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Improving the Bandwidth Efficiency of Multiple Access Channels Using
Network Coding and Successive Decoding

Mohammad Jabbari Hagh, Ph.D.
Concordia University, 2013

In this thesis, different approaches for improving the bandwidth efficiency of Multi-
ple Access Channels (MAC) have been proposed. Such improvements can be achieved
with methods that use network coding, or with methods that implement successive
decoding. Both of these two methods have been discussed here.

Under the first method, two novel schemes for using network coding in cooperative
networks have been proposed. In the first scheme, network coding generates some
redundancy in addition to the redundancy that is generated by the channel code.
These redundancies are used in an iterative decoding system at the destination. In
the second scheme, the output of the channel encoder in each source node is shortened
and transmitted. The relay, by use of the network code, sends a compressed version
of the parts missing from the original transmission. This facilitates the decoding
procedure at the destination. Simulation based optimizations have been developed.
The results indicate that in the case of sources with non-identical power levels, both
scenarios outperform the non-relay case.

The second method, involves a scheme to increase the channel capacity of an
existing channel. This increase is made possible by the introduction of a new Raptor
coded interfering channel to an existing channel. Through successive decoding at the
destination, the data of both main and interfering sources is decoded.

We will demonstrate that when some power difference exists, there is a tradeoff
between achieved rate and power efficiency. We will also find the optimum power
allocation scenario for this tradeoff. Ultimately we propose a power adaptation scheme
that allocates the optimal power to the interfering channel based on an estimation of
the main channel’s condition.

Finally, we generalize our work to allow the possibility of decoding either the
secondary source data or the main source data first. We will investigate the perfor-
mance and delay for each decoding scheme. Since the channels are non-orthogonal, it
is possible that for some power allocation scenarios, constellation points get erased.
To address this problem we use constellation rotation. The constellation map of the
secondary source is rotated to increase the average distance between the points in the
constellation (resulting from the superposition of the main and interfering sources
constellation.) We will also determine the optimum constellation rotation angle for
the interfering source analytically and confirm it with simulations.
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Chapter 1

Introduction

1.1 Problem Statement

One of the main challenges in the telecommunications industry is achieving high rates

with high bandwidth efficiency. In most cases, a bandwidth efficiency increase will

result in more complex decoding methods. However, based on the most widely used

methods, required bandwidth may or may not be increased. In recent years, numerous

methods have been proposed in literature using increased or fixed bandwidth. One

popular method that requires a bandwidth increase is the use of relays. If a relay

uses an orthogonal channel, both bandwidth and decoding complexity will increase.

Relays help sources and destinations to exchange information more reliably, and

make transmissions more cost-efficient. During recent years, from a processing point

of view, relays were mostly passive. In other words, the relays simply repeated what

they received from the sources. In the best case, they decoded data and re-encoded

it before sending it on to the next relay or destination node.

Recently, a high-layer coding method called ”network coding” has been intro-

duced. The main idea behind network coding is to actively participate in routing

data from the sources to the destinations. With network coding, relays can add data

that they have gathered from different sources and send data combinations to the

next layer of the network. It has been shown that network coding can achieve ca-
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pacities that were not achievable with traditional routing methods. Network coding

has moved network data distribution systems one step ahead and makes use of their

potential capacity.

Yet network coding can also send extra redundancy to the destination node. This

redundancy or extra parity will help the destination nodes to decode data more

efficiently. Even in cooperative scenarios where source nodes act as relay nodes for

their partners, network coding can be used to combine local and external data and

transmit them as one package.

As mentioned above, another method for increasing bandwidth efficiency is to

increase the rate of a fixed bandwidth, although some performance may be lost. One

way of improving performance can be finding methods to exploit an existing channel

between the sources and the destination via other interfering sources. In this method,

the new interfering source should use the bandwidth available to the original source,

and should transmit data so that the data streams from both the original and the

new source can be decoded successfully at the destination. Since we are adding a new

interfering source to the existing link, it would be practical to put a new condition

on the system: that the original transmitter should remain intact and ignorant of the

new source. This means that the original transmitter should not change anything in

its encoding and transmission stages. This new condition will allow the scheme to

apply to any existing multicast network without updating its numerous source nodes.

In this thesis, we will examine both of the above methods. We will use relays and

network coding to improve the decoding performance of a two-source, one-destination

network. This method increases the bandwidth requirement of the system. Later,

we will use another method based on successive decoding for another two-source and

one-destination network. We will introduce an interfering source to an existing link

between a main source and a destination, and transmit data to the destination so

that the data stream from each source can be decoded successfully. This will increase

2



our rate, yet the bandwidth requirement of the system will not increase.

1.2 Literature Review

1.2.1 Joint Decoding

The joint decoding of network codes with channel or source codes has been extensively

discussed in literature. The framework of joint decoding using network codes was

investigated in [1]. The authors demonstrate source-channel-network separation while

codes are linear and examine the joint design of source-channel-network codes.

Later, several papers exploited this possibility and presented remarkable codes and

strategies. In [2], iterative decoding for channel and network codes was introduced.

In a two-way channel network each user iteratively decodes gathered data from the

other sources and the relay. Turbo code is suggested as the channel code. Together,

the channel codes of each user and the network code form a distributed network code

which can be iteratively decoded. Lower bounds were derived as well. In another

iterative decoding scheme, Hausl et al. [3] used Low Density Parity Check (LDPC)

codes for the iterative decoding of network-coded data from two sources and one relay

at the destination.

The network coding part is adapted to tanner graphs and one Belief Propagation

(BP) decoder can iteratively decode two codewords simultaneously.

Sarshar et al. [4] take up the problem of broadcasting data from one source to

multiple destinations. They propose a joint network-source coding scheme which

is based on description codes and through this method they increase transmission

diversity. They find optimum routings to send different descriptions of the code,

which will finally be combined at each destination to get the full code.

In [5], Kliewer and Ho suggested use of Nested codes as a means of joining net-

work codes and channel codes. Nested codes are designed for multi-source, multi-
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destination networks with one relay. Here, the relay multiplies data received from

each source by a unique generator polynomial, combines the data, and broadcasts

it. It has been shown that this method will result in fewer relay transmissions, if

feedback is allowed. Otherwise, it assures higher reliability.

In [6] a network coding interpretation of network topologies was suggested. Here,

Bao et al. considered a cooperative network in which each node at its second phase

works as a relay for others nodes and sends a network code composed of received

codewords. Inspired by BP decoding, they used a tanner graph decoding method to

verify network codes. The work in [6] was based on lower-triangular LDPC codes, and

this research was extended to LDPC codes in [7]. The outage probability involved in

this method was discussed in detail in [8]. Later, in [9], joint channel-network coding

was introduced. The authors used LDPC codes as channel codes, and by extending

the parity check code of the channel code, they managed to jointly decode channel and

network codes with low complexity. They employ network codes as a generalization

of channel codes.

1.2.2 Estimation-Based Network Coding

Physical layer network coding (PNC) has been discussed in [10], [11] and [12]. In

these papers, Zang et al. argued that in wireless networks, while the relay receives

a combination of data from the sources, it does not need to extract data from each

source and again combine the network codes for relaying. They proposed the Channel-

decoding- Network-Coding process and focused on extracting network codes from

received signals without any decoding. In [13] they discussed the effect of finite field

and infinite field network coding on their proposed scheme.

Joint Network Coding and Superposition Coding (JNSC) is a scheme based on an

information exchange loop. It was proposed in [14]. For a four-node network with

one relay, this joint coding scheme uses iterative decoders for decoding data received

4



from information exchange loops. Several topologies for these loops were suggested,

and it was shown that in some cases JNSC outperforms pure time division and pure

network coding schemes.

In [15] a new decoding and encoding scheme for relays was proposed. On two-way

channels where channels from the sources to the relay are noisy and the cost criterion

is source distortion, the normal Maximum a posteriori (MAP) decoding and network

coding is suboptimal. A new method of joint decoding/estimation and network coding

has been introduced where decoding is based on the Minimum Mean Square Error

(MMSE) estimate.

An algebraic superposition-based relaying system was proposed in [16]. In this

cooperative scenario, nodes also work as relays and each node sends an algebraic

superposition of its locally generated data, as well as the relayed data of its neighbor

node. Considering the fact that the relayed data from its neighbor is in fact its

own local data each node can exploit the data of its neighbor and use it in its next

codeword, which will be generated by the network coding (algebraic superposition)

of the local data and decoded data.

The correlation between the sources in frequency-selective fast fading channels was

studied by Ser et al [17]. They introduced an iterative, distributed source-channel

network decoding method that benefits from correlation and from the frequency se-

lectivity of the channel. Another iterative joint channel-network coding was discussed

in [18] In this scheme turbo codes serve as channel codes, and the relay derives the

Log-Likelihood Ratio (LLR) of the network code from its inputs without decoding.

At the destination this LLR will be used as a priori data for the iterative turbo

decoder.
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1.2.3 Network Coding over Relay Strategies and Parity Gen-

eration

The performance of network coding over different strategies such as Decode and For-

ward (DF) and Amplify and Forward (AF) is discussed extensively in the literature.

An alternative method to DF relays was suggested in [19]. As a result of the use

of two-way channels, Bi-directional Amplification of Throughput (BAT-relaying) was

introduced.

BAT-relaying combines the data gathered from the sources; the network codes

this data and broadcasts it. DF BAT-relaying was previously presented in literature

however; AF BAT-relaying was not. It is based on inherent pocket combining, which

is facilitated by the simultaneous employment of multiple access channels. Both

schemes were examined and it was shown that, in noiseless channels, BAT-relaying

with AF is superior to DF.

In [20] the outage probability and coverage area of networks with noisy source relay

channels are discussed. The authors make a comparison between no-coding and net-

work coding scenarios. This comparison shows that when the quality of a source-relay

channel is high, the no-coding case outperforms network coding. However, in noisy

channels, network coding is more reliable. Laneman [21] compared network-coded

AF and repetition DF in networks with different geometries. Outage probability was

used as a basis for comparison, and it was concluded that in many cases, especially

when the relay is close to the source nodes, AF outperforms repetition DF.

Pepovsky and Yomo [22] investigated all known schemes for use of network cod-

ing in wireless communications and derived achievable rates for these schemes. For

DF, AF, and Joint Decode-and-Forward (JDF), achievable rates were found. For

Denoiseand- Forward (DNF), an upper bound for the achievable rate was determined.

It has been shown that the achievable rate for JDF achieves upper bound of DNF

in some instances. In [23] authors presented two network coding based scenarios for
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relay cooperation, one based on iterative decoding and another one with two phase

collaborative decoding.

Parity generation in relays is one of the methods which have also been studied

in detail. Kim [24] devised a concatenated random parity forwarding technique for

multi-hop wireless networks. These networks use multiple relays to transmit data from

multiple sources to their destination. In this arrangement each relay adds additional

parity to its collected data and sends it to the next relay. This additional parity is

generated through network coding. Each relay combines its collected codewords to

get this new codeword as an additional parity. While this method obviously decreases

the rate as the relays get closer to destination, it can also use a lower energy level for

transmitting data for the same reason.

Coded cooperation based on space-time transmission, and turbo coding was first

discussed in [25]. The authors proposed two schemes, the first of which uses space-

time transmission.

Here each of two nodes at the first phase sends its own data only. In the second

phase each node along its own parity, sends parity bits of its partner with space time

coding. Hence a gain in diversity is achieved. In the first phase of turbo coding

cooperation each node sends the symmetric data along the output of the first parity

encoder while ignoring the output of the second decoder. At the second phase each

node tries to decode the data of its partner, and then re-encode it to send the output

of the second parity encoder of its partner.

Progressive network coding is a scheme proposed by Bao and Li [26] in order

to conserve bandwidth. In this scheme, which involves a chain of nodes and unlike

repetition and forward scheme, each intermediate node re-encodes the data after de-

coding it and transmits a subcodeword. The destination receives all these codewords

and uses an iterative decoder, as if it is dealing with a giant parallel concatenated

(network) code.
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1.2.4 Protocols and Soft Output Relays

In more practical works several protocols were suggested. Kuek et al. [27] studied four

node networks with two-way channels and, instead of just combining data in nodes,

used pre-cancellation and eliminate prior messages. Ultimately, they suggested a

protocol for networks with even number of nodes.

Opportunistic methods were discussed in [28]. In an Opportunistic Network Coded

Cooperation (ONCC) scheme, the relay decides whether it should help one source or

two sources with the help of network coding. It has been demonstrated that this

method achieves an optimal diversity-multiplexing tradeoff. The authors then extend

their work in [29] to a protocol called Selective Network-Coded Cooperation (SNCC).

In SNCC a relay node implements network coding based on reliable information

(i.e. if the source-relay channel is of high quality they use its data in their network

code). It has been shown that implementing this protocol in the networks with

several sources, destinations, and relays avoids error propagation and achieves better

diversity-multiplexing than other protocols in literature. In an independent Yomo and

Popovsky [30] take up the same problem, discuss scheduling strategies, and analyze

the average capacity of such a network.

In [31] three different protocols for scheduling data transition in a two -way chan-

nel are discussed, and their bounds and achievable rates have been derived for them.

In the first protocol both sources transmit simultaneously and relay broadcasts at the

second phase. In the second protocol each source has its own time slot for broad-

casting, and the third protocol is a hybrid of the two previous protocols. Here, some

time slots for both sources transmit and in some just one of them transmits. It has

been shown that in some situations the hybrid case achieves higher rates than the

first two protocols. Later Koike et al. [32] proposed adaptive coding for the hybrid

protocol based on channel state information (CSI) that resulted from adapting coding

and signal constellation. Later they extended their work to frequency-selective fast
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fading channels [33].

In [34], in order to overcome the half-duplex nature of relay transitions, Bi-

directional Successive Relaying based on Physical Network Coding (PNC-BSR) was

proposed. The main idea here involves using two relays such a way that, while one of

them receives data, the other one transmits. Each relay combines the data received

in the previous phase from its partner relay and two sources and sends this gathered

data. Through this method, the destination receives three network-coded copies of

each codeword. It has been shown that this method improves the throughput. Lv

and Yu [35] extended PNC-BSR to the Successive Relaying Scheme (SRS) with mul-

tiple relays and multiple sources and destinations. Relay nodes are paired to change

half-duplex connections to full-duplex ones. As a result, SRS can improve spectral

efficiency.

In [36] the effect of network coding on different scenarios of multicast in a IEEE

802.11 multi-hop wireless network was investigated. More generally, Jin et al. [37]

compared network coding and non-network coding scenarios on multi-hop networks

on networks with or without fading in different topologies. Sagduyu and Ephremides

[38] and [39] investigated the joint implementation of network coding and MAC in

wireless ad hoc networks. Hamra and Turletti [40] addressed the use of network

coding on mesh networks. It was shown that in applications such as file sharing over

wireless mesh networks some improvements are achieved. However, in some cases,

traditional repetition schemes perform better. Katti et al. [41] also used network

coding in intermediate nodes of mesh networks and introduced a new architecture

named COPE, which improves overall network throughput.

In their investigation of networks with changing topologies, Fragouli et al. [42]

proved that network coding will logarithmically aid energy consumption. They sup-

port their theory with several investigations of ad hoc networks and cellular networks.

In [43] an algorithm based on the Ford-Fulkerson algorithm is proposed in order to
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achieve maximum flow in these networks.

As for soft output relays, in [44] a soft value-based decoding named ”continuous

network coding” is proposed. In this procedure, instead of 0-1 bits, an a posteriori

probability is taken into consideration, and through this change the chance of error

propagation is reduced. The data is not decoded completely at the relay and soft

information is relayed, which results in better performance compared to hard decision

relays.

Soft output relay was discussed by Yang et al. in [45]. Under this arrangement,

the relay gets data from two sources, soft decodes them, and calculates the LLR of the

network code based on the LLR derived from each decoder. Then, through an analog

channel, the LLRs are transmitted to the destination. Here, an iterative decoder gets

data from both sources, decodes them, and after each iteration compares them with

the LLRs received from the relay. This method is called joint channel-network coding.

In order to overcome diversity inefficiency in network coding, Wang et al. [46]

developed complex field network coding. Through the implementation of this method,

a network with more than two sources can achieve full diversity regardless of its Signal

to Noise Ratio (SNR).

Multiple Input Multiple Output (MIMO) techniques and network coding were

both used by Fasolo et al. [47]. These techniques transmit network-coded data derived

from buffers and send it over MIMO channels. At the destination a joint MIMO-

network code decoder is used. The idea is to lower network coding to the physical

layer introduced by [10]. The decoder is MIMO H matrix with matrix interpretation

of network coding.

Fountain codes were used in work of Wicaksana et al. [48]. In their scheme relay

just uses Cyclic Redundancy Check (CRC) to check the incoming data and XORs

CRC passed codewords with previously saved correct codewords. Just one fountain

decoder is needed at the destination. Tight upper bounds have also been . Chen et
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al. [49] investigated the effect of network coding on Distributed Antenna Systems

(DAS). It is shown that this method results in better diversity with lower cost and

more spectral efficiency.

1.2.5 Cooperation in Multiple Access Channels

In recent years, the use of rateless codes has been proposed for orthogonal and non-

orthogonal MAC. Kurniawan et al. [50] presented a network coding-based approach

for cooperation through relay with rateless codes. In their scheme, each codeword con-

tains partial data from its following codeword, and through this method they reduced

the complexity of their method compared to other rateless cooperative methods. Vel-

lambi [51] used rateless codes for multihop wireless networks. In this scheme, each

node sends a fraction of the codewords required for successful decoding to the desti-

nation node. Through this method, energy consumption is reduced without any loss

of reliability.

In [52] iterative decoding was used for a MAC cooperative scheme to decode

transmitted messages. Yang and Madsen [53] used rateless codes in low power regime

cooperation on MAC to achieve near-optimal performances. This work was extended

by Uppal et al. in [54] with multiplexed rateless coding. It has been determined that

the performance of their proposed scheme in full duplex and half duplex modes are

very close. Later, in [55], the authors presented a rateless protocol for the half duplex

case using feedback from the destination and a combination of DF and Compress and

Forward (CF) schemes.

Bursalioglu et al. [56] investigated lossy multicast over binary symmetric broad-

cast channels. They used optimization for concatenated refinement source coding

with channel coding. Due to the fact that their scheme required a vast range of rates,

Raptor code was chosen as the channel code.

For the channels with side information, where the destination node contains some
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information from the source data before the transmission, Sejdinovic et al. [57] used

Raptor codes to address the problem. Gong et al. [58] introduced two physical layer

approaches - one based on superposition coding, and the other based on Raptor code -

for joint decoding of a relay-aided transmission. They optimized both cases based on

the EXtrinsic Information Transfer (EXIT) function analysis. For the same classic

relay case, Ravanshid et al. [59] proposed a mixed combining scheme for signal

combination in the relays using rateless codes. This mixed combining scheme is a

combination of the energy combining and information combining methods previously

proposed in the literature.

Hagh et al. [60] and [61] studied the addition of an interfering source with a

non-orthogonal channel with Raptor code. They also presented a power adaptation

method in [62] in order to find the optimal power level for the interfering channel.

Gong et al. [63] proposed layered coding for multiple-source interfering channels.

They used a group decoder with successive decoding and optimized the rate allocation

for different layers of code using Raptor code.

1.2.6 Forward Error Coding on DVB

The Forward Error Coding (FEC) for Digital Video Broadcasting (DVB) standards

is still studied extensively. Papaharalabos et al. [64] studied and compared the 3rd

Generation Partnership Project 2 (3GPP2) turbo code with other optimized turbo

codes, LDPC codes, and Rate Compatible Irregular Repeat-Accumulate (RC-IRA).

They concluded that the Consultative Committee for Space Data Systems (CCSDS)

turbo codes perform better than the 3GPP2 turbo code. As for LDPC FEC codes,

in [65] the tradeoff between complexity and performance for sub-optimal decoding

process was investigated.

Recently, Raptor codes have been introduced in DVB FEC (mostly in the applica-

tion layer) due to their near-optimal performance. Mladenov et al. [66] proposed an
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incremental enhanced Gaussian elimination (IEGE) decoding algorithm for Raptor

codes, which was used at IP Datacast over DVB services.

Luby et al. [67] proposed an exact physical channel model for the use of Raptor

codes in a universal mobile telecommunications system (UMTS), and investigated

the rate and other settings for the Raptor code and Turbo codes present in the DVB

standard.

1.3 Thesis Outline

So far, we have reviewed the literature on relay cooperation with network coding,

cooperative MAC and MARC networks, and FEC on DVB systems. The rest of this

thesis is organized as follows:

In Chapter 2, we review the background information on network coding, MARC,

Raptor codes, and DVB standards.

In Chapter 3, we discuss the use of network coding in MARC networks. In MARC

networks one or more relays aid data flow from source nodes to destination nodes.

Network coding is a new method in network layering that provides the possibility of

making combinations in the relay node. Hence, the relay nodes are able to influence

data flow in a network.

Under this method two schemes are proposed for the employment of network

coding in MARC networks. In the first scheme, in addition to the redundancy that

is generated by the channel code, additional redundancy is generated by the network

coding. These redundancies will be used in an iterative decoding system to decode

the original messages broadcasted by the source nodes. In the second scheme, the

output of the channel encoder in each source node is shortened and transmitted. The

relay uses the network coding to send a compressed version of the missing parts of the

original transmission, which facilitates the decoding procedure for the destination.
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In Chapter 4, we propose a scheme for increasing the channel capacity of an

existing channel. This increase is made possible by the introduction of a new interfer-

ing channel to an existing DVB channel. The interfering channel uses Raptor code.

Through successive decoding at the destination, the data of the main and interfering

sources is decoded. We examine the case of sources with equal power transmission

levels. However, as in all MAC detection methods, there should be a power difference

between the two sources in order to achieve higher rates.

We will then demonstrate that when the power difference exists, there is a trade-

off between the achieved rate and the power efficiency, and we will find the optimum

power allocation scenario for this tradeoff. We have proposed a power adaptation

scheme that allocates the optimal power to the interfering channel based on an es-

timate of the main channel’s condition. This estimate is obtained from the amount

of overhead required by the destination for the successful decoding of the message.

Therefore, the interfering source is able to adapt itself to the system without having

any access to the CSI of the main channel.

In Chapter 5, we expand upon our work to raise possibility of decoding either the

secondary source data or the main source data first. We will investigate the perfor-

mance and delay for each decoding scheme. Since the channels are non-orthogonal, it

is possible that, for some power allocation scenarios, constellation points get erased.

To address this problem, we use constellation rotation.

The constellation map of the secondary source is rotated to increase the average

distance between the points in the constellation resulting from superposition of the

main and interfering sources’ constellations. We analytically determine the optimum

constellation rotation angle for the interfering source and confirm it with simulations.

Finally, in Chapter 6, we conclude our work and offer suggestions for future re-

search.
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Chapter 2

Background

2.1 Introduction

In this chapter, we will review some background concepts which will be used in later

chapters. First, we will have a look at network coding and MARC networks (Their

joint use is discussed in Chapter 3.) Later, we will explain Raptor code basics and

the DVB standards that are the foundation of the proposed schemes in Chapters 4

and 5.

2.2 Network Coding

Consider an acyclic directed graph with a set of nodes that includes the source nodes,

the intermediate nodes, and the sink nodes; and a set of edges, which are directed,

error-free, and can transmit one symbol in each transmission. The task is to multi-cast

common information from the source nodes to the sink nodes through the intermediate

nodes. This means that the source nodes multicast symbols and the intermediate

nodes transmit them to the sink nodes by simply forwarding them or in some cases

by creating a new code from their inputs, alternatively referred to as network coding.

The transmitting symbols are the elements of a finite element field F which is
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Figure 2.1: Networks with multicasts from s to y and z

selected with respect to the number of network sinks [68]. The network capacity is

given by the Max-Flow Min-Cut Theorem [69] and indicates the maximum number

of simultaneously transmittable symbols from the source nodes to the sink nodes.

We can explain the use of network coding with a simple example. Consider the

network in Fig. 2.1(a), source s can multicast symbols a and b to sinks y and z easily.

Node w forwards symbol a to sink z and symbol b to y. But in Fig. 2.1(b) it is

impossible to multicast the symbols a and b to the sink nodes without using network

coding. To solve this problem using coding it is sufficient to exclusive-OR (XOR) a

and b in the node w and transmit it to the sinks through node x. In each of the sinks

we have a or b and a⊕ b, so both symbols are decodable.

2.2.1 Max-Flow Min-Cut Theorem

Ahlswede et al. [69] showed that the network capacity given by the Max-Flow Min-

Cut theorem is achievable with network coding. Consider G(V,E) to be a directed

graph with node set V and edge set E. The network has a source node s and L sink
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nodes t1, t2, ...tL. The capacity and flow of each edge between nodes i and j, (i, j) ∈ E

is shown by Cij and Fij while 0 ≤ Fij ≤ Cij . A subgraph Gl from s to tl (l = 1, ..., L)

is defined as Gl(V,El) where:

El = {(i, j) ∈ E : (i, j) is on a directed path from s to tl} (2.1)

A flow F is defined as F = {Fij : (i, j) ∈ El} and starts from s and ends in tl in G

such that for i ∈ V\{s, tl}:

∑
k:(k,i)∈E

Fki =
∑

j:(i,j)∈E
Fij (2.2)

In other words, the incoming and outgoing flow should be equal for all nodes,

except for the source and sink nodes.

The value of each flow is determined as follows:

|F| =
∑

j:(s,j)∈E
Fsj −

∑
i:(i,s)∈E

Fis =
∑

i:(i,tl)∈E
Fitl −

∑
j:(tl,j)∈E

Ftlj (2.3)

Flow F is max-flow if F is a flow from s to tl and its value is larger than any other

flow from s to tl. In one-source, multiple-sink graphs, the value of this max-flow F is

the capacity of the graph.

A cut divides the node set V to two sets S and T in a way that s ∈ S and tl ∈ T

for l = 1, 2, ..., L. The number of all possible cuts in graph G is equal to 2|V|−2. The

capacity of a cut CST is defined as:

CST =
∑

i∈S,j∈T,(i,j)∈E
Cij (2.4)

A min-cut is a cut in the graph that among all other possible cuts, it has the

lowest capacity. For example, in Fig. 2.2, a possible cut can be S = {s, a, b, d} and
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T = {c, t}. The capacity of this cut is 6. However, for another cut S = {s, a, b} and

T = {c, d, t} the capacity will be 5, and this is the minimum capacity of all other cuts

too. Hence, the min-cut capacity is 5.

The Max-Flow Min-Cut theorem states that the max-flow is equal to the capacity

of the min-cut. Hence, the max-flow of the graph in Fig. 2.2 will be also 5, which

can be seen from the combination of outgoing flows from s or incoming flows to t.

2.2.2 Linear Coding

Li et al. [70] demonstrated that linear network coding can be used to multicast

symbols at a rate equal to the network capacity. Koetter and Medard [71] introduced

an algebraic framework for linear network coding and presented a polynomial time

algorithm to verify a constructed network code. Ho et al. [68] used this framework

to show that linear network codes can be efficiently constructed by employing a

randomized algorithm.

Assume the general case of a K source graph, where Xsi is the source process

for source si (i = 1, 2, .., K) and Yj is the output random process of node j. The

intermediate node output is a linear combination of the inputs to the node j from
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source processes and the output random processes of other nodes:

Yj =
∑

i:(i,j)∈E
aijXsi +

∑
k:(k,j)∈E

fkjYk (2.5)

and the output process at destination node ti regarding source sj is as follows:

Ztij =
∑

k:(k,ti)∈E
bijkYk (2.6)

where {aij, fij, bijk ∈ F2u} are sequences of length-u bit vectors. These coefficients

can be shown with matrices A = (aij), F = (fij) and Bti = (bijk) respectively.

These three matrices, altogether represent the linear code {A,F,Bt1 , ..., BtL} and its

transition matrix M(A,F,Bt1 , ..., BtL), for each sink node tl converts the input matrix

[Xs1 ,Xs2 , ...,XsK ] to output matrix [Ztl1,Ztl2, ...,ZtlK ]:

[Xs1 ,Xs2 , ...,XsK ]M(A,F,Btl) = [Ztl1,Ztl2, ...,ZtlK ] (2.7)

For each sink node tl, the transition matrix M can be also defined as M = AGBT
tl

where:

G = (1− F )−1 = 1 + F + F 2 + ... (2.8)

In [71] it was shown that in order to have a feasible solution to the above mutlicast

problem, in which all sink nodes receive the information transmitted by the source

nodes, the transition matrix M should be non-singular. In [68] it was proved that

the determinant of the above matrix is equal to the determinant of its corresponding

Edmonds matrix:

|M| = (−1)K(|E|+1) |Me| (2.9)
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where Me is the Edmonds matrix:

Me =

⎡
⎢⎣ A 0

1− F BT
tl

⎤
⎥⎦ (2.10)

2.2.3 Complexity and Optimizations

Jaggi et al. [72] proposed a centralized polynomial time algorithm for constructing

network codes based on deterministic algorithms and a random search. Fragouli et

al. [73] derived code design algorithms for networks based on the graph coloring

techniques.

Lehman and Lehman [74] presented bounds on coding field size and classified net-

works due to their source/sink sets. They also proved that for non-multicast networks,

finding the network capacity and even determining if it is solvable with linear net-

work coding is a NP-hard problem. Medard et al. [75] proposed a time-variant coding

called vector linear coding to construct code for non-multicast networks. Dougherty

et al. [76] showed, that vector linear network coding may not achieve network ca-

pacity in non-multicast networks. Ratnakar et al. [77] suggested code construction

methods for multiple unicast networks based on state-space realizations and linear

programming. Ho et al. [78] developed the latter approach for wired and wireless

networks.

Using encoding nodes instead of router nodes results in the more efficient use of

network resources. Regarding the problem of encoding node reduction, Fragouli et al.

[73] showed that d−1 coding nodes are enough for networks with two unit rate sources

and d sinks. Langberg et al. [79] derived lower and upper bounds for a number of

coding nodes. Kim et al. [80] showed that both the approaches in [73] and in [79]

are suboptimal in some networks and presented a Genetic Algorithm based method

to minimize the number of coding nodes. Lun et al. [81] proposed a decentralized
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optimization based method for achieving minimum multicast cost. Bhattad et al.

[82] used a linear programming approach to minimize the number of encoding nodes,

but the complexity of their method is exponential.

2.3 Multiple Access Relay Channel Networks

The Multiple Access Relay Channel is a model for networks in which a finite number

of sources multicast information to a destination node through relay nodes. These

networks are widely used in sensor networks and ad hoc networks. The classic single-

source relay network was introduced by Cover and El Gamal [83]. They developed

two coding scenarios, which were later named DF and CF. [84] presented an upper

bound for MARC achievable rates using cut-sets. Later Kramer et al. [85] studied

the possible multicast strategies for general relay networks in detail and obtained

achievable rates for Gaussian cases. Sankaranarayanan et al. [86] discussed both

coding strategies in MARC networks and simulated them in Wireless examples.

2.3.1 Relay Strategies

The relay node can choose different strategies, some of which regenerate data and

some of which deal with the amplification of signals.

Decode and Forward In DF the relay receives the signal from the source (or

sources), tries to decode the signal and receive the original message. If this process is

successful, the relay re-encodes the message to get the original codeword and transmit

it. This method ensures that if the relay is sending any data, it is reliable and error-

free.

Compress and Forward CF is like the DF scenario, but in this case, after correctly

decoding and re-encoding the codeword, a compressed or quantized version of the
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codeword will be transmitted. This method consumes less bandwidth and usually is

used when the role of the relay is not of vital importance.

Amplify and Forward AF is the traditional strategy has been implemented for

relays. There is no need to decode and re-encode in AF. The received signal is just

amplified and forwarded to the next relay or destination node.

2.3.2 Capacity and Achievable Rates

The W -source discrete memoryless MARC consists of W messages wi, W+1 chan-

nel inputs Xi and two channel outputs YW+1 and YW+2. The source output Xi

(i=1,2,..,W) is a function of the message Wi at the ith source while XW+1, the output

of relay to the channel, is a causal function of its received symbols, YW+1. Finally,

the W +1 channel outputs at the destination are called YW+2 and are used to jointly

decode the messages from all W sources. Fig. 2.3 shows this model for a two-source

MARC.

Sankaranarayanan et al. [87] tightened the upper bound proposed in [84] and
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found the following upper bound for the MARC achievable rates:

∑
i∈G

Ri ≤ min {I(XG;Y |XGc , XW+1, U), I(XG, XW+1;YW+2|XGc , U)} (2.11)

for all G ⊆ S where the union is over all input distributions

p(u).
(∏W

i=1
p(xi|u)

)
p(xW+1|u, x1, x2, .., xW )

where S = {1, 2, . . . ,W} , Gc is complement of G in S, XG = {Xi : i ∈ G}, X Δ
=

(X1, X2, ..., XW ), Y
Δ
= (YW+1, YW+2), U has an alphabet U of size |U| ≤ 2W+1 − 2.

In the case of DF, the achievable rate (using a combination of regular Markov

encoding at the sources and the relay, as well as backward decoding) has been shown

in [85]. In this case we have the following achievable rate:

∑
i∈G

Ri ≤ min{I(XG;YW+1|XGc , VS, XW+1), I(XG, XW+1;YW+2|XGc , VGc)} (2.12)

for an input distribution:
(∏W

i=1 p(vi)p(xi|vi)
)
p(xW+1|v1, v2, ., vW ) where Vi is an

auxiliary random variable to help cooperation between the source and the relay and

V
Δ
= (V1, ..., VW ).

For CF strategy the achievable rate can be written as [87]:

∑
i∈G

Ri ≤ I(XG; ŶW+1, YW+2|XGc , XW+1) (2.13)

Subject to constraint:

I(XW+1;YW+2) ≥ I(ŶW+1;YW+2|XW+1, YW+2) (2.14)

for the joint distribution
(∏W+1

i=1 p(xi)
)
p(ŷW+1|yW+1, xW+1)p(yW+1, yW+2|xW+2) where
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Block 1 Block 2 Block 3 Block 4

u1(1) u1(w11) u1(w12) u1(w13)
x1(1, w11) x1(w11, w12) x1(w12, w13) x1(w13, 1)
u2(1) u2(w21) u2(w22) u2(w23)

x2(1, w21) x2(w21, w22) x2(w22, w23) x2(w23, 1)
x3(1, 1) x3(w11, w21) x3(w12, w22) x3(w13, w23)

Table 2.1: DF encoding strategy

ŶW+1 is the compressed version of YW+1.

2.3.3 Two-Source One Relay MARC

It has been proved in [85] that for a two-source MARC as in Fig. 2.3, the achievable

rate in DF is:

R1 +R2 ≤ min{I(X1X2;Y3|X3), I(X1X2X3;Y4)} (2.15)

In DF the relay node decodes the source data and forwards it to destination node.

A regular encoding strategy for this case can be Table 2.1 [85].

Here the message wt from source t (t = 1, 2) is divided intoB blocks wt1, wt2, ..., wtB

of nRt bits each (n is codeword length). Transmission is performed in B + 1 blocks

by using codewords u1(i1), x1(i1, j1), u2(i2), x2(i2, j2), x3(i1, i2), where the first and sec-

ond source transmit x1 and x2, respectively. The codeword of relay x3 is statistically

dependent on x1 and x2 through u1 and u2, which are auxiliary codewords at the

respective sources. it and jt range from 1 to 2nRt . Details can be found in Appendix

A of [85];

For CF the MARC achievable rate for a two-source, one-relay case can be simpli-

fied to [85]:

R1 +R2 ≤ I(X1, X2; Ŷ3, Y4|X3) (2.16)
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Subject to constraint:

I(X3, Y4) ≥ I(Ŷ3;Y3|X3, Y4) (2.17)

where Ŷ3 is the compressed version of Y3. This compression or quantization in general

case is modeled by a compression noise: Ŷ3 = Y3 + N̂3

2.3.4 Gaussian Channel

The Gaussian scenario for a two source MARC is discussed in [86]. From proposition

2 in [85] one can simplify each of the mutual information terms of the DF capacity

equation to:

I(XG;Y
′
U |XGc) =

∫
h

p(h) log(
∣∣QYU |XGc ,HSU=h

∣∣)dh (2.18)

where G and U are some subset of S and Gc is the complement of G in S. Hij

is complex fading variables between node i and j, HGU = {Hij : i ∈ G; j ∈ U},
YU = {Yi : i ∈ U} and Y ′

i = [Yi, H1i, ..., H(W−1)i]. Q is the covariance matrix.

Considering equal power for both sources, the corresponding source and relay

signals are given as Xi =
√

(1− μ)PiV0i +
√
μPiVi for i = 1, 2 and X3 =

√
0.5P1V1 +

√
0.5P2V2 where {V0i, Vi}i=1,2 are i.i.d complex Gaussian circularly symmetric random

variables with zero mean and unit variance, Pi is the power for node i and μ is the

fraction of power allocated by the source to sending new messages. So the MARC

achievable rate under the DF strategy is:

R1 +R2 ≤ max
μ

min{C(μ
P1

dγ3,1
+ μ

P2

dγ3,2
),

C(
P1

dγ4,1
+

P2

dγ4,2
+

P3

dγ4,3
+ 2

√
(1− μ)

2

P1

dγ4,1

P3

dγ4,3
+ 2

√
(1− μ)

2

P2

dγ4,2

P3

dγ4,3
)} (2.19)

where C(x) = log(1 + x), di,j is the distance between node i and j and γ is the path

loss exponent.
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2.4 Raptor Codes

Fountain codes are rateless channel codes with a non-constant rate; i.e. their rate is

not known a priori. The destination will attempt to decode the codeword every time

it receives a new symbol from the source, and this cycle continues until the destination

is able to decode it successfully and send an acknowledgment signal to the source to

terminate the transmission. The encoding is based on selecting and adding up some

random source symbols and transmitting the resulting coded symbol.

Luby Transform (LT) codes were introduced by Luby [88]. He proposed the use

of a degree distribution in order to define the number of source symbols participating

in the generation of an output symbol. These degrees are derived from a probability

distribution optimized for an LT code. LT code did not have a fixed encoding cost.

Shokrollahi [89] addressed this problem by introducing Raptor codes, a new class of

Fountain codes. In Raptor code, LT code is preceded by a high-rate code which is

called a pre-code. The main purpose of this process is to fix the encoding cost. At

decoding phase, only a fraction of the source symbols are decoded by the LT code

layer and the remainder is decoded by the pre-code layer.

Following the use of LT code and Raptor code in the design of high-rate codes

for the Binary Erasure Channel (BEC), these codes were adapted for noisy channels

such as the Additive White Gaussian Noise (AWGN) channel, which required soft

decoding. Nguyen et al. [90] used probabilistic decoding technique to soft decode LT

codes. Jenkac et al. [91] generalized the BP decoding method for the soft decoding

of LT code on binary symmetric channels (BSC). Etesami and Shokrollahi [92] used

the same methods of Raptor coding on the BSC and optimized Raptor code for each

AWGN channel realizations considering their characteristics.

Raptor codes consist of two layers, as shown in Fig. 2.4. The first layer is called a

pre-code and is a high-rate block code. The second layer is an LT code with a degree

distribution optimized for Raptor code.
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Figure 2.4: Raptor code layers

A Raptor code is characterized by parameters (k,C ,Ω(x)) where k is the number

of source symbols, C stands for the pre-code and Ω(x) is the degree distribution for

the LT layer. Raptor code encodes k source symbols over F2 to a possibly infinite

number of output symbols. The symbol generation is stopped when the destination

can decode the transmitted message. Therefore, the length of the output codeword

is not fixed a priori.

For Raptor codes on the soft output channels usually the pre-code is chosen to

be LDPC code. This LDPC code can be a right-regular code with a high rate. The

LDPC layer receives the source symbols and encodes them to generate intermediate

symbols. The LT layer will generate the output symbols from these intermediate

symbols. Let Ω1,Ω2, ...,Ωt show the distribution on 1, 2, ..., t while Ωi is the probability

that i is chosen. This distribution is denoted by its generator polynomial Ω(x) =
t∑

i=1

Ωix
i. For encoding in the LT layer, degree d is sampled from the distribution

Ω(x). Then d intermediate symbols are chosen according to a uniform distribution

from all intermediate nodes and are combined together. The result of this combination

is the value of the output symbol.

The number of the transmitted symbols for Raptor code can be written as:

n =
k(1 + ε)

C
(2.20)
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where k is the number of source symbols, n is the number of output symbols (which

is not fixed a priori), C is the channel capacity and ε is the overhead. From (2.20)

the rate for Raptor code can be written as:

R =
k

n
=

C

1 + ε
(2.21)

For the LT layer, the classic BP decoder is modified. The only difference is where

the channel output LLR are inserted. The LLR update rules for the decoding of LT

code are as follows [92]:

tanh(
m

(l)
o,i

2
) = tanh(Zo

2
).
∏
i′ �=i

tanh(
m

(l)

o,i′
2

) (2.22)

m
(l+1)
i,o =

∑
o′ �=o

m
(l)
o′,i (2.23)

where i stands for the input/intermediate nodes, o for the output node, m
(l)
i,o is the

message passed from the input node i to the output node o at the iteration l and m
(l)
o,i

is vice versa. Z0 is the channel output LLR for each bit. For BPSK case Z0 = Lcr

while r is the received symbol and Lc = 2Es/σ
2 where Es is the symbol power and σ

is the Gaussian noise standard deviation.

For MPSK, if we represent bits of each MPSK symbol b by {bm...b1b0}, from [93]

the soft inputs for Raptor decoder are calculated as:

λj = ln

[∑
b:bj=0 exp(

〈r,x(b)〉
σ2 )∑

b:bj=1 exp(
〈r,x(b)〉

σ2 )

]
(2.24)

where 〈.〉 represents inner product, x(b) is the constellation point for b, and Z0 for

each node is equal to the corresponding λj.

After running BP algorithm for a sufficient number of iterations, the LLR for

each intermediate node v is calculated as LLR(v) =
∑
o

m
(l)
o,i. This a posteriori LLR

is sent to LDPC decoder (another BP decoder) where it is used as a priori LLRs for
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the respective symbols. The source symbol LLRs are the output of this stage of the

decoding, which then pass through a hard decision stage to complete the decoding

procedure.

2.5 Digital Video Broadcasting with Satellite

2.5.1 DVB-S2

Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) [94] is the sec-

ond generation of the popular DVB-S standard for satellite broadcasting. It outper-

forms the DVB-S in spectrum efficiency for constant carrier to noise ratios, while also

being much more flexible than the DVB-S. The DVB-S2 can transmit a variety of

streams, such as Moving Picture Experts Group (MPEG) streams, Internet Protocol

(IP), and even Asynchronous Transfer Mode (ATM) packets. This flexibility is the

result of Adaptive Coding and Modulation (ACM). ACM allows for the adaptation

of transmission in terms of modulation and code rate for each user frame-by-frame.

The channel coding used is a concatenated code consisting of LDPC code and

BCH code: LDPC code being the inner code and BCH code being the outer code.

The BCH outer code is used in order to eliminate the error floor of the LDPC code.

The channel code performs in different rates such as 1/4,1/3,2/5, etc. The LDPC

code is decoded iteratively and its codeword length is typically 64800 bits (16200

bits for delay-sensitive systems). The modulation scheme is usually QPSK or 8PSK,

although for special cases 16APSK and 32APSK are supported too.

For interactive point-to-point with the aid of ACM at each frame, optimum code

rate and modulation is chosen. Each frame consists of one LDPC-BCH codeword

preceded by a 90 bit header to the define code rate and the modulation of the following

packet. The header itself is protected by a rate 7/64 code.
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2.5.2 DVB-RCS

The DVB interactive satellite communications system, which is also known as Digital

Video Broadcasting- Return Channel via Satellite (DVB-RCS) [95], is a standard for

a very flexible, efficient, and low-cost two-way broadband satellite communication

system. DVB-RCS can provide up to 20 Mbit/s to each terminal on the downlink,

and up to 5 Mbit/s or more from each terminal on the uplink. The high capacity,

flexibility and low cost of the DVB-RCS can be attributed to the following factors.

In the first place, there is the use of two different air interfaces on the outbound

(downlink) and inbound (uplink). The choice of DVB-S (DVB-S2 in the next gener-

ation) on the downlink allows the use of a very mature widespread standard used for

DVB. This not only enables the highly efficient coding and modulation schemes used

for digital video delivery but also reduces the cost of the terminal, since the DVB-RCS

terminals mostly use the circuitry used in low-cost digital TV set-top boxes for the

downlink reception.

The uplink between Return Channel via Satellite Terminal (RCST) and its satel-

lite is based on a DVB-RCS standard and uses MF-TDMA (Multiple Frequency -

Time Division Multiple Access) with QPSK. There are two possible profiles for the

standard: ATM and MPEG. Raptor coding performs more efficiently on large code-

words. As a result, we have used the MPEG profile because of its larger packet size.

Due to the choice of the MPEG profile each burst of data on MF-TDMA will contain

24 MPEG packets.

Each MPEG packet consists of a 184 byte payload and a 4 byte header. The FEC

is either a (204,188) Reed-Solomon (RS) and convolutional code (CoC) combination

with rates such as 1/2,2/3,3/4,... or a Turbo code with rates such as 1/3,2/5,1/2, etc.
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Chapter 3

Collaborative Communication with

Network Coding

3.1 Introduction

In cooperative networks, the source nodes or certain intermediate nodes (relays) help

other source nodes to transmit data to its destination. As a result, the destination

node receives multiple copies of each codeword, and therefore it is able to decode data

more efficiently. In the cooperative networks, network coding-based schemes can be

used to send redundancy to the destination node.

In this chapter, two cooperative schemes are proposed:

(i) Extended Iterative Decoding: In this scheme the source nodes send their com-

plete codewords. These codewords are decoded in the relay and their original messages

are combined to form a network code. Then the resulting codeword is channel coded

again and transmitted by relay. At the destination node three iterative decoders

decode the data received from the two source-destination channels and the relay-

destination channel. Each decoder provides a priori data for the other two decoders.

In contrast to previous works, the two decoders do not work independently under this
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method. Instead they collaborate with each other and with the third decoder (the

decoder for the relay-destination channel).

(ii) Two-Phase Collaborative Decoding: Here we add collaboration to transmission

through puncturing. In this case, the source nodes send parts of their codeword;

i.e. they shorten their codeword with a specific rate. The relay node decodes these

codewords and the network codes the original messages, then encodes them again

to get the original codewords. But instead of transmitting the whole codeword, it

just sends the missing parts of the codewords. Instead of sending two missing parts,

a combination of parts is transmitted, which results in a rate increase. We assume

that one of the sources has more power than the other. At the destination, first,

the codeword of the stronger source is decoded. Later, with help of this decoded

codeword and the data transmitted from the relay, the missing part of the weaker

source is extracted and decoded.

3.2 System Model

In our model we use a two-source, one-relay and one-destination cooperative network.

Each source has a channel encoder and transmits its own data to both the relay and

the destination. At first, using two decoders, the relay decodes the data gathered from

each of the sources separately, and later the network codes and channel codes them,

and finally transmits the resulting channel-network code to the destination. The

destination node uses the data received from both the sources and the relay to decode

both codewords. Fig. 3.1 depicts this model. The channels are considered to be

interference-free and orthogonal. Multiple access strategies (such as TDMA, FDMA,

and CDMA) can be used to satisfy this condition. The channel types examined here

are fast-fading channels or AWGN.
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Figure 3.1: Network coding based MARC Model

3.3 Extended Iterative Decoding

In this scheme, each source encodes its data and transmits the whole codeword. The

strategy that this relay uses is DF. The relay decodes the received signals to yield the

original messages. These messages are then combined (in the binary case, XORed)

in order to get the network code. This network code is channel coded again. The

resulting code, due to the fact that LDPC is a block code, is itself a codeword and is

forwarded to the destination node.

Therefore, the destination node receives three codewords: two from the sources

and one from the relay. Here, the decoder uses three BP [96] decoders iteratively. BP

decoders have soft output and each decoder sends its a posteriori LLRs to the other

two decoders once its own decoding is finished. These LLRs serve as a basis for the

calculation of a priori LLR for the other two decoders. Each decoder calculates its

own a priori LLRs by considering a posteriori the LLRs of the other two decoders.

The LLR can be written as:

Ly = log
p(y = 1)

p(y = 0)
= log

p(y = 1)

1− p(y = 1)
= log

1− p(y = 0)

p(y = 0)
(3.1)

p(y = 1) =
eLy

1 + eLy
(3.2)
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p(y = 0) =
1

1 + eLy
(3.3)

Since the received signal of each decoder is the XOR of the other two signals,

we can determine a given decoder’s own LLR from LLRs of the other two using the

following equation:

y3 = y1 ⊕ y2 (3.4)

p(y3 = 0) = p(y1 ⊕ y2 = 0) = p(y1 = 0)p(y2 = 0) + p(y1 = 1)p(y2 = 1)

=
1

1 + eLy1

1

1 + eLy2
+

eLy1

1 + eLy1

eLy2

1 + eLy2
=

1 + eLy1eLy2

(1 + eLy1 )(1 + eLy2)
(3.5)

p(y3 = 1) =
eLy1 + eLy2

(1 + eLy1 )(1 + eLy2)
(3.6)

Ly3 = log
p(y3 = 1)

p(y3 = 0)
= log

eLy1 + eLy2

1 + eLy1eLy2
(3.7)

where Y1, Y2, Y3 are the received signals, and Ly1, Ly2, Ly3 are the corresponding LLRs.

As mentioned before, each decoder has three inputs, two from the other decoders,

carrying a posteriori LLRs which are used for the calculation of a priori LLR for

the current decoder. The third input is LcyY , the reliability value of the channel

multiplied by its received signal. The output of the decoder is the a posteriori LLR,

which is subtracted by LcyY to get an extrinsic value that is sent to the other two

decoders. LLRs for the first decoder can be calculated as:

Ly1(a prio)
= log(

eLexy2 + eLexy3

1 + eLexy2
+Lexy3

) (3.8)

L′
y1 = Lcy1

Y1 + Ly1(a prio)
(3.9)

Lexy1
= Ly1(a post

) − Lcy1
Y1 (3.10)

where Lyi(a prio)
, Lyi(a post)

, Lexyi
and L′

yi
are the a priori LLR, a posteriori LLR, the

extrinsic value and input for decoder i, respectively.

Fig. 3.2 is a schema for the proposed extended iterative decoding. Here, The
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Figure 3.2: Extended iterative decoder model

LLR Calculation modules calculate Lyi(a prio)
for decoder i with (3.8). This system

continues to iteratively exchange LLRs between the decoders until their codewords

correspond or a computational limit is achieved. Then a hard decision is taken re-

garding LLRs and the original messages of the sources can be acquired.

3.3.1 Main Parameters

There are four main parameters that influence the performance of this scheme:

BP Iterations

BP algorithm is the decoding method used to decode LDPC code. In this decoding

method LLRs are passed between the variable nodes and check nodes. Variable and

check nodes are parts of the structure of LDPC code generation. The n codeword bits

are placed in n variable nodes. Each variable is connected to some of the n− k check

nodes so that if the value of the variable nodes connected to a specific check node is

summed, the sum is zero. If a codeword can make all check nodes equal to zero, it

is a valid codeword. In the decoding stage, LLRs are exchanged between the check

and variable nodes in order to find and correct errors, until the codeword becomes
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valid. Therefore, BP itself is an iterative decoding algorithm. As the number of BP

iterations increases, the probability of decoding error is decreased.

Turbo Iterations

We call the number of iterations involving the three decoders in Fig. 3.2 Turbo

iterations, due to similarities with the decoding of Turbo codes.

Relay power share

Relay power share demonstrates the percentage or amount of power assigned to the

relay compared to the total power.

Power difference between the sources

It is possible to assign unequal shares of power to the sources. It will be shown

that the unbalanced distribution of power between the two sources will increase the

performance significantly. This parameter demonstrates the power difference between

the two sources.

3.3.2 Simulations Setup

In our simulations, we considered the channel between the sources and the relay

noiseless, so that the relay could decode the source codewords without error. In some

practical scenarios this is an acceptable assumption because the relay is supposed to be

near the sources or at least to have a high-quality channel. All other channels (source-

to-destination channels and relay-to-destination channels) are AWGN or Reighley flat

fast fading.

Right-regular LDPC codes with a node degree distribution of Λ(x) = x3 [89] are

used as channel codes. In this simulation LDPC(2000,1000) was chosen, i.e. k = 1000

and the rate is 1/2. The proposed scheme decreases the rate because of extra parity
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bits transmitted by the relay. In this case, the relay receives two 2000 bit codewords

from the sources, decodes them to the original 1000 bit messages, XORs them to get a

1000 bit network code, and finally re-encodes them to get a 2000 bit network-channel

code. Hence the destination node receives 2000 bits from each of its three channels,

which yields to a (3000,1000) network-channel code and drops the overall rate from

1/2 to 1/3. When comparing the proposed scheme with no-relay schemes, we used

LDPC(3000,1000) to keep the rates the same and make a fair comparison.

Meanwhile, the complexity of decoding should be fixed too. The total number of

iterations in the no-relay mode equals 2 ∗ ILDPC . Because there are two decoders at

the destination, each of them independently decodes its corresponding codeword in

ILDPC . However, in our case, the total number of the iterations is 3 ∗ ITurbo ∗ ILDPC ,

since each of the three decoders has to repeat its ILDPC cycle ITurbo times. To have

a fair comparison between the no-relay scenario and our scenario we kept the total

number of iterations always fixed at 60. Thus, in the no-relay case ILDPC = 30 and

in our scheme ITurbo ∗ ILDPC = 20. Note that this will also fix the intrinsic delay of

the decoding, since the number of massage passings in BP decoders is the same and

therefore the delay caused by decoding cycles will be equal.

3.3.3 Constant Total Power (CTP)

Optimization

In this case, we assumed that the total power of the whole network is constant. We

developed optimization simulations to find the optimum amounts for the parameters

described in the previous sections. Fortunately, the simulation results showed that

these parameters were approximately independent, and there was no need to jointly

optimize them. All simulations were run for two arbitrary dissimilar power differences

between sources: Pd = 5dB and Pd = 10dB. For the sake of simplicity, instead of

working with the transmitter powers, we used channel SNRs. Total SNR is the
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combination of the SNRs of the two source-destination channels and the one relay-

destination channel. Here, Total SNR was fixed at 8.5dB and the channels were under

the effect of Reighley flat fast fading.

BP Iterations

The relay share power was fixed at 40% and the number of Turbo iterations was set at

three (ITurbo = 3). Fig. 3.3 shows the achieved Frame Error Rate (FER) for different

numbers of iterations. As the number of BP iterations increases, the performance

gets better until saturation takes place.

Turbo Iterations

The relay share power was fixed at 40% and ILDPC = 10. The results are shown

in Fig. 3.3. FER curve saturates very fast at ITurbo = 2. As mentioned earlier,

the multiplication number for BP and Turbo iterations is fixed at 20. An increase

in the number of BP iterations improves performance, while the increment of Turbo

iterations saturates faster. For reaching the highest performance, we conclude that

we should minimize the number of Turbo iterations; i.e. ITurbo = 2. Since the total

iteration number is limited to 20, we have ILDPC = 10

Relay Power Share

Here the BP and Turbo iterations were fixed at 10 and 3. As shown in Fig. 3.4 there

is an optimum point for relay sharing that varies as the power difference between

sources changes. In this case, for Pd = 5dB the optimum power share is 42%, and for

Pd = 10dB it is 48%. These numbers show how much power should be assigned to the

relay, while the remaining power is divided between two sources with the appropriate

power difference. For lower power shares than this, the relay cannot participate in the

decoding stage and the system has a performance close to that of a no-relay case. For
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Figure 3.3: BP and Turbo Iterations Optimization (CTP)

higher powers, the main signals from the sources are too weak for efficient decoding.

Results

Considering the optimization results, we can compare the performance of the proposed

scheme with the performance of the no-relay scheme. As mentioned before, for the

no-relay case LDPC(3000,1000) was used as the channel code and the number of

BP iterations was fixed at 30. For the network coding case, LDPC(2000,1000) was

chosen. Eventually, this will result in a (3000,1000) network-channel code. BP and

Turbo iterations were fixed at their optimum amounts, 10 and 2 respectively. For

Pd = 5dB, power share was set at 42% and for Pd = 10dB it was set at 48%. The

simulation results for fast fading channels are reported in Fig. 3.5 and the results for

AWGN in Fig. 3.6.

It can be seen that, as the power difference increases, the improvement in overall

system performance is increased too. Using the same method, For the case of Pd =
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5dB, the same error rate is achieved with 1dB less power, while for Pd = 10dB,

the power reduction is 5dB. We can conclude that as power difference increases, the

destination can decode more efficiently. This is due to the fact that with higher

power difference, while the total power is fixed, we have an effective estimation of the

stronger source at the destination. This helps to decode the weaker signals.

3.3.4 Separate Relay Power (SRP)

Optimization

In this case, we assume that the relay power is separated from the power of the source

nodes. Hence, changing one will not affect the other. Here, the only difference is in

the optimizations of BP iterations. For this simulation, the number of turbo iterations

was fixed at 3, and power was allocated to both sources identically. Total SNR was

fixed at 6dB while separately relay SNR was 5dB, and the channel is fast fading.
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Fig. 3.7 demonstrates that there is an optimum point for BP iterations, which is 10

iterations. Therefore, again we fix ITurbo = 2 and ILDPC = 10.

Results

The setup is exactly the same as in the CTP case. For the no-relay case LDPC(3000,1000)

was used as channel code and the number of BP iterations was fixed at 20. For the

network coding case LDPC(2000,1000) was chosen, which eventually will result in

a (3000,1000) network-channel code, and BP and turbo were respectively 10 and 2.

5dB power was allocated to the relay separately. The channels were under the effect

of fast fading. The simulation results are reported in Fig. 3.8. It can be seen that

the improvements are similar to those in the CTP case. However, the required power

gap between two sources in this case is lower than in the CTP case, which is due to

the fact that here the relay power is allocated separately.
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Figure 3.8: FER for fast fading (SRP)

3.4 Two-Phase Collaborative Decoding

This method is based on dividing the codewords between the sources and the relay

so each node sends a part of the codeword and the destination node combines them

to get the whole codeword. We call this shortening the codewords. The source nodes

shorten their corresponding codewords using a specific cutting rate and transmit

them. The strategy that the relay uses is again DF. The relay node receives these

codes and considers the missed parts as erasures and it decodes the codewords to get

the original messages. Next, the decoded messages are XORed and re-encoded. But

the whole codeword is not transmitted. Only the missing parts of the original source

transmissions are sent to the destination. Fig. 3.9 illustrates this procedure.

Instead of transmitting two missing parts separately, the relay sends XORed ver-

sions of them. Therefore, the number of bits transmitted by the relay is reduced,

resulting in a total rate increase. As in the previous section, we consider that the

43



P1,1 P1,2

P2,1 P2,2

P1,1+P2,1 P1,2+P2,2

X1

X2

Xr

(a)

P1,1

P2,1

P1,2+P2,2

X1

X2

Xr

(b)

Figure 3.9: (a) Shortening codewords at the sources and the relay (b) Transmitted
codeword parts

power has not been allocated equally between the sources. Thus, one of the received

signals is of better quality. At the destination node (since it has access to CSI and

can determine the more reliable received codeword), the signal with better quality

is first decoded separately. This means that, as in the decoding at the relay, the

missing parts appear to be erased during the decoding. Now that the stronger source

has been decoded, it can be used to help with the decoding of weaker source. We

can XOR a missing part of the stronger codeword (which is now available after its

successful decoding) with data received from the relay and get the missing part of

weaker codeword. We can then attach it to weaker codeword and start decoding it

separately. Fig. 3.10 shows the decoding procedure (assuming that X2 is the stronger

source).

3.4.1 Main Parameters

These are three parameters that affect the performance of this scheme:
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Cutting Rate

As discussed before, the proposed scheme increases the rate. Consider r′ to be the

cutting rate (i.e. the ratio of the bit number of the shortened codeword to that of

the original codeword). Thus, nr′ would be the number of bits transmitted by each

source, and n(1 − r′) is the number of bits transmitted by the relay. Therefore we

can calculate the shortening rate r at follows:

r =
nr′ + nr′ + n(1− r′)

2n
=

1 + r′

2
(3.11)

R =
Rc

r
(3.12)

where R is the total channel-network rate and Rc is the channel code rate. In the

comparison of the proposed scheme with the no-relay scenario, R is considered to be

fixed.

Relay power share

In this scheme the total power of the whole network is constant and will be divided

between the two sources and the relay. Relay power share involves the percentage of
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power assigned to the relay compared to the total power.

Power difference between sources

It is possible to assign unequal shares of power to the sources. It will be shown that an

unbalanced distribution of power between the two sources will increase performance

significantly. This parameter demonstrates the power difference between the two

sources.

3.4.2 Optimization and Simulation

LDPC Coding

To find the optimum shortening rate and the relay power share we developed simula-

tion tests. Again there was almost no correlation between optimization parameters.

In these simulations, we assumed that the relay can decode data from the sources

error-free; i.e., that the source-relay channel is noiseless. LDPC(2000,1000) is used

as the channel code and Pd = 10dB. The channels operate under fast fading. The

number of BP iterations is 30.

Cutting Rate We establish that the total SNR is fixed at 13dB and that the relay

share power varies from 10% to 30%. From Fig. 3.11 it can be determined that the

optimum cutting rate, r′, is 0.71. Therefore the optimum shortening rate, r, would

be:

r′opt = 0.71 (3.13)

ropt =
1 + r′opt

2
= 0.855 (3.14)

n′ = nropt = 1710bits (3.15)
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Figure 3.11: Cutting Rate Optimization (LDPC code)

where n′ indicates the number of the bits transmitted for each source by the source

and the relay combined. Overall, this means that for each 1000-source bit, we have

transmitted 1710 bits. Hence, the overall code would be LDPC(1710,1000). Rc for

the standard channel code LDPC(2000,1000) is equal to 0.5. We can find the overall

rate as follows:

R =
Rc

ropt
= 0.58 (3.16)

which is exactly the rate for the overall network channel code LDPC(1710,1000).

Relay Power Share Here, the cutting rate is fixed at 0.71. From the simulation

results which are presented in Fig. 3.12, it can be concluded that the optimal relay

share power is 17%. As mentioned before, for lower powers than this optimum relay

power share, the relay cannot participate in the decoding stage and the system has a
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Figure 3.12: Relay Power share Optimization (LDPC code)

performance close to that of no-relay case. For higher powers, the main signals from

the sources are too weak for efficient decoding.

Results As was suggested by the optimization results, the cutting rate is fixed at

0.71 and the relay share power at 17%. Pd = 10dB. LDPC(2000,1000) channel code

is used which finally gives us a LDPC(1710,1000) network-channel code. For the no-

relay scenario LDPC(1710,1000) was used so that the rates of both scenarios were

the same. In addition, the channels were affected by fast fading. The number of BP

iterations in the decoders for both cases is 30. Fig. 3.13 shows the results. It can be

observed that the proposed scheme improves the performance by more than 3dB.

Read Solomon Coding

We have also simulated the same system in the previous section with RS codes. Here,

RS(255,171) code was used as the channel code and the total SNR was fixed at 23dB.
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Figure 3.13: FER for fast fading (LDPC code)

Pd = 10dB and channels were under fast fading effect.

Cutting Rate The relay share power range was 10% to 30%. Fig. 3.14 shows the

optimization results. It is observed that the optimum cutting rate is 0.76. Conse-

quently, we can calculate the optimum shortening rate:

r′opt = 0.76 (3.17)

ropt =
1 + r′opt

2
= 0.88 (3.18)

n′ = nr = 224bits (3.19)

where n′ shows number of bits transmitted for each source by itself and the relay.

Thus the resulted rate increased code is a RS(224,171) code. We find the overall
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Figure 3.14: Cutting Rate Optimization (RS code)

rate to be:

Rc = 171/255 = 0.67 (3.20)

R =
Rc

ropt
= 0.76 (3.21)

Which is the same rate as the rate of RS(224,171). However, since RS(224,171) cannot

be generated, we will use RS(255,195) for the no-relay case which has the same rate.

Relay Power Share In this optimization the cutting rate is fixed at 0.76. From

the simulation results which are presented in Fig. 3.15, it can be concluded that the

optimal relay share power is 10%.

Results Considering the optimization results, the cutting rate is found to be 0.76,

while the relay share power is fixed at 10%. The RS(255,171) is used which will
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result in RS(224,171) as discussed before. For no-relay case, RS(255,195) is used,

which yields the same rate as RS(224,171). Pd = 10dB and channels are under fast

fading. The results are reported in Fig. 3.16. It can be seen that the proposed

network coding based scheme improves the performance around 3dB.

3.5 Discussion

It can be concluded that, in both of the proposed schemes, the relay blindly helps

the weaker source through network coding while transmitting parity bits for both

sources. The destination (in the first scheme unintentionally and in the second one

intentionally) uses the signal from the more powerful source in the iterative process

to retrieve the signal from the weaker source. In both schemes, it is the destination

node that determines how to use this parity. That is why we say that the relay is
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helping both parties blindly and without having any information about CSI.

The power difference between the sources is significant too. When this gap is

small or, in the worst case, when both of sources have the same power, the relay

cannot increase the performance. As mentioned above, it can help only one source

(i.e. the weak source), and if both sources are weak it cannot help either of them.

This is the reason behind poor performance when the power difference between the

sources is low.

3.6 Complexity Order

The complexity order of the above schemes can be determined for the source, relay,

and destination nodes. Both here and in later chapters, we will find the complexity

order in terms of the codeword length. For both of the schemes mentioned in this
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chapter, we assume that LDPC was used as the channel code.

The computational complexity order of the source in both of the schemes is the

same. This is also the case for the relays, since the only difference between the relays

of the two schemes is the number of the transmitted symbols. In case of the two-phase

collaboration, the relay computes the whole network coded codeword, but sends only

a fraction of it. This does not change the complexity order.

In [97] it was shown that the complexity order of LDPC encoding is linear and of

O(n) where n is the codeword length. Hence, the complexity order of source nodes

in Fig. 3.1 is O(n).

The relay node has three components, two LDPC decoders, one network coding

block, and another LDPC encoder. Chen et al. [98] showed that the decoding of

LDPC code, like its encoding, has a linear order of computational complexity.

The network coding block is just XOR of two codewords with length n, and

therefore its order is O(n). The encoding block has again order of O(n). Since all of

the components have linear complexity orders, we can conclude that the complexity

order of the computations in the relay node is also O(n).

3.6.1 Complexity Order of Extended Iterative Decoding

As it can be seen in Fig. 3.2, there are three iterative LDPC decoders, each with

an LLR calculation block. The LLR calculation block calculates one LLR value from

two other LLRs using (3.8). Thus it performs a fixed number of calculations per the

LLR value of each node, say K, and the total computations will be nK. Hence its

order is O(n). Therefore, each of the three decoders and three LLR calculation blocks

has O(n) order, and the total order will be also O(n).
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3.6.2 Complexity Order of Two-Phase Collaborative Decod-

ing

In Fig. 3.9 we have two decoders with a network coding section in between. As

mentioned above, both the LDPC decoders and the network coding block have linear

complexity and hence the overall computational complexity order of this decoders is

again O(n).
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Chapter 4

Successive Decoding with Raptor

Codes

4.1 Introduction

In recent years, there has been increasing interest in MAC. Numerous methods have

been proposed to achieve MAC capacity, such as multi-antenna techniques, orthogonal

sequences, cooperation, etc. All of these methods use fixed rate channel codes and

are unable to respond to channel state changes through coding alone, since fixed rate

channel codes are not adaptive. Moreover, in the case of non-orthogonal channels,

all of the transmitting sources in MAC require detailed CSI of all channels to adjust

their power levels. This imposes high overhead on the feedback channels. However,

if the fixed rate codes are replaced with rateless codes (fountain codes), the system

will not need complete CSI. Furthermore, the system can adapt to changing channel

quality. This can be especially useful when an interfering source is introduced to an

existing source-destination link - hence forming a MAC - and the interfering source

does not have access to CSI or channel variations of the pre-existing link.

Rateless codes are channel codes with a non-constant rate; i.e., their rate is not
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known a priori. The destination will attempt to decode the codeword every time it

receives a new symbol from the source, and this cycle continues until the destination

is able to decode it successfully and send an acknowledgment signal to the source

to terminate the transmission. This encoding is based on selecting and adding up a

random subset of source symbols and transmitting the resulting coded symbol.

In this chapter, we propose the addition of an interfering channel with rateless

code to an existing main DVB-RCS channel, in an arrangement where these two

channels are not orthogonal. This may be the case when we want to use an existing

link between a DVB-RCS terminal and the hub to serve two terminals (one main

and one interfering). In such a case, the two terminals will share the same channel

and consequently increase the throughput of the system. An interesting aspect of our

proposed scheme is that no modification should be made to the main terminal. We

will demonstrate that the added interfering channel does not have any effect on the

performance of the main channel while the interfering signal itself can be decoded

successfully.

In a departure from the previously-mentioned works on Multiple Access Channel

(MAC) coding schemes, we do not use cooperation to achieve near-capacity rates,

and thus we avoid the complexity of cooperative encoding and decoding. Instead, we

will use rateless code for a physical layer, instead of packet correction (which is the

usual approach in rateless FEC on DVB scenarios). In all other works, rateless codes

are used in higher levels of DVB standard and therefore rateless codes work with data

packets. However, we have used rateless codes in the physical layer for bit correction

and we even suggest their use as the sole channel code in the standard.

For decoding, we use successive decoding, which performs more efficiently when

there is a transmit power level difference between the two sources. We will demon-

strate that there is a tradeoff between achieved rate and power efficiency, and we will

find the optimum power allocation scenario for this tradeoff. When power adaptation
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is not feasible, it is possible for the two sources to have the same power level. In such

a case, since the symbols from the two sources may cancel each other out, we suggest

a hard decoding stage before the decoders in order to eliminate misleading data.

Finally, we propose a power adaptation scheme which uses the feedback channel

of the rateless code to estimate the channel state of the main channel and chooses the

optimum power level for the interfering source accordingly. Therefore, the interfering

source can transmit its data to the destination efficiently, and without having access

to CSI data of the main channel. Furthermore, it can adapt itself to changing quality

in the main source and destination channel.

Raptor codes can be easily adapted to DVB-S2 protocols. The long codeword

length of the channel codes of DVB-S2 makes Raptor code an ideal match for LDPC-

BCH code. In our proposed scheme, though the main source can use the original DVB-

S2 scheme with LDPC-BCH channel code, the interfering source can use Raptor code

with the same frame length (including the header) of the DVB-S2. It is possible to

use Raptor code alone or as an extra coding layer (on top of LDPC and BCH codes).

The latter approach allows the re-use of the already existing DVB-S2 hardware in

the interfering channel. Raptor coding circuitry can even be appended to a generic

DVB-S2 board as a daughter board.

Note that in this chapter and the following chapter we always assumed that we

are extending and DVB-RCS link, hence all of the channels are AWGN. However,

this is not a restriction of the method. The proposed methods (power adaptation in

this chapter and constellation rotation in the next chapter) can be also implemented

in wireless links with block fading, if there is good channel estimation at beginning

of each fading block, so that the interfering source can take into account the phase

rotation and amplitude change.
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4.2 System Model

Consider a main source S1 transmitting data stream T1 to the destination D over an

AWGN channel. We chose QPSK modulations since it is used in DVB-RCS standard.

Source S2, the interfering source, starts transmitting data stream T2 on the same

channel with the same modulation. We assume that the transmitters are symbol

synchronized. For each source i we define codeword xi where E [xi
2] = 1 and xi(j) is

the constellation point for symbol j in source i where j = 0, 1, ...,M − 1 (M is the

constellation size) and i = 1, 2. The destination receives signal y as follows:

y =
√

ES1x1 +
√

ES2x2 + z (4.1)

where ESi
is the energy per symbol for each source i and z is a circular symmetric

complex Gaussian random vector, z ∼ CSCG(0, σ2) where σ2

2
is the variance of

AWGN in each dimension. We assume that the interfering source power level is

higher than or equal to that of the main source power and hence there can be a

power level difference between the two sources. We denote the ratio of the two power

levels as β (β ≥ 1):

β =
√
ES2/ES1 (4.2)

Fig. 4.1 shows the system model. Through successive decoding, the destination

will decode both data streams. It will first decode the interfering source data (since

its power level is higher than or equal to that of the main source power) and later,

by subtracting it from the received data, it will get the original data from the main

source.
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4.3 Constellation Constrained Capacity for Two

Source MAC

In general, the capacity for a two source MAC can be written as [99]:

R1 ≤ I(x1; y|x2) (4.3)

R2 ≤ I(x2; y|x1) (4.4)

R1 +R2 ≤ I(x1, x2; y) = I(x2; y) + I(x1, y|x2) (4.5)

But since the modulation we are using here is QPSK, we need to find the above

equations for the Constellation Constrained (CC) case which is explained in detail in

[100]. Fig. 4.2 shows the capacity regions for Gaussian and constellation constrained

cases where C(x) = 1
2
log(1+x). At points A and B, one of the sources is transmitting

at its maximum rate while the other source is working below its capacity limit.

In our proposed scheme, we will transmit at point A in order to keep the perfor-

mance of the main channel untouched. Therefore, although the interfering channel

rate (R2) is below its maximum achievable rate, the rate of the main channel (R1)

remains the same, i.e.,

R1 ≤ I(x1; y|x2) (4.6)

R2 ≤ I(x2; y) (4.7)
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As it can be seen from (4.6) and (4.7), to compute CC capacities we just need

to find I(x2; y) and I(x1, y|x2). Here, we briefly present these results from [100]. In

order to find I(x2; y), we assume that
√
ES1x1+ z is the undesired signal in (4.1) and

therefore:

I(x2, y) = H(y)−H(y|x2)

= H(y)− 1

M

M−1∑
i=0

H(y|x2 = x2(i)) (4.8)

To find H(y) and H(y|x2 = x2(i)) we will need p(y) and p(y|x2 = x2(i)):

p(y) =
1

M2

M−1∑
k=0

M−1∑
i=0

p(y|x1 = x1(k), x2 = x2(i)) (4.9)

p(y|x2 = x2(i)) =
1

M

M−1∑
k=0

p(y|x1 = x1(k), x2 = x2(i)) (4.10)

where p(y|x1 = x1(k), x2 = x2(i)) can be written as:

p(y|x1 = x1(k), x2 = x2(i)) =
1

πσ2
e−

|y−x1(k)−x2(i)|2
σ2 (4.11)
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By replacing (4.9), (4.10) and (4.11) in (4.8) we can find I(x2, y) as follows:

R2 ≤ I(x2; y) = log2M − 1

M2

M−1∑
k1=0

M−1∑
k2=0

E [log2 (ψ2)] (4.12)

where:

ψ2 =

M−1∑
i1=0

M−1∑
i2=0

e−
∣
∣
∣
∣

√
ES1

(x1(k1)−x1(i1))+
√

ES2
(x2(k2)−x2(i2))+z

∣
∣
∣
∣

2

σ2

M−1∑
i1=0

e−
∣
∣
∣
∣

√
ES1

(x1(k1)−x1(i1))+z

∣
∣
∣
∣

2

σ2

where E[x] is the expectation with respect to the distribution of z.

Similarly we can find I(x1; y|x2):

R1 ≤ I(x1; y|x2) = log2M − 1

M

M−1∑
k1=0

E [log2 (ψ1)] (4.13)

where:

ψ1 =

M−1∑
i1=0

e−
∣
∣
∣
∣

√
ES1

(x1(k1)−x1(i1))+z

∣
∣
∣
∣

2

σ2

e−
|z|2
σ2

Therefore, the CC capacities for MPSK modulation can be computed using (4.12)

and (4.13). For simplicity, in this chapter we will refer to them as follows:

R1 ≤ C1(ES1 , σ
2) (4.14)

R2 ≤ C2(ES1 , ES2 , σ
2) (4.15)
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Figure 4.3: Successive decoding scheme

4.4 Proposed Scheme

Assume that the main source S1 is transmitting data stream T1 with k1 source symbols

to the destination. Source S2 (the interfering source) encodes k2 symbols using Raptor

code and starts transmitting data stream T2 on the same channel.

As mentioned before, we use successive decoding. First, the received signal is sent

to the Raptor decoder, since the power level of the Raptor coded signal is higher than

or equal to the power level of the main source data. After the successful decoding of

the interfering signal into its k2 source symbols, we re-encode them to get T ′
2 (T

′
2 ≡ T2).

Then we subtract T ′
2 from the received signal to get T1 plus noise, as if there were

no interfering channel at all. This signal is then sent to the main channel decoder to

finalize the decoding. Fig. 4.3 shows this procedure. Since the transmitted signals

from both sources are combined in the wireless channel, the required bandwidth is

not increased.

4.4.1 Sources with Equal Transmit Power Levels

In this case, both sources have equal transmit power levels and the capacity of both

channels can be calculated from (4.14) and (4.15) with ES1 = ES2 = ES. In general,

the two QPSK constellation maps from the two sources with different symbol powers

would add up and result in 16 merged constellation points. However, when both

sources have equal powers (β = 1), we will have a multiple access binary erasure

channel [101], with just 9 merged constellation points as shown in Fig. 4.4. Here

the four outer constellation points each have a probability of 1/16, the middle points
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Figure 4.4: Received symbols and their probability

have a probability of 1/8, and the constellation point at the origin (which represents

the completely erased symbols) has a probability of 1/4.

This is due to the fact that, in this case, some of the symbol pairs transmitted by

the sources cancel each other out. For example, without considering the effect of the

noise, if we receive a zero at the destination, the two sources may have transmitted

[
√
ES,−

√
ES], [−

√
ES,

√
ES], [j

√
ES,−j

√
ES] or [−j

√
ES, j

√
ES]. Therefore we have

lost 4 entire bits of data (2 bits from each source).

Now consider that at the destination (again without considering the effect of the

noise) we have received [
√
ES + j

√
ES] (a middle point). This means that the sources

have transmitted either [
√
ES, j

√
ES] or [j

√
ES,

√
ES]. If gray code is used in the

modulation, we can at least recover one bit from each source. Therefore we have lost

2 bits in total.
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To calculate the erasure probability (Per), we use the following sum:

Per =
Nc∑
i=1

p(i)e(i) (4.16)

where Nc is the number of the merged constellation points (Nc = 9), p(i) stands for

the probability of symbol i (1/4, 1/8, 1/16), and e(i) defines the ratio of the bits lost

in that symbol which is 1 for the symbol at origin, 0.5 for the middle symbols and 0

for the outer symbols.

In this case, it can be demonstrated that Per = 0.5. Therefore, the scheme can be

modeled as an erasure channel with Per = 0.5. Since the channel capacity is reduced

to 1/2 of its original capacity, we need to send twice the number of output symbols.

From (2.20) this can be explained as:

neq =
k(1 + ε)

Ceq

=
k(1 + ε)

(0.5)C
= 2

k(1 + ε)

C
= 2n (4.17)

where the subscript eq signifies the fact that a case with equal power is being consid-

ered.

The erased bits do not contain any information and even create inaccuracies in

the decoding process due to the effect of the noise. Therefore, in order to increase

the performance of the decoding, this misleading data should be eliminated before

the decoding stage. This elimination can be done by means of a hard decision.

In optimal detection, upon observing y, the detector looks for the constellation

point that maximizes p(x(m)|y) which is the probability that the constellation point

x(m) was transmitted (observing the fact that y is received). The optimal detection

rule [102] can be written as:

m̂ = argmax
1≤m≤Nc

[p(x(m)|y)] = argmax
1≤m≤Nc

[p(x(m))p(y|x(m))]
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= argmax
1≤m≤Nc

[p(x(m))
1√
2πσ2

e−
‖y−x(m)‖2

2σ2 ] (4.18)

where m̂ is the detected symbol.

The above equation can be simplified to:

m̂ = argmax
1≤m≤Nc

[ηm + y.x(m)] (4.19)

ηm = σ2 ln p(x(m))− 1

2
‖x(m)‖2

The decision regions in this scheme can be calculated as:

Dm = {y : y.x(m) + ηm > y.x(m′) + ηm′ , ∀m′ �= m} (4.20)

where 1 ≤ m ≤ Nc, 1 ≤ m′ ≤ Nc.

In our case, in order to find the borderline between decision regions (Fig. 4.4),

we will find the line where the above inequality becomes an equality. If we assume

received symbol y = I + jQ, x(1) =
√
Es(1 + j), x(2) = 2

√
Es and σ = 0.5. From

Fig. 4.4 we will have p(x(1)) = 1/8 and p(x(2)) = 1/16. Hence:

η1 =
1

4
ln

1

8
− 1

2

∥∥∥√Es(1 + j)
∥∥∥2 = −3

4
ln 2− Es (4.21)

η2 =
1

4
ln

1

16
− 1

2

∥∥∥2√Es

∥∥∥2 = − ln 2− 2Es (4.22)

(I + jQ).
(√

Es(1 + j)
)
− 3

4
ln 2− Es = (I + jQ).

(
2
√

Es

)
− ln 2− 2Es (4.23)

I = Q− 1

4
√
Es

ln 2−
√
Es (4.24)

We can summarize (4.24) as:

I = Q− T (4.25)

where T = 1
4
√
Es

ln 2 +
√
Es. If we find all other decision region borderlines, they all
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can be shown to be:

I ±Q = ±T (4.26)

If the received symbol is in D9, then because all the data is erased the received

data will not be considered in the decoding. If it is in D2, D4, D6 or D8 then only

one bit per source is lost, and the other bit can be used in the decoding. Therefore,

if we represent bits of each QPSK symbol by b1b0, from (2.24) the soft inputs for the

Raptor decoder are calculated as:

λ0 =

⎧⎪⎨
⎪⎩

0 y ∈ D9, D2, D6

ln

[∑
b:b0=0 exp(

〈y,x(b)〉
σ2 )

∑
b:b0=1 exp(

〈y,x(b)〉
σ2 )

]
o.w.

(4.27)

and

λ1 =

⎧⎪⎨
⎪⎩

0 y ∈ D9, D4, D8

ln

[∑
b:b1=0 exp(

〈y,x(b)〉
σ2 )

∑
b:b1=1 exp(

〈y,x(b)〉
σ2 )

]
o.w.

(4.28)

where λj is the LLR for bj in each QPSK symbol.

The value of T in (4.26) affects the performance of the system by changing the

size of the decision regions, as will be demonstrated in the next section through

simulations.

4.4.2 Sources with Unequal Transmit Power Levels

Here, in contrast to the previous case, the interfering source can have a higher power

level than the main source (β > 1); hence the destination can decode both codewords

more efficiently and higher rates are achieved. The value of β has a considerable effect

on the achieved rates, as will be shown with simulations. Furthermore, there is an

optimum value for β from a power efficiency-rate tradeoff point of view.
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To evaluate this tradeoff we need to find the required power for any specific

achieved rate. For the interfering channel the corresponding Eb/N0 for an achieved

rate R2 can be calculated as follows:

Eb2

N0

=
Ec2

N0R2

=
ES2

N0R2log2M
(4.29)

To find out how far we are from the theoretical limits, we calculate the required

power E ′
S2

to achieve the same R2 with (4.15), i.e., the same amount of power that a

capacity-achieving code would require to get R2:

R2 = C2(ES1 , E
′
S2
, σ2) (4.30)

E ′
b2

N0

=
E ′

S2

N0R2log2M
(4.31)

We can compare the actual Eb2/N0 with its corresponding E ′
b2
/N0 (derived from

E ′
S2
) for each β. We call the gap between them Δ:

Δ[dB] =
Eb2

N0

[dB]− E ′
b2

N0

[dB] (4.32)

Δ shows the difference between power levels that our scheme and a capacity-

achieving code would need to achieve a specific rate: i.e., the power wasted by our

scheme compared to an ideal capacity-achieving code. Now we can find out which

power allocation scenario (which β value) minimizes this gap. Unfortunately, the

achievable rates of Raptor codes cannot be calculated analytically, and due to this

it is not possible to analytically optimize (4.32) against β. Therefore, we will use

simulations to analyze this gap. In the simulations section it will be shown that Δ

has a concave curve against β, so that there is an optimum β (βopt) which minimizes

this gap and indicates a power scenario with the least waste of power.

Power differences below βopt are not sufficient for the efficient successive decoding
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of the two sources. For β above this value, although higher rates can be achieved,

the power is used less efficiently. In fact, with a capacity-achieving code, this rate

could have been achieved with much less power. This is a case of the previously-

mentioned power efficiency-rate tradeoff. Note that we assume that ES1 is known,

and therefore we can find the optimum transmit power for the interfering source from

(4.2): ES2(opt) = ES1(βopt)
2.

4.4.3 Power Adaptation

One of the exceptional advantages of rateless codes is their ability to transmit data

over channels with different qualities. This arises from the fact that they continue to

generate and transmit symbols until the destination sends an acknowledgment signal

confirming successful decoding of the codeword. This advantage comes at the price

of the need for a feedback channel between destination and source nodes. Since this

feedback can be as simple as an acknowledgment, it can be highly coded, and we

assume that it is error-free.

Nevertheless, this feedback can also be used for channel estimation purposes.

In Section 4.4.2 we assumed that the interfering channel has a precise estimation

of the channel between the main source and the destination, and that through this

estimation it could optimize β and its transmitting power level. However, in practical

scenarios this is not the case, and the interfering channel does not have any estimation

regarding the main channel. Therefore, an estimation of the power level of the main

source is necessary. In this section we propose the use of the already-mentioned

feedback data to address this problem.

Power Estimation and Adaptation

The main idea here is to use the feedback from the destination to estimate the main

channel’s power, and with that estimation to find the optimum power level for the
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interfering source through the optimization of (4.32). We assume that we are aware of

demodulator sensitivity in the destination and hence can estimate the channel noise.

For estimating the main source’s power, we use tables or curves simulated a priori.

Assume that, in a controlled environment where we have control of the power levels

of both sources, we can fix the power per symbol of the interfering channel ES2 at

some specific test level. Then, for the different symbol powers of the main source

(ES1 , or β consequently) we simulate the achievable rate at an specific noise power

for the interfering channel. Therefore we have the achievable rates for the interfering

source at a specific noise power and different main source powers.

Having these simulation results in hand, at the beginning of the transmission phase

of a real-world case (when we do not have any estimate of the main source’s power)

the transmitter chooses from one of the test powers that it has its achievable rate

curves a priori. Then it starts transmission with that test power ES2(test) until it gets

the feedback from the destination. This feedback can be simply an acknowledgment

bit which shows how many symbols were sufficient for successful decoding of the

codeword. Therefore, the transmitter can calculate the achieved interfering channel

rate, i.e., R2. Now, using the curves that it has a priori, it can calculate β and with

(4.2) get an estimation of ES1 . This estimation will be used to find the βopt through

optimization of (4.32) and from there to calculate ES2(opt).

Overall Algorithm

The following algorithm explains the whole procedure:

1: Choose ES2(test) for the interfering source.

2: Transmit one (or more) codeword with the test power level.

3: Receive feedback from the destination.

4: Calculate R2.

5: Find β from the rate curves or tables simulated a priori.
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6: Calculate ES1 = ES2(test)/β
2.

7: Find the βopt for the estimated ES1 through optimization of (4.32).

8: Calculate ES2(opt) = ES1(βopt)
2.

9: Transmit next codewords with ES2(opt).

Robustness

The above channel estimation method can also be used to make the interfering channel

robust to power level changes in the main source. If after the first adaptation the

achieved rate of the interfering channels changes significantly, this means that the

main channel power has either increased or decreased. Therefore, the optimum power

level that is currently used for the interfering source is not optimum anymore. In this

case, the interfering source can easily adapt itself to the new channel conditions the

same way it adapted to the initial conditions. The only difference is that its current

power level is the test power level in the above algorithm. Therefore, since it has

its current power and rate, simply by a search in the corresponding table, it can

find the optimum power for the current channel states and adapt itself to the new

conditions. In other words, in the above algorithm, adaptation begins at step 5 with

ES2(test) = ES2(current) and R2 = R2(current). This is why we call this method robust

to channel changes.

4.5 Simulation Results

In our simulations a rate 0.98 right-regular LDPC code with k2 = 1472 has been

chosen as the pre-code for the Raptor code. The rate and type of the LDPC code is

identical to Shokrollahi’s original simulations in [89]. Like LT codes, LDPC codes are

decoded by the BP algorithm and therefore, to simplify the simulations, LDPC code

is chosen as the pre-code. As mentioned before, The pre-code must have a high rate
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(hence the rate 0.98) and the codeword length of 1472 comes from the MPEG packet

length which, as mentioned in section 2.5, has a payload of 184 bytes (or 1472 bits).

For the LT layer the distribution Ω(x) is the optimized distribution for k = 65536

case in Table I at [89]:

Ω(x) = 0.008x+ 0.49x2 + 0.166x3 + 0.072x4 + 0.083x5 + 0.056x8 + 0.037x9

+ 0.056x19 + 0.025x66 + 0.003x67 (4.33)

The above weight distribution is optimized for the erasure channels. In [92] it was

shown that in AWGN channels, Raptor codes lose their generality and for each value

of σ a specific Raptor code should be designed. However, it was demonstrated that

although the weight distribution for the erasure channels is not optimized for AWGN

channels (leaving room for improvement) it performs very well and its achieved rate is

acceptable. Therefore, for the sake of simplicity we used the BEC weight distribution

here.

At the destination, both of the decoders employ the BP decoding with BP iter-

ations of 50 and 300 for the LDPC layer and LT layer respectively. Our empirical

results show that at these numbers of iterations the corresponding decoders saturate

and no more error correction is possible. The standard deviation for the noise per

dimension in the AWGN channel is chosen to be σ =
√
0.5. The modulation is QPSK

and hence M = 4 in (4.12) and (4.13). Without loss of generality and for the sake of

simplicity, the main channel is considered to be transmitting an uncoded data stream.

We have used the Monte Carlo method for the simulations. In all of the rate

simulations, the achieved rate of a Raptor code is the rate at which the channel code

guarantees a BER not exceeding 10−4.
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4.5.1 Confidence Interval

To calculate the confidence level for BERs (which is a series of error tests X ) we

calculate that around BER = 10−4, the average number of the transmitted bits in

each simulation point is about n = 2.2 × 108 . The sample mean is x̄ = 10−4. For

variable x, the sample variance (when it is unknown) can be estimated from the mean

as follows [103]:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (4.34)

In our case, since the bit errors are either zero or one, the above equation can be

simplified as [104]:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

{
n∑

i=1

xi
2 − 2x̄

n∑
i=1

xi + nx̄2

}

=
1

n− 1

{
n∑

i=1

xi
2 − nx̄2

}
(4.35)

Since xi = {0, 1}:
n∑

i=1

xi
2 =

n∑
i=1

xi = nx̄ (4.36)

Therefore:

s2 =
1

n− 1

{
nx̄− nx̄2

}
=

n

n− 1
x̄(1− x̄) (4.37)

Hence, the sample variance is s2 = 9.99× 10−5.

For confidence coefficient ω the confidence interval of X is shown to be [103]:

P

{
x̄− t1−δ/2(n)

s√
n
< X < x̄+ t1−δ/2(n)

s√
n

}
= 1− δ = ω (4.38)

where tu(n) is student’s t percentile.

Here, if we assume ω = 99%, then 1 − δ/2 = u = 0.995 and from Table 8.2 in
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[103] tu(n) = 2.75. The confidence interval of our simulations is

P
{
10−4 − 1.85× 10−6 < X < 10−4 + 1.85× 10−6

}
= 99% (4.39)

P
{
9.81× 10−5 < X < 1.02× 10−4

}
= 99% (4.40)

In other words, any rate achieved by Raptor code has a BER in the above interval

with a probability of 99%.

4.5.2 Sources with Equal Transmit Power Levels

Here we assumed that ES = 2, and from (4.20) it can be shown that for optimal

decision regions in (4.26) T = 1.53. In the optimal decoding each erroneous detection

results in one error, and therefore if an erased symbol is detected as a non-erased

one it will have only a minor effect on the total decoding process. Yet in the case

of Raptor decoding, due to its iterative decoding nature, errors propagate and even

a small number of erroneous detections may result in decoding failure. Therefore, it

is to be expected that in our case the erasure zone should expand beyond the above

threshold.

We have simulated this scenario with different values for T . Fig. 4.5 shows the

achievable rates with different T values. As mentioned before, the achieved rate is the

rate at which the channel code guarantees a BER not exceeding 10−4. As expected,

there should be one optimum point for T . Fig. 4.6 shows that this optimum T is

around 1.8. As predicted above,this number exceeds the threshold acquired from the

optimal detection regions.

The achievable rate from (4.14) and (4.15) for β = 1 can be written as:

R1 ≤ C1(2, 0.5) = 1.9677 (4.41)

R2 ≤ C2(2, 2, 0.5) = 0.9860 (4.42)
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Figure 4.5: Performance for equal source power scenario with a hard decision stage
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Figure 4.6: Achievable rates for the interfering source with different T values
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From Fig. 4.5, for the case of T = 1.8, we derive R′
2 � 0.756. It can be concluded

that this scheme has achieved 76% of the interfering channel capacity. Furthermore,

we have increased the total throughput. Without the interfering source, the total rate

would be R = R′
1 = 1.38 (if the main DVB-RCS channel was using RS(204,188) and

rate 3/4 CoC with QPSK), while with our scheme it will increase to R = R′
1 +R′

2 =

1.38 + 0.756 = 2.138 which shows 55% increase of the throughput. Note that this

increase does not affect the performance of the main channel, which will be shown

later with simulation results.

4.5.3 Sources with Unequal Transmit Power Levels

Here, we present simulation results for a situation with sources that have unequal

power levels (β > 1). Fig. 4.7 shows BER against the rate of the interfering channel

with various β while ES1 = 4.5. As β increases, the achievable rate is increasing too.

We can compare these achieved rates with the capacity derived from (4.15) for the

same power scenario. Fig. 4.8 shows that the difference between the achieved rate

and the capacity decreases as β increases.

As discussed in the previous section, there is a tradeoff between power efficiency

and rate, and the optimum point of this tradeoff can be calculated through the op-

timization of Δ in (4.32). Fig. 4.9 shows Δ for our simulation settings. It can be

observed that the curve is convex, and increasing the difference between the source

powers after a certain point enlarges the gap between these two parameters. As an

example, the optimum β in our simulation for ES1 = 4.5 is βopt = 1.75, hence from

(4.2) ES2(opt) = 13.78.

Furthermore, Fig. 4.9 also shows that as ES1 increases, βopt is increased too. Fig.

4.10 demonstrates the value of βopt for different values of ES1 and shows this increasing

trend of βopt. This curve shows the optimization results of (4.32); i.e., for each ES1 it

gives the optimum power allocation scenario.
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Figure 4.11: Main and interfering channel performances for β = 1.75 and ES1 = 4.5

Fig. 4.11 shows the BER of the main and the interfering channels for β = 1.75 and

ES1 = 4.5. Note that since the main channel is transmitting an uncoded data stream

its performance is so poor. After some point the adverse effect of the interfering

channel on the main channel vanishes and the main channel performs as though

there were no interfering channel. We can conclude that the interfering source does

not have any effect on the performance of the main source.

The achievable rate from (4.14) and (4.15) for β = 1.75 and ES1 = 4.5 can be

written as:

R1 ≤ C1(4.5, 0.5) = 1.9998 (4.43)

R2 ≤ C2(4.5, 13.78, 0.5) = 1.9945 (4.44)

Compared to achieved rate of this scheme R′
2 � 1.778 (from Fig. 4.11) it can

be concluded that this scheme has achieved 89% of the interfering channel capacity.
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Figure 4.12: Interfering channel achievable rates for different ES2(test) levels

Furthermore, we have increased the total throughput. Without the interfering source,

again the total rate would be R = R′
1 = 1.38, while with our scheme it will increase

to R = R′
1+R′

2 = 1.38+1.778 = 3.158 which shows 128% increase of the throughput.

4.5.4 Power Adaptation

As mentioned earlier, for power adaptation we use achievable rate curves for the inter-

fering source at a specific noise power and under different power allocation scenarios,

simulated a priori. Fig. 4.12 shows these simulated curves for different ES2 levels at

σ =
√
0.5.

For example, consider that the interfering source starts transmitting with a test

power of ES2(test) = 8. After receiving feedback for the first codeword, let’s say it

calculates that the transmission rate is R2 = 1.6. From Fig. 4.12, it is evident that

for ES2(test) = 8 this means β = 1.73. From (4.2) it can be calculated that ES1 = 2.67.

Now that we have an estimation of ES1 we can find the optimum power difference
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between the two sources (βopt) and adjust the transmission power for the interfering

source. For this calculation we use Fig. 4.10. From this curve, which displays the

optimization results of (4.32), we can find the βopt, and using (4.2) we can find the new

value for ES2(opt). Here, for ES1 = 2.67, from Fig. 4.10 it can be seen that βopt = 1.53

and from (4.2) we derive the optimum value of ES2(opt) = 6.28. Therefore, instead of

using ES2(test) = 8, from now on we will use ES2(opt) = 6.28, which according to the

criteria (4.32), is the optimum power for this scenario.

For the sake of simplicity, steps 5-8 of the algorithm in section 4.4.3 can be merged

into one step. If we draw R2 against ES2(opt) we can skip between steps. Fig. 4.13

shows that for each test power level and any given R2, what is the optimum value for

ES2 . In the previous example where R2 was 1.6 and the test power was ES2(test) = 8,

Fig. 4.13 can be used to show that ES2(opt) = 6.28, which is the same value that was

calculated previously. Thus the calculation of ES2(opt) from R2 has been reduced to

one step. These curves can be expressed with tables that show for each ES2(test) and
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any given R2 what the value of ES2(opt) is.

4.6 Complexity Order

It has been shown the encoding of Raptor codes on BEC have linear complexity [89].

This is the case also for AWGN since the encoding process does not depend on the

channel type. However, for AWGN channels, in [105] the decoding complexity of

LDPC and LT layers of Raptor code and the overall complexity was found to be:

Cp
LDPC = ILDPCNe(ctanh + catanh) + ILDPC(4Ne − 2k +Ni)c (4.45)

Cp
LT = ILTnp(ctanh + catanh) + ILTnp(4a− 2

Ni

np

− 1)c (4.46)

CRaptor =

fde∑
p=1

Cp
LDPC + Cp

LT (4.47)

where ILT and ILDPC are the number of BP iterations for LT and LDPC layers,

respectively, k is the number of source symbols, Ni is the number of intermediate

symbols, n is the codeword length, Ne is the number of LDPC tanner graph edges, a

is the average degree of each check node and constant, p is the number of the decoding

attempt, np is the codeword length at decoding attempt p, fde is the total number of

decoding attempts and finally, ctanh, catanh and c are the computational complexity

for hyperbolic tangent, inverse hyperbolic tangent, and basic operations, respectively.

The total computational complexity order of Raptor code per decoding attempt

can be summarized as O(ILT (np +Ni) + ILDPC(Ne + k+Ni)). In our work all of the

above variables are fixed, except for np. Hence the overall complexity can be written

as CRaptor =
fde∑
p=1

Lnp where L is a constant. np can be written as np = k+ pI where I

is the number of extra bits received between two decoding attempts. From (2.20) we

have n = nfde = k(1 + ε) = k + kε. Hence I can be written I = kε/fde. The overall

81



complexity can be written as:

CR =

fde∑
p=1

Lnp = L

fde∑
p=1

k + pI = L(kfde + I

fde∑
p=1

p) = L(kfde +
Ifde(1 + fde)

2
) (4.48)

Hence, the complexity order can be written asO(Ifde
2)) = O(I(kε/I)2) = O( (n−k)2

I
).

Therefore we can conclude that the decoding of Raptor codes over AWGN in terms

of its codeword has a complexity order of O(n2).

At the destination node, as shown in Fig. 4.3, there is a decoding/encoding pair

for Raptor code and the decoder for the main source. Since the latter already existed

in the link, we will not consider it here. The encoder and decoder have polynomial

complexity O(n) and O(n2), as discussed above. At the interfering source node, the

encoder again has linear complexity. The power adaptations depends on tables that

have been simulated beforehand and, the interfering source will just look up the table

for the optimum power level, and this will not add to the complexity order.
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Chapter 5

Successive Decoding with

Constellation Rotation

5.1 Introduction

In this chapter, we will investigate a scheme to increase the capacity of an existing

DVB-RCS channel with the addition of an interfering source. Consider an existing

DVB-RCS link between a main source and a destination. As mentioned in the previ-

ous chapter, the idea is to transmit data from another source, an interfering source,

on the same channel to the same destination. This interfering source is symbol syn-

chronized with the main source and, since it is using the same channel, the channels

between the two sources and the destination are non-orthogonal. Thus, at the des-

tination, their mixed codewords need to be separated and decoded. This is done

through successive decoding. The interfering channel uses Raptor coding.

We can extend the work of the previous chapter and discuss successive decoding

in a more general manner. In a departure from the previous chapter, where we

assumed that in successive decoding the interfering source data is decoded first, here

we propose a scheme for decoding the main source data first. Decoding the interfering
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source data first results in some delay for the main source data, since the interfering

data source has to be decoded, subtracted from the received stream, and then fed

into the main decoder so that the main source data can finally be decoded.

In this chapter, we investigate a case where the main source data is decoded first

and the delay is transferred to the interfering source data. However, we demonstrate

that although decoding the main source data first it eliminates the delay for the main

source, this procedure diminishes decoding performance. There is a tradeoff between

delay and performance for the main source. We will demonstrate that in specific

power allocation scenarios, this deterioration in the performance of the main source

is negligible, while the corresponding delay is eliminated completely.

Furthermore, in some power allocation schemes, the symbols of the sources can-

cel one another. To address this problem we can use constellation rotation for the

interfering source. We will calculate the average distance between the points in the

constellation resulting from the superposition of the main and interfering sources’

constellations for different power scenarios. We will also find the optimum rotation

angle for each case. An average optimum rotation angle will also be found for the

general case.

5.2 System Model

Consider a main source S1 transmitting to destination D with QPSK modulation over

an AWGN channel. Source S2, the interfering source, starts transmitting on the same

channel with the same modulation. The main source uses DVB-RCS, MPEG profile

with RS(204,188), and CoC with rate 3/4, 2/3 or 1/2. The interfering source can use

the same FEC as the main source, followed by an extra Raptor encoding layer, but

for simplicity we will assume that it directly encodes its data with Raptor code.

We can assume that the transmitters are symbol synchronized. For both of the
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sources we define codewords xi where E [xi
2] = 1. We assume that the total power

P is constant and divided between two sources with the power allocation ratio α

(0 < α < 1). The destination receives the following:

y =
√

(1− α)Px1 +
√
αPx2 + z (5.1)

where z is a circular symmetric complex Gaussian random vector, z ∼ CSCG(0, σ2).

σ2

2
is the variance of AWGN in each dimension. Fig. 5.1 shows the system model.

Note that in the previous chapter, in contrast to this stage of our investigation, the

total power is not fixed.

Through successive decoding, the destination tries to decode both data streams.

The decoder can either decode the main or the interfering source data first. In both

cases, after decoding the data and regenerating its original transmitted codeword, it

subtracts the regenerated data from the received data stream to get the channel data

of the other source. This data is sent to its corresponding decoder.

There is a feedback channel between the destination and the interfering source.

The destination sends an acknowledgment every time it decodes a codeword of the

interfering source successfully, and the interfering source then proceeds to the next

codeword.
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5.3 Constellation Constrained Capacity for Two

Source MAC

We already calculated the constellation constrained capacity for a similar MAC in

Section 4.3. Here, the only change in the system model is the power allocation, which

was discussed in previous section. From (5.1) and (4.12), the achievable rate of the

interfering channel with MPSK modulation is as follows:

R2 ≤ I(x2; y) = log2M − 1

M2

M−1∑
k1=0

M−1∑
k2=0

E [log2 (ψ2)] (5.2)

where:

ψ2 =

M−1∑
i1=0

M−1∑
i2=0

e−
|√(1−α)P (x1(k1)−x1(i1))+

√
αP (x2(k2)−x2(i2))+z|2

σ2

M−1∑
i1=0

e−
|√(1−α)P (x1(k1)−x1(i1))+z|2

σ2

where E[x] is the expectation with respect to the distribution of z. For the main

channel from (4.13) it follows:

R1 ≤ I(x1; y|x2) = log2M − 1

M

M−1∑
k1=0

E [log2 (ψ1)] (5.3)

where:

ψ1 =

M−1∑
i1=0

e−
|√(1−α)P (x1(k1)−x1(i1))+z|2

σ2

e−
|z|2
σ2

The constellation constrained capacities for MPSK modulation can be computed
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Figure 5.2: Constellation constrained capacity regions for different power allocations

using (5.2) and (5.3). It can be seen that both equations are a function of the power

allocation ratio, α.

Depending on α, the constellation constrained region changes as shown in Fig.

5.2. Here, as α increases, the capacity region goes from the line OA (for α = 0) to

OABC. This rectangle expands vertically and reaches its maximum in OAGF . Later

it shrinks diagonally to OADEF (for α = 0.5) and again expands to OAGF . Finally

it start to shrink again, but this time horizontally to OIHF until it becomes the line

OF (for α = 1).

If we assume that the rate of the main channel is fixed at R1 = R′, then, as α

increases, the maximum value of R2 is increased from 0 to the level corresponding to

F , falls back to the level J and again rises and stays at F , until R′ falls out of the

capacity region (outage). The solid line in Fig. 5.3 shows R2 as α goes from zero to

one. Here the main channel rate is fixed at R1 = 1.2 while the total power is P = 10

and σ2 = 1. As mentioned before, the interfering source should not have any effect

on the main source. Hence, for α > 0.95 - since the main channel rate is in outage -

we do not consider the achieved rate R2 to be practical.

From Fig. 5.3 it can be seen that around α = 0.5, where the power of both

channels is close, R2 declines. This is due to the fact that with equal powers, symbols
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from two sources may cancel each other. For example, in the QPSK constellation, if

one source transmits symbol
√
P/2 and the other transmits −√P/2, the destination

only receives channel noise and all four bits (two from each source) are erased.

It is clear that if one of the sources rotates its constellation appropriately this loss

of rate can be compensated for. Without any loss of generality, we can assume that

the interfering source constellation is rotated. If we define the symbols of rotated

constellation x′
2 then: x′

2 = x2e
jθ.

For capacity analysis, (5.3) does not change since it does not have any terms with

x2. However, (5.2) is updated with x′
2 instead of x2:

R2 ≤ I(x′
2; y) = log2M − 1

M2

M−1∑
k1=0

M−1∑
k2=0

E [log2 (ψ2)] (5.4)

ψ2 =

M−1∑
i1=0

M−1∑
i2=0

e−
|√(1−α)P (x1(k1)−x1(i1))+ejθ

√
αP (x2(k2)−x2(i2))+z|2

σ2

M−1∑
i1=0

e−
|√(1−α)P (x1(k1)−x1(i1))+z|2

σ2

(5.5)
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In order to find maximum capacity for R2, we have to find the analytical optimum

value of θ such that:

θ∗ = arg max
θ∈(o,2π)

R2 = arg max
θ∈(0,2π)

I(x′
2; y) (5.6)

In [100] it was shown that for high SNR values, (5.6) can be approximated as

follows:

θ∗ = arg min
θ∈(0,2π)

M(θ) (5.7)

where:

M(θ) =
M−1∑
k1=0

M−1∑
k2=0

log2

(
M−1∑
i1=0

M−1∑
i2=0

ψM

)
(5.8)

ψM = e−
|√(1−α)P (x1(k1)−x1(i1))+ejθ

√
αP (x2(k2)−x2(i2))|2

2σ2

Fig. 5.4 shows (5.8) for θ ∈ (0, π/2) while P = 10, σ2 = 1 and α = 0.5. This

curve repeats itself for the next quarters. It can be seen that in this case θ∗ has

two optimum values at 31 and 59 degrees. The dashed line in Fig. 5.3 shows the

maximum capacity for R2 (5.4) while θ = 31◦. It can be seen that with constellation

rotation, the drop around α = 0.5 is compensated for, while there is a small decline

in capacity for low values of α.

Therefore, the capacity for both channels with or without rotation can be found

from (5.3) and (5.4). For simplicity, in this chapter we refer to them as follows:

R1 ≤ C1(α, P, σ
2) (5.9)

R2 ≤ C2(α, P, θ, σ
2) (5.10)
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Figure 5.4: Optimum rotation angle for achieving maximum capacity for R2

5.4 Successive Decoding

Since the main and the interfering sources are transmitting over the same channel,

the signals received by the destination consist of the codewords transmitted by both

sources. Successive decoding is used to separate these two signals. In the previous

chapter, we assumed that the interfering source had higher power and was decoded

first. Later, its codeword was regenerated and subtracted from the original received

signal to obtain the data of the main source, plus noise. We call this an Interfering

Source First (ISF) scheme.

As mentioned earlier, the interfering source uses Raptor code which is a rateless

code. When the interfering data is first decoded, the decoding of the main codeword

is delayed until after the successful decoding of the interfering source.

As shown in Fig. 5.5, due to channel conditions it is possible that the interfering

source codeword will become decodable only after receiving more symbols than the

length of the main source codeword. This results in a cumulative delay. Eventually
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the time gap between the received codeword from the source and the just-decoded

codeword will increase. If the main source codeword is decoded first, the problem

with the delay of the main source data is solved and the delay is transferred to the

interfering source data.

Therefore, we can extend this work to a situation where the data from the main

source can be decoded first and the same successive procedure is carried out for

the interfering source. We call this a Main Source First (MSF) scheme. The main

advantage of this method is its shorter delay for the main source. However, when

α > 0.5 (i.e., the main source power is less than the power of the interfering source)

this method diminishes the decoding performance of the main source, since the data

from the interfering source - although more powerful - has not been removed from

data stream, and thus has an adverse effect on the decoding process of the main

source. Nevertheless, although there is a reduction in the achievable rate of the main

channel, the achieved rate of the interfering channel increases. Overall, we can show

that, for some specific power allocation scenarios, the total rate achieved by both

sources in MSF is close to ISF, though it introduces less of a delay.

In both of the above scenarios, the achievable rate for both channels is highly

dependent on how the total power is divided between the two sources, i.e. on the value

of the α in (5.1). As α increases, more power is allocated to the interfering source

and its achieved rate is therefore increased. Around α = 0.5, symbols from both

sources cancel out each other and the rate decreases, but when the power difference

is increased again the rate increases too. We can demonstrate this with simulations.

In our simulations, a rate 0.98 right-regular LDPC code [89] with k = 1472 is

chosen as the pre-code. The codeword length of 1472 comes from the MPEG packet
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length in DVB-RCS, which has a payload of 184 bytes (or 1472 bits). For the LT

layer the distribution Ω(x) is the distribution for k = 65536 case in Table I at [89]:

Ω(x) = 0.008x+ 0.49x2 + 0.166x3 + 0.072x4 + 0.083x5 + 0.056x8 + 0.037x9

+ 0.056x19 + 0.025x66 + 0.003x67 (5.11)

The above degree distribution is optimized for the erasure channels. In [92] it was

shown that in AWGN channels, Raptor codes lose their generality and for each value

of σ a specific Raptor code should be designed. However, it was demonstrated that

although the degree distribution for the erasure channels is not optimized for AWGN

channels (leaving room for improvement) it performs very well and its achieved rate is

acceptable. Therefore, for the sake of simplicity, we used the BEC degree distribution

here.

In the destination decoder, both of the decoders employ belief propagation decod-

ing with iteration numbers of 50 and 300 for the LDPC layer and LT layer, respec-

tively. The modulation is QPSK (as it is defined in DVB-RCS standard) and P = 10,

σ2 = 1. The main source uses a concatenated code of RS(204,188) and CoC(3/4),

hence R1 = 1.382. Fig. 5.6 shows the interfering channel achieved rate and BER for

different α value with MSF scheme. It can be seen that there is a drop in the achieved

rate around α = 0.5, as expected. Besides that drop, as α increases, R2 is increased

too.

Fig. 5.7 shows the achievable rates for both schemes more clearly. In this figure,

as well as in all other simulations, the achieved rate is the rate at which the channel

code guarantees a BER not exceeding 10−4. Here we have shown both the interfering

channel’s achievable rate (R2) and the total achievable rate (R1 + R2) for ISF and

MSF.

In the case of ISF, the interfering source is decoded first. The destination requests
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R1 RS code CoC rate α range

1.382 (204,188) 3/4 α < 0.2
1.229 (204,188) 2/3 0.2 ≤ α < 0.4, 0.6 ≤ α < 0.7
1.092 (204,188) 1/2 0.7 ≤ α < 0.9
0 outage outage 0.4 ≤ α < 0.6, α > 0.9

Table 5.1: The changes of the main channel rate in MSF

as many symbols as it needs from the interfering source for the correct decoding of

its data. Therefore, the interference can be removed perfectly, and this does not have

any effect on the main source rate R1. For the total achievable rate, the curve for

R2 is added with R1 = 1.382, except for α > 0.95 where the allocated power for the

main source is too low and it is in outage.

However, for the MSF this is not the case. As mentioned before, when α > 0.5 the

decoding performance of the main source decreases. In order to compensate for this,

we have used stronger (lower rate) codes for the main source to guarantee the same

error-free transmission. Thus, the CoC rate can be reduced from 3/4 to 2/3 or 1/2

which corresponds to rate changing from R1 = 1.382 to R1 = 1.229 or R1 = 0.921,

respectively. If even with CoC(1/2) error-free transmission is not possible, an outage

has occurred and R1 is set to zero. Table 5.1 shows the changes of R1 for the MSF

in Fig. 5.7.

Therefore, although compared to ISF, MSF has achieved a higher rate for the

interfering channel around α = 0.8, because of decrease in R1, the total achieved rate

is still less than ISF.

It should also be noted that for α < 0.4 and 0.7 < α < 0.8 the performance of

MSF is close to ISF, though no delays are caused. Hence, in these power ranges, ISF

can be replaced by MSF when a delay effect is not desired.
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5.5 Constellation Rotation

We have shown that when the power level of the sources is close (i.e. α is close to

0.5), the capacity (as seen is Fig. 5.3) and the achievable rate (as seen in Fig. 5.7)

both decrease. As mentioned before, this is due to the fact that some symbols from

each source cancel the corresponding symbols from the other source. For example,

consider a case where α = 0.5. Fig. 5.8 shows the constellation map of the received

signal (without considering noise) for a QPSK system when the sources have equal

powers (α = 0.5).

Fig. 5.9 shows the demodulation decision regions of the received signal for α = 0.5

and P = 2. Here, each color defines the corresponding regions for each of the main

source symbols. In some regions, these decision regions overlap. If the source symbols

are equiprobable, a quarter of the symbols received at the destination are zero. For

these symbols, one of the sources has transmitted ±√
0.5P or ±j

√
0.5P and the

other source has sent its negative. Therefore, both symbols are lost. In some cases

the destination looses one bit from each symbol (for example, when the destination

receives
√
0.5P + j

√
0.5P ).

The erasure occurs when two symbols are too close to each other or overlap in the

constellation map. By rotation, we can put some distance between these symbols and

eliminate the decision region overlaps. Fig. 5.10 and 5.11 show the received signal

constellation map with α = 0.5, P = 2 and rotation angles of θ = 35◦ and θ = 45◦,

respectively. Again, each color defines the corresponding regions for each of the main

source symbols. It can be seen that in both rotations signal erasure is avoided and

the decision regions do not overlap anymore.

Without considering noise interference, (5.1) can be expanded as follows:

x1(m) = ej
mπ
2 (5.12)

x′
2(n) = ej(

nπ
2

+θ) (5.13)
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Figure 5.9: Decision regions of the received signal for α = 0.5 and P = 2
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Figure 5.10: Decision regions of the received signal for α = 0.5, P = 2 and θ = 35◦
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Figure 5.11: Decision regions of the received signal for α = 0.5, P = 2 and θ = 45◦
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y′m,n(α, θ) =
√
(1− α)Px1(m) +

√
αPx2(n)

=
√
(1− α)Pej

mπ
2 +

√
αPej(

nπ
2

+θ) (5.14)

where θ is the rotation angle of the interfering source constellation, y′ is the combi-

nation of the symbols transmitted by the sources and m,n = 0, 1, 2, 3.

The distance between any two received symbols can be written as:

dm,n,m′,n′(α, θ) =
∣∣y′m,n(α, θ)− y′m′,n′(α, θ)

∣∣ (5.15)

=
∣∣∣√(1− α)P (ej

mπ
2 − ej

m′π
2 ) +

√
αPejθ(ej

nπ
2 − ej

n′π
2 )
∣∣∣

where m,n,m′, n′ = 0, 1, 2, 3.

For any pair α and θ, there are 16 possible values for y′ and therefore 256 possible

values for d(α, θ). But we are just interested in the pair with the smallest distance that

may eventually cause detection error. Therefore, we find the pair with the minimum

distance:

D(α, θ) = min
m,n,m′,n′

{dm,n,m′,n′(α, θ)|m,n,m′, n′ = 0, 1, 2, 3, (m,n) �= (m′, n′)} (5.16)

D(α, θ) gives the minimum distance for any α and θ. We can determine what

is the optimum rotation angle that maximizes the minimum distance for each power

allocation scenario. For any given value of α we can find the optimum rotation angle

θopt:

θopt(α) = arg max
θ∈(0,2π)

D(α, θ) (5.17)

Fig. 5.12 shows this optimum rotation angle as a function of α. For α < 0.21

and α > 0.79 the rotation angle does not have any significant effect on the minimum

distance and performance of the system. It can be seen that as the power levels of
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Figure 5.12: Optimum rotation angle for each α maximizing the minimum distance

the two sources get closer, i.e. α gets closer to 0.5, the required rotation angle is

increased.

Fig. 5.12 also shows that in the case of α = 0.5 we have θopt = 30◦. This is close

to the optimal rotation angle from capacity calculations in (5.7), which for the case

of α = 0.5 in Fig. 5.4 was shown to be θ∗ = 31◦.

It may not be practical to have a specific rotation angle for each power allocation

scenario. It would be easier if we could decide on one rotation angle that would

increase the average performance of the system over the whole range of α. For this

we have to average the minimum distance on α and find the optimum rotation angle.

We average D in (5.16): (i = 0, 1, ..., t)

αi =
i

t
(5.18)

D̄(θ) =
1

n

t∑
i=0

D(αi, θ) (5.19)

θ̄opt = arg max
θ∈(0,2π)

D̄(θ) (5.20)

100



0 10 20 30 40 50 60 70 80 90
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

θ (degree)

D̄
(θ
)

Figure 5.13: Minimum distance between received symbols averaged on α values

where t is the number of values used in taking the average. D̄(θ) shows what is

the average minimum distance for a specific rotation angle and θ̄opt is the average

optimum rotation angle. Fig. 5.13 shows the average minimum distances for P = 10.

It is evident that in this setup θ̄opt has two optima in 21◦ and 69◦ that maximize the

minimum distance and give the highest performance on average.

We have simulated the effect of rotation on both the MSF and ISF schemes. Fig.

5.14 shows this effect when the ISF scheme is chosen and Fig. 5.15 shows the results

when the decoding scheme is switched to MSF with the same settings. As before,

here P = 10 and σ2 = 1. In both schemes, the rotation eliminates the rate drop

around α = 0.5 where the difference between power levels is small. The achievable

rates for θ = 21◦ and θ = 30◦ are in agreement, and the results are shown in Fig.

5.12. The rotation angle θ = 30◦ outperforms other rotation angles around α = 0.5

while θ = 21◦ gives higher achievable rates around α = 0.3 and α = 0.7.

Note that the bold curves in these figures demonstrate the optimum rotation
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scheme

degree θopt from (5.17) and, as expected, deliver the highest achievable rates. It can

be seen that these curves are the envelope of all other curves which each represent a

fixed rotation angle. In other words, at any particular α, the achievable rate by θopt

is always equal to or higher than the rates achieved by any of the other fixed rotation

angles, as if θopt is jumping from one fixed rotation angle to another as α increases.

Furthermore, if the destination can switch from MSF to ISF when α = 0.5, the

average optimum rotation degree θ̄opt = 21◦ gives the highest achievable rate on

average, as anticipated by Fig. 5.13. Although the achievable rate by θopt is higher

than θ̄opt, if it is not possible or practical to adjust the rotation angle for each specific

power allocation scheme with (5.17), we can use the average method (5.20) and find

the average optimum rotation angle without considering α values.
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5.6 Complexity Order

The complexity order of the schemes proposed in this chapter is similar to the com-

plexity orders presented in the previous chapter. Here we have introduced MSF be-

sides ISF (which its complexity order was discussed in Section 4.6) and constellation

rotation. The decoding model of MSF is similar to ISF with the decoding/encoding

of the main source first, and later the decoding of the interfering source data.

The Raptor decoder complexity order, as has already been discussed in Section

4.6, is O(n2) in terms of codeword length. We will not discuss the main source

decoder, since it was present in the link before the addition of the interfering source.

However, the re-encoding block of the main source channel code is new, and hence

the computational complexity is increased. The complexity order changes based on

what kind of channel code is used for the main channel. In case of DVB-RCS, the

decoding and encoding complexity of Turbo code has been shown to be linear [106].
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As for the constellation rotation, although it increases the complexity to some

extent, it does not have any effect on the complexity order since it is just multiplication

of each modulated symbol by a fixed phase rotation before transmission. This adds

only a fixed computational complexity to each symbol of the whole message.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we investigated various methods for improving the bandwidth efficiency

of MAC networks. These methods vary in terms of bandwidth utilization, complexity,

and channel orthogonality.

In Chapter 3, two schemes were proposed. One relies on iterative decoding where

the destination node iteratively decodes data received from the two sources and the

relay. This scheme was based on LLRs that were exchanged iteratively by the three

decoders at the destination. The second scheme uses the relay to increase the rate

and sends parity bits which were missed in the original broadcasts. In other words,

each source shortens its codeword and sends it to the relay and the destination. The

relay sends the combination of missing parts to the destination so that it can have

the whole codeword and decode it.

Both schemes reduce the error probability of decoding when one of the sources is

weaker than the other one, and performance increases as this gap increases. Relay

does not need to know the CSI between sources and destination, and blindly helps the

weaker one, i.e. although the relay is sending parity bits for both of the sources, it is
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helping the destination to decide which source needs parity to extracts its codeword

from the data transmitted by the relay.

In Chapter 4, we proposed the addition of an interfering channel to an already-

existing main channel without affecting the decoding performance of the main source

while the channels are non-orthogonal. The interfering source uses Raptor codes. We

assume that the power level of the interfering source is higher than or equal to the

power level of the main source, and at the destination successive decoding is used.

In successive decoding, first the interfering channel signal and later the signal from

the main channel are decoded. In the case of equal powers for both of the sources, a

hard decision stage is proposed prior to the decoding phase in order to eliminate the

misleading erased data.

In the case of sources with unequal power levels, we demonstrated that there is

an optimum power allocation scenario from a power efficiency-rate point of view.

We also proposed a power adaptation scheme which uses the feedback channel of

the Raptor code, estimates the channel state of the main channel, and chooses the

optimum power level for the interfering source accordingly. With this scheme, the

interfering source can adapt itself to the existing link efficiently without having any

direct access to the CSI of the main channel. Furthermore, this scheme is robust to

any quality change in either channel and adapts itself accordingly.

Our proposed method can be used in many wireless and satellite broadcasting and

communication systems, including DVB-S2 and DVB-RCS. An interesting aspect of

our proposed scheme is that it can be added to the already existing DVB-RCS hard-

ware without requiring any modification to the internal circuitry. We have simulated

both equal and unequal powers scenarios for DVB-RCS with MPEG profile. In both

schemes, the simulation results showed acceptable achievable rates around 89% and

76% of the constellation constrained capacity for the equal and unequal power sce-

narios, respectively.
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Finally, in Chapter 5 we investigated the addition of an extra interfering source

to an existing DVB channel. The destination uses successive decoding to decode

both sources and can decode either the main source or the interfering source first. As

discussed in previous chapter, by decoding the interfering source first, we achieve near-

capacity rates for the interfering source without affecting the decoding performance of

the main source. However, this introduces a delay in decoding the main source. Here,

we proposed decoding the main source data first and demonstrated that, although

decoding the main channel first eliminates this delay, it also diminishes the decoding

performance of the main source. Nevertheless, in specific power allocation scenarios,

the performances of the two schemes are close and the main source can be decoded

first, instead of the interfering source. This eliminates the delay without any major

loss in performance.

Meanwhile, when the difference between the power levels of the two sources is

small, symbols from the sources may cancel each other and reduce the achievable rate

in both schemes. To address this problem we have suggested constellation rotation.

There is an optimum rotation angle for any power allocation scenario, and if it is not

practical to adjust the rotation angle for each particular power allocation scenario,

an average optimal rotation angle that on averages, delivers the highest achievable

rate can be found.

6.2 Future Work

Both of the proposed ideas, the collaborative scheme in Chapter 3 and the interfering

source scheme in Chapters 4 and 5, can be developed beyond this thesis.

In the collaborative scheme, one of the ideas that can be pursued further is finding

the upper or lower bounds for the proposed schemes (much like the bounds calculated

in [22]). Finding these bounds gives the proposed scheme an analytic background and
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can be useful in demonstrating each scheme’s distance from optimum performance.

Furthermore, as mentioned before, the source-relay channels were considered to

be noise-free. An extension of this could be the consideration of noisy source-relay

channels. This noise which will result in SNR reduction can be modeled by distance

too. Therefore the performance of the system can be tested against different relay

positions. Meanwhile, in light of recent achievements in PNC [10], this idea can be

used in the relays and with less decoding complexity.

As for the scheme of introducing an interfering source to an existing scheme, one

possibility is extending the work to higher modulations. The current scheme uses

QPSK and the received constellation at the destination, if no symbol cancellation has

happened, is a 16-point constellation. However, this 16-point constellation is not a

standard 16PSK or 16QAM. The transmitting constellations can be chosen so that

the final received constellation is a standard map.

For example, assume that the main source is transmitting with 4QAM and the

interfering source chooses a 16QAM constellation, so that at the destination a 64QAM

map is received. To achieve this constellation map, the interfering source should

adjust its power according to the power level of the main source. The benefit of this

method is additional routine demodulation at the destination node.

Furthermore, in this work, we assumed that the main and interfering sources

data pass an AWGN channel and that there is no fading. An interesting topic for

further research is the investigation of the fading effect on the proposed scheme.

Fading effects have both advantages and disadvantages for this system. Since the

fading always changes the phase of the symbols, the constellation rotation which was

proposed will happen automatically in a fading channel, and will lower the encoding

complexity at the interfering source. However, besides the phase, the fading channel

alters the power level of the symbols too.

This means that if the power levels of the two sources are not significantly higher
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or lower that one another, the weak signal may become the stronger one at the

destination; i.e., if the main source was transmitting with higher power, due to the

fading effect, we receive interfering source data with higher power at the destination.

This will change the whole decoding scheme.

Finally, another appealing idea would be to study the use of distributed data trans-

mission under this scheme. This means that both sources have access to the same

data, but each encodes parts of it with a different redundancy. The main source en-

codes the higher-priority data and uses higher redundancy, and the interfering source

encodes the non-crucial details of data with lower redundancy. At the destination,

the data from main source is decoded first and gives the most significant pieces of

data. Later, if the data from interfering source can be decoded, the destination will

have a better image of the original data as a whole.

6.3 Publications

The following is a list of publications that are based on the results presented in this

thesis:

− M. J. Hagh and M. R. Soleymani, ”Constellation Rotation for DVB Multi-

ple Access Channels with Raptor coding,”IEEE Transactions on Broadcasting,

March 2013.

− M. J. Hagh and M. R. Soleymani, ”Application of Raptor Coding with Power

Adaptation to DVB Multiple Access Channels,” IEEE Transactions on Broad-

casting, vol.58, no.3, pp.379-389, Sept. 2012.

− M. J. Hagh and M. R. Soleymani, ”Power Adaptation for DVB Multiple Ac-

cess Channel with Raptor Code,” In Proc. IEEE Global Telecomm. Conf.

(GLOBECOM), pages 16, Houston, TX, December 2011.
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− M. J. Hagh and M. R. Soleymani, ”Raptor coding for Non-Orthogonal multiple

access channels,” In Proc. IEEE Int. Conf. Commun. (ICC), pages 16, Kyoto,

Japan, June 2011.

− M. J. Hagh and M. R. Soleymani, ”Novel Techniques in Cooperative Wireless

Networks using Network Coding,” in Proc. IEEE Canadian Conf. on Electrical

and Computer Engineering (CCECE), pages 557-562, Niagara Falls, Ontario,
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