11 research outputs found

    Propagating semantic information in biochemical network models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation.</p> <p>Results</p> <p>A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements.</p> <p>Conclusions</p> <p>Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at <url>http://www.semanticsbml.org</url>.</p

    Retrieval, alignment, and clustering of computational models based on semantic annotations

    Get PDF
    As the number of computational systems biology models increases, new methods are needed to explore their content and build connections with experimental data. In this Perspective article, the authors propose a flexible semantic framework that can help achieve these aims

    Comparing biological networks via graph compression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges.</p> <p>Results</p> <p>This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, <it>H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae,</it> and <it>B. subtilis,</it> and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks.</p> <p>Conclusions</p> <p>Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.</p

    Knowledge-based generalization of metabolic models

    Get PDF
    International audienceGenome-scale metabolic model reconstruction is a complicated process beginning with (semi-)automatic inference of the reactions participating in the organism's metabolism, followed by many iterations of network analysis and improvement. Despite advances in automatic model inference and analysis tools, reconstruction may still miss some reactions or add erroneous ones. Consequently, a human expert's analysis of the model will continue to play an important role in all the iterations of the reconstruction process. This analysis is hampered by the size of the genome-scale models (typically thousands of reactions), which makes it hard for a human to understand them. To aid human experts in curating and analyzing metabolic models, we have developed a method for knowledge-based generalization that provides a higher-level view of a metabolic model, masking its inessential details while presenting its essential structure. The method groups biochemical species in the model into semantically equivalent classes based on the ChEBI ontology, identifies reactions that become equivalent with respect to the generalized species, and factors those reactions into generalized reactions. Generalization allows curators to quickly identify divergences from the expected structure of the model, such as alternative paths or missing reactions, that are the priority targets for further curation. We have applied our method to genome-scale yeast metabolic models and shown that it improves understanding by helping to identify both specificities and potential errors

    Pathway Hunter Tool (PHT) � A Platform for Metabolic Network Analysis and Potential Drug Targeting

    Get PDF
    Metabolic network analysis will play a major role in �Systems Biology� in the future as they represent the backbone of molecular activity within the cell. Recent studies have taken a comparative approach toward interpreting these networks, contrasting networks of different species and molecular types, and under varying conditions. We have developed a robust algorithm to calculate shortest path in the metabolic network using metabolite chemical structure information. A divide and conquer technique using Maximal Common Subgraph (MCS) approach and binary fingerprint was used to map each substrate onto its corresponding product. Then for the calculation of the shortest paths (using modified Breadth First Search algorithm) the two biochemical criteria �local� and �global� structural similarity were used, where �local similarity� is defined as the similarity between two intermediate molecules and �global similarity� is defined as the amount of conserved structure found between the source metabolite and the destination metabolites after a series of reaction steps. The pathway alignment was introduced to find enzyme(s) preference in the pathway of various organisms (a local and global outlook to metabolic networks). This was also used to predict potentially missing enzymes in the pathway. A novel concept called �load points� and �choke points� identifies hot spots in the network. This was used to find important enzymes in the pathogens metabolic network for potential drug targets

    Finding conserved patterns in biological sequences, networks and genomes

    Get PDF
    Biological patterns are widely used for identifying biologically interesting regions within macromolecules, classifying biological objects, predicting functions and studying evolution. Good pattern finding algorithms will help biologists to formulate and validate hypotheses in an attempt to obtain important insights into the complex mechanisms of living things. In this dissertation, we aim to improve and develop algorithms for five biological pattern finding problems. For the multiple sequence alignment problem, we propose an alternative formulation in which a final alignment is obtained by preserving pairwise alignments specified by edges of a given tree. In contrast with traditional NPhard formulations, our preserving alignment formulation can be solved in polynomial time without using a heuristic, while having very good accuracy. For the path matching problem, we take advantage of the linearity of the query path to reduce the problem to finding a longest weighted path in a directed acyclic graph. We can find k paths with top scores in a network from the query path in polynomial time. As many biological pathways are not linear, our graph matching approach allows a non-linear graph query to be given. Our graph matching formulation overcomes the common weakness of previous approaches that there is no guarantee on the quality of the results. For the gene cluster finding problem, we investigate a formulation based on constraining the overall size of a cluster and develop statistical significance estimates that allow direct comparisons of clusters of different sizes. We explore both a restricted version which requires that orthologous genes are strictly ordered within each cluster, and the unrestricted problem that allows paralogous genes within a genome and clusters that may not appear in every genome. We solve the first problem in polynomial time and develop practical exact algorithms for the second one. In the gene cluster querying problem, based on a querying strategy, we propose an efficient approach for investigating clustering of related genes across multiple genomes for a given gene cluster. By analyzing gene clustering in 400 bacterial genomes, we show that our algorithm is efficient enough to study gene clusters across hundreds of genomes

    Data integration for biological network databases: MetNetDB labeled graph model and graph matching algorithm

    Get PDF
    To understand the cellular functions of genes requires investigating a variety of biological data, including experimental data, annotation from online databases and literatures, information about cellular interactions, and domain knowledge from biologists. These requirements demand a flexible and powerful biological data management system. MetNetDB is the biological database component of the MetNet platform (http://metnetdb.org/), a software platform for Arabidopsis system biology. This work describes a labeled graph model that addresses the challenges associated with biological network databases, and discusses the implementation of this model in MetNetDB. MetNetDB integrates most recent data from various sources, including biological networks, gene annotation, metabolite information, and protein localization data. The integration contains four steps: data model transformation and integration; semantic mapping; data conversion and integration; and conflict resolution. MetNetDB is established as a labeled graph model. The graph structure supports network data storage and application of graph analysis algorithm. The node and edge labels have the same extension capability as object data model. In addition, rules are used to guarantee the biological network data integrity; operations are defined for graph edit and comparison. To facilitate the integration of network data, which is often inaccurate or incomplete, a subgraph extraction algorithm is designed for MetNetDB. This algorithm allows subgraph querying based on user-specified biomolecules. Both exact matching and approximate matching with biomolecules in networks are supported. The similarity among biomolecules is inferred from expression patterns, gene ontology, chemical ontology, and protein-gene relationships. Combined with the implementation of Messmer\u27s approximate subgraph isomorphism algorithm, MetNetDB supports exact and approximate graph matching. Based on the MetNetDB labeled graph model and the graph matching algorithms, the MetNetDB curator tool is built with several innovative features, including active biological rule checking during network curation, tracking data change history, and a biologist-friendly visual graph query system

    In-silico-Systemanalyse von Biopathways

    Get PDF
    Chen M. In silico systems analysis of biopathways. Bielefeld (Germany): Bielefeld University; 2004.In the past decade with the advent of high-throughput technologies, biology has migrated from a descriptive science to a predictive one. A vast amount of information on the metabolism have been produced; a number of specific genetic/metabolic databases and computational systems have been developed, which makes it possible for biologists to perform in silico analysis of metabolism. With experimental data from laboratory, biologists wish to systematically conduct their analysis with an easy-to-use computational system. One major task is to implement molecular information systems that will allow to integrate different molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic reactions). Three key problems are involved: 1) Modeling and simulation of biological processes; 2) Reconstruction of metabolic pathways, leading to predictions about the integrated function of the network; and 3) Comparison of metabolism, providing an important way to reveal the functional relationship between a set of metabolic pathways. This dissertation addresses these problems of in silico systems analysis of biopathways. We developed a software system to integrate the access to different databases, and exploited the Petri net methodology to model and simulate metabolic networks in cells. It develops a computer modeling and simulation technique based on Petri net methodology; investigates metabolic networks at a system level; proposes a markup language for biological data interchange among diverse biological simulators and Petri net tools; establishes a web-based information retrieval system for metabolic pathway prediction; presents an algorithm for metabolic pathway alignment; recommends a nomenclature of cellular signal transduction; and attempts to standardize the representation of biological pathways. Hybrid Petri net methodology is exploited to model metabolic networks. Kinetic modeling strategy and Petri net modeling algorithm are applied to perform the processes of elements functioning and model analysis. The proposed methodology can be used for all other metabolic networks or the virtual cell metabolism. Moreover, perspectives of Petri net modeling and simulation of metabolic networks are outlined. A proposal for the Biology Petri Net Markup Language (BioPNML) is presented. The concepts and terminology of the interchange format, as well as its syntax (which is based on XML) are introduced. BioPNML is designed to provide a starting point for the development of a standard interchange format for Bioinformatics and Petri nets. The language makes it possible to exchange biology Petri net diagrams between all supported hardware platforms and versions. It is also designed to associate Petri net models and other known metabolic simulators. A web-based metabolic information retrieval system, PathAligner, is developed in order to predict metabolic pathways from rudimentary elements of pathways. It extracts metabolic information from biological databases via the Internet, and builds metabolic pathways with data sources of genes, sequences, enzymes, metabolites, etc. The system also provides a navigation platform to investigate metabolic related information, and transforms the output data into XML files for further modeling and simulation of the reconstructed pathway. An alignment algorithm to compare the similarity between metabolic pathways is presented. A new definition of the metabolic pathway is proposed. The pathway defined as a linear event sequence is practical for our alignment algorithm. The algorithm is based on strip scoring the similarity of 4-hierarchical EC numbers involved in the pathways. The algorithm described has been implemented and is in current use in the context of the PathAligner system. Furthermore, new methods for the classification and nomenclature of cellular signal transductions are recommended. For each type of characterized signal transduction, a unique ST number is provided. The Signal Transduction Classification Database (STCDB), based on the proposed classification and nomenclature, has been established. By merging the ST numbers with EC numbers, alignments of biopathways are possible. Finally, a detailed model of urea cycle that includes gene regulatory networks, metabolic pathways and signal transduction is demonstrated by using our approaches. A system biological interpretation of the observed behavior of the urea cycle and its related transcriptomics information is proposed to provide new insights for metabolic engineering and medical care

    A Multiple Alignment Algorithm for Metabolic Pathway Analysis using Enzyme Hierarchy

    No full text
    In many of the chemical reactions in living cells, enzymes act as catalysts in the conversion of certain compounds (substrates) into other compounds (products). Comparative analyses of the metabolic pathways formed by such reactions give important information on their evolution and on pharmacological targets (Dandekar ## ### 1999). Each of the enzymes that constitute a pathway is classied according to the EC (Enzyme Commission) numbering system, which consists of four sets of numbers that categorize the type of the chemical reaction catalyzed. In this study,we consider that reaction similarities can be expressed by the similarities between EC numbers of the respective enzymes. Therefore, in order to nd a common pattern among pathways, it is desirable to be able to use the functional hierarchy of EC numbers to express the reaction similarities. In this paper, we propose a multiple alignment algorithm utilizing information content that is extended to symbols having ..
    corecore