9 research outputs found

    Network-Coded Relaying in Multiuser Multicast D2D Network

    Get PDF
    D2D communication trades short-range communication for achieving high communication rate and short communication latency. Relay aided D2D communication can further tackle the problem of intermediate obstacles blocking the communication. In this work, multidevice multicast communication via a layer of parallel relay nodes is considered. Two relaying strategies, respectively, called the conventional relaying (CR) and network-coded relaying (NCR), are proposed. The throughput of these two schemes is analytically derived and evaluated through numerical study. Theoretically, NCR shows advantage over CR in twofold: one is higher throughput and the other is requiring less relay nodes and, hence, consuming less aggregate power. Numerical studies verify the analysis and show that the throughput performance gap between the two schemes increases significantly, actually exponentially with the number of devices

    Analysis and optimal configuration of distributed opportunistic scheduling techniques in wireless networks

    Get PDF
    The phenomenon of fading in wireless communications has traditionally been considered as a source of unreliability that needs to be mitigated. In contrast, Opportunistic Scheduling (OS) techniques exploit quick channel quality oscillations in fading links, during the assignment of transmission opportunities, to improve the performance of wireless networks. While centralized mechanisms rely on a central entity with global knowledge, Distributed Opportunistic Scheduling (DOS) techniques have recently been proposed to work in distributed networks, i.e., where either such a central entity is not available, or the communication overhead to feed timely information to this central entity is prohibitive. With DOS, each station contends for the channel with a certain access probability. If a contention is successful, the station measures the channel conditions and transmits if the channel quality is above a certain threshold. Otherwise, the station does not use the transmission opportunity, allowing all stations to recontend. Given the fact that different stations, in different time instances, experience different channel conditions, it is likely that the channel is used by a link with better conditions, improving overall performance. In this thesis we first propose ADOS, an adaptive mechanism that drives the system to an optimal allocation of resources in terms of proportional fairness. We show that this mechanism outperforms previous approaches, particularly in scenarios with non-saturated stations (that do not always have data to transmit). The distributed nature of DOS makes it particularly vulnerable to selfish users that seek to maximize their own performance at the expense of those that cooperate for the common welfare. We thus design a punishing mechanism, namely DOC, that (i) drives the system to the optimal point of operation when all stations follow the protocol, and (ii) removes any potential gain by deviating from it (and thus, the incentive to misbehave). Finally, we propose a novel allocation criterion, namely the EF criterion, to balance between the most energy-eficient configuration (where all resources are given to the most energy e cient devices) and the throughput-optimal allocation (where all devices evenly share the resources regardless of their power consumption). Due to the lack of models that accurately predict the power consumption behavior of wireless devices, we perform a thorough experimental study to devise a power consumption model that completes existing literature. Finally, we apply these findings to design an EF-optimal strategy in DOS networks. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------El fenómeno de "fading" o desvanecimiento en comunicaciones inalámbricas se ha considerado tradicionalmente como una fuente de problemas de fiabilidad que debe ser mitigada. En contraste, las técnicas de asignación de recursos oportunistas aprovechan las oscilaciones en la calidad de enlaces para mejorar el rendimiento global. Mientras que los mecanismos centralizados requieren una entidad central con información global, recientemente se han propuesto técnicas oportunistas distribuidas (DOS, por sus siglas en inglés) para operar en redes donde dicha entidad no está disponible, o donde el coste en la comunicación para proporcionarle información puntual es prohibitivo. Con DOS, cada estación contiende por el canal con una cierta probabilidad. Si la contienda resulta exitosa, la estación mide la calidad del canal y transmite si ésta supera un cierto umbral. De lo contrario, la estación no aprovecha esa oportunidad para transmitir, permitiendo a todas las estaciones contender de nuevo. Dado que estaciones diferentes, en distintas instancias de tiempo, experimentan diferentes condiciones de canal, es probable que un enlace con mejores condiciones use el canal, mejorando el rendimiento global. En esta tesis proponemos primero ADOS, un mecanismo adaptativo que lleva al sistema a un reparto óptimo de los recursos en términos de equidad proporcional. Mostramos que este mecanismo supera el rendimiento de trabajos previos, particularmente en escenarios con estaciones no saturados (que no siempre tienen datos que transmitir). La naturaleza distribuida de DOS lo hace particularmente vulnerable a usuarios egoístas que buscan maximizar su rendimiento a expensas de aquellos que cooperan por el bien común. Así, diseñamos un mecanismo, llamado DOC, que (i) optimiza el rendimiento si todos los nodos obedecen el protocolo, y (ii) elimina cualquier posible beneficio por desviarse del mismo (y así, el incentivo a no cooperar). Finalmente, proponemos un nuevo criterio de asignación de recursos, llamado EF, que supone un compromiso entre la configuración más eficiente energéticamente (donde todos los recursos se asignan a los nodos más eficientes) y una asignación donde todos comparten de forma equitativa los recursos sin tener en cuenta su consumo. Dada la falta de modelos para predecir de forma precisa el consumo de dispositivos inalámbricos, llevamos a cabo un estudio experimental que resulta en un modelo energético que completa a la literatura existente. Finalmente, aplicamos lo anterior para diseñar una estrategia que optimiza EF en redes basadas en DOS

    A New Media Access Control Protocol For VANET: Priority R-ALOHA (PR-ALOHA)

    Get PDF
    More practical applications of Media Access Control (MAC) protocols arise as the world turns increasingly wireless. Low delay, high throughput and reliable communication are essential requirements for standard performance in safety applications (e.g., lane changes warning, pre-crash warning and electronic brake lights). In particular, multi-priority protocols are important in Vehicular Ad Hoc Networks (VANETs), specifically in Inter-Vehicle Communication (IVC) where safety messages are given higher priority and transmitted faster than normal messages. The R-ALOHA protocol is considered one of the few promising protocols for VANETs because it is simple to implement and suitable for medium access control in Ad Hoc wireless networks. However, R-ALOHA lacks the property of prioritizing the different messages. In this dissertation, a new two-level priority MAC protocol called Priority R-ALOHA (PR-ALOHA) is presented to overcome the lack of priority problem in R-ALOHA. The two levels are low priority and high priority where priority is introduced by reserving specific time slots in the frame exclusively for high priority messages. This effectively increases the number of slots that a high priority message may compete for and thus decreases its delay. A two-dimensional Markov model coupled with Monte Carlo simulation is introduced to investigate the dynamic behavior of PR-ALOHA in steady and transient states. Modeling and simulation results of PR-ALOHA show that PR-ALOHA improves the performance of high priority traffic with limited effect on normal network traffic. Then, a dynamic slot allocation algorithm is introduced to PR-ALOH to optimize slot usage. Finally, a mobility model is introduced to emulate the behavior of the vehicles on the road where the performance of the PR-ALOHA with variable parameters, such as the length of the highway, the vehicle transmission range and the number of vehicles on the road have been investigated. Based on the findings of this dissertation, PR-ALOHA combined with dynamic slot allocation and mobility has a potential in applications like IVC where it can prevent car accidents through faster channel access and rapid transfer of warning messages to surrounding vehicles

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET

    Improving the Bandwidth Efficiency of Multiple Access Channels using Network Coding and Successive Decoding

    Get PDF
    In this thesis, different approaches for improving the bandwidth efficiency of Multiple Access Channels (MAC) have been proposed. Such improvements can be achieved with methods that use network coding, or with methods that implement successive decoding. Both of these two methods have been discussed here. Under the first method, two novel schemes for using network coding in cooperative networks have been proposed. In the first scheme, network coding generates some redundancy in addition to the redundancy that is generated by the channel code. These redundancies are used in an iterative decoding system at the destination. In the second scheme, the output of the channel encoder in each source node is shortened and transmitted. The relay, by use of the network code, sends a compressed version of the parts missing from the original transmission. This facilitates the decoding procedure at the destination. Simulation based optimizations have been developed. The results indicate that in the case of sources with non-identical power levels, both scenarios outperform the non-relay case. The second method, involves a scheme to increase the channel capacity of an existing channel. This increase is made possible by the introduction of a new Raptor coded interfering channel to an existing channel. Through successive decoding at the destination, the data of both main and interfering sources is decoded. We will demonstrate that when some power difference exists, there is a tradeoff between achieved rate and power efficiency. We will also find the optimum power allocation scenario for this tradeoff. Ultimately we propose a power adaptation scheme that allocates the optimal power to the interfering channel based on an estimation of the main channel's condition. Finally, we generalize our work to allow the possibility of decoding either the secondary source data or the main source data first. We will investigate the performance and delay for each decoding scheme. Since the channels are non-orthogonal, it is possible that for some power allocation scenarios, constellation points get erased. To address this problem we use constellation rotation. The constellation map of the secondary source is rotated to increase the average distance between the points in the constellation (resulting from the superposition of the main and interfering sources constellation.) We will also determine the optimum constellation rotation angle for the interfering source analytically and confirm it with simulations

    Protocolo adaptativo de disseminação de dados para aplicações de segurança no trânsito em rodovias

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2013.As VANETs (Vehicular Ad hoc Networks) são formadas por sistemas de comunicação entre veículos que fazem parte de um ambiente de trânsito e têm seus nós compostos por veículos e por equipamentos fixos que estão presentes ao longo das vias. Estas redes objetivam proporcionar conforto e segurança aos passageiros, por meio de informações sobre acidentes na pista, condição da estrada e aplicações de entretenimento. A disponibilidade e o tempo em que as mensagens trafegam nesta rede são essenciais para tais aplicações. Por isso, as VANETs requerem métodos eficientes e confiáveis para a comunicação de dados. Para prover confiabilidade à difusão de dados em redes veiculares deve-se transpassar alguns problemas como, por exemplo, broadcast storm, nós ocultos, alta colisões de pacotes, redundância de informação, entre outros. Muitos destes problemas persistem em estudos realizados anteriormente. Este trabalho tem por objetivo prover confiabilidade na disseminação de mensagens em aplicações voltadas a segurança no trânsito por meio de um protocolo adaptativo e eficiente. O protocolo proposto é adaptativo pois adapta o período entre transmissões de mensagens de controle de acordo com a densidade da rodovia, a fim de diminuir o número de mensagens geradas na rede. Também visa ser eficiente pois diminui a quantidade de colisões frente a quantidade de pacotes gerados na rede, oferece menor atraso no envio das mensagens e diminui a quantidade de retransmissões em cenários com mais de um alerta na rede. O trabalho envolveu (I) a definição do protocolo proposto, a integração e o uso deste pela aplicação, (II) a implementação de uma aplicação para rodovias com simuladores de redes e de tráfego bidirecionalmente acoplados, (III) avaliação da confiabilidade do protocolo proposto e dos impactos decorrentes do uso do protocolo na aplicação de disseminação de alertas por meio de simulações realizadas em diferentes cenários de densidade de veículos, e (IV) as análises dos resultados experimentais obtidos. Os resultados dos experimentos comprovam que o protocolo proposto, para os cenários simulados é 100 % confiável e que os impactos decorrentes do seu uso não prejudicam as funcionalidades da aplicação, comprovando a eficiência do protocolo.Abstract : The VANETs (Vehicular Ad hoc Networks) are formed by communication systems among vehicles which are part of the same traffic environment. Their nodes are composed of vehicles and fixed equipment present along the traffic ways. The aim of these networks is to provide comfort and safety to passengers through information about accidents on the road, road conditions and entertainment applications. The availability and the time span in which these messages move through the network are essential for these applications. Consequently, the VANETs require eficient and reliable methods for data communication. To ensure that data transmission in vehicular networks is reliable certain problems must be overcome, such as broadcast storm, hidden nodes, high collision of packages, information redundancy, among others. Many of these problems persist in previous studies. Thus, this work aims at providing, through an adaptive and eficient protocol, reliability to message transmission in applications targeted at traffic safety. The proposed protocol is adaptive as it adapts the time span between the transmissions of messages according to the road density, in order to decrease the number of messages generated in the network. It also aims at efficiency as it decreases the amount of collisions due to the number of packages generated in the network, presents less delay in message transmission and decreases the amount of retransmissions in scenarios with more than one alert in the network. This research involved (I) the definition of the proposed protocol, its integration and use by the application, (II) the implementation of an application for motorways with network and traffic simulators directionally attached, (III) evaluation of the reliability of the proposed protocol and of the impacts resulting from the use of the protocol in the application of spread of alerts through simulations carried out in diverse scenarios of vehicle density, (IV) the analyses of the experimental results. These results prove that the proposed protocol is 100 % reliable for simulated scenarios and that the impacts produced by its use do not harm the functionalities of the application, proving the eficiency of the protocol

    A NETwork COding based Multicasting (NETCOM) over IEEE 802.11 Multi-hop

    No full text

    From diversity to convergence : British computer networks and the Internet, 1970-1995

    Get PDF
    The Internet's success in the 21st century has encouraged analysts to investigate the origin of this network. Much of this literature adopts a teleological approach. Works often begin by discussing the invention of packet switching, describe the design and development of the ARPANET, and then examine how this network evolved into the Internet. Although the ARPANET was a seminal computer network, these accounts usually only briefly consider the many other diverse networks that existed. In addition, apart from momentary asides to alternative internetworking solutions, such as the Open Systems Interconnection (OSI) seven-layer reference model, this literature concentrates exclusively on the ARPANET, the Internet, and the World Wide Web. While focusing on these subjects is important and therefore justified, it can leave the reader with the impression that the world of networking started with the ARPANET and ended with the Internet. This thesis is an attempt to help correct this misconception. This thesis analyses the evolution of British computer networks and the Internet between the years 1970 and 1995. After an introduction in Chapter 1, the thesis analyses several networks. In Chapters 2 and 3, the focus is on academic networks, especially JANET and SuperJANET. Attention moves to videotex networks in Chapter 4, specifically Prestel, and in Chapter 5, the dissertation examines electronic mail networks such as Telecom Gold and Cable & Wireless Easylink. Chapter 6 considers online services, including CompuServe, American Online, and the Microsoft Network, and the thesis ends with a conclusion in Chapter 7. All of the networks discussed used protocols that were incompatible with each other which limited the utility of the networks for their users. Although it was possible that OSI or another solution could have solved this problem, the Internet's protocols achieved this objective. This thesis shows how the networks converged around TCP/IP

    From diversity to convergence : British computer networks and the Internet, 1970-1995

    Get PDF
    The Internet's success in the 21st century has encouraged analysts to investigate the origin of this network. Much of this literature adopts a teleological approach. Works often begin by discussing the invention of packet switching, describe the design and development of the ARPANET, and then examine how this network evolved into the Internet. Although the ARPANET was a seminal computer network, these accounts usually only briefly consider the many other diverse networks that existed. In addition, apart from momentary asides to alternative internetworking solutions, such as the Open Systems Interconnection (OSI) seven-layer reference model, this literature concentrates exclusively on the ARPANET, the Internet, and the World Wide Web. While focusing on these subjects is important and therefore justified, it can leave the reader with the impression that the world of networking started with the ARPANET and ended with the Internet. This thesis is an attempt to help correct this misconception. This thesis analyses the evolution of British computer networks and the Internet between the years 1970 and 1995. After an introduction in Chapter 1, the thesis analyses several networks. In Chapters 2 and 3, the focus is on academic networks, especially JANET and SuperJANET. Attention moves to videotex networks in Chapter 4, specifically Prestel, and in Chapter 5, the dissertation examines electronic mail networks such as Telecom Gold and Cable & Wireless Easylink. Chapter 6 considers online services, including CompuServe, American Online, and the Microsoft Network, and the thesis ends with a conclusion in Chapter 7. All of the networks discussed used protocols that were incompatible with each other which limited the utility of the networks for their users. Although it was possible that OSI or another solution could have solved this problem, the Internet's protocols achieved this objective. This thesis shows how the networks converged around TCP/IP.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore