194 research outputs found

    Evaluating clustering methods on topographic and hidrological features on lidar data at forest environment.

    Get PDF
    The acquisition of high resolution geographic data through laser technology has recently being expanded due to the development of LiDAR (Light Detection and Ranging) system. This technology?s growth is relying on its great ability to acquire information in large quantity and short time. The geographic data provided from laser scanning is capable of raising information for coast planning, assess flooding risk, power transmission network and telecommunication, forests, agriculture, oil, transportation, urban planning, mining, among others (GIONGO et al., 2010). LiDAR technology follows the same principles as the RADAR system, with the difference of using laser pulses to locate features, instead of radio waves. Not only for its ability to deal with large amounts of information in such a short period of time, LiDAR has the advantage upon the classic passive sensors (aerial photographs and satellite images) of not depending on a source of light, and so its data will never present shadows from clouds or neighboring features (GIONGO et al., 2010). Data from LiDAR sensor is distributed in a point cloud where each point has at least three-dimensional spatial coordinates (latitude, longitude and height) that correspond to a particular point on the Earth?s surface from which the laser pulse was reflected. Once LiDAR data is acquired the next step is use algorithms that separate points (also referred to as returns) on the point cloud that represents the ground and the ones above the ground level, those algorithms can then process series of interpolation that allows the operator to generate Digital Elevation Models (DEMs). In order to add information for the points within the DEM, labeling those returns following a pattern and then grouping them on clusters is useful as one of the steps in exploratory data analysis. Several methodologies were developed to organize a pattern of points in a multidimensional space into clusters based on similarity. Points belonging to the same cluster are given the same label and present a pattern where they are more similar to each other than they are to a pattern belonging to a different cluster (JAIN et al., 1999). One example to apply this technology on forestry activities is the application of silvicultural treatment to improve the forest?s productivity, where the decision is taken considering characteristics from the site and sites with similar characteristics may have the same silvicultural system. The variety of techniques for grouping data elements has produced a rich and often confusing assortment of clustering methods. Furthermore, there is a lack of studies grouping topologic and hydrologic variables at forested environments. The goal of this survey is to evaluate k-means and CLARA clustering techniques on a LiDAR-derived DEM from southern Amazonia, in the municipality of Cotriguaçu, Mato Grosso, Brazil

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories

    Get PDF
    Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR’s ability to capture three-dimensional structure has led to interest in conducting or augmenting forest inventories with LiDAR data. Prior to applying LiDAR in operational management, it is necessary to understand the errors in Li- DAR-derived estimates of forest inventory metrics (i.e., tree height). Most LiDAR-based forest inventory metrics require creation of digital elevation models (DEM), and because metrics are calculated relative to the DEM surface, errors within the DEMs propagate into delivered metrics. This study combines LiDAR DEMs and 54 ground survey plots to investigate how surface morphology and vegetation structure influence DEM errors. The study further compared two LiDAR classification algorithms and found no significant difference in their performance. Vegetation structure was found to have no influence, whereas increased variability in the vertical error was observed on slopes exceeding 30°, illustrating that these algorithms are not limited by high-biomass western coniferous forests, but that slope and sensor accuracy both play important roles. The observed vertical DEM error translated into ±1%–3% error range in derived timber volumes, highlighting the potential of LiDAR-derived inventories in forest management

    A comparison of open-source LiDAR filtering algorithms in a mediterranean forest environment

    Get PDF
    Light detection and ranging (LiDAR) is an emerging remote-sensing technology with potential to assist in mapping, monitoring, and assessment of forest resources. Despite a growing body of peer-reviewed literature documenting the filtering methods of LiDAR data, there seems to be little information about qualitative and quantitative assessment of filtering methods to select the most appropriate to create digital elevation models with the final objective of normalizing the point cloud in forestry applications. Furthermore, most algorithms are proprietary and have high purchase costs, while a few are openly available and supported by published results. This paper compares the accuracy of seven discrete return LiDAR filtering methods, implemented in nonproprietary tools and software in classification of the point clouds provided by the Spanish National Plan for Aerial Orthophotography (PNOA). Two test sites in moderate to steep slopes and various land cover types were selected. The classification accuracy of each algorithm was assessed using 424 points classified by hand and located in different terrain slopes, cover types, point cloud densities, and scan angles. MCC filter presented the best overall performance with an 83.3% of success rate and a Kappa index of 0.67. Compared to other filters, MCC and LAStools balanced quite well the error rates. Sprouted scrub with abandoned logs, stumps, and woody debris and terrain slopes over 15° were the most problematic cover types in filtering. However, the influence of point density and scan-angle variables in filtering is lower, as morphological methods are less sensitive to them

    Remote mining: from clustering to DTM

    Get PDF
    LIDAR data acquisition is becoming an indispensable task for terrain characterization in large surfaces. In Mediterranean woods this job results hard due to the great variety of heights and forms, as well as sparse vegetation that they present. A new data mining-based approach is proposed with the aim of classifying LIDAR data clouds as a first step in DTM generation. The developed methodology consists in a multi-step iterative process that splits the data into different classes (ground and low/med/high vegetation) by means of a clustering algorithm. This method has been tested on three different areas of the southern Spain with successful results, verging on 80% hitsMinisterio de Ciencia y Tecnología TIN2007-6808

    Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires

    Get PDF
    Mediterranean forests are recurrently affected by fire. The recurrence of fire in such environments and the number and severity of previous fire events are directly related to fire risk. Fuel type classification is crucial for estimating ignition and fire propagation for sustainable forest management of these wildfire prone environments. The aim of this study is to classify fuel types according to Prometheus classification using low-density Airborne Laser Scanner (ALS) data, Sentinel 2 data, and 136 field plots used as ground-truth. The study encompassed three different Mediterranean forests dominated by pines (Pinus halepensis, P. pinaster y P. nigra), oaks (Quercus ilex) and quercus (Q. faginea) in areas affected by wildfires in 1994 and their surroundings. Two metric selection approaches and two non-parametric classification methods with variants were compared to classify fuel types. The best-fitted classification model was obtained using Support Vector Machine method with radial kernel. The model includes three ALS and one Sentinel-2 metrics: the 25th percentile of returns height, the percentage of all returns above mean, rumple structural diversity index and NDVI. The overall accuracy of the model after validation was 59%. The combination of data from active and passive remote sensing sensors as well as the use of adapted structural diversity indices derived from ALS data improved accuracy classification. This approach demonstrates its value for mapping fuel type spatial patterns at a regional scale under different heterogeneous and topographically complex Mediterranean forests

    Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA

    Get PDF
    Quantifying forest structure is important for sustainable forest management, as it relates to a wide variety of ecosystem processes and services. Lidar data have proven particularly useful for measuring or estimating a suite of forest structural attributes such as canopy height, basal area, and LAI. However, the potential of this technology to characterize forest succession remains largely untested. The objective of this study was to evaluate the use of lidar data for characterizing forest successional stages across a structurally diverse, mixed-species forest in Northern Idaho. We used a variety of lidar-derived metrics in conjunction with an algorithmic modeling procedure (Random Forests) to classify six stages of three-dimensional forest development and achieved an overall accuracy \u3e95%. The algorithmic model presented herein developed ecologically meaningful classifications based upon lidar metrics quantifying mean vegetation height and canopy cover, among others. This study highlights the utility of lidar data for accurately classifying forest succession in complex, mixed coniferous forests; but further research should be conducted to classify forest successional stages across different forests types. The techniques presented herein can be easily applied to other areas. Furthermore, the final classification map represents a significant advancement for forest succession modeling and wildlife habitat assessment

    Classification of airborne laser scanning point clouds based on binomial logistic regression analysis

    Get PDF
    This article presents a newly developed procedure for the classification of airborne laser scanning (ALS) point clouds, based on binomial logistic regression analysis. By using a feature space containing a large number of adaptable geometrical parameters, this new procedure can be applied to point clouds covering different types of topography and variable point densities. Besides, the procedure can be adapted to different user requirements. A binomial logistic model is estimated for all a priori defined classes, using a training set of manually classified points. For each point, a value is calculated defining the probability that this point belongs to a certain class. The class with the highest probability will be used for the final point classification. Besides, the use of statistical methods enables a thorough model evaluation by the implementation of well-founded inference criteria. If necessary, the interpretation of these inference analyses also enables the possible definition of more sub-classes. The use of a large number of geometrical parameters is an important advantage of this procedure in comparison with current classification algorithms. It allows more user modifications for the large variety of types of ALS point clouds, while still achieving comparable classification results. It is indeed possible to evaluate parameters as degrees of freedom and remove or add parameters as a function of the type of study area. The performance of this procedure is successfully demonstrated by classifying two different ALS point sets from an urban and a rural area. Moreover, the potential of the proposed classification procedure is explored for terrestrial data

    Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues

    Get PDF
    This paper reviews LiDAR ground filtering algorithms used in the process of creating Digital Elevation Models. We discuss critical issues for the development and application of LiDAR ground filtering algorithms, including filtering procedures for different feature types, and criteria for study site selection, accuracy assessment, and algorithm classification. This review highlights three feature types for which current ground filtering algorithms are suboptimal, and which can be improved upon in future studies: surfaces with rough terrain or discontinuous slope, dense forest areas that laser beams cannot penetrate, and regions with low vegetation that is often ignored by ground filters
    corecore