54,947 research outputs found

    Nanotechnology: The Next Challenge for Organics

    Get PDF
    Nanotechnology is the fast growing science of the ultra small; it is creating engineered particles in the size range 1 to 100 nanometres. At this size, materials exhibit novel behaviours. Nanotechnology is a rapidly expanding multibillion dollar industry, with research being heavily promoted by governments, and especially the US. Nanoscale materials are already incorporated into more than 580 consumer products, including food, packaging, cosmetics, clothing and paint. Nanotechnology has been cited as the foundation of a new “advanced agriculture”. This technology is advancing without nano-specific regulation and without labelling while, at the same time, public confidence in government regulatory agencies, and in the safety of the food supply, is declining. There is an opportunity, perhaps an imperative, for the organic community to take the initiative to develop standards to exclude engineered nanoparticles from organic products, just as GMOs have been excluded previously

    Ancient and historical systems

    Get PDF

    Nanotechnology, No Free Lunch

    Get PDF
    Nanotechnology is the new science and technology of the super small. Particles at the nano-scale, from one to one hundred billionths of a metre, exhibit novel properties. Nanotechnology is an active area of research and rapid commercialization. The food industry has been targeted as a potential recipient of this new technology and engineered nanoparticles are reportedly already in some super-market products. Nanotechnology is currently unregulated, and there are no requirements for mandatory labelling, this leaves consumers unprotected and uninformed. Consumers are largely unaware of nanotechnology, expect labelling on nano-products, are unclear of the cost/benefit balance, and express an unwillingness to purchase nanofood. The asymmetric information status of nanotechnology, together with its undetermined safety, raises issues, opportunities, and risks for food manufacturers and retailers. Some local organic food standards, including AUstralia and UK, have nanotechnology exclusions in place

    Nanostructures, Magnetic Semiconductors and Spinelectronics

    Get PDF
    A short overview is given of recent advances in the field of nanosemiconductors, which are suitable as materials for spin polarized transport of charge carriers. On the basis of last theoretical and experimental achievements it is shown that development of diluted and wide forbidden zone semiconductors with controlled disorders as well as their molecular structures is the very prospective way for magnetic semiconductors preparation.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Advances of nanotechnology in agro-environmental studies

    Get PDF
    With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail

    Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines

    Full text link
    Large-capacity Content Addressable Memory (CAM) is a key element in a wide variety of applications. The inevitable complexities of scaling MOS transistors introduce a major challenge in the realization of such systems. Convergence of disparate technologies, which are compatible with CMOS processing, may allow extension of Moore's Law for a few more years. This paper provides a new approach towards the design and modeling of Memristor (Memory resistor) based Content Addressable Memory (MCAM) using a combination of memristor MOS devices to form the core of a memory/compare logic cell that forms the building block of the CAM architecture. The non-volatile characteristic and the nanoscale geometry together with compatibility of the memristor with CMOS processing technology increases the packing density, provides for new approaches towards power management through disabling CAM blocks without loss of stored data, reduces power dissipation, and has scope for speed improvement as the technology matures.Comment: 10 pages, 11 figure
    corecore