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D2D communication trades short-range communication for achieving high communication rate and short communication latency.
Relay aided D2D communication can further tackle the problem of intermediate obstacles blocking the communication. In this
work, multidevice multicast communication via a layer of parallel relay nodes is considered. Two relaying strategies, respectively,
called the conventional relaying (CR) and network-coded relaying (NCR), are proposed. The throughput of these two schemes is
analytically derived and evaluated through numerical study.Theoretically, NCR shows advantage over CR in twofold: one is higher
throughput and the other is requiring less relay nodes and, hence, consuming less aggregate power. Numerical studies verify the
analysis and show that the throughput performance gap between the two schemes increases significantly, actually exponentially
with the number of devices.

1. Introduction

The main idea of D2D communication is to use short-range
communication to trade for high rate communication, short
delivery latency, and low aggregate consumption power [1–
3]. Sometimes, due to the mobility of devices (devices move
out of the communication coverage) or due to the fact that
intermediate obstacles are blocking the communication, the
communication link may be down intermittently [4]. These
facts render relay-aided D2D communication necessary.

For relay-aided communication networks [5, 6], there are
mainly two categories of strategies adopted by intermediate
relay, including physical-layer relaying and network-coded
relaying. For simple topology, for example, the point-to-point
D2D communication via intermediate relays [7], capacity is
given by the physical-layer technique in certain scenarios [8–
10]. However, for complex topology, physical-layer technique
tends to be unwieldy, while network coding (NC) [11, 12]
shows significant advantages. Typical topology examples
include interference network [13], multicast multihop net-
work [14], intracell uplink relay network [15], and multiple

unicasts networks [16] including three-node Alice-and-Bob
relay network, two unicasts X-topology, cross topology, and
wheel topology [17–25].

The full-duplex relay assumption in the above investi-
gations is not practical [26]. In practice, if “cheap” relay
is adopted, namely, half-duplex relay [27], which cannot
transmit and receive simultaneously, the advantage of NC
shown in the above investigations may be lost due to the
orthogonal transmission nature of the multiple transmitters.

In this paper, we investigate a more general and practical
model by considering the scenario where multiple devices
exchange information via a layer of intermediate relays,
namely, relay-aided D2D multicasting communication. For
this model, we propose two relaying protocols based on the
physical-layer andNC technique, respectively. Details of each
technique are illustrated below.

Physical-Layer Technique. Firstly, for the special case where
there is a single relay, the communication stage when all the
devices transmit simultaneously can be viewed as multiple
access channel (MAC) [28]. After this MAC stage, the
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relay broadcasts superimposed signals originating from the
devices, and the corresponding channel can be viewed as
broadcast channel (BC). In the BC stage, power allocation
among all the information streams originating from different
devices may degrade the system performance. In addition,
due to heavy burden on the single relay, multiple cheap
relays cooperately share the burden become a preference.
One natural solution is that a lot of parallel relays are
deployed between the devices, with each relay serving a
single device, respectively, a device, a relay that serves it, and
the other destination devices form a multicast single relay
network.We call this strategy conventionalmulticast relaying
(CMCR). The most desirable feature of this scheme is the
simple operation at each relay. However, since each relay only
decodes one device’s information while treating the other
devices’ signals as interference, the performance of CMCR is
interference-limited [29].

NC Technique. After the MAC stage, each relay firstly applies
NC operation on some information flows originating from
different devices and then multicasts the resultant informa-
tion flow to all the devices. Each device can employ the idea of
side information-aided decoding [30].More specifically, each
device performs decoding utilizing the message originating
from itself. We call this strategy network-coded multicast
relaying (NCMCR). The most desirable feature of NCMCR
is that the interference can be reduced to some extent, since
more devices’ signals are decoded at each relay and hence less
devices’ signals are treated as interference. Besides, this does
not involve power allocation among the information streams
at each relay node, which also embodies NC’s advantage over
the physical relaying technique.

2. System Model

Refer to Figure 1. Consider𝑀 devices, denoted as 𝑈
𝑖
for 𝑖 =

{1, 2, . . . ,𝑀} ≜M, exchanging information over a layer of𝑁
parallel relays, denoted as𝑅

𝑖
for 𝑖 = {1, 2, . . . , 𝑁} ≜N. Define

device terminal set U ≜ {𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑀
} and relay node set

R ≜ {𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑁
}. Device 𝑈

𝑖
multicasts information 𝑚

𝑖

to the other devicesU/{𝑈
𝑖
}, 𝑖 ∈ M. The devices are assumed

to be so far away that the wireless link between them can be
neglected. We assume that the communication between any
pair of devices experiences two hops, that is, through certain
relay nodes. Each node in the network is assumed to have
one single antenna and operates in half-duplex mode. Node
𝑖 ∈ U ∪R is subject to power constraint 𝑃

𝑖
. For simplicity,

we consider additive white Gaussian noise (AWGN) at the
receiver.

The communication between any pair of devices is
performed in two time slots. During the first time slot, the
devices simultaneously distribute their data while the relays
listen. During the second time slot, the relays forward the
messages to the devices.

Let 𝑋
𝑖
[𝑚], 𝑌

𝑖
[𝑚], and 𝑤

𝑖
[𝑚] be, respectively, the trans-

mitted symbol from node 𝑖, the received symbol, and the
thermal noise at node 𝑖, at time 𝑚, respectively, 𝑖 ∈ U ∪R.
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Figure 1: The general model.

The first hop’s input-output relationship is represented by the
following formula:

𝑌
𝑅𝑖
[𝑚] = ∑

𝑗∈U

𝑋
𝑈𝑗
[𝑚] + 𝑤𝑖 [𝑚] , 𝑖 ∈N, 𝑗 ∈M, (1)

which is subject to

Var {𝑋
𝑈𝑗
[𝑚]} ≤ 𝑃𝑈𝑗

. (2)

For simplicity, we assume that𝑃
𝑖
= 𝑃 and𝑤

𝑖
[𝑚] ∼ CN(0, 𝜎2)

for all 𝑖 ∈ U∪R. Define signal-to-noise ratio (SNR) Γ ≜ 𝑃/𝜎2.
The second hop’s input-output relationship depends on the
selected transmission scheme and is hence detailed in the
following sections. Define 𝑅

𝑚𝑖
and 𝑅

𝑚𝑖 ,𝑚𝑗
as the data rate of

information flow originating from source 𝑈
𝑖
and the data

rate of information flows originating from sources𝑈
𝑖
and𝑈

𝑗
,

respectively, 𝑖, 𝑗 ∈ U, 𝑖 ̸= 𝑗.

Remark 1. Throughout this paper, we assume that matched-
filter receiver is used; hence, the achievable rate in each hop
can be denoted by its capacity, and we let 𝐶(𝑥) ≜ log

2
(1 + 𝑥).

3. Proposed Transmission Protocols

For easy understanding, we first consider the special case
where there are three devices in Section 3.1. We then gen-
eralize the above results to an arbitrary number of devices
together with mathematical analysis, that is, to 𝑀 > 3, in
Section 3.2.

3.1. Proposed Schemes forThree Devices. Wedescribe the con-
ventional method, the proposed method, and the refined
proposed method, respectively.
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Figure 2: Conventional relaying.

3.1.1. Conventional Multicast Relaying (CMCR). Refer to
Figure 2. Relay 𝑅

𝑖
adopts decode-and-forward (DF) strategy

to relay device 𝑈
𝑖
’s signal to the other devices, 𝑖 ∈ {1, 2, 3} ≜

U
3
. In the following, we derive the achievable rate of each

device. Note that there are totally two stages of transmission
and the achievable rate is the minimum of these two stages.

In the first stage, since relay 𝑅
𝑖
only decodes the message

originating from device𝑈
𝑖
, the signals originating from other

devices’ are treated as interference, 𝑖 ∈ U
3
. In this case, the

achievable rate region is

𝑅
𝑚𝑖
≤ 𝐶(

𝑃
𝑈𝑖

𝜎2 + ∑
𝑗∈U3 ,𝑗 ̸=𝑖

𝑃
𝑈𝑗

) , (3)

which is simplified to

𝑅
𝑚𝑖
≤ 𝐶(

1

1/Γ + 2
) . (4)

In the second stage, device 𝑈
𝑖
intends to decode the

messages from relays 𝑅
𝑗
’s for 𝑗 ∈ U

3
/{𝑖}. This stage can be

viewed as a two-user MAC by treating the signal from relay
𝑅
𝑖
as interference. In this case, the achievable rate region is

𝑅
𝑚𝑗
≤ 𝐶(

𝑃
𝑅𝑗

𝜎2 + 𝑃
𝑅𝑖

) , 𝑗 ∈ U
3
/ {𝑖} ,

𝑅
𝑚𝑗
+ 𝑅
𝑚𝑘
≤ 𝐶(

𝑃
𝑅𝑗
+ 𝑃
𝑅𝑘

𝜎2 + 𝑃
𝑅𝑖

) , 𝑗, 𝑘 ∈ U
3
/ {𝑖} , 𝑗 ̸= 𝑘.

(5)

From (5), we obtain that the achievable rate region of the
message rate originating from device 𝑖 in the second stage is

𝑅
𝑚𝑖
≤
1

2
𝐶(

2

1/Γ + 1
) . (6)
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Figure 3: Network-coded relaying.

Combining (4) and (6), we obtain that the achievable rate
region of each device by CMCR is

𝑅
CMCR
𝑚𝑖

≤ min(𝐶( 1

1/Γ + 2
) ,
1

2
𝐶(

2

1/Γ + 1
)) (7)

= 𝐶(
1

1/Γ + 2
) . (8)

3.1.2. Network-Coded Multicast Relaying (NCMCR). Refer to
Figure 3. Device 𝑈

𝑖
selects relays 𝑅

𝑗
for all 𝑗 ∈ U

3
\ {𝑖} as

the intermediate relays to forward its message to the other
devices. Relay 𝑅

𝑗
performs the following procedures. Firstly,

it decodes the messages from devices 𝑈
𝑖
for 𝑖 ∈ U

3
\ {𝑗}.

Afterwards, it performs exclusive OR (XOR) operation on
the decoded information bits. Finally, it encodes the resultant
information bits into new codeword and sends the resultant
codeword out. We derive the achieved rate region in the
following.

In the first stage, relay𝑅
𝑖
needs to decode the signals from

devices𝑈
𝑗
’s for 𝑗 ∈ U

3
\{𝑖}.This stage can be viewed as a two-

user MAC.The achievable rate region is

𝑅
𝑚𝑗
≤ 𝐶(

𝑃
𝑈𝑗

𝜎2 + 𝑃
𝑈𝑖

) , 𝑗 ∈ U
3
/ {𝑖} ,

𝑅
𝑚𝑗
+ 𝑅
𝑚𝑘
≤ 𝐶(

𝑃
𝑈𝑗
+ 𝑃
𝑈𝑘

𝜎2 + 𝑃
𝑈𝑖

) , 𝑗, 𝑘 ∈ U
3
/ {𝑖} , 𝑗 ̸= 𝑘.

(9)

From (9), we obtain the achievable rate region of device𝑈
𝑖
in

the first stage as

𝑅
𝑚𝑖
≤
1

2
𝐶(

2

1/Γ + 1
) . (10)

In the second stage, since device𝑈
𝑖
intends to decode the

messages from relays𝑅
𝑗
’s for 𝑗 ∈ U

3
\{𝑖}, the channel can also
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be viewed as a two-user MAC. The achievable rate region at
decoder 𝑈

𝑖
is

𝑅
𝑚𝑖 ,𝑚𝑗

≤ 𝐶(

𝑃
𝑅𝑗

𝜎2 + 𝑃
𝑅𝑖

) , 𝑗 ∈ U
3
\ {𝑖} ,

𝑅
𝑚𝑖 ,𝑚𝑗

+ 𝑅
𝑚𝑖 ,𝑚𝑘

≤ 𝐶(

𝑃
𝑅𝑗
+ 𝑃
𝑅𝑘

𝜎2 + 𝑃
𝑅𝑖

) , 𝑗, 𝑘 ∈ U
3
\ {𝑖} , 𝑗 ̸= 𝑘.

(11)

Note that

𝑅
𝑚𝑖 ,𝑚𝑗

= min (𝑅
𝑚𝑖
, 𝑅
𝑚𝑗
) , 𝑖, 𝑗 ∈ U

3
, 𝑖 ̸= 𝑗. (12)

From (11) and (12), we obtain that the achievable rate region
of device 𝑈

𝑖
in the second stage is

𝑅
𝑚𝑖
≤
1

2
𝐶(

2

1/Γ + 1
) . (13)

Combining (10) and (13), we obtain that the achievable
rate region of device 𝑈

𝑖
by NCMCR is

𝑅
NCMCR
𝑚𝑖

≤
1

2
𝐶(

2

1/Γ + 1
) . (14)

3.1.3. Refined NCMCR. Combining (8) and (14), we can
obtain

𝑅
NCMCR
𝑚𝑖

> 𝑅
CMCR
𝑚𝑖

, (15)

which shows the advantage of NCMCR over CMCR. How-
ever, for more than 3 devices, the number of relays needed
by intuitively applying NCMCR should be 𝐶2

𝑀
, while CMCR

requires only𝑀 relays.
In the following, we propose amethod based onNCMCR

to reduce the number of relays required to be even less than
the number of devices. Without loss of generality, we first
illustrate the case for 𝑀 = 3. We remove relay 𝑅

1
and

keep the operations performed on the other relay nodes the
same as those described in Section 3.1.2 (refer to Figure 4).
Obviously, the decoding at device𝑈

1
can bemade the same as

before. Now, let us consider the decoding operation at devices
𝑈
2
and 𝑈

3
. Without loss of generality, we consider node 𝑈

2

only. It intends to decode 𝑚
1
and 𝑚

3
. Since 𝑚

2
is available

to 𝑈
2
and hence can be viewed as side information [31],

node 𝑈
2
first performs XOR operation on 𝑚

2
with 𝑚

1
⊕ 𝑚
2

which is forwarded by relay 𝑅
2
, obtaining𝑚

1
. Afterwards,𝑈

2

performs XOR operation again on 𝑚
1
and 𝑚

1
⊕ 𝑚
3
which is

forwarded by relay 𝑅
3
, obtaining 𝑚

3
. We name this protocol

as refined network-coded multicast relaying (RNCMCR).
In the following, we derive the achievable rate region of
RNCMCR.

In the first stage, consider relay 𝑅
2
. It needs to decode the

message from devices 𝑈
1
and 𝑈

2
, respectively. The channel

U1
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m1

m2 m3

R2
R3

m1 ⊕ m2 m1 ⊕ m3

Figure 4: Two relays.

can be viewed as a two-user MAC.The achievable rate region
is, therefore,

𝑅
𝑚𝑗
≤ 𝐶(

𝑃
𝑈𝑗

𝜎2 + 𝑃
𝑈3

) , 𝑗 ∈ {1, 2} ,

𝑅
𝑚1
+ 𝑅
𝑚2
≤ 𝐶(

𝑃
𝑈1
+ 𝑃
𝑈2

𝜎2 + 𝑃
𝑈3

) .

(16)

Similarly, for relay 𝑅
3
in the first stage, we have

𝑅
𝑚𝑗
≤ 𝐶(

𝑃
𝑈𝑗

𝜎2 + 𝑃
𝑈2

) , 𝑗 ∈ {1, 3} ,

𝑅
𝑚1
+ 𝑅
𝑚3
≤ 𝐶(

𝑃
𝑈1
+ 𝑃
𝑈3

𝜎2 + 𝑃
𝑈2

) .

(17)

We then obtain that the achievable rate region of device𝑈
𝑖
in

the first stage is

𝑅
𝑚𝑖
≤
1

2
𝐶(

2

1/Γ + 1
) . (18)

In the second stage, for device 𝑈
2
, we have

𝑅
𝑚1 ,𝑚2

≤ 𝐶(

𝑃
𝑅2

𝜎2
) = 𝐶 (Γ) ,

𝑅
𝑚1 ,𝑚3

≤ 𝐶(

𝑃
𝑅3

𝜎2
) = 𝐶 (Γ) ,

𝑅
𝑚1 ,𝑚2

+ 𝑅
𝑚1 ,𝑚3

≤ 𝐶(

𝑃
𝑅2
+ 𝑃
𝑅3

𝜎2
) = 𝐶 (2Γ) .

(19)

We then obtain that the achievable rate region of device𝑈
𝑖
in

the second stage is

𝑅
𝑚𝑖
≤
1

2
𝐶 (2Γ) . (20)
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Combining (18) with (20), we obtain that the achievable
rate region of device 𝑈

𝑖
by RNCMCR is

𝑅
RNCMCR
𝑚𝑖

≤
1

2
𝐶(

2

1/Γ + 1
) , (21)

which is the same as (14). It naturally indicates a conjecture
that, for𝑀 devices,𝑀 − 1 relays are enough for RNCMCR
without performance penalty with respect to that composed
of𝐶2
𝑀
relays. In the next subsection, we analytically verify this

conjecture and compare RNCMCR with CMCR.

3.2. Analysis for General Number of Devices. We first derive
the achievable rate region obtained byCMCR andRNCMCR,
respectively. We then compare these two schemes.

3.2.1. CMCR. Following the above derivation steps, we can
obtain that the achievable rate region byCMCR for𝑀 devices
and𝑀 relays in each stage is as follows.

Stage 1. Consider

𝑅 ≤ 𝐶(
1

𝑡 +𝑀 − 1
) , (22)

where 𝑡 ≜ 1/Γ.

Stage 2. Consider

𝑅 ≤
1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡 + 1
) . (23)

By jointly considering these two stages, we obtain

𝑅
CMCR

≤ min(𝐶( 1

𝑡 +𝑀 − 1
) ,

1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡 + 1
)) (24)

= 𝐶(
1

𝑡 +𝑀 − 1
) , (25)

where the proof of (25) is given inThe Appendix.

3.2.2. RNCMCR. Following the above derivation steps, we
can obtain that the achievable rate region by RNCMCR for
𝑀 devices and𝑀− 1 relays in each stage as follows.

Stage 1. Consider

𝑅 ≤
1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡 + 1
) . (26)

Stage 2. Consider

𝑅 ≤
1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡
) . (27)

By jointly considering these two stages, we obtain

𝑅
RNCMCR

≤ min( 1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡 + 1
) ,

1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡
))

(28)

=
1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡 + 1
) . (29)
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Figure 5: Throughput comparison at different SNRs,𝑀 = 3.

3.2.3. Comparison. Comparing (25) with (29), we obtain

𝑅
RNCMCR

> 𝑅
CMCR

. (30)

It reveals the fact that RNCMCR outperforms CMCR two-
fold. On one hand, it uses less relays and hence needs less
aggregate power budget. On the other hand, according to
(30), RNCMCR outperforms CMCR in terms of achievable
rate.

4. Numerical Study

In this section, we compare the achievable throughput of
different schemes, where throughput is defined as the sum
rate of all devices in the network. We set 𝜎 = 1.

For 𝑀 = 3, the achievable throughput of NCMCR and
CMCR is plotted in Figure 5.We can see that the performance
improvement in the high SNR region is around 33%.

In Figure 6, we consider the case where 𝑀 = 100. We
can see that the performance improvement is much more
significant than the𝑀 = 3 case.

To show the advantage under different number of devices,
we plot Figure 7 with the horizontal axis representing the
number of devices. We can see that the performance advan-
tage increases linearly with respect to the logarithm of 𝑀.
This indicates that our proposed scheme scales well with the
network size (in terms of the number of devices).

5. Conclusion

The throughput of a D2D communication aided by a mul-
tidevice multicast two-hop Gaussian parallel relay network
is analyzed. Both conventional relaying (CR) strategy and
network-coded relaying (NCR) strategy together with refined
version are proposed. Their achievable rates are evaluated
theoretically and numerically. Comparison results show that
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NCR outperforms CR; the advantage increases linearly with
respect to the logarithm of the number of devices, which
indicates that the proposed scheme scales well with the
network size.

Appendix

Proof for (25)
Proof. Since the case where𝑀 = 2 is just the Alice-and-Bob
model which has been considered in [32] and the case where

𝑀 = 3 has been analyzed previously, it suffices to prove for
the cases𝑀 ≥ 4 that the following equation holds:

𝐶(
1

𝑡 +𝑀 − 1
) <

1

𝑀 − 1
𝐶(

𝑀 − 1

𝑡 + 1
) . (A.1)

It is equivalent to prove

1 +
1

𝑡 +𝑀 − 1
< (1 +

𝑀 − 1

𝑡 + 1
)

1/(𝑀−1)

(A.2)

⇐⇒ (
𝑡 +𝑀

𝑡 +𝑀 − 1
)

𝑀−1

<
𝑡 +𝑀

𝑡 + 1

(A.3)

⇐⇒ (
𝑡 +𝑀

𝑡 +𝑀 − 1
)

𝑀−2

<
𝑡 +𝑀 − 1

𝑡 + 1
. (A.4)

At high SNR, we have 𝑡 → 0. Hence, (A.4) is equivalent
to

(
𝑀

𝑀 − 1
)

𝑀−2

< 𝑀 − 1

⇐⇒ (1 +
1

𝑀 − 1
)

𝑀−2

< 𝑀 − 1.

(A.5)

Note that 𝑓(𝑥) ≜ (1+(1/𝑥))𝑥−1monotonically increases with
respect to 𝑥 when 𝑥 > 0 and lim

𝑥→∞
𝑓(𝑥) = 𝑒 < 3 ≤ 𝑀 − 1

when𝑀 ≥ 4. We hence obtain (25).
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