1,081 research outputs found

    Macroscopic coherent structures in a stochastic neural network: from interface dynamics to coarse-grained bifurcation analysis

    Get PDF
    We study coarse pattern formation in a cellular automaton modelling a spatially-extended stochastic neural network. The model, originally proposed by Gong and Robinson (Phys Rev E 85(5):055,101(R), 2012), is known to support stationary and travelling bumps of localised activity. We pose the model on a ring and study the existence and stability of these patterns in various limits using a combination of analytical and numerical techniques. In a purely deterministic version of the model, posed on a continuum, we construct bumps and travelling waves analytically using standard interface methods from neural field theory. In a stochastic version with Heaviside firing rate, we construct approximate analytical probability mass functions associated with bumps and travelling waves. In the full stochastic model posed on a discrete lattice, where a coarse analytic description is unavailable, we compute patterns and their linear stability using equation-free methods. The lifting procedure used in the coarse time-stepper is informed by the analysis in the deterministic and stochastic limits. In all settings, we identify the synaptic profile as a mesoscopic variable, and the width of the corresponding activity set as a macroscopic variable. Stationary and travelling bumps have similar meso- and macroscopic profiles, but different microscopic structure, hence we propose lifting operators which use microscopic motifs to disambiguate them. We provide numerical evidence that waves are supported by a combination of high synaptic gain and long refractory times, while meandering bumps are elicited by short refractory times

    Multiscale motion and deformation of bumps in stochastic neural fields with dynamic connectivity

    Full text link
    The distinct timescales of synaptic plasticity and neural activity dynamics play an important role in the brain's learning and memory systems. Activity-dependent plasticity reshapes neural circuit architecture, determining spontaneous and stimulus-encoding spatiotemporal patterns of neural activity. Neural activity bumps maintain short term memories of continuous parameter values, emerging in spatially-organized models with short term excitation and long-range inhibition. Previously, we demonstrated nonlinear Langevin equations derived using an interface method accurately describe the dynamics of bumps in continuum neural fields with separate excitatory/inhibitory populations. Here we extend this analysis to incorporate effects of slow short term plasticity that modifies connectivity described by an integral kernel. Linear stability analysis adapted to these piecewise smooth models with Heaviside firing rates further indicate how plasticity shapes bumps' local dynamics. Facilitation (depression), which strengthens (weakens) synaptic connectivity originating from active neurons, tends to increase (decrease) stability of bumps when acting on excitatory synapses. The relationship is inverted when plasticity acts on inhibitory synapses. Multiscale approximations of the stochastic dynamics of bumps perturbed by weak noise reveal the plasticity variables evolve to slowly diffusing and blurred versions of that arising in the stationary solution. Nonlinear Langevin equations associated with bump positions or interfaces coupled to slowly evolving projections of plasticity variables accurately describe the wandering of bumps underpinned by these smoothed synaptic efficacy profiles.Comment: 19 pages, 11 figure

    Stability of Travelling Waves for Reaction-Diffusion Equations with Multiplicative Noise

    Full text link
    We consider reaction-diffusion equations that are stochastically forced by a small multiplicative noise term. We show that spectrally stable travelling wave solutions to the deterministic system retain their orbital stability if the amplitude of the noise is sufficiently small. By applying a stochastic phase-shift together with a time-transform, we obtain a semilinear sPDE that describes the fluctuations from the primary wave. We subsequently develop a semigroup approach to handle the nonlinear stability question in a fashion that is closely related to modern deterministic methods
    • …
    corecore