.6% 26.1%
Min 0.5% 0.6% 0.2%
⊘ 5.8% 6.0% 5.4%

Table 6.2: Results for One Wrong Decision and Different Populations

100 % Population 75% Population 50% Population
Decisions Gap Gap Gap

1
ϕ13,7 = 0

1.5% 1.4% 0.2%
ϕ6,2 = 0

2
ϕ5,4 = 0

0.9% 0.8% 1.3%
ϕ34,38 = 0

3
ϕ40,39 = 0

10.6% 9.1% 5.4%
ϕ13,7 = 0

4
ϕ9,5 = 0

12.4% 14.8% 12.1%
ϕ23,19 = 0

5
ϕ32,36 = 0

18.2% 21.1% 26.3%
ϕ28,23 = 0

6
ϕ35,40 = 0

11.1% 8.8% 4.9%
ϕ12,11 = 0

7
ϕ18,7 = 0

1.6% 1.1% 0.2%
ϕ33,24 = 0

8
ϕ31,35 = 0

14.6% 15.7% 16.6%
ϕ19,15 = 0

9
ϕ24,20 = 0

15.6% 17.6% 14.2%
ϕ33,37 = 0

10
ϕ4,3 = 0

4.5% 3.5% 0.9%
ϕ30,21 = 0

Max 18.2% 21.1% 26.3%
Min 0.9% 0.8% 0.2%
⊘ 9.1% 9.4% 8.2%

Table 6.3: Results for Two Wrong Decision and Different Populations
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100 % Population 75% Population 50% Population
Decisions Gap Gap Gap

1
ϕ13,7 = 0

3.7% 3.3% 1.4%ϕ6,2=0
ϕ36,41=0

2
ϕ5,4 = 0

6.1% 5.6% 7.2%ϕ34,38 = 0
ϕ26,25 = 0

3
ϕ40,39 = 0

19.7% 20.6% 16.6%ϕ13,7 = 0
ϕ29,24 = 0

4
ϕ9,5 = 0

16.6% 17.7% 13.7%ϕ23,19 = 0
ϕ25,21 = 0

5
ϕ32,36 = 0

19.1% 21.4% 26.3%ϕ28,23 = 0
ϕ30,21 = 0

6
ϕ35,40 = 0

13.6% 11.1% 7.4%ϕ12,11 = 0
ϕ6,11 = 0

7
ϕ18,7 = 0

2.7% 1.8% 0.4%ϕ33,24 = 0
ϕ30,21 = 0

8
ϕ31,35 = 0

16.2% 16.3% 16.9%ϕ19,15 = 0
ϕ37,43 = 0

9
ϕ24,20 = 0

17.4% 19.4% 15.5%ϕ33,37 = 0
ϕ9,5 = 0

10
ϕ4,3 = 0

12.8% 10.8% 7.4%ϕ30,21 = 0
ϕ35,40 = 0

Max 19.7% 21.4% 26.3%
Min 2.7% 1.8% 0.4%
⊘ 12.8% 12.8% 11.3%

Table 6.4: Results for Three Wrong Decision and Different Populations

As a result, it is obvious that even minor deviations from the optimum solution may lead
to significantly worse results. In the case of only one wrong decision, the objective function
value degrades by only 0.2% at best and 26.1% at worst. It is also worth noticing that the
average worsening of the objective function value is almost the same for all populations. In
the case of two and three wrong decisions, maximum, minimum and average degradation
of the objective function value further increases, whereas the influence of the population
size stays the same, see Tables 6.3 and 6.4. The degradation of the objective function
value peaks in one case with 50% population and three wrong decisions with a worsening
of 26.3%. Thus, we can assume that the development of heuristic approaches for solving
this problem is very difficult due to the sensitivity of the objective function to wrong
decisions.
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6.4.2 Application of the Heuristic Approach

In this section, we will apply our heuristic procedure to a small sample network and to
two larger real world networks. During our computational tests, we found out that adding
special terms to the objective function speed up the computational process significantly. In
detail, we added the terms +10−5 ·

∑
i,j∈I

∑
t∈T yijt and −10−6 ·

∑
t∈T x|I|,t to the objective

function of the ExCTEPM in Step 1 of the heuristic, the term +10−5 ·
∑

i,j∈I

∑
t∈T yr

ijt to
the objective function of Rescue Team Route Determination in Step 2 of the heuristic and
+10−5 ·

∑
i,j∈I

∑
t∈T (yijt + yr

ijt) as well as −10−6 ·
∑

t∈T x|I|,t to the objective function of
the ExCTEPM with Rescue Team Traffic in Step 3 of the heuristic as well as the objective
function of the original model formulation (see (6.1) – (6.61)). The first term always avoids
unnecessary vehicle movements which may occur if two adjacent cell share the same level
of danger. The second term forces vehicles to enter the super sink not later than necessary
which may occur in cases where exit cells share the same level of danger as the super sink.
However, the second term also tends to reduce computation time by cutting redundant
solutions off. We also apply a time limit of 180 seconds for step (b) and (c) in Step 2 of
the heuristic, which was not met during the complete computational study. Each iteration
of the binary search algorithm in Step 1 and Step 3 of the heuristic has been terminated
after the exploration of 75,000 nodes of the branch & bound tree.

6.4.2.1 Small Sample Network

In the first part of this section, we already illustrated that minor deviations from the
optimum solution may lead to degradation of the objective value by large two-digit per-
centages. However, we will apply our heuristic presented in Section 6.3 to this relatively
small network in order to show that this heuristic is able to generate high quality solutions
regarding the majority of routing decisions. The results from our heuristic approach are
displayed in Table 6.5:

Optimum Solution Heuristic Solution
Gap solvetime [s] Gap solvetime [s]

100% Pop. 0.0% 450 2.6% 223
75% Pop. 0.0% 413 0.9% 100
50% Pop. 0.0% 192 1.9% 51

Table 6.5: Results of Heuristic Procedure for Sample Network

Solution quality and runtime of our heuristic approach for these three specific instances are
very good. Compared to Tables 6.2, 6.3, 6.4, degradation of the objective function value is
very low (2.6% for 100% Population, 0.9% for 75% Population, 1.9% for 50% Population,
calculated with (6.96)), which implies that no major mis-routings take place. The most
time demanding step for the instances with 50% and 75% population is the determination
of rescue team path(s), consuming approx. 93% / 85% of total computation time for 75%
/ 50% population cases. The instance with 100% population is the only instance in the
computational study, where no feasible solution could be found in the first run. Instead,
we had to solve the ExCTEPM with rescue team traffic using only ϕr

ij as a parameter,
but not ϕij , σit and rijt.
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6.4.2.2 Larger (Real World) Networks

The original model formulation for Cell-Transmission-based Evacuation Planning with
Rescue Teams is very demanding in terms of memory requirements and computing time
due to the large number of integer variables and constraints. In this regard, our heuristic
approach gains significant advantages since the main problem is decomposed into smaller
subproblems (evacuation planning, assignment of rescue teams and evacuation planning
with rescue teams) whereas each subproblem is solved with by a combination of tailor-
made heuristics and standard software. Thus, our approach can be adopted to even larger
instances, delivering feasible solutions in short time. In the following, we will illustrate the
adaptability of our approach for two real-world scenarios, namely the districts of Neudorf
and Wanheimer Ort in the city of Duisburg, Germany. Both districts are displayed in
Figure 6.7 and 6.8:

Figure 6.7: Duisburg - Neudorf

The data set for Neudorf is “Scenario 3” taken from Section 5.3 and supplemented by
rescue team specific parameters, i.e. Di, Pi, δ+ = 1, δ− = 1, |T | = 91 and tr = 25.
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Figure 6.8: Duisburg - Wanheimer Ort

Again, we apply no rescue team traffic limitations in terms of (6.60) and (6.61) and flow
and vehicle capacities are constant over time. Based on up to date information, there are
about 26,000 residents living in Neudorf leading to 8,750 vehicles, if three residents will
use one vehicle on average. The considered network consists of 106 cells plus the super
sink. The most endangered area is located in the center of the network, including a total
of 13 cells, whereas four cells have a demand of 3 rescue teams vehicles each. Analogue
to previous networks, we set cit = ci · t with ci = 104 for cells within the most endangered
zone, ci = 102 for all remaining cells and ci = 0 for the super sink. Rescue teams may enter
the network through eight exit cells. On average, approximately 83 vehicles are starting
their evacuation in each cell taking the super sink not into account.
The district Wanheimer Ort corresponds to a network of 134 cells including seven exit
cells and a super sink. In Wanheimer Ort, 15,650 residents live, so that approx. 5,257
vehicles will be used for evacuation. The most endangered zone is located in the center
of the network, affecting a total of 3 cells. The values for cit are defined in the same
manner as in all previous networks, setting cit = ci · t with ci = 104 for cells within the
most endangered zone, ci = 102 for all remaining cells and ci = 0 for the super sink.
The average number of starting vehicles per cell is approximately 40 excluding the super
sink. Moreover, the district Wanheimer Ort is characterized by a large number of one-lane
streets leading to computational problems (no feasible solution) due to (6.36) and (6.38),
see the discussion in Section 6.2. Therefore, we relax both constraints for all cells j ∈ I
with lj = 1 in the model formulation of the ExCTEPM as well as the heuristic procedures
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in Step 1 and Step 3 and add the new constraint
∑

i∈I yijt ≤ Qjt for all cells j ∈ I with
lj = 1 in the model formulation of the ExCTEPM in Step 1 and Step 3. Rescue team
specific parameters were set to: δ+ = 2, δ− = 2, |T | = 94 and tr = 35. Analogue to
Neudorf, rescue team traffic limitations in terms of (6.60) and (6.61) were not applied and
we assume that flow and vehicle capacities are constant over time. The results for both
real-world instances are displayed in Table 6.6:

Neudorf Wanheimer Ort
Obj. Val. solvetime [s] Obj. Val. solvetime [s]

LBET 1388240000 – 423971000 –
ET (Step 1) 1819560000 269 449379000 383
ET+RT (Steps 1–3) 1799610000 990 467010000 1,523

Table 6.6: Results of Heuristic Procedure for Neudorf and Wanheimer Ort

Using the best known feasible solutions for evacuation traffic (ET) as benchmarks, the
solutions obtained by our heuristic approach for evacuation planning with rescue team
traffic (ET+RT) are very good. In detail, the objective function value worsens by -1.1%
(Neudorf) and 3.9% (Wanheimer Ort) in relation to the (heuristically computeted) ob-
jective function values for evacuation traffic. The negative gap for Neudorf exists due
to a surprising improvement of the objective value although rescue team traffic has been
considered. In comparison to the best known lower bound for the evacuation planning
problem without rescue team traffic (LBET ), results are also very promising since the
degradation of the objective function value compared to the lower bound is 29.6% (Neu-
dorf) and 10.2% (Wanheimer Ort), respectively.
Runtime for the first instance (Neudorf) splits in approximately 27% for Step 1, 17% for
Step 2 and 56% for Step 3. An explanation for this might be found in the modified / addi-
tional constraint (6.93)–(6.95) for the static ExCTEPM heuristic in Step 3 or the enhanced
model formulation of the ExCTEPM compared to Step 1. Step 2 runs relatively quick due
to the smaller network size compared to Wanheimer Ort. In the second instance (Wan-
heimer Ort), Step 2 consumes approx. 62% of total compuatation time, whereby Step 1
and Step 2 need relatively less time compared to Neudorf although network size increases.
This speed-up might be caused by the relaxation of constraint (6.36) and (6.38) for all
cells j with lj = 1.
Another interesting point is the route choice for rescue teams. In Neudorf, rescue teams
use a relatively low frequented exit in the south-western part of Neudorf as the entrance
and the chosen path leads directly to the center of danger without any detours. For the
case of Wanheimer Ort, rescue teams choose also a low frequented exit in the eastern part
of Wanheimer Ort, but the route through the network is not as straight as in the first
instance. In particular, rescue teams mainly use small side streets and accept a longer
access route in order to leave traffic on a highly occupied street – that would represent
the shortest path from this exit – untouched.



Chapter 7

Evacuation Planning with Vehicles
and Pedestrians

During an evacuation, all available flow capacities should be taken into account in the
planning process. However, most of the literature dealing with evacuation planning prob-
lems from urban areas considers only one traffic mode, e.g. evacuation by vehicle. This
assumption is reasonable since people evacuating from a large urban area usually want to
take their valuables along with them and they need something to transport it, i.e. their
vehicles. However, when it comes to evacuation of urban areas, at least two individual
traffic modes can be taken into account, namely evacuation by vehicle and evacuation by
foot in order to lower evacuation time and total danger for the evacuees. Furthermore, if
evacuation is performed only by vehicles, it is often assumed that all evacuees can escape
using a sufficient number of vehicles. This assumption probably holds for most inhabited
areas in industrial countries, but there might also exist other scenarios where at least
some evacuees have to escape by foot due to an insufficient number of vehicles. On the
other hand, evacuating by foot might lead to improvements in terms of faster evacuation,
because people living at the brink of the endangered area may escape faster, if they are
not entering the (congested) road network, but escaping by foot, taking their valuables by
themselves. Such situations might also lead to lower evacuation times for vehicles, since
the road network capacities are less occupied.
To the best of our knowledge, only Sinuany-Stern and Stern (1993) covered the topic of
evacuating people by car and by foot within an integrated simulation approach. They used
several route choice mechanisms to determine routing decision en route. Among other as-
pects, they investigated the influence of different route selection mechanisms, the influence
of “friction” between pedestrians and vehicles as well as different population sizes, but not
the effects of integrating the mode choice.
In this chapter, we will include the mode choice (by vehicle, by foot) into an integrated
evacuation planning optimization approach and discuss some universal properties. Again,
we use the ExCTEPM introduced in Chapter 4 as a basis. This chapter bases on the work
of Kimms and Maassen (2011a). Similar to Chapter 6, where we recapitulate the notation
and model formulation of the ExCTEPM for the sake of readability, we will again display
the used notation, but in a more compact tabularly form.
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7.1 Integrating Pedestrian Flows

We already discussed that flow capacities should be used as efficiently as possible in the
case of an evacuation in order to minimize danger for affected people. If we consider an
additional mode choice (evacuation by foot), previously unused flow capacities can now
be used. On the other side, the evacuation planning problem becomes more complex
since more interactions between pedestrians and other pedestrians as well pedestrians and
vehicles must be considered. In the following, we will first discuss how sidewalks can
be implemented into a cell-based evacuation planning approach. Subsequently, conflicts
between pedestrians and pedestrians/vehicles will be covered.

7.1.1 Sidewalk Modeling

The Cell-Transmission approach by Daganzo is intended to be used for vehicle traffic only.
Now, we adopt the basic ideas of this approach to additionally model pedestrian traffic.
If we only take vehicles within a cell-transmission-based framework into account, a street
network can be transformed in a cell-based network as shown in Figure 7.1.
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Figure 7.1: Cell Based Network Representation for Streets only

To cover pedestrian flows, the cell-based network must be modified . Therefore, we add
two “sidewalk” cells as placeholders to every “street” cell as displayed in Figure 7.2.
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Figure 7.2: Cell Based Network Representation for Streets and Sidewalks
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Solid lines represent possible vehicle flows and the dotted lines display only basic pedes-
trian flows for the sake of simplicity. A detailed illustration of possible pedestrian flows
can be found in Figure 7.9 and 7.10.
The introduction of sidewalk cells significantly increases the number of required cells to
model a network with streets and sidewalks. However, this modification is necessary in
order to capture the potential crossing conflicts between vehicle and pedestrian traffic at
junctions.
Another important aspect is the different movement speed of vehicles and pedestrians.
While vehicle move with different driving speeds (in light traffic) in respect to the road
infrastructure (e.g. 30km/h on narrow streets, 50km/h on urban streets and 100km/h
on highways), pedestrians have a much slower and more constant (free-flowing) walking
speed of approximately 5km/h. Therefore, the number of sidewalk cells is much higher
than the number of street cells. For example, a narrow street with a vehicle driving speed
of 30km/h (=8.33m/s) combined with a period length of 9 seconds can be described by a
cell with a length of (8.33m/s · 9s =) 75m. Pedestrians with a walking speed of 5km/h,
will need 54 seconds to pass a distance of 75m which corresponds to 6 periods. Hence,
the sidewalk must be modeled by six cells in order to cover the lower movement speed of
pedestrians. Please note that the size of sidewalk cells is always the same on streets with
different vehicle driving speeds (e.g. 50km/h or 30km/h), because the size of sidewalk
cells only depends on the walking speed of pedestrians. In this case, each sidewalk cell
would be 12.5m meters long. Figure 7.3 illustrates these relations. Cell 1 is a street cell
for vehicles and cells 2-13 are sidewalk cells for pedestrians.
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Figure 7.3: Relation between Cells for Vehicles and Pedestrians for One Cell Size

It is apparent that the number of cells rapidly increases when street and sidewalk cells
should be considered. For the case of streets with a driving speed of 50km/h, each side-
walk must be modeled by 10 cells to capture the relations between the movement speeds
(50km/h vs. 5km/h → 10:1) adequately. We discussed a comparable problem when we
introduced the concept of multiple cell sizes, see Section 4.1.1. The purpose of using
multiple cell sizes is to merge two or more cells on a single street with no junctions into
just one cell in order to reduce the number of cells required to describe a given network.
This approach fits perfectly to the issue of having a large amount of sidewalk cells in a
row without junctions, because sidewalk cells on streets with a driving speed of 50km/h
(30km/h) can be modeled as a single cell of size n = 10 (n = 6), see Figure 7.4.

Again, Cell 1 denotes the street cell which is now surrounded by only two sidewalk cells
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Figure 7.4: Relation between Cells for Vehicles and Pedestrians for Multiple Cell Sizes

2 and 3 of size n = 10 for vehicles driving at 50km/h and n = 6 for vehicles driving at
30km/h. By doing so, network size of an “only-vehicles” network increases by the factor
3 when sidewalk cells are considered since every street cell will be surrounded by two
sidewalk cells of larger size.
However, the concept of multiple cell sizes is primarily designed for streets with relatively
simple traffic flows in one or two directions. When sidewalks are considered, more (pedes-
trian) flows within a section (including one street and two pedestrian cells) are possible,
see Figure 7.5. Again, the center cell is a street cell, surrounded by two sidewalk cells
above and below.

Vehicle Flows

Pedestrian to Vehicle Flows

Pedestrian Flows

Figure 7.5: Possible Vehicle and Pedestrian Flows on a Street Section

It is easy to see that the ability to cross a street, to change the sidewalk and to switch
to vehicles results in more possible flows compared to the street, on which flows are more
simple. When these pedestrian flows should be included in evacuation planning, the con-
cept of using only one cell (of larger size) to model a sidewalk reaches its limits since we do
not see any implementation where these pedestrian flows can be implemented adequately.
For example, we have to differentiate between three possible destination cells when pedes-
trians enter a sidewalk cell. All of these three destinations can be reached within different
time horizons, i.e. for the case shown in Figure 7.3 two periods if pedestrians only change
the side of the street and proceed in the same direction where they came from, six peri-
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ods if pedestrians walk the complete sidewalk and seven periods if pedestrians walk the
complete sidewalk and change the side of the street (one period for crossing the street).
Moreover, these movements are direction-dependent, i.e. we have to differentiate between
movements where pedestrians proceed to a new destination cell and movements where
pedestrians return to the original street section where the they originally came from, but
only on the other side of the street. These issues get even more complex when residents
starting their evacuation have to be considered. Concluding, the usage of only one cell to
model a sidewalk is not an appropriate approach to capture (complex) pedestrian flows.
Hence, if all pedestrian flows illustrated in Figure 7.5 should be considered and crossing
the street should be possible all over the street, we have to model sidewalk cells as cells
of size n = 1. Unfortunately, this approach results in a large number of cells, even for
small networks, e.g. a street network modeled by 10 street cells of size n = 1, each with
a driving speed of 50km/h results in a network with 210 cells, where each street cell is
surrounded by 20 sidewalk cells. Of course, street cells with a driving speed of 30km/h
require the adding of “only” 12 cells, but the effect stays generally the same. Depending on
the driving speeds within the network, the number of cells required to include pedestrian
traffic thus increases by the factor 12-20.
As already explained, pedestrians may change the side of the street at different segments,
for example at the very beginning of the sidewalk, the very end of the sidewalk or some-
where in between. Additionally, residents may decide to change the sidewalk as soon as
they leave their homes so that street crossing may take place over the complete street
length. These alternatives are illustrated in Figure 7.6 for street with a driving speed of
30km/h.

Pedestrian flows
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Figure 7.6: Pedestrian Flows within a Street Section for One Cell Size

Using the representation in Figure 7.6, all pedestrian flows illustrated in Figure 7.5 are
implemented correctly. If pedestrians enter the street section via cell 2, they will need
two periods to leave the street section via cell 8, six periods the leave the street section
via cell 7 and seven periods to leave the street section via cell 13. In the latter case,
it is obvious that different paths can be used, e.g. 2 → 3 → 4 → 5 → 6 → 7 → 13,
2 → 3 → 4 → 5 → 6 → 12 → 13, 2 → 3 → 4 → 5 → 11 → 12 → 13 etc.. However,
these paths are highly redundant since the number of periods to get from cell 2 to cell
13 is always the same. Additionally, we can assume that danger for evacuees is uniformly
distributed within a street section so that it makes nearly no difference, which path pedes-
trians take. Thus, for the sake of simplicity, we assume that changing the side of the street
is only possible between the outer pedestrian cells of a street section, see Figure 7.7.
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Pedestrian flows

8

2 3 4 5 6 7

9 10 11 12 13

1

Figure 7.7: Reduced Pedestrian Flows within a Street Section for One Cell Size

If we now take a closer look at the cells 3–6 and 9–12, we observe that these cells can be
merged into one larger cell without major interferences. In detail, these larger cells do
not allow any street crossing so that pedestrian flows within these larger cells are much
simpler than before. It should be noted that always 3 three cells are needed to describe
one sidewalk, independent of the driving speed on the street. e.g. the size of the large
sidewalk cell is n = 8 on streets with 50km/h driving speed and n = 4 on streets with
30km/h driving speed. In combination with two surrounding (sidewalk) cells, each of size
n = 1 the original “length” of n = 10 and n = 6 can be ensured, respectively. Figure 7.8
illustrates these relations.

6

2

1

Pedestrian flows

3 4

5 7

Figure 7.8: Reduced Pedestrian Flows within a Street Section for Multiple Cell Sizes

As the approach illustrated in Figure 7.8 combines a relatively low number of additional
cells with sufficient flexibility for pedestrians flows, we will use this approach in the fol-
lowing.

7.1.2 Crossing Conflicts

The integration of pedestrian flows into evacuation planning with vehicles result in a large
number of potential crossing conflicts at junctions. However, to ensure a widely unob-
structed evacuation process these crossing conflicts must be avoided. For the case of a
junction with three entrances/exits, we identify 15 potential crossing conflicts between
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vehicles and pedestrians as well as pedestrians and other pedestrians, see Figure 7.9. Al-
though danger for crossing pedestrian flows is much lower than for crossing vehicle flows,
we also want to avoid suchlike conflicts for pedestrians to ensure uninterrupted pedestrian
flows.
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Figure 7.9: Crossing Conflicts at a t-junction

Figure 7.9 illustrates potential vehicle and pedestrians movements as well as crossing con-
flicts on a t-junction. We assume that pedestrian flows are not allowed to cross junctions
diagonally. Instead, only movements as illustrated in Figure 7.9 are possible, if no conflict
with vehicle flows exists. In total, there are 10 crossing conflicts between vehicles and
pedestrians as well as 5 crossing conflicts between pedestrians and other pedestrians.
For the case of a junction with four entrances/exits, the number of potential crossing con-
flicts increases to 56, divided into 36 crossing conflicts between vehicles and pedestrians
as well as 20 crossing conflicts between pedestrians and other pedestrians, see Figure 7.10.

Figure 7.10 displays potential pedestrian movements within a four-way junction. Again,
we assume that pedestrians are not allowed to cross junctions diagonally. A four-way
junction also includes a crossing conflict between vehicles in the center of the junction,
marked by a cross in Figure 7.10.
For junctions with five or more entrances/exits, crossing conflicts can be constructed
analogously to three and four-way junctions. However, for the sake of simplicity, we refer
only to three and four-way junctions in this work.
Please recall that pedestrians are allowed to change the sidewalk of the street, if pedestrian
flows and vehicle flows are not conflicting. This assumption allows that pedestrians can
theoretically reach every sidewalk in the network without major detours.
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Figure 7.10: Crossing Conflicts at a four-way junction

7.2 ExCTEPM with Pedestrians

Since our integrated approach for evacuation planning with vehicles and pedestrians mainly
bases on the ExCTEPM, we name our approach “ExCTEPM with pedestrians” or use the
acronym “ExCTEPMP”. In order to capture pedestrian traffic, intersections and connec-
tions between cells must be considered more in detail. Moreover, we have to introduce a
large number of new variables to cover pedestrian flows and the changeover from pedestrian
to vehicle traffic. We use the following notation.
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7.2.1 Notation

Parameters:

T = {1, . . . , |T |} Index set of periods (where |T | is the index of the last period
of the planning horizon)

I = {1, . . . , |I|} Index set of cells with the following differentiation:
|I| − 1 : super sink for vehicles (from street cells)
|I| : super sink for pedestrians (from sidewalk cells)
Iv : street cells (for vehicles) including super sink |I| − 1
Ip : sidewalk cells (for pedestrians) including super sink |I|

S = {1, . . . , |S|} Index set of intersections
cit danger of being at cell i in period t (cit ≥ 0)
βij = βji = 1, if a traffic flow from cell i to cell j

(and vice versa) can be established, 0 otherwise (no mode switch)
βc

ij = βc
ji = 1, if cell i and cell j belong to the same street section and

a traffic flow can be established, 0 otherwise (mode switch possible)
βs

is if cell i is connected to intersection s
Nit maximum vehicle / pedestrian capacity of (street/sidewalk) cell i

on all “lanes” in period t
Ei number of evacuees starting their evacuation in cell i
Ep

i number of evacuees in cell i forced to escape by foot
Qit maximum number of in- and outflowing vehicles / pedestrians

on all “lanes” into / from (street/sidewalk) cell i in period t
li number of “lanes” in (street/sidewalk) cell i
p maximum number of outflowing evacuation traffic streams
xi1 number of vehicles at cell i before the evacuation starts
xp

i1 number of pedestrians at cell i before the evacuation starts
a maximum number of evacuees per vehicle
ni size of (pedestrian) cell i

Decision Variables:

zit number of vehicles residing, leaving or waiting in cell i in period t
zp
it number of evacuating pedestrians residing, leaving or waiting in cell i in period t

xit number of residing vehicles at cell i at the end of period t
xp

it number of residing pedestrians at cell i at the end of period t
yijt number of evacuating vehicles leaving (street) cell i in period t

and reaching (street) cell j
yp

ijt number of pedestrians leaving (sidewalk) cell i in period t

and reaching (sidewalk) cell j
ycp

ijt number of pedestrians leaving (sidewalk) cell i in period t

and reaching (street) cell j in a vehicle
ycv

ijt number of vehicles starting evacuation in (street) cell j in period t

coming from (sidewalk) cell i as pedestrians
bp
it number of pedestrians starting evacuation at cell i in period t

ϕij = 1, if vehicles drive from cell i to cell j, 0 otherwise
ϕp

ij = 1, if pedestrians move from cell i to cell j, 0 otherwise

ǫij number of used lanes between cell i and cell j for vehicles
ǫp
ij number of used lanes between cell i and cell j for pedestrians
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7.2.2 Model Formulation

Based on this notation, we can formulate the ExCTEPM with pedestrians as follows:

min
∑

i∈Iv

∑

t∈T

cit · zit · a +
∑

i∈Ip

∑

t∈T

cit · z
p
it (7.1)

subject to

zit = xit +
∑

j∈Iv

yijt i ∈ Iv ; t ∈ T (7.2)

zp
it = xp

it +
∑

j∈Ip

yp
ijt +

∑

j∈Iv :
βc

ij=1

ycp
ijt + (Ei −

t∑

τ=1

bp
iτ ) i ∈ Ip ; t ∈ T (7.3)

xit = xi,t−1 +
∑

j∈Iv

yji,t−1 −
∑

j∈Iv

yijt +
∑

j∈Ip:
βc

ji=1

ycv
ji,t−1 i ∈ Iv ; t = 2, . . . , |T | (7.4)

xp
it = bp

it + xp
i,t−1 +

∑

j∈Ip

yp
ji,t−1 −

∑

j∈Ip

yp
ijt −

∑

j∈Iv :
βc

ij=1

ycp
ijt i ∈ Ip ; t = 2, . . . , |T | (7.5)

∑

j∈Ip

t∑

τ=1

yp
ijτ ≤

∑

j∈Ip

max(t−ni,1)∑

τ=1

yp
jiτ +

max(t−⌈ni/2⌉+1,1)∑

τ=1

bp
iτ

−
∑

k∈Iv :
βc

ik
=1

max(t−⌈ni/2⌉+1,1)∑

τ=1

ycp
ikτ + xp

i1 i ∈ Ip : ni ≥ 2 ; t ∈ 2, . . . , |T |

(7.6)

ycv
ijt · a ≥ ycp

ijt i ∈ Ip ; j ∈ Iv : βc
ij = 1 ; t ∈ T

(7.7)

zit ≤ Nit i ∈ Iv ; t ∈ T (7.8)

zp
it ≤ Nit + (Ei −

t∑

τ=1

bp
iτ ) i ∈ Ip ; t ∈ T (7.9)

xit ≤ Nit i ∈ Iv ; t ∈ T (7.10)

xp
it ≤ Nit i ∈ Ip ; t ∈ T (7.11)

∑

t∈T

bp
it = Ei i ∈ Ip (7.12)

∑

i∈Ip

∑

j∈Iv :βc
ij=1

∑

t∈T

ycv
ijt +

∑

i∈Iv

xi1 = x|I|−1,|T | (7.13)

∑

i∈Ip

(Ei −
∑

j∈Iv :βc
ij=1

∑

t∈T

ycp
ijt + xp

i1) = x|I|,|T | (7.14)

∑

i∈Iv

yijt ≤ (Njt − xjt) j ∈ Iv ; t ∈ T (7.15)

∑

i∈Ip

yp
ijt ≤ (Njt − xp

jt) j ∈ Ip ; t ∈ T (7.16)
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yijt ≤ Nit · βij i,j ∈ Iv ; t ∈ T (7.17)

yp
ijt ≤ Nit · βij i,j ∈ Ip ; t ∈ T (7.18)

yijt ≤
Qjt

lj
· ǫij i,j ∈ Iv ; t ∈ T (7.19)

yijt ≤
Qit

li
· ǫij i,j ∈ Iv ; t ∈ T (7.20)

yp
ijt ≤

Qjt

lj
· ǫp

ij i,j ∈ Ip ; t ∈ T (7.21)

yp
ijt ≤

Qit

li
· ǫp

ij i,j ∈ Ip ; t ∈ T (7.22)

∑

j∈Iv :βc
ij=1

ycp
ijt ≤ bp

it i ∈ Ip ; t ∈ T (7.23)

∑

j∈Iv :βc
ij=1

∑

t∈T

ycp
ijt ≤ Ei − Ep

i i ∈ Ip (7.24)

ϕij + ϕjk ≤ 1 i, j, k ∈ Iv : βij = βik = 1 (7.25)

ϕp
ij + ϕp

jk ≤ 1 + βc
ij + βc

jk i, j, k ∈ Ip ; s ∈ S :

βs
is = βs

js = βs
ks = 1 (7.26)

ϕij ≤ βij i,j ∈ Iv (7.27)

ϕp
ij ≤ βij i,j ∈ Ip (7.28)

ǫij ≤ ϕij ·min{li, lj} i,j ∈ Iv (7.29)

ǫp
ij ≤ ϕp

ij ·min{li, lj} i,j ∈ Ip (7.30)
∑

i∈Iv

ϕij ≤ lj j ∈ Iv (7.31)

∑

j∈Iv

ϕij ≤ p i ∈ Iv (7.32)

∑

i∈Iv

ǫij ≤ lj j ∈ Iv (7.33)

∑

j∈Iv

ǫij ≤ li i ∈ Iv (7.34)

∑

i∈Ip

yp
ijt ≤ Qjt j ∈ Ip ; t ∈ T (7.35)

∑

j∈Ip

yp
ijt ≤ Qit i ∈ Ip ; t ∈ T (7.36)

ϕij + ϕji + ϕuv + ϕvu ≤ 1 i, j, u, v ∈ Iv : βij = βiu =

βiv = βju = βjv = βuv = 1
(7.37)

ϕij + ϕji + ϕp
uv + ϕp

vu ≤ 1 for all i→ j (i, j ∈ Iv) crossing

u→ v (u, v ∈ Ip) (7.38)

ϕp
ij + ϕp

ji + ϕp
uv + ϕp

vu ≤ 1 for all i→ j (i, j ∈ Ip) crossing

u→ v (u, v ∈ Ip) (7.39)
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ϕvu + ϕuv + ϕp
ij + ϕp

ji ≤ 1 i, j, k, l ∈ Ip ; u, v ∈ Iv :

βc
ij = βc

kl = βik = βjl = 1

βc
ik = βc

jl = 0

βc
iu = βc

ju = βc
kv = βc

lv = 1

(7.40)

ǫij ∈ N0 i,j ∈ Iv (7.41)

ǫp
ij ∈ N0 i,j ∈ Ip (7.42)

ϕij ∈ {0, 1} i,j ∈ Iv (7.43)

ϕp
ij ∈ {0, 1} i,j ∈ Ip (7.44)

zit, xit ≥ 0 i ∈ Iv ; t ∈ T (7.45)

zp
it, x

p
it, b

p
it ≥ 0 i ∈ Ip ; t ∈ T (7.46)

yijt ≥ 0 i,j ∈ Iv ; t ∈ T (7.47)

yp
ijt ≥ 0 i,j ∈ Ip ; t ∈ T (7.48)

ycp
ijt ≥ 0 i ∈ Ip ; j ∈ Iv : βc

ij = 1 ; t ∈ T

(7.49)

ycv
ijt ∈ N0 i ∈ Ip ; j ∈ Iv : βc

ij = 1 ; t ∈ T

(7.50)

xi1 = 0 i ∈ Iv (7.51)

yij1 = 0 i,j ∈ Iv (7.52)

xp
i1 = 0 i ∈ Ip (7.53)

bp
i1 = 0 i ∈ Ip (7.54)

yp
ij1 = 0 i,j ∈ Ip (7.55)

ycp
ij1 = 0 i ∈ Ip ; j ∈ Iv : βc

ij = 1 (7.56)

ycv
ij1 = 0 i ∈ Ip ; j ∈ Iv : βc

ij = 1 (7.57)

The objective function (7.1) minimizes total danger for all evacuees leaving the endangered
area by vehicle (first term) and by foot (second term) during the planning horizon. Please
note that vehicles are always additionally weighted with the parameter a, regardless of
the number of evacuees inside a vehicle. Since unoccupied seats within a vehicle represent
capacities which can be used without additional costs, vehicles starting from a specific cell
i usually will be loaded with the maximum number of evacuees in an optimum solution,
if the number of seats equals the number of evacuees starting in cell i. However, there
are also situations where not every seat in a vehicle is used, e.g. if Ei mod a > 0 holds
and all residents are escaping by vehicle. In such cases, vehicles will be loaded in respect
to the remaining number of evacuees. Moreover, we added some additional terms to the
objective function to improve readability of the solution and computation time. Firstly,
we added +10−5 ·

∑
i,j∈Iv

∑
t∈T yijt as well as +10−5 ·

∑
i,j∈Ip

∑
t∈T yp

ijt to the objective
function in order to avoid unnecessary vehicle and pedestrian movements, which may
occur if two adjacent cells share the same level of danger. Secondly, we added the term
−10−6 ·

∑
t∈T (x|I|−1,t +xp

|I|,t) to ensure that vehicles escape the network as fast as possible.
However, it turned out that the second term also helps to reduce computation time for
our examples. Equation (7.2) and (7.3) calculate the number of vehicles and pedestrians
in danger in cell i in period t. Please note that equation (7.3) also includes the number of
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evacuees which have not left their homes until a given period t. (7.4) and (7.5) represent
vehicle and pedestrian flow equations. In detail, the number of residing vehicles in a cell i
at the end of period t is equal to the number of residing vehicles from a period before plus
the number of incoming vehicles minus the number of outgoing vehicles plus the number
of evacuees starting the evacuation by car in period t − 1. For pedestrians, the number
of residing pedestrians in cell i at the end of period t is equal to the number of residents
starting their evacuation in period t plus the number of residing pedestrians from a period
before plus the number of incoming pedestrians minus the number of outgoing pedestrians
minus the number of pedestrians switching to their vehicles. It should be mentioned that
the decision to evacuate by vehicle is non-reversal, i.e. evacuees which have entered their
cars once have to escape by car. To cover multiple cell sizes for pedestrians, constraint
(7.6) limits the number of outgoing pedestrians in regard to incoming pedestrians and
cell size. In detail, the total number of outgoing pedestrians till a period t is lower or
equal to the total number of pedestrians which have entered the cell not later than t− ni

periods before plus the total number of residents starting their evacuation not later than
t−⌈ni/2⌉+1 periods before (denoting approx. the “middle” of a cell) which have decided
not to escape by car plus the initial number of pedestrians in this cell. To ensure that
the number of starting vehicles provide enough space for all residents which have decided
to evacuate by vehicle constraint (7.7) is needed. Since every additional vehicle leads to
increased “cost” in the objective function, only as many vehicles as absolutely necessary
will be created in the model.
Constraints (7.8)–(7.11) represent capacity limits for the number of vehicles/pedestrians
in cell i in period t. The equations (7.12)–(7.14) ensure that all evacuees will leave their
homes and reach a safe place (i.e. one of the super sinks) within the planning horizon.
Moreover, the number of vehicles traveling from cell i to cell j have to be restricted in
several ways, see constraints (7.15)–(7.22). In detail, the number of cell changing vehicles
must not exceed free space in the destination cell ((7.15) and (7.16)), the maximum vehicle
capacity of a cell ((7.17) and (7.18)) as well as the vehicle flow capacities of allocated lanes
((7.19)–(7.22)).
It must also be assured that only residents in a certain cell may start their evacuation by
car, see (7.23). Otherwise it would be possible to begin the evacuation by foot, walking a
few streets and finally switching to a vehicle in a non-origin cell to finish the evacuation.
As already explained at the beginning of this chapter, there may exist some scenarios,
where the number of evacuees exceeds the number of available seats in vehicles so that
some evacuees have to escape by foot. Suchlike situations are captured by constraint
(7.24), where at least Ep

i evacuees are forced to escape by foot. In order to avoid odd situ-
ations between three cells like displayed in Figure 3.5, constraints (7.25) (for vehicles) and
(7.26) (for pedestrians) are needed. The application of (7.26) for pedestrians also requires
the introduction of a set of intersections to determine where suchlike situations between
sidewalk cells may exist. In detail, every intersection with more than two entrances / exits
is part of S. Moreover, to allow crossing a street in front of an intersection if no conflict
with another pedestrian or vehicle flow exists, the term +βc

ij + βc
jk is added to (7.26).

The constraints (7.27)–(7.30) prohibit vehicle/pedestrian flow and lane allocations only
to those cell combinations, where a direct connection in terms of βij exists. In order to
guide traffic in a little or almost non-conflicting way, we already introduced traffic flow
limitation constraints, see (7.31)–(7.34). These constraints assure that there will be no
merging processes at junctions so that traffic can flow undisturbed through junctions,
which are normally a very critical place in traffic planning. We apply these constraints
only to vehicle traffic since movement speeds of pedestrians are much lower so that merg-
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ing processes at junctions will be possible. It has to be mentioned that there may exist
some situations, where no feasible solution due to (7.31) and (7.33) exists, e.g. imagine a
t-junction with three one lane streets, two being a deadlock and one not being a deadlock.
The only feasible solution consists of vehicles traveling from the deadlock streets to the
non-deadlock street. However, suchlike situations are forbidden by (7.31) and (7.33), so
that these constraints have to be relaxed. To ensure that traffic flow capabilities will be
met, the constraint

∑
i∈Iv

yp
ijt ≤ Qjt must be added in such situations. Since there are

no counterparts of constraints (7.31)–(7.34) for pedestrians, similar constraints have to be
added for pedestrian traffic to assure adequate in- and outflow, see (7.35) and (7.36).
As already displayed in Figure 7.9 and 7.10 there are several crossing conflicts between ve-
hicle flows and other vehicle flows, vehicle flows and pedestrian flows as well as pedestrian
flows and other pedestrian flows. Traffic crossing and traffic touching conflicts between
vehicles at junctions can be avoided relatively simple by constraint (7.37). Crossing con-
flicts between pedestrians and vehicles as well as pedestrians and pedestrians (as discussed
in Section 7.1.2) are illustrated in constraints (7.38) and (7.39).
Constraint (7.40) ensures that there will be no conflicts between vehicles and pedestrians
crossing a street. Figure 7.11 illustrates these relations for a simple case with two consec-
utive located cells, each consisting of one street and several sidewalk cells.

j’

i

j

k

l

u v

Vehicle Flows

Pedestrian Flows

i’

Figure 7.11: Street Crossing and Vehicle Flows

Here, constraint (7.40) makes sure that no pedestrians are allowed to cross the street from
cell i to cell j (or vice versa), if a vehicle flow from cell u to cell v (or vice versa) exists.
However, if vehicles are leaving cell u only in direction of cell v, pedestrians are allowed
to cross the street at a different place, i.e. from cell i′ to cell j′ (or vice versa). Of course,
this constraint also holds for junctions.
Finally, (7.41)–(7.50) define the domain of the decision variables. Please note that it is
sufficient to consider only those flow variables yijt and yp

ijt where βij = 1 holds and those
flow variables ycp

ijt and ycv
ijt where βc

ij = 1 holds, respectively. In contrast to all previously
used version of the ExCTEPM, the new flow variable ycv

ijt will be defined as an integer
variable to ensure integrality for the number of starting vehicles. To ensure that no vehicle
or pedestrian movements occur before the evacuation starts – i.e. period 1 –, boundary
conditions (7.51) – (7.57) set all relevant decision variables to zero in the first period.
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7.3 Numerical Examples

In this section, we illustrate the functionality of the optimization model for two artifi-
cial instances. Moreover, we apply some basic thoughts concerning evacuation planning
with vehicles and pedestrians to a real-world instance. We implemented the optimization
model in AMPL (http://www.ampl.com/ ) and solved it using the GUROBI 3.0.1 solver
(http://gurobi.com/ ). All experiments were conducted on a computer using an Intel X9100
(3.06 Ghz), 8 GB of memory and Windows Vista (64-bit).

7.3.1 Artificial Network Examples

To demonstrate the functionality of our integrated optimization model, we prepared two
artificial networks of different size. We set the length of a street cell with a driving speed
of 50 km/h to 125m. According to this, street cells with a driving speed of 30 km/h are
75m and (standard) sidewalk cells are 12.5m long. The population is distributed randomly
between 10 and 20 residents for each (standard) sidewalk cell. Sidewalk cells of larger size
are inhabited by a proportional larger number of residents. Moreover, we assume that all
evacuees can escape by vehicle, if desired. The danger in terms of cit is also distributed
uniformly with cit = ci · t with ci = 100 for all cells within the network and ci = 0 for both
super sinks. Flow and vehicle/pedestrian capacities are constant over time.
The first network consists of only two sections (50 km/h driving speed), leading to two
street cells and a total of 12 sidewalk cells. Evacuees can escape through cell 1, 2, 3, 6, 11
and 14. The topology of the network is displayed in Figure 7.12.
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Figure 7.12: Topology of Test Network 1

We computed the optimum solutions for this network setting a = 1, 3, 5. The computation
times are 0.2 seconds (a = 1), 27 seconds (a = 3)and 1.8 seconds (a = 5). We set |T | = 20.
The solution using a = 3 is shown in Figure 7.13. The arrows indicate pedestrian and vehi-
cle flows. If a pedestrian cell is connected to a street cell, these evacuees switch to vehicles
and escape using the street network. In this case (Figure 7.13), most pedestrians switch to
vehicles, especially in the center of the network (i.e. cell 4, 5, 7, 8, 9, 10, 12, 13). However,
some evacuees located at the brink of the network (i.e. cell 3, 6, 11, 12 and partially cell
4, 7, 10 and 13) evacuate by foot. This observation corresponds to the common sense,
because the incentive to escape by foot decreases with increasing distance to the safe zone.
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12 13

Figure 7.13: Solution of Test Network 1 for a = 3
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The second artificial network consists of four street segments, three of them with a driv-
ing speed of 50 km/h and one segment with a driving speed of 30 km/h. Again, we use
random numbers between 10 and 20 to generate the population for a standard sidewalk
cell. Moreover, we increased |T | to |T | = 30 and set a = 1, 3, 5. The network topology is
shown in Figure 7.14.

28

1

5 6 7

8 9 10

13

14 16

11 12

15

2

17

18

19

20

213

22

23 24 25

26 27

4

Figure 7.14: Topology of Test Network 2

Although this network is only slightly larger than the first network, GUROBI has an issue
with proving optimality of a solution for a = 3 and a = 5. We set a time limit of two
hours for the computation, but the solver made only very little progress after the first
few minutes. For example, for a = 3 GUROBI gets stuck at a mipgap of 0.34% after 175
seconds, which could not be enhanced within the remaining computation time. For a = 5,
the solver starts with a promising mipgap of 1.95% after 16 seconds of computation time
and shows little progress within the first hour of computation, finally reaching a mipgap
of 1.53% after 3,710 seconds. This gap could not be further improved within the time
limit. Hence, there might exists some effects which significantly slow down the compu-
tation process. The computational progress for a = 3 and a = 5 is displayed in Figure 7.15.

(a) a = 3 (b) a = 5

Figure 7.15: Computational Progress for Second Test Network
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Since the aim of this chapter is to provide an integrated approach for evacuation planning
with vehicles and pedestrians we will not discuss potential explanations for these observa-
tions at this point. The best known solution of the second test network for a = 5 is illus-
trated in Figure 7.16. Again, the same observations as in Figure 7.13 can be found. Cells
located in the center of the network are almost completely evacuated by vehicle, whereas
evacuation by foot can mainly be found in the adjacencies of the safe zone. It should be
noticed that very few pedestrians are using the path 21 → 22 → 23 (→ 24 → 25 → |I|)
which might be caused by the remaining mipgap of 1.53% after two hours of computation
time.
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Figure 7.16: Solution of Test Network 2 for a = 5

7.3.2 Considerations for a Real-World Network Example

When evacuations are performed using only one mode, e.g. evacuation by vehicle, the
total evacuation time can be regarded as an upper bound for the maximum reasonable
walking time of evacuees. As an example the evacuation of the district Neudorf in the city
of Duisburg finishes after about 70 periods in the ExCTEPM. Thus, there is no incentive
for evacuees to evacuate by foot, if the walking time utilizing the shortest path from their
homes to the nearest exit is larger than 70 periods. If we further imagine that residents
living nearby an exit will escape by foot, total evacuation time will be reduced because of
decreasing traffic volume on streets. Thus, the number of potential evacuations by foot
decreases even further, because the total evacuation time may drop e.g. to 50 periods,
making evacuation by foot even more unattractive for residents not living nearby an exit.
Another problem covers the possibility that the shortest path to an exit may be not usable
due to crossing vehicle flows so that time-wasting detours must be accepted, finally leading
to further reductions in potential evacuations by foot.
Figure 7.17 illustrates these thoughts for total evacuation times of approximately 70 pe-
riods (lighter area) and 50 periods (darker area). The black line delimits the endangered
zone and the numbers refer to the eight existing exits. We assume that residents evac-
uating by foot can take the shortest path to exits. It is easy to recognize that residents
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living in the center of the endangered zone have no incentive to evacuate by foot since the
walking time – even using the shortest path – would be larger than the evacuation time
by car on (congested) streets.

Figure 7.17: Potential Evacuation by Foot in Duisburg Neudorf



Chapter 8

Conclusions and Future Research

Evacuation Planning always is a challenging task, especially when methods of operations
research are used since a large number of important interactions have to be considered
and the resulting optimization problems become very complex even for small instances
leading to enormous computational effort for solving these instances. This work presents
various evacuation planning optimization models with extensions for integrating rescue
team traffic and pedestrian traffic. Moreover, we provide heuristic procedures for gener-
ating high quality solutions within reasonable time even for large real world scenarios and
we combined the output of our optimization models with microscopic traffic simulations
to achieve a better estimation of the evacuation process itself under more realistic circum-
stances.
The basis for all evacuation planning models in this work is the Cell-Transmission-Model
by Daganzo (1994) and Daganzo (1995). We adopted the basic ideas of this model, which
was originally intended to be used for traffic simulation, but not for optimization purposes.
The basic concept of the CTM is to represent a street section by a number of equal sized
cells, whereas the size of a cell corresponds to the distance a vehicle can travel in one
period of time under light traffic. Under consideration of traffic flow and vehicle capac-
ities of cells, the vehicles move from cell to cell representing the traffic flow over time.
During this work, these ideas were extended to meet additional requirements (see traffic
flow limitations in the ExCTEPM in Chapter 4) and applied to new circumstances (see
rescue team traffic in Chapter 6 and pedestrian traffic in Chapter 7).

Before evacuation plans can be computed, decisions regarding the selection of street seg-
ments in a real-world road network and the conversion of a given road network into a
cell-based network to take advantage of the Cell-Transmission approach have to be made.
Large urban areas consists of an large number of segments, if all dead-end streets and side
streets are taken into account. However, for evacuation planning, not all of these segments
carry large amounts of traffic so that we consider only arterials and major streets.
The choice of the cell size has two effects. On the one hand, cells should be as large as
possible to keep the number of cells (and periods of time) at a manageable level. Please
note that larger cells automatically correspond to longer time periods by definition of the
size of a cell. On the other hand, cells should be as small as possible to match the lengths
of the street sections in a given road network adequately. We face this trade-off by mini-
mizing the number of cells under consideration of a given maximum deviation, see Section
4.1.4. This approach allows to contrast the corresponding number of cells with different
levels of accuracy in network representation and to settle for the best compromise for the
decision maker.

136



8 Conclusions and Future Research 137

Most of the evacuation planning models in this work assume that all endangered persons
have access to vehicles to escape, either as a driver or as a passenger. The only exception
is the simultaneous evacuation planning for vehicles and pedestrians in Chapter 7, where
the number of persons, which have to evacuate by foot because of too few vehicles are
considered explicitly. Although the solutions of the presented evacuation planning models
provide detailed information on how an evacuation plan for a given instance should look
like, the practical implementation also requires the positioning of traffic flow guiding facil-
ities (e.g. barricades) and police forces. Since the data acquisition before the computation
and the computation itself also requires some time, evacuation plans on the basis of the
evacuation planning models in this work should be computed for different scenarios in
advance so that an adequate evacuation plan is instantly available when the decision to
evacuate has been made.

The CTEPM represents the basis for all succeeding optimization models in this work.
We use the fundamental idea of Daganzo (1994) and Daganzo (1995) to model the street
network with cells of a given size, where vehicles move from cell to cell under consideration
of traffic flow capacities. Since the CTEPM is an LP, it can be solved efficiently within a
few minutes even for larger instances, see Chapter 3. However, the CTEPM does not pro-
vide any traffic routing limitations which would be reasonable in real world applications
such as the avoidance of traffic crossing and traffic touching conflicts as well as limiting
merging processes to abet smooth traffic flows. The solution from the CTEPM has been
evaluated in a real world case for a densely populated district in Duisburg, Germany. This
evaluation also includes a sensitivity analysis to capture effects like different departure
patterns, different population sizes and the existence of initial traffic at the beginning of
the evacuation.
The ExCTEPM takes advantage of the basic principle of the CTEPM, but addresses sev-
eral weaknesses of the CTEPM, see Chapter 4: Firstly, the CTEPM captures only flows
of vehicles on the complete street segment, but not lane-dependent, even if merging or
diverging process take place. Thus, the solutions from the CTEPM might lead to situa-
tions, where a non-integer number of lanes should be assigned between two cells, which
is difficult to apply in real-world situations. Secondly, the CTEPM does not avoid traffic
crossing or traffic touching conflicts at all, leading to potentially dangerous situations at
junctions. Thirdly, traffic routing during an evacuation should be as simple as possible
since the evacuees are already frightened above-average. This can be obtained by limiting
merging and diverging processes according to the characteristics of the street segments.
The ExCTEPM also allows to use cells of different size, which leads to large reductions in
the number of required cells to describe a given network.
Since evacuations may take place due to a dangerous event inside the endangered net-
work, rescue teams should enter the network to prevent the origin of danger from causing
even more risk to the population. The flow of rescue teams is contrarily oriented to the
evacuation flow so that a large number of potential conflicts exists. These conflicts need
to be considered when rescue team routes and evacuation routes will be determined. In
Chapter 6, we introduced a new version of the ExCTEPM to capture evacuation traffic
and rescue team traffic simultaneously. To keep conflicts between evacuation and rescue
team traffic low, a temporal reservation of complete street segments for rescue team traffic
was introduced. By doing so, conflicts between evacuation traffic and rescue team traffic
could be avoided completely, since a street segment is used either by evacuation traffic or
by rescue team traffic.
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Although there is a large number of vehicles in urban areas, there might exist scenarios,
where at least some evacuees have to escape by foot. For suchlike evacuation problems,
we developed the ExCTEPMP to cover pedestrian and vehicle flows simultaneously, see
Chapter 7. The consideration of pedestrian traffic requires to model sidewalk cells and to
cope with more complex routing options compared to vehicle-only traffic since pedestrians
are allowed to change the side of the street at street segments and at junctions. Now, each
intersection is characterized by several crossing conflicts between vehicles/pedestrians and
pedestrians which need to be avoided to ensure smooth vehicle and pedestrian flows.

The realistic illustration of traffic is a very difficult task since traffic dynamics are very
complex by nature. Today, the best approximation of traffic can be obtained by micro-
scopic traffic simulations since these approaches take advantage of state-of-the-art models
to describe interdependencies between traffic participants at a high level of detail. The at-
tempt to apply the same level of detail and realism in traffic illustration to an optimization
approach will very likely result in almost unsolvable problems. However, traffic simulations
are a very good chance to evaluate evacuation plans under more realistic circumstances.
Moreover, the results gained from traffic simulations can be very helpful in the optimiza-
tion phase to generate evacuations plans which show better performance in the simulation
runs. Suchlike simulation-based optimization approaches are often used for complex and
non-deterministic problems, see Chapter 2. We developed a simulation-based optimiza-
tion approach using the SUMO Traffic Simulation and applied this approach to a real
world case, where several performance measures (total evacuation time, number of evacu-
ated persons at a certain period and exit occupation time) could be enhanced considerably.

Small instances of each evacuation planning model could be solved with standard software
in short time. However, real-world evacuation often affect a large area so that heuristic
approaches are needed to generate useful solutions for large instances within an appro-
priate time horizon. Since the CTEPM is an LP due to the real-valued domains of all
decision variables, it can be solved for larger networks within minutes. However, the inte-
gration of traffic flow limitations and the explicit consideration of lanes in the ExCTEPM
result in the need for integer and binary variables so that the simplex algorithm was not
sufficient any more. Instead, IP-methods are necessary to compute optimum (integer) so-
lutions. However, due to the introduction of integer variables, the optimization problems
became very hard to solve so that specialized heuristic procedures were necessary. There-
fore, we developed two heuristics for the ExCTEPM – see Chapter 5 –, namely a shortest
path based routing and the static ExCTEPM. The static ExCTEPM clearly outperforms
the shortest path based heuristic in solution quality in several real-world scenarios while
staying within reasonable computation times. The comparison of both heuristics also illus-
trated that feasible solutions are no guarantee for high quality objective function values.
Instead, the objective function seems to be very sensitive to deviations from the optimum
solution.
This assumption also holds for the evacuation planning with rescue teams, see Chapter 6.
A sensitivity analysis concerning the impact of deviations from the optimum evacuation
and rescue team routing demonstrated that degradations of the objective function value
within two digits percentages are not uncommon. Since the problem of routing evacua-
tion and rescue team traffic simultaneously can be regarded as even more complex than
the ExCTEPM, a three-staged solution procedure on the basis of the static ExCTEPM
heuristic was developed. The heuristic first generates an evacuation plan for evacuation
traffic only. Afterwards, rescue teams are integrated into the evacuation traffic in such a
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way that affects evacuation traffic as less as possible. The last step reorganizes the evacu-
ation traffic in respect to fixed rescue team traffic routes. This heuristic shows promising
performance for three artificial and two real-world instances, both in solution quality and
computation time.

Future Research
Although the presented optimization and simulation models cover essential aspects of evac-
uation, some issues are not considered at all. The following aspects represent disregards
of the presented work and should be interpreted as a motivation for potential future work.
At first, people driving behavior in stressful situations like evacuations may be differ-
ent compared to average situations. For example, mentally demanding situations result in
more aggressiveness leading to decreased headways to put pressure on other drivers ahead,
see Tu et al. (2010). Since the driving behavior is essential for realistic traffic illustration,
these effects should not be underrated.
Another aspect covers the will of evacuees to consolidate with family members and to
evacuate together, see Murray-Tuite and Mahmassani (2003) and Murray-Tuite and Mah-
massani (2004). Suchlike assumptions have tremendous effects on evacuation routing and
total evacuation time since people eventually move towards the danger instead of away
from it.
Moreover, we simplified the process of entering the network in our optimization models by
assuming that (flows of) vehicles can enter the network at every time as long as the given
constraints are met, e.g. sufficient free space in a cell. In reality, the network entering
process is more time consuming and arrestive since people have to back out of a parking
space, to wait until enough free space is available and to accelerate to the desired driving
speed. Here, other cars may even have to slow down when an additional vehicle enters the
network.
Two main aspects that determine the routing in an evacuation plan are the supply in
terms of flow capacities (represented by network topology) and the demand in terms of
evacuees (represented by population distribution). While the flow capacities change very
slow over time, e.g. by adding new lanes to streets, the distribution of the population
strongly changes within the time of day. Therefore, it is very difficult to forecast the pop-
ulation distribution at a given time and therefore to calculate evacuation plans matching
the current distribution. The same argumentation also holds for preparation times. Large
buildings (e.g. hospitals or nursing homes) take much longer to be evacuated than an
average town house, simply because ill, injured or old people are not able to take care of
themselves.
In this work, we assume that all vehicles are homogeneous in terms of vehicle length, num-
ber of passengers and driving behavior. By considering a heterogeneous fleet of vehicles
with different passenger loadings and vehicle lengths, a more realistic traffic representa-
tion could be obtained, especially in the traffic simulation. An increased diversity of traffic
participants in terms of including different traffic modes – e.g. vehicles, pedestrians, train,
bus, metro – would also contribute to a more realistic evacuation reproduction.

Beside these new aspects, future work may also cover the development of an integrated
optimization model to cover evacuation traffic, rescue team traffic and pedestrians simul-
taneously. Since the resulting model will be very complex and hard to solve, new heuristic
approaches also need to be designed.
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Figure A.1: Natural Disasters Reported 1900 - 2010
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Figure A.2: Technological Disasters Reported 1900 - 2010

Figure A.3: Number of People Reported Affected by Natural Disasters 1900 - 2010
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Figure A.4: Number of People Reported Affected by Technological Disasters 1900 - 2010

Figure A.5: Number of Natural Disasters Reported 1900 - 2010



A Appendix: Centre for Research on the Epidemiology of Disasters – Emergency Events
Database – Trends 143

Figure A.6: Number of Technological Disasters Reported 1900 - 2010



Appendix B

Appendix: SUMO Model of the
Duisburg–Neudorf Case

Figure B.1: An Illustration of the Duisburg–Neudorf Simulation Model
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Appendix C

Appendix: Scenario Overview for
Heuristic Solution Procedures

The darker the color of the EPZ the higher the danger in this EPZ.

Figure C.1: Scenario 1
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Figure C.2: Scenario 2

Figure C.3: Scenario 3
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Figure C.4: Scenario 4

Figure C.5: Scenario 5
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Figure C.6: Scenario 6

Figure C.7: Scenario 7
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Figure C.8: Scenario 8

Figure C.9: Scenario 9
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