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Abstract 
 

 

 
In the past decade with the advent of high-throughput technologies, biology has migrated from 

a descriptive science to a predictive one. A vast amount of information on the metabolism 

have been produced; a number of specific genetic/metabolic databases and computational 

systems have been developed, which makes it possible for biologists to perform in silico 

analysis of metabolism. With experimental data from laboratory, biologists wish to 

systematically conduct their analysis with an easy-to-use computational system. One major 

task is to implement molecular information systems that will allow to integrate different 

molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic 

reactions). Three key problems are involved: 1) Modeling and simulation of biological 

processes; 2) Reconstruction of metabolic pathways, leading to predictions about the 

integrated function of the network; and 3) Comparison of metabolism, providing an important 

way to reveal the functional relationship between a set of metabolic pathways. 

This dissertation addresses these problems of in silico systems analysis of 

biopathways. We developed a software system to integrate the access to different databases, 

and exploited the Petri net methodology to model and simulate metabolic networks in cells. It 

develops a computer modeling and simulation technique based on Petri net methodology; 

investigates metabolic networks at a system level; proposes a markup language for biological 

data interchange among diverse biological simulators and Petri net tools; establishes a web-

based information retrieval system for metabolic pathway prediction; presents an algorithm for 

metabolic pathway alignment; recommends a nomenclature of cellular signal transduction; and 

attempts to standardize the representation of biological pathways. 

Hybrid Petri net methodology is exploited to model metabolic networks. Kinetic 

modeling strategy and Petri net modeling algorithm are applied to perform the processes of 

elements functioning and model analysis. The proposed methodology can be used for all other 
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metabolic networks or the virtual cell metabolism. Moreover, perspectives of Petri net 

modeling and simulation of metabolic networks are outlined. 

A proposal for the Biology Petri Net Markup Language (BioPNML) is presented. The 

concepts and terminology of the interchange format, as well as its syntax (which is based on 

XML) are introduced. BioPNML is designed to provide a starting point for the development of 

a standard interchange format for Bioinformatics and Petri nets. The language makes it 

possible to exchange biology Petri net diagrams between all supported hardware platforms and 

versions. It is also designed to associate Petri net models and other known metabolic 

simulators.  

A web-based metabolic information retrieval system, PathAligner, is developed in 

order to predict metabolic pathways from rudimentary elements of pathways. It extracts 

metabolic information from biological databases via the Internet, and builds metabolic 

pathways with data sources of genes, sequences, enzymes, metabolites, etc. The system also 

provides a navigation platform to investigate metabolic related information, and transforms the 

output data into XML files for further modeling and simulation of the reconstructed pathway. 

An alignment algorithm to compare the similarity between metabolic pathways is 

presented. A new definition of the metabolic pathway is proposed. The pathway defined as a 

linear event sequence is practical for our alignment algorithm. The algorithm is based on strip 

scoring the similarity of 4-heirachical EC numbers involved in the pathways. The algorithm 

described has been implemented and is in current use in the context of the PathAligner system. 

Furthermore, new methods for the classification and nomenclature of cellular signal 

transductions are recommended. For each type of characterized signal transduction, a unique 

ST number is provided. The Signal Transduction Classification Database (STCDB), based on 

the proposed classification and nomenclature, has been established. By merging the ST 

numbers with EC numbers, alignments of biopathways are possible. 

Finally, a detailed model of urea cycle that includes gene regulatory networks, 

metabolic pathways and signal transduction is demonstrated by using our approaches. A 

system biological interpretation of the observed behavior of the urea cycle and its related 

transcriptomics information is proposed to provide new insights for metabolic engineering and 

medical care.  



 3

 

 

 

Table of Contents 
 

 

 
Abstract ...................................................................................................1 
 
Table of Contents ....................................................................................3 
 
Chapter 1 Introduction ...........................................................................7 

1.1 The Problem....................................................................................7 
1.2 Three Profiles ..................................................................................9 

1.2.1 Metabolic Networks Modeling, Simulation and Analysis ..... 10 
1.2.2 Biopathway Prediction ......................................................... 11 
1.2.3 Biopathway Alignment......................................................... 12 

1.3 Content of Dissertation.................................................................. 13 
 
Chapter 2 State of the Art..................................................................... 14 

2.1 Biology Basics .............................................................................. 14 
2.1.1 Biological Complexity.......................................................... 14 
2.1.2 Biopathways......................................................................... 15 

2.1.2.1 Metabolic pathways..................................................... 16 
2.1.2.2 Gene regulatory networks............................................ 18 
2.1.2.3 Signal transduction pathways ...................................... 19 

2.2 Molecular Databases and Integration............................................. 21 
2.3 Modeling and Simulation of Metabolic Networks ......................... 24 

2.3.1 Model Classification............................................................. 24 
2.3.2 Modeling Metabolism .......................................................... 26 
2.3.3 Related Simulation Environments ........................................ 29 
2.3.4 Petri Net Modeling and Simulation....................................... 30 

2.4 In Silico Prediction of Metabolic Pathways ................................... 35 
2.4.1 Existing Resources ............................................................... 35 
2.4.2 Reconstruction Algorithms ................................................... 36 

2.5 Analysis and Alignment of Biopathways....................................... 38 



 4

2.5.1 Functional Analysis ..............................................................38 
2.5.2 Comparative Analysis ..........................................................40 

2.6 Summary.......................................................................................42 
 
Chapter 3 Hybrid Petri Net Based Modelling and Simulation of 
Biopathways...........................................................................................44 

3.1 Hybrid Petri Nets...........................................................................44 
3.2 Cellular Model Development.........................................................47 

3.2.1 Petri Net Model Construction of Metabolic Networks ..........47 
3.2.2 Petri Net Model of Metabolic Reactions...............................50 
3.2.3 Models of Gene Regulatory Networks..................................51 
3.2.4 Diffusion Transportation ......................................................54 

3.3 Petri Net Modeling Strategy ..........................................................55 
3.4 Large Scale Network Modeling and Simulation ............................56 

3.4.1 Problems and Methods .........................................................57 
3.4.1.1. Constitutive model development.................................57 
3.4.1.2. Model simplification...................................................58 

3.4.2 Prospect of Petri Net Tools...................................................59 
3.4.2.1 Cell modeling theory ...................................................59 
3.4.2.2 Computation method ...................................................61 

3.5 Biology Petri Net Markup Language .............................................62 
3.5.1 Introduction..........................................................................62 

3.5.1.1 Bioinformatics & XML ...............................................62 
3.5.1.2 Petri nets & XML ........................................................63 

3.5.2 Concepts and Terminology of BioPNML .............................67 
3.5.2.1 Petri net objects and labels...........................................67 
3.5.2.2 Petri net graphics .........................................................67 
3.5.2.3 Classes.........................................................................68 

3.5.3 An Example..........................................................................70 
3.5.4 Discussion ............................................................................72 

3.6 Summary.......................................................................................74 
 
Chapter 4 In Silico Prediction of Metabolic Pathways .......................76 

4.1 Introduction...................................................................................76 
4.2 Methods and System .....................................................................78 

4.2.1 Pathway Reconstruction Method ..........................................79 
4.2.2 Web-based Metabolic Data Retrieval ...................................82 

4.2.2.1 PathAligner system architecture ..................................82 
4.2.2.2 System workflow.........................................................83 

4.3 System Implementation .................................................................84 
4.3.1 Perl Scripts ...........................................................................84 
4.3.2 Web Interface .......................................................................85 

4.4 Applications ..................................................................................86 
4.5 Evaluation .....................................................................................91 



 5

4.6 Summary....................................................................................... 92 
 
Chapter 5 Metabolic Pathway Alignment............................................ 94 

5.1 Metabolic Pathway Definitions ..................................................... 94 
5.2 Metabolic Pathway Alignment ...................................................... 98 

5.2.1 Theory Basics....................................................................... 98 
5.2.2 Similarity Function............................................................. 102 
5.2.3 Strip and Index Function .................................................... 103 
5.2.4 Algorithms ......................................................................... 107 

5.2.4.1 Pairwise alignment .................................................... 108 
5.2.4.2 Time complexity analysis .......................................... 109 
5.2.4.3 Multiple alignment .................................................... 110 

5.3 PathAligner Implementation and Examples................................. 111 
5.3.1 Implementation................................................................... 111 
5.3.2 E-E Pairwise Alignment ..................................................... 111 
5.3.3 M−E−M Pairwise Alignment.............................................. 112 
5.3.4 Multiple Alignment ............................................................ 114 

5.4 Summary..................................................................................... 114 
 
Chapter 6 Signaling Pathway Alignment........................................... 116 

6.1 STCDB: Signal Transduction Classification Database ................ 116 
6.1.1 Introduction........................................................................ 116 
6.1.2 Classification...................................................................... 119 
6.1.3 STCDB Description............................................................ 120 

6.1.3.1 Data source................................................................ 120 
6.1.3.2 Database structure ..................................................... 120 
6.1.3.3 Latest data update ...................................................... 122 

6.2 Signaling Pathway Alignment ..................................................... 122 
6.2.1 ST Representation of Signalling Pathways ......................... 122 
6.2.2 An Alignment Example ...................................................... 125 

6.3 Biopathway Alignment................................................................ 127 
6.4 Summary..................................................................................... 127 

 
Chapter 7 A Biological Application.................................................... 128 

7.1 Urea Cycle and its Regulation ..................................................... 128 
7.2 Petri Net Model ........................................................................... 129 
7.3 Investigation of the Behaviors of the Model ................................ 133 
7.4 Treatment of Urea Cycle Disorders ............................................. 134 
7.5 Gene Therapy and Expression ..................................................... 135 
7.6 Signaling Pathway and Assoiated Diseases ................................. 137 
7.7 Summary..................................................................................... 139 

 
Chapter 8 Conclusions ........................................................................ 140 
 



 6

Acknowledgments ............................................................................... 142 
 
Bibliography ........................................................................................ 143 
 
Appendix A. ......................................................................................... 156 
 
Vita 



 7

 

 

 

Chapter 1 

Introduction 
 

 

 

1.1 The Problem 
In the past, much of biological research has focused on data collection. The main reason for 

this is that gathering data was by itself much work. However biology is changing, especially 

because of the availability of large amounts of data that is easily accessible via the Internet 

[Col02]. Genome projects generate enormous amounts of information. The amount of 

sequence data is increasing exponentially over time (Figure 1.1a), and this growth will likely 

continue for the foreseeable future.  The diversity and accumulating of biological data both on 

genomic and metabolic levels from different species (Figure 1.1b) bring a new challenge for 

revealing what life really is. Extraordinary successes of the genome projects push the need for 

the development of more sophisticated and powerful computational techniques. 

We are in a "post-genomic” era. Although sequence analysis have been and still are 

the most common topics in the bioinformatics studies, we are looking for computational 

methods and tools to predict functional details. It takes bioinformatics beyond its original 

boundaries. It is certainly not data acquisition for molecular biology, but it is about the 

application of computer techniques, such as data abstraction, data manipulation, modeling, 

simulation, and functional analysis. The data generated by the experimental scientists requires 

annotation and detailed analysis in order to turn it into knowledge that can then be applied to, 

for example, healthcare, agriculture, industry and environment, to improve health care via 

gene prediction, drug design, gene therapy, and much more. 
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   (a)       (b) 

Figure 1.1 Ever growing biological data and their complexity. (a) The exponential growth of DNA 

sequences in GenBank over time (http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html). (b) This 

chart indicates the known genes and their functional contribution in different species. The source data is 

taken from KEGG, 12.04.2003 (http://www.genome.ad.jp/kegg/docs/upd_genes.html). 

 

Moving from sequence to structure to function to application, bioinformatics developments are 

occurring in genome modeling and annotation, comparative protein modeling and folding 

assignment, algorithmic development, in silico drug design, mechanistic enzymology and 

modeling of cellular processes. Biological data functional analysis is a major topic beyond 

genome research. Computational metabolics focuses on the computational interpretation of 

cellular phenomena that involve not only nucleic acid and protein sequences, but also 

metabolic pathways, gene regulatory networks and signaling pathways. In this sense systems 

analysis of metabolic network is becoming a promising field. 

The development of computer science makes it possible to represent the complex 

metabolic network of physical and functional interactions, which take place in living cells, in 

ways which enable us to manipulate, analyze and achieve understanding of how cells function. 

In order to understand the logic of cells, methods of systems modeling and simulation 

are needed to find the interrelationships among different molecules and reactions. Fortunately 

the data and knowledge of genes, proteins and pathways are available, and various biology 

database systems are accessible. The status quo in modern biology, especially in molecular 

biology, is that exponential growing biological data are produced. For instance, with powerful 

computers and robot sequencers, small genomes, such as bacterial genomes, can be completely 

sequenced in a matter of weeks or days. Protein substances can be promptly analyzed by 
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automatic amino acid analyzer and latest development of high technology in GS-MS, HPLC, 

NMR and others accelerates the data accumulation. In the meantime, some of these 

experimental data are collected and stored into a well-formatted way and provide an easy 

access for the public. 

Now, suppose a patient gets a diagnosis of metabolic disease (a disorder caused by 

malfunction of normal enzyme reactions), what is the metabolic mechanism of it? Most 

diseases are related to some kind of enzyme insufficiency and the malfunction of signal 

transduction pathways which regulate the expression of the genes that encode the desired 

enzymes. How does the gene or enzyme defect, that leads to a blocked biochemical reaction 

function? A good model of the metabolic reactions is appreciated to see the detail information 

about the essential proteins or enzymes and their regulations to the disease. With such a 

model, we might easily figure out the real causes, further development of the disorder, and 

possible alternative pathways to overcome the blockades. Unfortunately, due to the complex 

interconnection among metabolic reactions, current models are only present parts of the whole 

metabolic network in a living cell. It is necessary to develop a large-scale network model 

automatically.  

Although a lot of biological data are available today, some other data, especially those 

on metabolic regulation, are still insufficient. Given a set of rudimentary biological data, such 

as DNA and protein sequences, some enzymes and chemicals, can we predict the complete 

gene controlled metabolic pathway, understand the complexity of networks (cross interaction 

and regulation both on biochemical reactions and gene regulation, transcription factors, etc.), 

and try to model and simulate it? Considering the availability of metabolic databases we try to 

find relations of the rudimentary data. Is it possible to develop a web-based information 

system for biopathway retrieval and functional analysis with the emphasis on analysis rather 

than storage? Can this information system ensure that analyzed data remains up-to-date in the 

light of new data, as well as reporting new information as it becomes available? 

If the data is still rough, can we make a comparative analysis of pathways between 

human and mouse or some other model animals that have more detailed pathway information? 

In order to find function-related pathways, to interpret evolution processes on metabolic level 

and to determine alternative pathways, pathway alignment is needed. That is, given two 

biopathways (metabolic pathways or signaling pathways), can we calculate the similarity of 

them? 

1.2 Three Profiles 
The problem mentioned above contains three main profiles of in silico systems biology 

research: 1) Modeling and simulation of biological processes, i.e. computer modeling of 

metabolism, based on experimental data. 2) Prediction of metabolic pathways based on 
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annotated genome (or transcriptome) sequences and metabolic data, leading to predictions 

about the integrated function of the network. 3) Comparison of metabolism based on the 

analysis of presence/absence of sequence and/or metabolite patterns, providing an important 

way to reveal the functional relationship between a set of metabolic pathways.  

Various groups of academic scientists and researches from biotechnology, informatics 

and pharmaceutical companies are coming together to try to solve these problems. A little 

more description of the motivation of the three problem profiles is presented in the following 

three sections. 

1.2.1 Metabolic Networks Modeling, Simulation and 
Analysis 

New high-throughput technologies in genomics, transcriptomics, proteomics and 

metabonomics enable us to estimate the metabolism on a system-wide level and decipher the 

biological regulatory processes in a quantitative manner. Modeling and simulation is a 

fundamental and quantitative way to understand complex systems, which is complementary to 

the traditional approaches of theory and experiment. In some cases, simulating increasingly 

complex networks will help us to understand the impact of various factors (e.g. enzyme 

insufficiency, metabolic blockade, drugs effects, etc.) on metabolic systems. This is 

particularly useful in the pharmaceutical industry for designing site-directed drugs to target 

mutant enzymes. 

Nevertheless, it is very difficult and challenging to model metabolic systems and to 

perform computer simulations on them, as metabolic systems are inherently complex 

information processing systems that are governed by numerous biological and natural 

processes. The availability of high performance computers, coupled with mathematical 

modeling, has contributed to the development of increasingly accurate models of metabolic 

systems. This makes it possible to represent the complex metabolic network of physical and 

functional interactions in ways which enable us to manipulate, analyze and understand cell 

functioning. Several well-known biological simulation software packages such as Gepasi 

[Men93], Dbsolve [Gor99] and DynaFit [Kuz96] for quantitative simulation of biochemical 

metabolic pathways, based on numerical integration of rate equations, have been developed. 

Those studying biochemical system simulations usually limit their models to focus on only 

one of the several levels of time-scale hierarchy in cellular processes. Linking the gaps 

between the various levels of this hierarchy is an extremely challenging problem that needs to 

be addressed. Several approaches such as E-Cell project [Tom01] are attempting to achieve a 

systems cell modeling. We propose to model and simulation integrated metabolic networks by 

using Petri net methodology [Pet62] and hope to give a highlight on the field. We want to use 

Petri net methodology to explore the cellular processes on a system-wide level. The aim is to 
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understand not only the functions of individual genes, proteins and smaller molecules like 

hormones, but also to learn how all of these molecules interact within a cell. We hope to use 

this information to generate more accurate computer models that will help unravel the 

complexities of cellular functions and the underlying mechanisms of metabolic disorders.  

In the past years, different Petri net tools were used to model and simulate metabolic 

pathways and gene regulatory networks. However, most of Petri net tools import and/or export 

Petri net diagrams in a binary file format, which poorly supports the possibility of making 

diagrams distributed in multiple format files or constructing a net by a text format file. That 

means it was impossible to extract data from biology databases and construct a Petri net model 

automatically. Although several Petri net tools such as PNK [Jue00], Renew [Kum00] and 

CPN [Lyn98] have been equipped with an XML based file format, they have their different 

definitions and ontology because of the differences of design destinations. As a result it is 

difficult to exchange models between different analysis and simulation tools and take 

advantage of them. One cannot adapt ones Petri net XML file to fit without any modification. 

Moreover, every user has to write an XML file from the original data source, which is time-

consuming.  With regard to applying the Petri net methodology to metabolic networks, a new 

standard would be helpful. With so many software tools, but few common exchange formats, 

even with XML format, we are motivated to propose a common exchange language – Biology 

Petri Net Markup Language (BioPNML) for metabolic networks Petri net modeling. The aim 

is to enable exchange of models between metabolic data and Petri net tools, as well as other 

bio-simulators. It uses a simple, well-supported textual substrate (XML) and adds components 

that reflect the natural conceptual constructs.   

1.2.2 Biopathway Prediction 

More than 500 database systems are available which represent molecular data. Therefore, 

experimental data and experimental results of fundamental metabolic processes like gene 

regulation, metabolic pathway control, signal pathway control and cell differentiation 

processes are available via the internet [Col02].  

In order to improve our understanding of cells and organisms as physiological, 

biochemical, and genetic systems, we have to study them as an integrated metabolic system. It 

is clear that the next step of implementing these databases is to integrate them under a specific 

biological perspective. Retrieving metabolic pathways from current biological data, 

reconstructing metabolic pathways from some rudimentary components such as genes, gene 

sequences, proteins, protein sequences and other biological molecules are one of the major 

tasks in bioinformatics. Broadly speaking, there are two senses in which reconstruction of 

metabolic pathways is being done: (1) Completing metabolic pathways by mining genomic 

databases to ‘discover’ enzymes and proteins that are not cloned and that may not have been 
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suspected to exist. (2) Integrating available genome, transcriptome, and proteome information 

into useful computer models of pathways and cellular processes without the global, 

quantitative comprehension, that at first sight seems necessary.  

Attempts have been made to reconstruct metabolic pathways either via genome 

sequence comparison [Mus96] [Bon98] [Sun02], enzyme assignment [van00] and enzyme EC 

numbering [Oga98]. However, they have a number of limitations. Predicting each gene 

function based solely on sequence similarity often fails to reconstruct cellular functions with 

all the necessary components. They do not contain comprehensive information about 

metabolic pathways, such as physical and chemical properties of the enzymes that are 

involved. Some approaches are not fully computer-aided. The individual database search 

process requires too much human intervention, and the quality of annotation largely depends 

on the knowledge and work behavior of human experts. The future of metabolic pathway 

analysis may depend upon its ability to capitalize on the wealth of genetic and biochemical 

information currently being generated from genomic and proteomic technologies. An ideal 

system for metabolic pathway prediction would include a web-based architecture to allow 

remote and local access to the different biological databases. It would offer a proven approach 

that can perform complex queries, data transformations, and data integration under one simple 

interface, without requiring extensive programming. We are motivated to develop such a web-

based information retrieval system that will help the prediction of metabolic pathways.  

1.2.3 Biopathway Alignment 

Nucleic acid and protein sequence comparison is an important tool in genome informatics. 

Initial clues to understanding the structure or function of a macromolecular sequence arise 

from homologies to other macromolecules that have been previously studied.  Many 

applications and tools, such as BLAST [http://www.ncbi.nlm.nih.gov/BLAST] and FASTA 

[http://www.ebi.ac.uk/fasta3], are developed to further understand the biological homology 

and estimate evolutionary distance.  

Recently the emphasis of research efforts begins to turn back from gene sequences to 

metabolic pathways. It is therefore not surprising that the development of computational 

algorithms to predict metabolism function from gene, amino acid sequences and metabolic 

networks is now a core aim of bioinformatics. As more genomes are sequenced and the 

metabolic pathways reconstructed, it becomes possible to perform biological comparison from 

a biochemical-physiological perspective. Alignments represent one of the most powerful tools 

for comparative analysis of metabolism. Metabolic pathway alignment is of importance to 

study biology evolution, pharmacological targets and other biotechnological applications 

[Dan99], such as metabolic engineering and metabolism computation. A metabolic pathway 

alignment is a mapping of the coordinates of one pathway onto the coordinates of one or more 
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other pathways. For example, the same metabolic pathway from two organisms may have 

diverged if the organisms evolved from a common ancestor, where individual metabolites and 

enzymes may have been changed, added or lost in one pathway. It involves recognition of 

metabolites that are common to a set of function-related metabolic pathways, interpretation of 

biological evolution processes and determination of alternative metabolic pathways. 

Moreover, it is of assistance in function prediction and metabolism modeling. Although 

researches on genomic sequence alignment have been intensively conducted, so far the 

metabolic pathway alignment is less studied. Several approaches of metabolic pathway 

alignment have already been made by Dandekar et al. [Dan99], Forst C.V. [For99] and 

Yukako T. [Toh00a] [Toh00b]. However, their definitions of pathways are traditional 

biochemical pathways such as glycolysis, the pentose phosphate pathway, and the citric acid 

cycle. Less effort is made on analysis of gene regulatory networks as well as signaling 

pathways. 

In this thesis, we try to give out basics of common definitions of metabolic pathway, 

gene regulatory pathway and signaling pathway. We also present a biopathway alignment to 

characterize comparatively the metabolic pathways and signaling pathways in cells. 

1.3 Content of Dissertation 
This thesis is primarily concerned with systems analysis of biopathways. It provides a toolbox 

to predict metabolic pathways from rudimentary data, to automatically construct a Petri net 

model for modeling and simulation, and to comparatively analyze biopathways. In Chapter 2 a 

brief overview of systems metabolic analysis and literature review is provided on the 

biological complexity, Petri net based modeling and simulation, and prediction of metabolic 

pathways, as well as algorithms for biopathway alignment with particular emphasis on 

metabolic pathways. Chapters 3, 4 and 5 are the core of the thesis. Chapter 3 presents the Petri 

net methodology for metabolic network modeling and simulation. An explicit example is 

explained. A proposed standard for biological data interchange, BioPNML, is presented. 

Chapter 4 presents the theoretical and practical approaches for the retrieval and reconstruction 

of metabolic pathways from rudimentary components. In Chapter 5 we present a new 

algorithm for metabolic pathway alignment. A classification of signal transductions is 

recommended and we discuss biopathway alignment in Chapter 6. Chapter 7 presents a case 

study of urea cycle biopathway. The conclusion of the study is presented in Chapter 8. 
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Chapter 2 

State of the Art 
 

 

 

2.1 Biology Basics 

2.1.1 Biological Complexity 

Life is the process of metabolism that transforms compounds such as carbohydrates, amino 

acids and lipids, and the energy required and all the other components that take up living 

systems to synthesize them and to use them in creating proteins and cellular structures as well 

as sustaining life. A cell contains a great numbers of organelles, specific proteins, and much 

more (Figure 2.1.1a). There are thousands of biochemical reactions taking place per second in 

a living cell. In Escherichia coli, for instance, there are 225,000 proteins, 15,000 ribosomes, 

170,000 tRNA-molecules, 15,000,000 small organic molecules and 25,000,000 ions inside the 

a few µm cell [Goo93]. There are estimated 1014-1016 biochemical reactions in a cell [End01]. 

These reactions are interconnected by the metabolic molecules. Many molecules involved in 

one reaction can also be found in other reactions where the molecules act as substrate or 

activator or repressor, the activities of enzymes are enhanced or inhibited by some molecules. 

Proteins and enzymes are synthesized from encoding genes which can also be switched on or 

off by some other molecules. Thus a densely connected, intricate and precisely regulated 

reaction network is built (Figure 2.1.1b). These connected biochemical reaction is normally 

called a metabolic network. Obviously, the more interconnections exist, the harder it gets to 

predict how the system will react. When systems reach a certain size, they will be become 

unmanageable and difficult to understand without the help of computational support. It also 

gets harder to change any part of the system without influencing other parts.  
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Figure 2.1.1 Illustration of complexity of cell. (a) A typical illustration of a mammalian cell structure 

[Rud97]. (b) Representation of about 500 common reactions of the basic metabolic network [Alb94]. 

Each point (node) represents a distinct chemical substance and each line (edge) represents a simple 

chemical transformation, catalyzed by a separate enzyme. A typical mammalian cell synthesizes more 

than 10,000 different proteins, a major proportion of which are enzymes. The central vertical line and 

circle represent what biochemists call the "glycolytic pathway" and the "citric acid cycle", the bases of 

cellular energetics.  

2.1.2 Biopathways 

Although many of the interconnected systems of biochemical reaction pathways have been 

known for some time, knowledge of integrated functioning of metabolic systems remains 

elusive. That is, the functional definition of metabolic networks and their role in the context of 

the whole cell is lacking. On the other hand, it is usually impossible to evaluate and analyze 

the huge amount of interactions as a whole due to its extreme complexity. People divide those 

biological processes into three levels: gene regulation, biochemical reaction and signal 

transduction. This classification is helpful when we look into a specific biological process. 

Typically metabolic networks deal with the flow of mass and energy; in gene regulation, 

process involved in the transforming gene to encoded protein is the essential purpose; while in 

signaling networks the purpose is the regulation of other processes, and the use of energy and 

mass flow is a requirement, but not really the point. In general, biopathways are those 

biological processes taking place in metabolic systems. 

(b) 
(a) 
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2.1.2.1 Metabolic pathways 
Metabolic pathways are so far the most intensively studied by biologists and bioinformatists. It 

is not surprising that metabolic pathways are often misunderstood as the whole set of 

biochemical reactions that sustain life. But, a metabolic pathway is a subset of these reactions 

that describes the biochemical conversion of a given reactant to its desired end product. In 

other words, a metabolic pathway is a special case of a metabolic network with distinct start 

and end-points, initial and terminal vertices, respectively, and a unique path between them 

[For99]. Traditionally, metabolic pathways can be interpreted as relational graphs. Typical 

metabolic pathways are given by the wall chart of Boehringer Mannheim [Mic82] [Mic99] and 

KEGG [Kan00], which are available via a number of printed and on-line sources (Figure 

2.1.2.1A).  

 

 
 

(a) 
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(b) 

 
Figure 2.1.2.1A Typical diagram representation of metabolic pathways (urea cycle). (a) ExPASy, 

http://tw.expasy.org/cgi-bin/show_image?G8. (b) KEGG, http://www.genome.ad.jp/kegg/pathway/ 

map/map00220.gif 

 

The prevailing definition of a metabolic pathway is a graph (V, E), where V is a finite vertex 

set, whose elements are called vertices and E is collection of edges, where an edge is a pair (u, 

v) with u, v in V, that is, the edge is adjacent to u and v and connects these two vertices. Each 

vertex represents a metabolite and each edge represents a biochemical reaction that is 

catalyzed by specific enzyme.  In an undirected graph edges are unordered pairs and connect 

the two vertices in both directions, hence in an undirected graph (u, v) and (v, u) are two ways 

of writing the same edge (Figure 2.1.2.1Ba). In a directed graph, edges are also called arcs, 

connecting a source vertex to a target vertex. In this case, a directed graph is a pair (V, A), 

where V is a finite set and A is a set of ordered pairs of elements in V. V will be called the set 

of vertices and A will be called the set of arcs (Figure 2.1.2.1Bb). All chemical reactions, 

including enzyme-catalyzed reaction, are to some extent reversible. Within living cells, 

however, reversibility may not occur, because reaction products are promptly removed by 

additional enzyme-catalyzed reactions. Metabolite flow in living cells is largely unidirectional. 

Thus an irreversible directed graph is often used to model a metabolic pathway (Figure 

2.1.2.1Bc). A weighted graph is a graph, in which each edge has been assigned a number 

(usually positive) called its weight (Figure 2.1.2.1Bd). 
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Figure 2.1.2.1B Examples of graphs. 
 

2.1.2.2 Gene regulatory networks 
Gene regulatory networks have become a significant field of research for biologists and 

Bioinformatists. Gene regulatory networks are most often described and interpreted as the on-

off switches and rheostats of a cell operating at the gene level. They dynamically orchestrate 

the level of expression for each gene in the genome by controlling whether and how 

vigorously that gene will be transcribed into RNA. Each RNA transcript then functions as the 

template for synthesis of a specific protein by the process of translation. Process of gene 

regulatory networks is not restricted to the level of transcription, but also may be carried out at 

the levels of translation, splicing, posttranslational protein degradation, active membrane 

transport, and other processes [Ana00]. In addition, such networks often include dynamic 

feedback loops that provide for further regulation of network architecture and output.  

                                   (a)                                                               (b) 

Figure 2.1.2.2 (a) Central dogma (from the City University of New York); (b) A gene regulatory 

network (from http://doegenomestolife.org/gallery/REGNET.jpg) Transcription of the genes cro, cII 

and genes followed by cII gene from the promoter PR begin, when neither CI protein nor Cro protein 

does not bind to the operator sites OR3, OR2, and OR1. The genes cro, cII and the genes followed by cII 
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will be transcripted from the promoter PR, when neither CI protein nor Cro protein does not bind to the 

operator sites OR3, OR2, and OR1. The condition of E. coli gives an effect to the concentration of CII 

protein. If the concentration of CII protein is low, the transcription from PR continues and keeps the 

concentration of Cro protein at some level by the feedback control of the Cro protein itself. On the other 

hand, if the concentration of CII protein is high, the CII protein binds to the promoter PRE as a positive 

transcription factor, then the transcription from PRE begins. Then, anti-sense RNA of the gene cro is 

produced, which helps to degrade the concentration of Cro protein more rapidly. Transcription of cI 

gene is followed and concentration of CI protein keeps at some level by the feedback control of the CI 

protein itself. (http://www.genomicobject.net/member3/GONET/img/lambda_switch.jpg) 

 

As indicated in the schematic presentation (Figure 2.1.2.2a), Genes (DNAs) are transcribed 

into RNAs by the enzyme RNA polymerases. RNA acts as a go-between from DNA to 

proteins. Only a single copy of DNA is present, but multiple copies of the same piece of RNA 

may be present, allowing cells to make huge amounts of proteins. RNA transcripts are 

subjected to post-transcriptional modification and control: rRNA transcript cut into 

appropriate size classes and initial assembly in nuclear organizer; tRNA transcript folds into 

shape; mRNA transcripts are modified, noncoding sequences (introns) removed from interior 

of transcript; in eukaryotes, all RNA types are transported to the cytoplasm via the nuclear 

membrane pores. Then mRNA molecules are translated by ribosomes (rRNA + ribosomal 

proteins) that match the 3-base codons of the mRNA to the 3-base anticodons of the 

appropriate tRNA molecules. Finally, newly synthesized proteins are often modified after 

translation (post-translation) before carrying out its function, which may be transporting 

oxygen, catalyzing reactions or responding to extracellular signals, or even directly or 

indirectly binding to DNA to perform transcriptional regulation and thus forming a closed 

feedback loop of gene regulation. Figure 2.1.2.2b shows a gene regulatory network. The 

interaction among different parts makes cellular regulations extremely complex. 

2.1.2.3 Signal transduction pathways 
Researchers have known for decades that for cells to grow and function in a complex 

environment they must communicate with each other. Cell communication, or signal 

transduction, is simply the means by which cells in the body respond to signals coming from 

outside those cells. A “biological signal” could be defined as a molecule that acts as a pre-

arranged sign, indicating either the commencement and/or the termination of (one or more) 

intracellular processes. In other words, the nature of the signaling molecule decides it's effects, 

just as pre-arranged signals have pre-arranged effects [Cla96]. Virtually cell behavior is 

regulated by a complex network of intracellular and extracellular signal transduction 

pathways. Signal transduction, in general, is the mechanism by which a signal encountered at a 

cell's surface (i.e. an extracellular signal) is transformed into an intracellular signal that in turn 

invokes physiological changes within a cell. 
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Research on signal transduction or cell communication, at present, is still basic. 

Important biotechnological advances in recent years have allowed increasingly detailed studies 

of a variety of signaling pathways. These advances include production of recombinant DNA, 

the PCR [Alb94], gel electrophoresis [Vin88], microarrays [DeR99], and the serial analysis of 

gene expression (SAGE) technique [Vel95]. Development of such techniques is ongoing, and 

large-scale assays of peptides and protein-DNA binding activity are becoming more feasible 

[Abb02]. It has a wide range of therapeutic possibilities including novel treatments of cancer 

or other abnormal cell growth.  

A simple schematic presentation of signal transduction is shown below. 

 

 

 

Figure 2.1.2.3 Graphical representation of signal transduction pathways. Cited from the Emergent 

Integrated Circuit of the Cell [Han00]. Dashed arrows are activating reactions, bar-ended arrows are 

inhibiting ones; Inhibiting arrows in some cases are shown to act on molecules, in other cases they act 

on reactions.  

 

The cascade of processes by which an extracellular signal (typically a hormone or 

neurotransmitter) interacts with a receptor at the cell surface, causing a change in the level of a 

second messenger (for example calcium or cyclic AMP) and ultimately effects a change in the 
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cell's functioning (for example, triggering glucose uptake, or initiating cell division). It can 

also be applied to sensory signal transduction, e.g. of light at photoreceptors [Dow99].  

2.2 Molecular Databases and Integration 
Modern biology has produced enormous biological data that have been accumulating and 

systematically stored in specific databases. For the last 10 years Nucleic Acids Research  

(NAR) [http://nar.oupjournals.org] has been devoting a special issue to the molecular biology 

database compilation [Gal04]. Figure 2.2 shows the growth of molecular biological databases. 

The collection is listed in annual specific database issue of NAR. 
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Figure 2.2 Growth of molecular biological databases that are collected by NAR. 

 
The database list and the database descriptions can be accessed online via 

http://www3.oup.co.uk/nar/database/a. All databases fall into the following categories: 

 
Nucleotide Sequence Databases,  
RNA sequence databases,  
Protein sequence databases,  
Structure Databases,  
Genomics Databases (non-vertebrate),  
Metabolic and Signaling Pathways,  
Human and other Vertebrate Genomes,  
Human Genes and Diseases,  
Microarray Data and other Gene Expression Databases,  
Proteomics Resources,  
Other Molecular Biology Databases.  

 

All databases included in this Collection are freely available to the public. Computational 

analysis of metabolic pathways based on the information of genes, enzymes and metabolites, 

which requires access to suitable databases. Table 2.2 lists those major databases that make the 

integrative information retrieval of metabolic pathways possible. URLs of these databases are 

appended at the end of the “References” section. 
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The presence of numerous informational and programming resources on gene networks, 

metabolic processes, gene expression regulation, etc., described above, raises an acute 

problem of data integration and suitable access. The idea of data integration in molecular 

biology is not a new one. There are several previous and underlying projects that focus on the 

challenging problem of interoperability among biological databases. P. Karp first addressed 

the biological database integration in early nineties [Kar95]. At the same time the 

requirements for these integration approaches were formulated [Dav95]. Many integration 

approaches for molecular biological data sources are currently available. These systems are 

based on different data integration techniques, e.g. federated database systems (ISYS [Sie01] 

and DiscoveryLink [Haa01]), multi database systems (TAMBIS [Ste00]) and data warehouses 

(SRS [Etz96] and Entrez [Tat99]).  

Different approaches have different advantages and disadvantages [Fre02]. ISYS 

provides a dynamic and flexible platform for integration of molecular biological data sources. 

This system is developed as a Java application and must be installed on a local computer. One 

main feature is the global view onto the integrated data sources with the help of a global 

scheme. DiscoveryLink system is based on federated database techniques. A federated system 

requires the development of a global scheme. Thereby, the degree of integration must be rated 

as tight. DiscoveryLink accesses its original data sources through views. Read-only SQL is 

supported as query language. TAMBIS integration system is based on multi-database 

techniques. It is used through a Java applet. Due to the use of a multi-database query language, 

it is not necessary to built an integrated global scheme. But the interfaces and the number of 

input formats are disadvantageous. SRS is based on local copies of each integrated data 

source. SRS runs on a web-server and is accessible via any web-browser. An HTML-interface 

for data queries is provided. Various output formats are possible (HTML or ACSII-text). One 

problem with the result presentation in SRS is the necessity to parse the outputs for a further 

computer-based processing. The absence of any scheme integration is also disadvantageous 

for the use of the SRS system. Similar to SRS is the Entrez system. This system integrates 

only data sources of NCBI. HTML is the only interface provided. Another Entrez feature is the 

manual construction of special URLs. Various output formats prove to be useful. These 

include HTML or ASCII-text, as well as XML and ASN.1 files. The biggest disadvantage of 

the Entrez approach is the restricted number of integrated data sources (only NCBI internal 

data sources). 

Although these integration systems are available to realize the data query process, the 

process still requires much human intervention and the quality of annotation largely depends 

on the knowledge and skills of human experts. Moreover, scientists have to invest extensive 

efforts to learn how to use all different database interfaces, query languages, and parameter 

specifications for specific analytical programs. On the other side, biologists wish to perform 
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metabolic pathway analysis with easy-to-use local or Internet-based tools with friendly user 

interfaces. Simple text mining approaches such as a web-based biological information retrieval 

and integration system could be one solution. 

2.3 Modeling and Simulation of Metabolic 
Networks 
The vast complexity of biological systems requires modeling to design and interpret biological 

experiments. Computer based models of genes and metabolic networks are the first step to a 

complete understanding of the cell. We are at the point where the level of computer 

technology and biological knowledge are sufficient to experiment with different approaches to 

model cellular metabolism.  

Before designing a model, careful consideration must be given to the questions being 

asked, and the nature of the biological system. For example, some types of models require a 

larger quantity of data, or more accurate data, than others. In other words, a model should be 

able to raise additional questions, giving directions to experimental work. 

2.3.1 Model Classification 

A model is built in order to capture the nature of objects. Models can be divided into many 

different types. Not all scientific models are precise, numerical, or quantitative. Neelamkavil 

[Nee87] classified models into physical, symbolic and mental ones. To model biological 

systems four forms were introduced [Hae96]: 

1. Conceptual or verbal - descriptions in a natural language.  

2. Diagrammatic - graphical representations of the objects and relations (e.g., 

physiological diagrams of metabolic pathways such as the Krebs cycle). 

3. Physical - a real, physical mock-up of a real system or object (a "tinker-toy" model 

of DNA or 3D structure of protein). 

4. Formal - mathematical (usually using algebraic or differential equations). 

Our primary interest here will be in diagrammatic and mathematical. 

For many reasons mathematical models are the most important and most widely used 

category of models. They are concise, unambiguous and uniquely interpretable, while their 

manipulation and the evaluation of alternatives are relatively inexpensive [Mat92]. To show 

the scope of the range of mathematical models that are potentially applicable to biological 

systems, a simple classification of mathematical models is illustrated in Table. 2.3.1.  
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Table 2.3.1 A classification of mathematical models. 
 

Criteria of classification Yes No 

Having an explicit representation of 

mechanistic processes? 

Process-oriented or mechanistic models: (e.g., 

mathematical equations) 

Descriptive or phenomenological models: (e.g., 

graphics, rule based systems) 

Having an explicit representation of future 

system states or conditions? 

Dynamic models: include the transient as well as 

the steady state behavior of a system. 

Static models: (e.g., linear regression equation 

relating variables x and y) given for the steady 

state only, are described with algebraic equations. 

Representing time continuously? 
Continuous time models, time may take on any 

values: described with differential equations 

Discrete time models, time is an integer (time 

invariant) only: those where the shapes of their 

outputs are independent of the moment of onset 

of their inputs or disturbances. 

Having an explicit representation of space? 

Spatially heterogeneous models (e.g. objects have 

a position in space, or occupy a finite region of 

space). 

A. Discrete: space is represented as cells or 

blocks, and each cell is represented as 

spatially homogeneous. 

B. Continuous: every point in space is 

different (e.g. diffusion equations) 

Spatially homogeneous models: (e.g., simple 

equations of enzyme kinetics) in many cases only 

one most important spatial coordinate is taken 

into account. 

Allowing random events? 
Stochastic models: the relations between variables 

are given in terms of statistical values.  

Deterministic models: are those in which the 

probability of events does not feature. 
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The basis of the classification is whether the mathematics incorporates (or not) a 

particular mathematical structure. In some cases it is subjective whether the mathematics has 

its characteristics or not. 

Historically, mathematical modeling in biology has been of only minor importance. 

Unlike physics or chemistry, biology has not discovered underlying principles, such as an 

equivalent of Newton’s Laws to build upon. The unit of life, the cell, is an enormously 

complicated structure and the behavior and properties of living things are not easily reduced to 

equations.  

2.3.2 Modeling Metabolism 

The complexity of biological systems is in part due to the large number of interactions among 

components at different levels of the organizational hierarchies. A mathematical modeler must 

combine qualitative knowledge of relationships and desired quantitative data to construct a 

model of the system. With numerous data on the structure and processes, it is possible to 

construct mathematical computer models that allow the formalization of the knowledge on 

complex metabolic systems. 

Current applications of metabolic pathways modeling include [Bow01]: 

• Finding pathways of maximum yield, for example in the area of biotechnology, 

where foreign genes are spliced into a host genome to mass-produce a desired 

molecule. 

• Finding non-redundant pathways, important in drug design. 

• Testing whether a set of enzymes can produce a desired product. 

• Genome comparisons, by aligning metabolic pathways, missing genes can be 

identified and new pathways identified. 

• Detecting the medical significance of enzyme deficiencies. 

To model metabolism requires the concept of a state. A state is a snapshot of the system in 

time, and with the knowledge of one state, the future state can be calculated. Depending on the 

kind of model used, the state is represented in different ways. Two broad categories of 

modeling and simulation exist: deterministic modeling and analytic simulation based on 

differential equations, and stochastic modeling and discrete event simulation. 

An analytic simulation uses mathematical analysis to represent the temporal behaviors 

of components, often in closed form. Analytic simulations capture aggregate system behavior 

by modeling small and relatively similar entities. A discrete-event (discrete-state) simulation is 

used when the system's overall behavior is not understood well enough to permit formal 

mathematical analysis. 
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For example, the analytic approach to metabolic simulation typically requires the 

determination of steady-state rate equations for constituent reactions, followed by numerical 

integration of a set of differential equations describing fluxes in the metabolism. The 

feasibility of the analytic approach is however limited by the extent to which the metabolic 

processes of interest have been characterized. For most metabolic pathways, either we are 

unaware of all the steps involved, or we lack rate constants for each step. This lack of 

information precludes the use of the mathematical approach in describing the process. Even 

when reaction rates are known, differential equations incur great computational costs. Analytic 

representations, such as differential equations, lack the robustness required to handle partial 

and uncertain knowledge. In addition, because analytic simulations model relatively similar 

structures over relatively similar temporal intervals, interleave simulations are highly 

constrained. 

The discrete-event approach to simulation, on the other hand, can use all available 

data, both quantitative and qualitative, and can even incorporate analytic methods where 

applicable; semi quantitative models, which couple symbolic and numeric computing 

techniques, have been developed for a number of domains, including the human 

cardiovascular system [Sir96] and gene regulation in bacteria [Bru92]. Most importantly, 

discrete-event simulations provide natural support for qualitative representation and reasoning 

techniques, which offer explicit treatment of causality. The discrete-event approach can 

provide declarative representations for both the structures in the domain and the processes that 

act on these structures. 

1. Structural knowledge 

Structural knowledge of a system is the foundation of a simulation. Most analytic and 

discrete-event simulations employ state-variable representations of physical entities. State 

variables describe the relevant qualitative or quantitative attributes of the system, but the 

structure of the system is expressed in terms of mathematical relationships among the state 

variables. For example, enzyme and substrate concentrations are state variables in a simulation 

of Michaelis-Menten enzyme kinetics. 

2. Process knowledge 

Structural knowledge alone captures the state of a system at a fixed point in a time-

independent way, but it does not capture the relationships and interactions among structural 

components over time. Process knowledge is functional knowledge of dynamic change. A 

declarative process representation is critical to the success of a simulation. Process knowledge 

can be represented declaratively in several forms. A rule-based representation specifies the 

preconditions for change and the effects of the change in a unit known as a rule. For example, 

the effect of tetracycline on the mechanism of protein synthesis can be expressed in the 

following form: 
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(IF tetracycline is present 

THEN tetracycline will inhibit the binding of aminoacyl-tRNA to ribosome) 

Rules are the predominant declarative representation of processes. Processes can also be 

represented with constraints. For example, a chemical reaction can be represented as a set of 

reactants, a set of products, and a set of stoichiometric constraints. 

3. Declarative device models 

A declarative device model allows different computational agents to reason about the 

model by accessing its structural and functional components. We should acknowledge that 

biological devices are less well understood than manufactured devices; consequently, 

biological simulations often yield highly uncertain results. A goal of simulation researchers is 

to develop robust methods for quantifying the uncertainty in device models and in simulation 

predictions. 

In a differential equation based model, the concentrations of enzymes and substrates is 

the state. By making assumptions one can transform almost any set of biochemical reactions 

into a system of ordinary, non-linear differential equations (ODEs). The equations specify 

reaction rates between molecules. If the number of states becomes too large, then coarser 

approximations can be used. The equations can be solved numerically, and the trajectory of 

the state can be analyzed for dependence on initial parameters. However, not all systems can 

be meaningfully modeled by differential equations. One also has to make several assumptions: 

that the solution is well mixed, that the number of molecules is sufficiently high, that discrete 

changes of a single molecule can be approximated as a change in the concentration, and that 

fluctuations around the mean are small compared to the mean itself. For systems consisting of 

small number of molecules a stochastic framework is a more realistic choice. 

Most stochastic methods consider the exact number of molecules. The state indicates 

exactly how many molecules of each type are present in the system. Even though the state 

changes discretely, how and when it changes is probabilistic. For example, a simple chemical 

equation X → Y, i.e. a molecule of X turns into Y, is governed by a probability. This 

probability, multiplied by the time step, is the chance of this molecule changing over the 

specified time. Because the outcome is probabilistic, it is possible to get different successor 

states. A method to deal with this is to use a Monte Carlo simulation, where a series of random 

numbers are generated and decide the next state. For a given set of numbers, the next state is 

deterministic, however new random numbers are used for each new state calculation. There 

are efficient algorithms for Monte Carlo calculations [Gil77] [Gib00].  

Several variations on the stochastic simulation exist, such as Petri nets, which have an 

intuitive analogy to biological systems [Red93] (see Section 2.3.4 and Chapter 3).  
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2.3.3 Related Simulation Environments 

Many attempts have been made to simulate molecular processes in both cellular and viral 

systems. Several software packages for quantitative simulation of biochemical metabolic 

pathways, based on numerical integration of rate equations, have been developed. A list of 

biological simulators can found at http://www.techfak.uni-bielefeld.de/~mchen/BioSim/ 

BioSim.xml. Table 2.3.3 shows a comparison of the most well-known metabolic simulation 

systems.  

Table 2.3.3 A comparison of metabolic simulators. 

Tools Gepasia Jarnacb DBsolvec E-Celld VON++/GONe 
Stoichiometry matrix presentation + + + + - 

Core algorithm and method MCA MCA MCA SRM, MCA Petri net 

Pathway DB retrievable - - WIT/MPW, 
EMP 

KEGG, 
EcoCyc KEGG 

Pathways graphic editor - ++++ ++++ - +++++ 

Kinetic types ++++ +++ +++ ++ ++++ 

Virtual cell model - - - + + 

Simulation graphic display ++++ +++ ++ ++ +++ 

Mathematical model accessible and 
modifiable + + + + + 

Data XML export SBML SBML SBML SBML Biopathway 
XML 

User interface ++++ +++ ++++ +++ ++++ 

Programming language C++ Delphi 5 C++ C++ Delphi /Java 

a. Gepasi [http://www.gepasi.org/] 

b. Jarnac [http://members.lycos.co.uk/sauro/biotech.htm] 

c. Dbsolve [http://homepage.ntlworld.com/igor.goryanin/] 

d. E-Cell [http://www.e-cell.org/] 

e. VON++ [http://www.systemtechnik.tu-ilmenau.de/~drath/visual.htm] is further developed to GON, later 

Cell Illustratortm [http://www.gene-networks.com/ci/] 

SBML (Systems Biology Markup Language) [http://www.cds.caltech.edu/erato/] is a description language for 

simulations in systems biology. It is oriented towards representing biochemical networks that are common in 

research on a number of topics, including cell signaling pathways, metabolic pathways, biochemical reactions, 

gene regulation, and many others. SBML is the product of close collaboration between the teams developing 

BioSpice [http://biospice.lbl.gov/], Gepasi, DBSolve, E-Cell, Jarnac, StochSim 

[http://www.zoo.cam.ac.uk/comp-cell/StochSim.html] and Virtual Cell [http://www.nrcam.uchc.edu/]. 

A plus symbol “+” indicates a feature which has been implementated/enhanced in the tool. A minus symbol “-

” indicates no such feature available in the tool. 

 

Each tool possess some prominent features which others have only a little or not at all. After a 

decade's development, Gepasi is widely applied both for research and education purposes to 

simulate the dynamics and steady state of biochemical systems due to its powerful simulation 

engine and user-friendly interface. Jarnac, as a replacement of SCAMP, has a nice pathway 
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graphic editor, called Jdesigner, which enable users to draw interactively a biochemical 

network and export the network in an XML format. Dbsolve is good at model analysis and 

optimization. Dbsolve uses numerical procedures for integration of ODEs or NAEs (non-linear 

algebra equations) to describe the dynamics of these models and offers explicit solver, implicit 

solver and bifurcation analyzer. The primary focus of E-Cell is to develop a framework for 

constructing simulatable cell models based on gene sets derived from completed genomes. 

Contrast to other computer models that are being developed to reproduce individual cellular 

processes in detail, E-Cell is designed to paint a broad-brush picture of the cell as a whole. 

There is another program, DynaFit [http://www.biokin.com/dynafit/], which is also useful in 

the analysis of complex reaction mechanism for which traditional (algebraic) kinetic equations 

cannot be derived. 

In predicting cell behavior, the simulation of a single or a few interconnected 

pathways can be useful when the pathways being studied are relatively isolated from other 

biochemical processes. However, in reality, even the simplest and most well studied pathways, 

such as glycolysis, can exhibit complex behavior due to connectivity. In fact, the more 

interconnections exist between different parts of a system, the harder it gets to predict how the 

system will react. Moreover, simulations of metabolic pathways alone cannot account for the 

longer time-scale effects of processes such as gene regulation, cell division cycle and signal 

transduction. When systems reach a certain size they will become unmanageable and hard to 

understand without decomposition into modules (hierarchical models) or presentation of 

graphs. In this sense the tools mentioned above appear week. In comparison, Petri nets capture 

the basic aspects of concurrent systems of metabolism both conceptually and mathematically. 

The major advantages of Petri nets comprise graphical modeling representation with sound 

mathematical background, which make it possible to analyze and validate the qualitative and 

quantitative behavior of a Petri net system. Petri nets also provide the ability for clear 

description of concurrency and long experience in both specification and analysis of parallel 

systems and the ability to describe a Petri net model on different levels of abstraction 

(hierarchical models). In addition, the development of computer technology enables Petri net 

tools to have more friendly interfaces and the possibility of standard data import/export 

supporting. We are motivated to exploit Petri net methodology to model and simulate gene 

regulated metabolic networks.  

2.3.4 Petri Net Modeling and Simulation 

Since 1960's Petri net was first introduced and formally defined by Prof. Dr. Carl Adam Petri 

[Pet62], Petri net and its concepts have been extended and developed. Both the theory and the 

applications of this model have been flourishing. The properties, concepts, and techniques of 

Petri nets are being developed in a search for natural, simple, and powerful methods for 



 31

describing and analyzing the flow of information and control in systems, particularly systems 

that may exhibit asynchronous and concurrent activities. The major use of Petri nets has been 

the modeling of systems of events in which it is possible for some events to occur concurrently 

but there are constraints on the concurrence, precedence, or frequency of these occurrences. 

Petri nets are conceptually simple: they consist of places, transitions and arcs. Each 

place has a non-negative number of tokens. A transition is enabled if the number of tokens 

exceeds the weights of the arcs connecting the places. For metabolic pathways, places could 

represent biomolecules and transitions could represent the individual reactions. Arc weights 

represent the proportion of a reaction during each discrete step. A definition for the ordinary 

Petri net is given in the following [Rei82] [Dav92]:  

Definition 2.1 An ordinary Petri net is a 3-tuple, PN=(P,T;F) with 

P = {p1,p2,…,pm} is a non-empty, finite set of places, drawn as circles; 

T = {t1,t2,…,tn} is a non-empty, finite set of transitions, drawn as bars; 

P ∩ T = ∅ and P ∪ T ≠ ∅; 

F ⊆ (P×T) ∪ (T×P) is a non-empty, finite set of arcs, connecting places to transitions 

or transitions to places but never two places or two transitions. 

The ordinary Petri net given in Definition 2.1 contains only structural elements. To define 

dynamic Petri nets and their firing rules, we need some terminology to identify special sets of 

places and transitions and the concept of markings. 

Definition 2.2 Pre- and Post-Sets 

The pre-set ºti of a transition ti ∈ T contains all places that are connected to ti via a 

directed arc from the place to the transition: ºti = {p∈P: (p, ti)∈F}. The elements of ºti 

are often called input places. 

The post-set tiº of a transition ti ∈ T contains all places that are connected to ti via a 

directed arc from the transition to the place: tiº = { p∈P: (ti, p)∈F}. The elements of tiº 

are often called output places. 

The pre-set pi and post-set pi of a place pi ∈P are defined in the same way: 

ºpi ={t∈T: (t, pi)∈F} 

piº ={t∈T: (pi, t)∈F} 

Definition 2.3 Marking 

A marking of a Petri net is a mapping M:P → N that assigns a finite non-negative 

integer number of tokens to each place of the ordinary Petri net. M0:P → N is the 

initial marking. 

Definition 2.4 Enabled transition 
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Let PN be a Petri net with marking M, M(p) be the number of tokens contained in p ∈ 

P and t ∈ T be a transition. The transition t is enabled if and only if p ∈ P:M (p) ≥ 

Pre(p, t). 

The dynamic behavior of a Petri net is expressed by changing markings. A marking changes 

when a transition fires, and a transition may fire when it is enabled. 

Definition 2.5 Firing a transition 

Let PN be a Petri net with marking M, M(p) be the number of tokens contained in p ∈ 

P and t ∈ T be an enabled transition. Firing the transition t results in a new marking 

M’, written as M|t > M’, given by M’(pi) = M(pi) - Pre(pi, t) + Post(pi, t). Hence 

Pre(pi, t) denotes the number of tokens needed in pi for the firing of transition t and 

Post(pi, t) denotes the number of tokens added to place pi when transition t has fired. 

State changes are carried out by firing enabled transitions. In an ordinary Petri net a transition 

is enabled when all its input places have at least one token. When an enabled transition t is 

fired, a token is removed from each input place of t and a token is added to each output place 

of t. This gives a new state. 

Graph theory has been exploited in metabolic process modeling [Koh83]. In contrast 

to naive graph, Petri net is a graph oriented design, specification, simulation and verification 

language. It offers a formal way to represent the structure of a discrete and/or event system, 

simulate its behavior, and draw certain types of general conclusions on the properties of the 

system. Because of their good properties in theoretical analysis, practical modeling, and 

graphical visualization of concurrent systems, Petri nets especially high-level Petri nets are 

widely used in work-flows, flexible manufacturing, operations research, railway networks, 

defense systems, telecommunications, Internet, commerce and trading, and even biological 

systems. The Petri net world web site has been set up at http://www.daimi.au.dk/PetriNets/, 

where a large amount of investigations on Petri nets have been compiled in the literature, and 

various applications have chosen Petri nets as their control models due to the intuitively 

understandable graphical notation of Petri nets. 

The application of Petri nets for the simulation of biochemical reactions was firstly 

formally introduced by Reddy et al. [Red93]. Nevertheless, the model used was a qualitative 

one. Ordinary Petri nets models do not have such functions as quantitative aspects, so there are 

some extension of Petri nets that can support dynamic change, task migration, superimposition 

of various levels of activities and the notion of mode of operations. Various extensions of Petri 

nets, such as (Stochastic) Timed PNs [Wan98], Colored PNs [Jen97], Predicate/Transition 

Nets [Gen87] and Hybrid PN [Dav92], allow for qualitative and/or quantitative analysis of 

resource utilization, effect of failures, and throughput rate. Using suitable Petri nets, we can 

extend Petri nets to support flexible modeling of kinetic effects of biochemical reactions 

[Hof98]. The desirable Petri nets should allow the modeling of biochemical processes using 
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actual concentrations. It should make sense to model this biocatalytic reaction using functions, 

which allow each transition to simulate kinetic effects. Moreover, complex relations and 

conditions can be combined which will activate transitions. 

Following its early application of modeling metabolic pathways [Red93] [Hof94], 

Petri nets as a new tool and terms of modeling and simulating biological information system 

are investigated more and more. Later in 1996 [Red96], an example of the combined 

glycolytic and pentose phosphate pathway of the erythrocyte cell was presented to illustrate 

the concepts of the methodology. However, the reactions and other biological processes were 

modeled as discrete events and not possible to simulate the kinetic effect. Hofestädt [Hof98] 

investigated a formalization showing that different classes of conditions can be interpreted as 

gene, proteins, or enzymes and cell communication; and also presented the formalization of 

self-modified Petri nets, which allows the quantitative modeling of regulatory biochemical 

networks. Chen [Che00] introduced the usage of hybrid Petri nets (HPNs) for expressing 

glycolysis metabolic pathways. Using this approach, the quantitative modeling of metabolic 

networks is also possible. Koch I. et al. [Koc99] extended the model proposed by Reddy by 

taking into account reversible reactions and time dependencies. Kueffener [Kue00] exploited 

the knowledge available in current metabolic databases for the functional predictions and the 

interpretation of expression data on the level of complete genomes, described the compilation 

of BRENDA, ENZYME and KEGG into individual Petri nets and unified Petri nets. Goss 

[Gos99] and Matsuno [Mat00] applied Petri nets to model gene regulatory networks by using 

stochastic Petri nets (SPNs) and HPNs respectively. In the DFG workshop "Modeling and 

Simulation Metabolic Network" 2000 participants also discussed the applications and 

perspective of Petri nets [Hof00]. Genrich et al. [Gen01] discussed executable Petri net models 

for the analysis of metabolic pathways. Heiner et al. [Hei01] studied the analysis and 

simulation of steady states in metabolic pathways with Petri nets. R. Srivastava et al. [Sri01] 

also exploited a SPN model to simulate the σ32 stress circuit in E. coli. Oliveira J.S. et al. 

[Oli01] developed the mathematical machinery for the construction of an algebraic-

combinatorial model to construct an oriented matroid representation of biochemical pathways. 

Recently a special issue on “Petri nets for metabolic network” appeared at 

http://www.bioinfo.de/isb/toc_vol_03.html.  

Table 2.3.4 presents a summary of Petri net tools that were used to model biological 

systems. Most publications present their models only based on a general Petri net tool 

utilization. These publications are not listed in the table. More Petri net tools can be found at 

http://www.daimi.au.dk/PetriNets/tools/quick.html. The intuitively understandable graphical 

notation and the representation of multiple independent dynamic entities within a system 

makes Petri nets the model of choice since it is highly suitable for modeling and simulation of 

metabolic networks. 
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Table 2.3.4 Summary of Petri net that were used for modeling and simulation of biological systems. 
 

Petri nets type Petri net tool Tool brief description Application Reference 

High level Stella 

The STELLA software is based on a feedback control framework. The basic self-regulatory, or 
homeostatic, mechanisms that govern the way living systems operate, are reinforced by the way 
the software itself operates, it enables users to make their hypotheses explicit using simple iconic 
building blocks, and then to test these hypotheses via simulation. 

Modeling dynamic 
biological systems, 
especially ecological 
system. 

[Rut97] 
[Ela95] 

Hybrid VON++ 

Visual Object Net ++ is an innovative Petri net CAE Tool for PC that supports mixed continuous 
and discrete event Petri nets. Beside the new continuous net elements, the whole well tried 
concept of the traditional Petri nets is available. The goal of Visual Object Net ++ is to study the 
behavior and characteristics of a class of hybrid Petri nets.  

Gene regulatory; 
Metabolic pathways; 
Bioprocess 

[Doi99] 
[Mat00] 
[Che00] 
[Che02a] 
[Mat01] 

Stochastic UltraSAN 
UltraSAN employs stochastic activity networks (SANs), a variation of Petri nets, to model and 
analyze the performance and dependability of software, hardware and network system designs. 
UltraSAN provides analytic solvers as well as discrete-event simulators.  

Protein synthesis from 
mRNA; 
Plasmid Replication; 
Prion Propagation 

[Gos98] 
[Gos99] 
[Sri01] 

Hierarchical PED PED supports basically the construction of hierarchical place/transition nets with the specification 
of different types of places, transitions, and arcs, including their marking. 

Pentose phosphate 
pathway [Koc99] 

High level THORNs 

THORNs is a general-purpose, graphical, discrete-event simulation tool based on a special class 
of high-level Petri Nets called Timed Hierarchical Object-Related Nets. THORNs allows the 
specification of individual tokens, they provide delay times and firing durations for transitions, 
and THORN models can be hierarchically structured with respect to transition refinement and 
subnet invocation. 

Ecological system [Gro97] 
[Gro98] 

High level Design/CPN 

Design/CPN supports CPN models with complex data types (color sets) and complex data 
manipulations (arc expressions and guards). The functional programming language Standard ML 
enable the software package support hierarchical CP-nets and generate a model from the data 
extracted from databases. 

Glycolysis 
[Vos00] 
[Kue00] 
[Gen01] 

Functional GON/Cell 
Illustrator Genomic Object Net is an environment for simulating and representing biological systems. Biopathways; 

Cell development 
[Mat03a] 
[Nag03] 
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Among these Petri net tools, VON++ is more suitable for biopathway modeling and simulation 

under the following considerations: 

1. VON++ is a small, quick, uncomplicated and intuitive Petri net tool that supports 

both discrete event Petri nets and timed event/condition Petri nets; 

2. VON++ has a user-friendly graphical interface, which consists of object oriented 

Integrated Developing Environment, file management tool; it also represents a 

class hierarchy in the Factory window; 

3. There are animation features to make it easier to observe the dynamic behavior 

of the nets. 

So its object oriented user interface allows the easy design, simulation, visualization and 

documentation of hybrid Petri nets. However, VON++ does not support ASCII file (text 

format) import, but its text format file export ability is available in VON2.6 version. VON++ 

has further developed to GON. GON has been commercialized under the name of Cell 

Illustratortm.  Both GON and Cell Illustrator are developed in Java and support XML 

import/export. 

2.4 In Silico Prediction of Metabolic Pathways 
With the achievement of biological data collection and the development of useful biological 

tools, metabolic pathway prediction becomes possible. The in silico prediction of metabolic 

pathways is already an essential tool for the functional assignment of predicted genes, for 

which almost no data exist by biochemical experiments [Mus96] [Dan97]. It is also essential 

to do research from genotype to phenotype.  

2.4.1 Existing Resources 

In the past decade hundreds of biological databases have been set up. Among them several 

have became indispensable resources for the development of metabolic databases Such 

databases typically describe collections of enzymes, reactions and biochemical pathways and 

are used in conjunction with software that allows querying and visualizing metabolic 

information [Kar98]. They are used in various contexts and have gained recognition in the 

context of functional genome annotation and metabolic pathway reconstruction [Gal98] 

[Bon98]. 

One approach is being achieved by KEGG [Kan02], which contains an EC numbering 

scheme for enzymatic functions that integrates different gene names in different organisms. 

Under the KEGG project, all known metabolic pathways are computerized as graphical 

diagrams. The LIGAND database [Got98] has been organized to fill in the gap between 

genomic information and chemical information, and applied to actual reconstruction of 

metabolic pathways in the completely sequenced organisms in the KEGG [Kan97]. If the set 
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of open reading frames (ORFs) is complete for an organism, the organism-specific pathways 

should be reconstructed, which can be visualized by marking the assigned enzymes on 

diagrams [Oga98]. 

WIT/EMP [Ove00] also provides a pathway retrieval web-interface, which can be 

queried with initial substrate, coenzyme, enzyme, intermediate, and end product. WIT is a 

system designed and implemented to support the curation of functional assignments and 

metabolic models for sequenced genomes. It generates metabolic reconstructions based on 

chromosomal sequences and metabolic modules from the EMP/MPW family of databases. 

EcoCyc/MetaCyc [Kar02] is a comprehensive reconstruction of metabolic pathways 

of organisms for which the complete genomes are known. It became a commercial database 

one year ago, but it is available to academic users for free. 

However, the existing metabolic pathway databases have a number of limitations in 

metabolic pathway reconstruction. They do not contain comprehensive information about 

metabolic pathways, such as physical and chemical properties of the enzymes that are 

involved. None of these databases provides methods for solving the whole complex of tasks 

necessary for a gene network effective study, which demands analysis of the large bulk of 

heterogeneous experimental data. Some collect information only about metabolism of single 

organism and/or attain only special pathways. Moreover, metabolic pathways may not easily 

be reconstructed by simple collection of enzymatic reactions, thus assigned solely on sequence 

similarity. It often finds missing enzymes and leads to an incomplete set of metabolic 

pathways.  

2.4.2 Reconstruction Algorithms 

The existing resources for metabolic pathway reconstruction use a variety of methods to 

predict which enzymes are present in an organism and hence which pathways may be inferred. 

KEGG presents a method that utilizes higher-level information of molecular pathways 

to reconstruct a complete functional unit from a set of genes. Specifically, a genome-by-

genome comparison is first made for identifying enzyme genes and assigning EC numbers, 

which is followed by the reconstruction of selected portions of the metabolic pathways by use 

of the reference biochemical knowledge. Then the KEGG’s pathway diagram is utilized as a 

reference for the functional metabolic pathway reconstruction [Bon98].  

The WIT reconstruction starts with an organism’s whole genomic DNA sequence 

[Ove99]. First, a program called CRITICA [Bad99] searches the genome for ORFs using a 

combination of comparative and non-comparative methods. Then a “bi-directional best hit” 

approach is used to assign a function to each of these predicted genes.  WIT also defines a 

pathway as a set of reactions that have been observed to form a metabolic unit in some 

organisms. Each pathway is evaluated for the new genome on the basis of the proportion of its 
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enzymes identified by the above procedure. A prototype called PUMA2 [Dso99] has been 

developed to provide a framework for the automated reconstruction of the metabolism of 

microbial consortia and individual species, and to be able to comparatively analyze the 

metabolic subsystems in different organisms. 

The bacterial reconstructions derived from EcoCyc are combined by a program called 

PathoLogic [Pal02]. The basic PathoLogic algorithm asserts the presence of an EcoCyc 

pathway in the new genome if at least one of its enzymes has been identified. It requires a 

fully annotated genome as input, where the function of each gene has been assigned manually. 

PathoLogic then uses a text-based approach to link the annotated genes with enzymes in 

EcoCyc. Functions are matched either by EC number or by enzyme name. Once the gene-

enzyme matching is complete, the pathways in EcoCyc are evaluated with respect to the 

enzymes found in the annotated genome.  

Aside of approaches of genome sequence comparison [Mus96] [Bon98], genome 

annotation data parsing [Geo02], annotated whole genome sequence assembly [Gaa95] 

[Ove97] [Sel97] [Nak99] [Cov01] and enzyme assignment [van00], Arvind K.Bansal [Ban00] 

describes a framework of automated reconstruction of metabolic pathways using the 

information about orthologous and homologous gene groups archived in the GenBank. Ma H.-

W. et al. [Ma03a] conducts further analysis of their global structure for various organisms. 

David Allen [All01] presents a reconstruction method by the exploration of gene expression 

data with factor analysis. Factor Analysis is shown to identify and group genes according to 

membership within independent metabolic pathways for steady state microarray gene 

expression data. F. Boyer et al. [Boy03] proposes a new formulation for the problem of ab 

initio metabolic pathway reconstruction.  They use the similar idea of Arita M.’s [Ari00] to 

consider chemical compounds as sets of individual atoms and reactions as transfers (partial 

injections) of atoms between compounds. Given a source and sink compound, the 

reconstruction problem consists in finding all the successions of reactions that result in a 

minimum number of transferred atoms from the source to the sink.  

Moreover, several software tools have been developed to assistant reconstruction of 

pathways. For instance, PathoLogic [Pal02] is used by Sophia T. et al. [Sop03] and PathMiner 

by McShan et al. [McS03]. 

However, these approaches of predicting each gene function based on sequence 

similarity searches often fail to reconstruct cellular functions with all the necessary 

components. Knowledge of the genome sequence alone is really only the start of the work. 

The future of metabolic pathway analysis may depend greatly upon its ability to capitalize on 

the wealth of genetic and biochemical information currently being generated from the fields of 

genomics and proteomics. The challenge is how to automate and simplify the process of 

information retrieval and integration in order to turn this growing deluge of data into 
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knowledge. Under these considerations, we are motivated to combine sequence information 

with information about the underlying biochemical reactions. We attempted to present a new 

framework of metabolic pathway reconstruction and developed a system to integrate the 

access to different biological databases, and determine metabolic pathways in the cell. 

The ideal system for metabolic pathway reconstruction would at least include a web-

based architecture to allow remote and local access to the different biological databases. It 

would offer a proven approach that can perform complex queries, data transformations, and 

data integration in one powerful biological tool, without requiring extensive programming. An 

automated primary and secondary database update and report system would enable the internal 

data to remain consistent, accurate and reliable, with the ability to incorporate information 

flowing from experimental validation, such as gene expression, enzyme catalyzation, protein 

interaction and pathways. An essential feature would include a quality assurance process, to 

allow quick distribute queries and retrieve primary results. In light of these desirable features, 

we have designed a prototype system which has a single common data representation to 

handle the diverse range of rudimentary data, such as enzymes, proteins, metabolites as well as 

incomplete or fragments of gene sequences of metabolic pathways. 

2.5 Analysis and Alignment of Biopathways 
Beyond the scope of modeling, analysis of metabolic pathways has received an increasing 

amount of attention over the past few years. Progress has been made in many aspects such as 

the metabolic control analysis, stoichiometric analysis and comparative analysis. 

2.5.1 Functional Analysis 

The functional analysis of metabolic systems based on the information of genes, signals, 

enzymes, etc. will undoubtedly have an impact on our views of metabolism from its 

capabilities to its regulation and potentially also on its evolution. 

Fell D.A. et al. [Fel00a] studied the structural characteristics of the metabolic network 

that is stable and in operation yet evolvable. Relevant characteristics are the number and size 

of the modules of metabolism and the number of interconnections between them. As an 

example, the analysis of E. coli metabolism may reveal aspects of the evolution of 

metabolism. In [Wag01] a graph theoretical analysis of the E. coli metabolic network was 

done and found that this network is a small-world graph. Moreover, the connectivity of the 

metabolites follows a power law, another unusual but by no means rare statistical distribution. 

The small world architecture may serve to minimize transition times between metabolic states, 

and contains evidence about the evolutionary history of metabolism. Ma H.-W et al. [Ma03b] 

also analyzed the connectivity of metabolic pathways and find that the metabolites in a 
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metabolic network are far from fully connected. Elementary modes for the analysis of 

metabolism and metabolic engineering are being exploited. 

Elementary modes are the smallest functioning subunits of a metabolic network. They 

are also genetically regulated as a unit. A formal definition of such elementary flux modes 

requires that an elementary mode has a maximal number of vanishing fluxes and cannot be 

decomposed into smaller pathways [Sch00a]. Elementary mode analysis has been shown to be 

useful for investigating the metabolic capacity and pathway structure of metabolic networks. 

They have several promising applications in metabolic design, drug development or functional 

genomics [Sch00a]. Even though the kinetic characteristics of enzymes play an important role, 

many aspects of metabolism are actually constrained by the nature and connectivity of the 

metabolic reaction network (e.g. [Fel86]).  The existence and number of feasible routes from 

nutrients to metabolites, and theoretical maximal yields, can be calculated without recourse to 

computer simulation [Sch99].  Schuster et al. [Sch96] [Pfe99] also devised a particularly 

efficient algorithm for determining all the available routes in a metabolic network.   

Flux Analysis addresses the problems of actually determining the flow of all 

metabolites in the pathways through a limited set of measurements in the pathway. 

Researchers focusing on metabolic control analysis (MCA) emphasize the importance of 

profiling analyses in understanding the effects on metabolic networks when changing the 

activity of specific enzymes [Kel02]. Metabolic control theory is a formalism that describes 

the control of flux through the network as a function of enzyme and substrate quantities. In 

MCA one studies the relative control exerted by each step (enzyme) on the system's variables 

(fluxes and metabolite concentrations). This control is measured by applying a perturbation to 

the step being studied and by measuring the effect on the variable of interest after the system 

has settled to a new steady state. Stoichiometry-based metabolic control analysis complements 

the stoichiometric relations by measured fluxes. The interconnectivity of metabolites within a 

network of biochemical reactions is given by reaction equations defining the stoichiometric 

conversion of substrates into products for every reaction. From a methodological viewpoint 

stoichiometry-based metabolic flux analysis is a mature tool for metabolic network analysis. 

Several achievements are Mendes’ Gepasi software that enables steady state analysis [Men99] 

[Men01]; works of Palsson, Schilling, and Schuster et al. [Sch00a] [Sch00b] explore pathways 

with constrained fluxes and optimal phenotypes. However, without energy balancing the flux 

balances are usually underdetermined. On the other hand, the stoichiometric network model is 

suitable for metabolic flux analysis but it contains no information about regulatory 

mechanisms. Thus it has little predictive power with respect to pathway alterations. 

Combining metabolic control analysis with experimental observations on systems 

exhibiting large changes in metabolic flux led us to propose that these changes can only be 

explained if control mechanisms act at a number of points along the length of the metabolic 
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pathway [Tho96] [Tho98]. However, activation of single enzymes is less effective and has 

different characteristics [Tho97a] [Tho97b] [Fel00b] 

Analysis of metabolic networks based on Petri net theory is also conducted. Kueffener 

et al. [Kue00] present an algorithm to systematically generate all pathways satisfying 

additional constraints in Petri nets. Based on the set of valid pathways, so-called differential 

metabolic displays (DMDs) are introduced to exhibit specific differences between biological 

systems, i.e. different developmental states, disease states, or different organisms, on the level 

of paths and pathways. Schuster et al. [Sch02a] presented a decomposition algorithm for 

metabolic networks based on the local connectivity of metabolites. The interrelations of 

pathway analysis of biochemical networks with Petri net theory are outlined. 

2.5.2 Comparative Analysis 

Comparative analysis of metabolic pathways in different organisms can give insights for 

understanding evolutionary and organizational relationships among species. This type of 

analysis allows one to measure the evolution of complete processes (with different functional 

roles) rather than the individual elements of a conventional analysis. Comparative analysis 

includes pathway clustering where the distances between pathway pairs are calculated by 

aligning enzymes, and pathways are classified based on distance measures [For99]. Pathway 

comparison can be conducted by comparing assigned genes on the genomes, by comparing 

assigned enzymes to specific pathways [Bon98] [Dan99], and by finding similarity of 

catalyzed enzymes that are classified according to the EC (Enzyme Commission) numbering 

system [Toh00a]. 

Metabolic pathway alignment represents one of the most powerful tools for 

comparative analysis. To align sequences, to measure distances, and to use similarity matrices 

in multiple sequence alignment algorithms, is a common approach to compare individual 

enzymes. Either by direct usage of molecular sequence data with, e.g. parsimony or maximum 

likelihood methods, or by a two-step approach via (1) multiple sequence alignment and 

calculation of a corresponding distance matrix, and (2) visualization of the distance data as 

graphs in that way a phylogenetic graph can be constructed. In Forst's paper [For01] these 

methods are extended to define distances between metabolic pathways. They combine 

sequence information of involved genes with information of the corresponding network. 

Metabolic pathways are considered as reaction graphs (networks) with specific graph-

topological information, such as connectivity. For each functional role of a pathway, all genes 

in the genomes that code for this functional role are used. The sequences corresponding to the 

functional roles are combined into a set of sequences.  
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Figure 2.5.2 Pathway alignment for glycolysis, Entner-Doudoroff pathway and pyruvate processing [Dan99]. Enzyme for each pathway part are compared in 17 

organisms and represented as small rectangles. Filled and empty rectangles indicate the presence or absence of enzyme-encoding genes in the different species. 
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Dandekar et al. [Dan99] studied three alternative ways of comparing biochemical pathways: 

(1) analysis and comparison of biochemical data, (2) pathway analysis based on the concept of 

elementary modes, and (3) a comparative genome analysis of 17 completely sequenced 

genomes. An example is given (Figure 2.5.2) that reveals a surprising plasticity of the 

glycolytic pathway. Liao et al. [lia02] have developed a computational method to compare 

organisms based on whole metabolic pathway analysis. The presence and absence of 

metabolic pathways in organisms is presented as a Boolean vector. Based on this methodology 

and by using some specific distance measures on these profiles, pairwise comparison of a set 

of completed genomes are performed. Tohsato Y. et al. [Toh00a] [Toh00b] presented a 

method for the alignment of reaction similarity of EC numbers. They use a dynamic 

programming based technique to align two or more pathways. They also proposed a multiple 

(local) alignment algorithm by utilizing information content that was extended to symbols that 

have a hierarchical structure like EC numbers. They considered that reaction similarities can 

be expressed by the similarities between EC numbers of the respective enzymes and applied 

their method to pathway analysis of sugar, DNA and amino acid metabolisms. Maureen 

Heymans et al. [Hey03] present a technique for the phylogenetic analysis of metabolic 

pathways based on the topology of the underlying graphs. A distance measure between graphs 

is defined using the similarity between nodes (enzymes) of the graphs and the structural 

relationship between them. This distance measure is applied to enzyme-enzyme relational 

graphs (two enzymes are related if they activate reactions which share at least one chemical 

compound) derived from metabolic pathways. Using this approach, pathways and groups of 

pathways of different organisms are compared to each other and the resulting distance matrix 

is used to obtain a phylogenetic tree.  

In this thesis, a new algorithm for metabolic pathway alignment to reveal the 

similarities between metabolic pathways will be developed.  

2.6 Summary 
In this chapter we have introduced the complexity of cellular biology and explained the basics 

of biopathways and three traditional classifications: metabolic pathway, gene regulatory 

network and signaling pathway. The rapid accumulation of biological data makes it possible to 

compile detailed schemes of the bioprocesses within a cell. We have outlined several major 

molecular biological databases and addressed data integration problems. Concerning systems 

analysis of biopathways, the research status quo in modeling and simulation of metabolic 

networks, metabolic pathway prediction as well as metabolism comparison has been shown. 

Compared with different modeling and simulation approaches, the Petri net methodology is 

found to be a promising one. We have briefly given an overview of metabolic pathway 
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reconstruction, and discussed the existing approaches and their applicability. We have also 

described previous work on functional analysis and alignment of metabolic pathways. 

In the next chapter, we will continue the discussion of Petri net-based modeling and 

simulation of biopathways with more details. A hybrid Petri net is to be introduced, strategies 

on cellular modeling will be suggested, the problem of large scale modeling and simulation is 

to be addressed, and finally we will propose a standard language for biological data 

interchange and modeling. 
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Chapter 3 

Hybrid Petri Net Based Modelling 
and Simulation of Biopathways* 
 

 

 
During the last decade applications of Petri nets to modeling and simulation of metabolic 

pathways appeared (§.2.3.4). However, these studies focused on either metabolic pathways or 

gene regulation separately. Moreover, some Petri net models only present initially qualitative 

aspects of a system. We attempt to use the Hybrid Petri nets to model an integrated metabolic 

network. Aside from handling discrete events, the hybrid Petri nets also allow the modeling of 

metabolic networks using actual concentrations. They are able to model biological processes 

with functions, which allow each transition to simulate kinetic effects. 

3.1 Hybrid Petri Nets 
Let us give a brief description of hybrid Petri nets as follows: 

Definition 3.1 A hybrid Petri net is a six tuple Q = (P, T, Pre, Post, h, M) such that:  

P = {P1, P2,...,Pn} is a non-empty, finite set of places;  

T = {T1, T2,...,Tm} is a non-empty, finite set of transitions;  

P ∩ T = ∅, i. e. the sets P and T are disjointed;  

h : P ∪ T→ {D, C} , called "hybrid function", indicates for every node whether it is a 

discrete node (sets PD and TD) or a continuous node (sets PC and TC);  

Pre : P ×T → R+ or N, is the input incidence mapping (R+ denotes the set of positive 

real numbers, including zero, and N denotes the set of natural numbers);  

Post : T ×P → R + or N is the output incidence mapping;  

                                                 
* Parts of Chapter 3 have been published in ESM’02 [Che02a], ISB [Che03] and Lecture Notes in 
Informatics [Che02b]. 
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M : P → R + or N is the marking. 

We denote by M(t) = (m1
t, m2

t,...,mn
t) the vector which associates with each place of P its 

marking at the instant t. M0 = M(t0) = (m1
0, m2

0,...,mn
0) is the initial marking. At any time the 

present marking M is the sum of two markings Mr and Mn, where Mr is the reserved marking 

and Mn is the non-reserved marking. If h(Pi) =  D or C then mi(t) = m ir(t) + mi
n(t).  

When a variable dTj (called the delay time of Tj) is assigned to each discrete transition 

Tj(h(Tj) = D) and Tj is fired at time t + dTj, then 

∀Pi ∈ºTj (ºTj denotes the set of input places of transition Tj), mi(t) > Pre(Pi,Tj), 

mi(t + dTj) = mi(t) − Pre(Pi,Tj). 

∀Pi ∈Tjº (Tjº denotes the set of output places of transition Tj), 

mi(t + dTj) = mi(t) + Post(Pi,Tj). 

When a variable vTj (called the speed of Tj) is assigned to each continuous transition 

Tj(h(Tj) = C) and Tj is fired at time t during a delay dt, then 

∀Pi ∈ºTj, mi
n(t) > Pre(Pi,Tj), 

mi(t + dt) = mi(t) − vj(t) × Pre(Pi,Tj) × dt ; 

∀Pi ∈Tjº, 

mi(t + dt) = mi(t) + vj(t) × Post(Pi,Tj) × dt ; 

where vj(t) is the instantaneous firing flow of Tj at time t. 

 

The concept of an inhibitor arc of weight r from a place Pi to a transition Tj allows the firing of 

Tj only if the marking of Pi is less than r. When this is used in a hybrid Petri net, we can 

extend the above-defined hybrid Petri net. If the inhibitor arc has its origin at a discrete place 

and has a weight r = 1, the corresponding transition can be fired only if mi > 1, actually, only if 

mi = 0, since mi is an integer. If the origin place is continuous, then a conventional value 0+ is 

introduced to represent a weight infinitely small but not zero. The new definition of an 

extended hybrid Petri net is similar to the definition of a hybrid Petri net (Definition 3.1), 

except that:  

One can have, in addition, inhibitor arcs;  

The weight of an arc (inhibitor or ordinary) whose origin is a continuous place has its 

value in R + ∪{0+} instead of R +;  

The marking of a continuous place has its value in R + ∪{0+} instead of R +.  

So far, the defined hybrid Petri net turns to be a flexible modeling process that makes sense to 

model biological processes, by allowing places using actual concentrations and transitions 

using functions.  

The hybrid Petri net tool, VON++, is exploited to model and simulate gene-regulated 

network. Documentations for this tool can be downloaded via its website at 

http://www.systemtechnik.tu-ilmenau.de/~drath/visual.htm. Figure 3.1A shows the basis 
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elements of VON++, discrete place, continuous transition, continuous place and discrete 

transition connected with test arc, normal arc and inhibitor arc, respectively. There are no real 

input and output within test arcs, but the value of the places linked are exploited by the 

transition firing speed. 

 

discrete place

0

continuous place
continuous transition

1

discrete place

0
test arc normal arc inhibitor arc

 
Figure 3.1A Elements of VON++. 

 

It is clear that the discrete transition is the active element of discrete event Petri nets. A 

transition can fire if it is enabled by a sufficient number of tokens at its input places. It can be 

assigned a delay time. A continuous transition differs from the traditional discrete transition; 

its activity is not comparable with the abrupt firing of discrete transition. The firing speed 

assigned to a continuous transition describes the firing behavior of it and can be constant or a 

function, i.e. transport of tokens according to )(tv , where in Figure 3.1A 1)( =tv . 

The rate of bioprocesses is not defined within a Petri net, it should be specified 

separately. In automated control systems represented by Petri nets, execution of transitions 

usually depends on the presence of specific number of tokens in all staring places. However, in 

most chemical and biological systems the rate of processes (transitions) is defined by the mass 

action law. The rate of change in the number of tokens (or concentration) is proportional to the 

number of tokens (or concentration) in all starting places as expressed in the Figure 3.1B 

below. V is the rate of firing of the transition; k is a constant (called a rate coefficient in 

chemical kinetics); m3, m4 are the concentration of place S1 and place S2. Coefficient k varies 

with temperature, pressure, solvent, and other factors. As a result, k will become a function of 

several variables. 

 

 

Figure 3.1B Presentation of transition rate in continuous systems. 
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v=k[S]=k*m4 v=k[S1][S2]=k*m1*m2 

P2 P3 



 47

 

Figure 3.1C Presentation of intermediate reaction rate. 

 

Figure 3.1C indicates the change of the number of tokens (or concentration) of reaction 

intermediate P1.  

Normal discrete systems are easy to understand, so we emphasize here on continuous, 

which are very useful for modeling and simulating dynamic systems. We will describe some 

mathematical formulations that occur frequently in biology models, a general differential 

equation for a single state variable is �� −= flowoutflowin
dt
dx

, while the expressions 

for the inflow and outflow can be quite complex, as every bioprocess gives rise to its own 

system of differential equation involving many dependent variables (species concentrations) 

and many free parameters (reaction rate constants). Mass action law assumes that particles 

move incessantly. However, cells are not like gas molecules. 

Biochemical reactions are very complex, and interaction delay or saturation effect 

often exists in biological system. In these cases, mass action law becomes violated and should 

be replaced by equations that better describe the biological interaction while the rest of the 

algorithm remains the same.  

3.2 Cellular Model Development 

To understand the behavior of metabolic networks, modeling and simulation are of 

importance. Kinetic models of biochemical networks are becoming very important not only 

full genome sequences and biochemical reaction pathways are becoming available but also 

kinetic models of biochemical pathways are extremely complex and there is a strict 

requirement of software for their simulation, as in general these models do not have a known 

analytical solution. 

3.2.1 Petri Net Model Construction of Metabolic 
Networks 

The interpretation of Petri nets as metabolic system will be (Table 3.2.1): 
 

 
m1 

S1 

m2 
S2 m3 

P1 
T 

v1=k1*m1*m2 
 

T 

v2=k2*m3 

m4 
P2 

d[S1]/dt=d[S2]/dt=-v1 
d[P2]/dt=v2 
d[P1]/dt=v1-v2 
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Table 3.2.1 Mapping Metabolism to Petri nets. 

Metabolism terms Petri net terms 
S, P, E, metabolites, genes, promoters, signals... Places 
Bioreaction, interaction, other bioprocesses, ... Transitions 
Defines reagent of bioprocess Input arcs 
Defines product of bioprocess Output arcs 
Initial token or state of system Initial marking 
State of reaction system Marking 
Rate of reaction system Weight function or differential function 
Enough of all the reagents must be present for the reaction 
to complete 

A transition enabled 

A single reaction A firing transition 
... ... 
 
According to the interpretation, mapping from general metabolic terms to Petri net terms is 

reasonable. Places of Petri nets can represent all possible compounds, metabolites, enzymes, 

genes and so on; transitions can be interpreted as all possible bio-events such as biochemical 

reactions, transcription, transport and so on.  

In figure 3.2.1A, an example of gene regulated metabolic network is displayed. The 

network consists of gene regulatory, metabolic reactions and signal transductions. The gene 

network contains five genes a, b, c, d and e that encode molecules A, B, C, D and E 

respectively. Gene a encodes a protein A which when binding with a metabolic G to the 

genomic site where gene c and d are triggered off. With the availability of binding complex of 

A and C at the transcription initiation site, Gene b regulates its own expression by encoding a 

repressor protein B which inhibits the transcription of the gene a and e that it regulates. Gene e 

regulates its own expression by encoding an enzyme that catalyses a reaction step in the 

metabolic pathway that consists of 8 metabolites (D to K). All the metabolites are connected 

with straight arrows. The gene e encoded protein E acts as an enzyme in the reaction that 

catalyzes F into H and I; while the accumulation of I may result in a feedback on the 

transformation of D. The resulting metabolic K represses / induces the regulatory action of 

protein B on a by modifying B’s conformation. Moreover, an outer signal S’s approaching to 

the complex of B and K may re-modify the conformation and bring more molecular functions. 

 The place/transition Petri net structure of metabolic system (Figure 3.2.1B), without 

any specific initial marking, is shown below:  
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Figure 3.2.1A An example of a gene regulated metabolic network. 
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Figure 3.2.1B Petri net model of the generalized metabolic network. 
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Obviously, Petri nets have a simple graphical representation. Moreover, basic aspects of 

concurrent systems are captured conceptually as well as mathematically; the ability to 

visualize structure and behavior of a Petri net promotes the understanding of the modeled 

system; and Petri nets are executed and dynamic behavior observed graphically by various 

software tools which also support graphical construction and visualization.  

3.2.2 Petri Net Model of Metabolic Reactions 

In biochemistry, the most commonly used expression that relates the enzyme catalyzed 

formation rate of the product to the substrate concentration is the Michaelis-Menten equation, 

which is given as 
SK
Sv

v
m +

⋅
= max . An example of its Petri net model and simulation result is 

shown as below. 

0,1

S

0

P

0,01

E

T

0.005*S/(0.1375+S)
0 50 100 150

t

0,025

0,05

0,075

0,1m2

 
 

Figure 3.2.2 Petri net model of a simple enzyme catalyzed biochemical reaction (Michaelis-Menten 

reaction). 

 

It is clear that such enzyme reactions are characterized by these two parameters: Vmax and Km, 

and biochemists are interested in determining these parameters from experiments. Fortunately, 

there are several biological databases available for public access, such as BRENDA, that 

provides enzyme reaction parameters. However, only for a subset of the well known pathways, 

those parameters are complete, and moreover an enzyme reaction can be affected by the 

presence of other compounds, i.e., the simplest form of the Michaelis-Menten equation does 

not account for the higher than first order substrate concentration dependence found in many 

allosteric enzymes. In the first case, we can introduce a general function v=Kapp⋅S to meet the 

lack of unknown parameters, where Kapp is the apparent rate constant. As we know the 

Michaelis-Menten equation is only valid when the concentrations of substrate and enzyme 

meet the precondition [E] is not less than 0.001[S]. When we consider the effect of enzyme 

concentration on the reaction rate in case the enzyme is regulated, i.e. the enzyme 

concentration is a variable of the model, the Michaelis-Menten equation can be written as 

SK
SEk

SK
Sv

v
m

cat

m +
⋅⋅

=
+
⋅

= max , where kcat is known as turnover number. When there are more than 
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two substrates and/or products involved in one enzymatic reaction, and its kinetic type is 

unknown, one then gets processes more complicated than discussed in the previous section. As 

the Michaelis-Menten equation is obviously invalid at this time, we simply apply the 

following function: 
imi

i
n

i SK
S

vv
+

∏⋅=
=1

max . In fact it is also in Michaelis-Menten form, e.g. 

for a two-substrate biochemical reaction, 
)()( 2211

21max

SKSK
SSv

v
mm +⋅+

⋅⋅
= . Fortunately, if a two 

or more substrate biochemical reaction is already determined as one of the kinetic types list on 

the appendix A, the corresponded function should be applied. 

3.2.3 Models of Gene Regulatory Networks 

Gene regulatory networks are the on-off switches and rheostats of a cell operating at the gene 

level. The regulation of gene expression determines whether a protein is present to carry out 

its particular metabolic reaction and reaction specific kinetics. Based on interactions between 

genes and proteins, and reactions of genes and proteins, they dynamically orchestrate the level 

of expression for each gene in the genome by controlling whether and how vigorously that 

gene will be transcribed into RNA. Each RNA transcript then functions as the template for 

synthesis of a specific protein by the process of translation. Process of gene regulatory 

networks is not restricted to the level of transcription, but may also be carried out at the levels 

of translation [Pyr96], splicing [Yao96], posttranslational protein degradation [Hoc96], active 

membrane transport [Wei93], and other processes. In addition, such networks often include 

dynamic feedback loops that provide for further regulation of network architecture and output. 

Building complete kinetic models of gene regulatory systems requires detailed 

knowledge on reaction mechanisms. Often the following steps are considered: 

1. The gene (DNA) is transcribed into RNA by the enzyme RNA polymerase.  

2. RNA transcripts are subjected to post-transcriptional modification and control: 

rRNA transcript cut into appropriate size classes and initial assembly in nuclear 

organizer; tRNA transcript folds into shape; mRNA transcripts are modified, 

noncoding sequences (introns) removed from interior of transcript; in eukaryotes, 

all RNA types must move to the cytoplasm via the nuclear membrane pores.  

3. Then mRNA molecules are translated by ribosomes (rRNA + ribosomal proteins) 

that match the 3-base codons of the mRNA to the 3-base anticodons of the 

appropriate tRNA molecules.  

4. Finally, newly synthesized proteins are often modified after translation (post-

translation) before carrying out its function, which may be transporting oxygen, 

catalyzing reactions or responding to extracellular signals, or even directly or 
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indirectly binding to DNA to perform transcriptional regulation and thus forming 

a closed feedback loop of gene regulation. 

However, at the present time, the information of the bioprocesses from genes to the gene-

encoded products is often unclear or unavailable. In such cases, we can regard the unknown 

part as a black box (one transition that stands for several other transitions) and simplify the 

whole procedure of a higher level of abstraction (Fig 3.2.3): 

DNA mRNA (Exons) Protein

TFs

hnRNA

Polyadenylation

GTP

tRNA

rRNA

Factors

RNA Polymerase

Repressors

RepressorsTFs Factors

mRNA ProteinDNA

Inducers

DNA Protein

Enhancers Inhibitors

transcription splicing translation

translationtranscription

de-repression

degradation

expression

degradation

 
Figure 3.2.3 Petri net model simplification. In case of insufficiency of modeling values, the splicing of 

RNAs (upper block) can be abstract simplified modeled as mRNA (middle-inner block), while the 

whole process of transcription and translation (middle-outer block) can be simplified as expression 

process (bottom block). 

 

Such simplifications do not require a change of the structure of the complete net and any 

modification to this subnet should be reflected in the behavior of the transition. Therefore, 

Petri net models are extensible and can be extended without significant deviation from the 

existing structure. 

As to model gene regulatory networks quantitatively, we use the state equations of the 

following form to model bioprocesses such as activation of proteins, binding of proteins to 

genes, binding of RNA polymerase and so on. 
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If state[i](condition), then [ ]
[ ] )( econsequencstate

dt

dstate
i

i =  

For example, the concentration of a gene product is state[i]. The condition contains regulatory 

terms for this gene and describes whether the gene is being expressed or not. It depends on the 

state of the cell, and may contain models for promoters, enhancers, other proteins, nucleic 

acid, etc. The consequence is the result of the changed condition, here, the rate of gene 

expression. 

So that the differential mass balances describing the concentration of mRNA and gene 

encode protein can be given as: 

If (∃ (Gene, transcriptional factor(s), RNA nucleotides, binding of RNA polymerase, 

etc.) not ∃ (Repressors, etc.)), 

then (transcription is initiated and mRNA is produced, 

[ ] [ ]( ) [ ] [ ]), mRNAkGPCkmRNAGPCmRNA
dt

mRNAd
dts −== ;   

If ∃ (Modified mRNA, tRNA, initiation factor(s), amino acid, binding of ribosome, 

etc.), 

then (the gene-encoded protein is synthesized, 

[ ] [ ]( ) [ ] [ ] [ ]), PkPkmRNAkmRNAPP
dt
Pd

rdtl −−== , 

where kts and ktl are the rates of transcription and translation respectively, kd is the rate of 

degradation and kr is the rate of consumption of biochemical reaction. GPC denotes the 

concentration of the binding complex of gene, TFs, RNA ploymerase, etc. DNA is a stable 

molecule, but mRNA and proteins are constantly being degraded by cellular machinery and 

recycled. Specifically, mRNA is degraded by a ribonuclease (RNase), which competes with 

ribosomes to bind to mRNA. If a ribosome binds, the mRNA will be translated, if the RNase 

binds, the mRNA will be degraded. Proteins are degraded by cellular machinery including 

proteasomes signaled by ubiquitin tagging. Protein degradation is regulated by a variety of 

more specific enzymes (which may differ from one protein target to another). In practice, the 

first-order rate constant of degradation kd often is replaced by a half life H, and the degradation 

rate is expressed as C
Hdt

dC 693.0−= , where H=0.693/kd. mRNAs have specific half-lives 

ranging from hours to days. 

Regarding to the model of binding procedures which also are common phenomena in 

signal transduction, say 

• converting inactive proteins into active proteins, and vice versa; 

• binding of proteins to genes, proteins; 

• binding of RNA polymerase to genes and gene-protein complex; 
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• binding of receptors to transcription factors. 

A general model [ ] [ ]i

n

i
b AKComplex

1=
∏⋅= , where Kb is the binding constant, is presented for 

systems consisting of one subject Ai binding with other subjects. 

As in many situations, the information of gene regulatory pathway and mechanism is 

not available and one needs to take recourse to more approximate models. In this sense, the 

discrete model will be favorable. 

3.2.4 Diffusion Transportation 

Most of the models deal with the amount of metabolites in a cell. In the simplest case, 

we may be able to assume that the cell is a “well-mixed pool”, i.e. the amount of metabolites is 

uniform across the cell. In many situations, however, concentration gradients exist which will 

affect the local rate of biochemical reactions, in particular for large systems and different 

compartments, we have to consider the effect of diffusion or of transport explicitly.  

In general, if concentration gradients exist within the spatial scale of interest, it is very 

likely that diffusion will have an impact on the modeling results, unless the gradients change 

so slowly that they can be considered stationary compared to the timescale of interest. A 

growing number of modeling studies [Nar97] [Mar98] have emphasized the important effects 

diffusion can have on molecular interactions. Moreover, many bioprocesses take place in 

different compartments in a cell, e.g. glycolysis conducts in cyotoplasma while TCA in 

mitochondria. Membranes play an important role to separate these bioprocesses and 

meanwhile maintain the normal transportation of metabolites inside and outside of them. In 

addition, signal transduction also occurs across membranes. 

So far, in order to model a metabolic network, not only all effects of metabolites and 

reaction behaviors, but different compartments should be considered. Diffusion will be the 

most important physical effect in the models we consider, but in other systems active transport 

could be as important, or even more important. We will focus on membrane transportation. 

The rate of penetration of a metabolite across a membrane is related to the concentration 

gradient by Fick’s Law of Diffusion: 

Rate of penetration 
[ ] [ ] [ ] )( inout SSA

x
D

dx
Sd

ADJ −⋅⋅
∆

=⋅⋅⋅= ββ , 

where [S]out and [S]in are concentrations of metabolite outside and inside the membrane 

respectively; D denotes the diffusion coefficient (D decrease with the size of the metabolite); 

A is the area of membrane (the greater it is, the more metabolite that can pass); � is the 

partition coefficient (� increases with increasing solubility), and dx is the membrane thickness 



 55

(the greater the thickness, the slower the rate). Usually 
x

D
∆

β
 is called the permeability 

constant (P), a constant for a given substance moving through a given membrane. 

Diffusion will be most important physical effect in the models we consider, but in 

other systems such as facilitated diffusion and active transport could be as important or more 

important. In carried systems, the carrier exhibit saturation kinetics, so this “Michaelis-Menten 

equation” formula might be used to describe such process. Low Km means a high affinity and 

transport rate, and high Km means a low affinity and transport rate. Some metabolites and/or 

signals (hormones) may modify carriers and change Km. Vm is related to “carrier mobility”, the 

total number of carriers present. 

3.3 Petri Net Modeling Strategy 
Modeling algorithm and analysis of hybrid Petri nets can be done by the following procedures: 

1. Draft network construction 

Normally, a Petri net model is built manually by drawing places, transitions and arcs 

with mouse events. Fortunately, the XML based Petri net interchange format standardization, 

which consists of a Petri Net Markup Language (PNML) [Web03] and a set of document type 

definitions (DTD) or XSL Schema is coming into being and intended to be applied. Several 

Petri net tools such as PNK, Renew and CPN have been equipped with an XML-based file 

format exchange. We have developed an environment to extract data of metabolic networks 

from KEGG, BRENDA and RegulonDB and transform them into XML-based files that can be 

used by PNK and Renew to display the Petri net models automatically.  

2. Data searching  

The main feature of metabolic processes is that the concentration of metabolites will 

influence the reaction activity of bioprocesses. Therefore, the actual concentration of any 

metabolite is an important component of the quantitative model. Although some data 

nowadays are available to the public via the Internet, some other data may not be complete. It 

requires time-consuming literature searches. Assignment of initial value of places is made 

after data gathering. 

3. Defining the kinetics of each reaction 

We have collected a series of predefined kinetic types that are the types most often 

used in biochemical reaction models (see Appendix A). However there are some 

circumstances in which the kinetic types are not yet defined. New kinetic type self-definitions 

are handled by the mass law. A certain kinetic type is only presented as a choice for reactions 

that have the same number of substrates as marked in that type. If it is a reversible reaction, 

then it also needs to match the number of products. Once you have defined all the reactions of 

the model, you must assign a kinetic type to each of them. You will also need to provide 
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values for all the kinetic constants and information about variables (that is, if the kinetic type 

you selected has any). 

4. Self-defined kinetics 

Many metabolic pathway schemes contain mass conservation relations that must be 

taken into account in order to carry out the simulation. To check the mass conservation 

relations of a model we can go to the original reaction data from databases. In fact, we 

construct the model with the identification of reaction stoichiometry. Otherwise, it will lose 

something when the simulation is carried out because in continuous Petri nets, the weight of 

arcs is disabled, so that all components involved in the reaction are changed with same rate, 

which is defined by the transition function. However, in the reaction 2A+B→C, the change of 

A should be twice that of the reaction rate. In VON++, unfortunately, we have to add more 

transition from A with the same function in order to obey the mass conservation law. 

5. Parameter tuning and simulation 

To build a model precisely requires as many variables as possible and parameters 

involved in a metabolic network. The values of variables and parameters are determined either 

by experimental methods or deduced from other related values. However, it is impossible or 

sometimes unnecessary to put all variables and parameters into a model. The model is 

plausible when main influences are included. On the other hand, because of different purposes 

and situations, most data from laboratory do not fit the model very well, and vice versa. We 

have to compare and tune the differences in order to find suitable ones. Then the effects of 

various parameters on the gene regulated metabolic networks and their relations can be 

determined. The key enzymes/proteins, as well as intermediates related in the metabolic 

pathway, can be determined, which can provide the necessary information to identify and 

solve metabolic bottlenecks.  

3.4 Large Scale Network Modeling and 
Simulation 
One of the ultimate goals of computational metabolism is the modeling and simulation of the 

whole cell - virtual cell development.  There are currently several ambitious attempts to build 

whole cell models of cellular biochemistry [Gib01], including the virtual cell project [Sch00c] 

[Sch01a], E-Cell project [Tom99] [Tom01], and other works [Oli01] [Res01] [Nob02a] 

[Nob02b] [Fel01] [Voi00a] [Voi00b] [Hei02a] [Hei02b].  
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3.4.1 Problems and Methods 

3.4.1.1. Constitutive model development 
In order to perform a virtual cell modeling and simulation, the following problems have to be 

considered: 

1. Cellular process analysis 

Metabolisms in living organisms are not at the equilibrium state. Cellular processes 

involve material, signal and energy transfer. Metabolic processes involve a high number of 

interconnected biochemical reactions. The product of one reaction serves as the reactant for 

the next. The same compound may serve as a reactant for several parallel reactions that 

produce different products. The mathematical relations between the thermodynamic properties 

of a metabolite and its activity in the living environment allow calculating their 

thermodynamic properties in the stationary metabolic state. All chemical reactions, including 

enzyme-catalyzed reactions, are to some extent reversible; a readily reversible reaction has a 

small numerical value of ∆G. We can then combine this information algebraically to describe 

the thermodynamics of metabolism.  

A biochemical reaction with a large negative value for ∆G might be termed 

“effectively irreversible” in most biochemical situations. Within living cells, however, 

reversibility may not occur, because reaction products are promptly removed by additional 

enzyme-catalyzed reactions. Metabolite flow in living cells is largely unidirectional. True 

equilibrium, far from being characteristic of life, is approached only when cells die. The living 

cell is a dynamic steady-state system, maintained by a unidirectional flow of metabolites. In 

mature, the mean concentrations of metabolites in cells remain relatively constant over 

considerable periods of time. Short-term oscillations of metabolite concentrations and of 

enzyme levels do occur, however, and are of profound physiologic importance. The flexibility 

of this steady-state system is illustrated by the delicate shifts and balances by which organisms 

maintain the constancy of the internal environment despite wide variations in food, water, and 

mineral intake, work output, or external temperature. 

2. Regulation mechanism 

Metabolic regulation is exerted primarily at branch points, where a metabolic 

intermediate is partitioned between two pathways. The branch point metabolite is the substrate 

for two or more enzymes, and the relative amount of the metabolite that enters each pathway 

depends on competition between the two enzymes. The outcome of such competition depends 

largely on the relative affinities of the two enzymes for their common substrates. This 

modulation of the affinities of competing enzymes must lead to a kind of interaction between 

pathways.  
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Net metabolic flow of any enzyme-catalyzed reaction may be influenced (1) by 

changing the absolute quantity of enzyme present, (2) by altering the catalytic efficiency of the 

enzyme, and (3) by reversibly modifying the catalytic activity of the enzymes. All three 

options are exploited in most forms of life. 

(1) The absolute quantity of an enzyme present is determined by its rate of synthesis 

(ks) and rate of degradation (kd). The presence or absence of substrates, 

coenzymes, or metal ions alters proteolytic susceptibility, which can convert an 

inactive proenzyme to a catalytically active form. The concentrations of 

substrates, coenzymes, and possibly ions in cells may also influence the rates at 

which specific enzymes are degraded. Arginase and tryptophan oxygenase 

(tryptophan pyrrolase) illustrate these concepts. Regulation of liver arginase levels 

can involve a change either in ks or in kd. After a protein-rich diet is ingested, liver 

arginase levels rise owing to an increased rate of arginase synthesis. Liver 

arginase levels also rise in starved animals. Here however, it is arginase 

degradation that is decreased, while ks remains unchanged. 

(2) The control of enzyme activity could be allosteric effects. The catalytic activity of 

certain regulatory enzymes is modulated by low-molecular-weight allosteric 

effectors that generally have little or no structural similarity to the substrates or 

coenzymes for the regulated enzyme. Notice that allosteric and catalytic sites are 

spatially distinct. Allosteric effects may be on Km or Vmax. Reference to the 

kinetics of allosteric inhibition as "competitive" or "noncompetitive" with 

substrate carries mechanistic implications that are misleading. The kinetics of 

feedback inhibition may be competitive, noncompetitive, partially competitive, 

uncoupled, or mixed.  

(3) Reversible, covalent modification of the catalytic activity of enzymes can occur 

by covalent attachment of a phosphate group to one or more Ser, Thr, Tyr, or His 

residues. Enzymes that undergo covalent modification with attendant modulation 

of their activity are termed "interconvertible enzymes." Interconvertible enzymes 

exist in two activity states, one of high and the other of low catalytic efficiency. 

They play important roles in signaling events, though some precise details by 

which these enzymes act are in most instances still far from clear.  

3.4.1.2. Model simplification 
For a number of practical and esthetic reasons, we wish our models and explanations of 

biological phenomena to be as simple as possible. On the other hand, biological systems are 

complex, having many processes and variables that interact in complicated, non-linear ways. 

There are a few principles for simplifying models: 

1. Eliminate state variables 
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Every state variable must have a dynamic equation (differential equation or finite 

difference equation) as well as parameters and initial conditions. There are two ways to reduce 

model complexity arising from state variables: (1) convert a state variable into a constant, and 

(2) aggregate state variables. 

2. Make "stronger" assumptions 

Two methods are exploited:  (1) convert functions of state variables into constants, 

and (2) convert nonlinear relationships into linear relationships. 

3. Remove temporal complexity 

(1) convert random models into deterministic models, and (2) convert driving 

variables to constants. 

4. Remove spatial complexity 

An assumption of the Michaelis-Menten kinetic approach is that the concentration of 

total substrate is essentially equal to the concentration of free substrate. This assumption may 

be valid when modeling small volumes but should be carefully evaluated in all other contexts, 

especially within membrane transportation. The simulation of models with more than one 

compartment is not hard to implement in a generic simulation program, but the inclusion of 

diffusion effects is more problematic. Studies of realistic reaction-diffusion metabolic models 

would greatly increase our understanding of cellular processes. 

3.4.2 Prospect of Petri Net Tools 

In the following requirements for a biology specific Petri net tool are discussed: 

3.4.2.1 Cell modeling theory 
1. Metabolic pathway layout 

Structural knowledge of a physical system is the foundation of a simulation. As we 

know a Petri net representation is a type of object-oriented representation in which metabolites 

are grouped together into objects that correspond to real-world entities. Thus, it can present a 

structure of metabolism in a natural way. The metabolic pathway editor tends to be based on 

the Petri net methodology. Because Petri nets are mathematically well defined and have a 

mature theoretical background, so that many static and dynamic properties of a Petri net (and 

hence a system specified using the technique) may be mathematically proven. In addition, 

Petri nets may be executed and the dynamic behavior observed graphically. As the matrix 

format of biochemical reactions are commonly used throughout many tools, our software 

should be capable to handle matrix data format. Which on the other hand can simplify the 

transfer from other tools. 

2. Metabolic data connection 
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XML is a standard for storing and transferring data and many biological databases 

such as TRANSPATH and MPW have already or are being considering using the technique. 

The intended software should support XML import & export, link to internal & external 

related databases on gene, enzyme, reactions, kinetics, organisms, compartment and initial 

values of (ODE-NAE) system. BioPNML (§ 3.5) could be used as a standard.  

Moreover, with the complete annotated sequence of a genome we can generate drafts 

of the organism’s metabolic networks. For the next generation of metabolic models, which 

will probably be integrated with genome databases, it would be possible to include fields 

containing information on the evidence for particular values, e.g. Evidence Codes in Gene 

Ontology [http://www.geneontology.org/doc/GO.evidence.html]. 

3. Hierarchical concept 

Hierarchical biochemical systems are biochemical systems that consist of multiple 

modules that are not connected by a common mass flux, but communicate only through 

regulatory interactions. The models of a virtual cell should contain metabolic pathways and 

the levels of transcription and translation, and so on. Reactions in different compartments 

require a hierarchical model representation. The translation rates are increased by the 

concentration of mRNAs, the metabolic rates are increased by the concentration of enzyme 

and the transcription rates are affected by the concentrations of metabolites. E-Cell models 

fulfill this technique very well. With the mature mathematical support, Petri nets also can 

handle it and at the same time it make the Petri net structural reduction possible as usually the 

state space of Petri net structure will be very large in graphs. 

4. Metabolic kinetics 

Structural knowledge alone captures the state of a system at a fixed point in time, but 

does not capture the relationships and interactions among structural components over time. 

Process knowledge is functional knowledge of dynamic change. A dynamic process 

representation is critical to the success of a simulation. Traditionally, ODE and NAE models, 

such as Michaelis-Menten kinetic models, are used to simulate metabolic reactions. In order to 

build a quantitative model, kinetic properties of enzyme-catalyzed reactions involved in 

pathways should be outlined. 

5. Determining kinetic mechanisms 

Different types of enzyme kinetics (Michaelis-Menten equation, Reversible mass 

action kinetics equation, Allosteric inhibition equation, etc.) and initial parameter values can 

partly be obtained via certain databases and literature. Otherwise, a user-defined model should 

be built as E-Cell and Gepasi are. Nevertheless, a Petri net based simulation system still can 

deal with it as a discrete-event or semi-quantitative model when the required data are 

unavailable. The well-known Michaelis-Menten equation is not a complete description of the 
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behavior of single-substrate enzymes in vivo because of product inhibition and reversibility, so 

that a new kinetic algorithm should be worked out. 

6. Thermodynamic control of reactions 

Biochemical reactions are thermodynamically feasible. A link between 

thermodynamics and kinetics can show the relation between the kinetic constants, Keq, ∆G0 

and ∆G, and the driving forces for the reaction. Factors limiting the rate of an enzyme-

catalyzed reaction include temperature, pH, competitors, ionic, allosteric molecules, substrate 

concentration, substrate location and so on, which should be considered for user defined 

models.  

3.4.2.2 Computation method 
In metabolic systems, detailed quantitative knowledge is unavailable today. Models of this 

system are to be constructed by combining qualitative knowledge of relationships and partial 

quantitative data. In this case, simulating such a model may be the only means for generating 

predictions. Initially, Petri nets are developed as a discrete-event modeling and simulation 

systems. Traditionally, kinetics has been taught in biochemistry courses in terms of enzyme 

steady-state kinetics. This corresponds to a detailed study of the local properties of the 

individual enzymes. However, one can go further and create kinetic models of whole 

pathways. Such models are composed of coupled ordinary differential (for time courses) or 

algebraic (for steady states) equations. These equations are non-linear and most often without 

analytical solution. This means that they can only be studied through numerical algorithms, 

such as the Newton method for solving non-linear equations and numerical integrators. With 

many years of development, quantitative modeling is now possible to be handled by Petri nets. 

They have a mature mathematical algorithm and can solve NAE and ODE and stoichiometric 

matrices. But biochemical systems are also rich in time scales and thus require sophisticated 

methods for the numerical solution of the differential equations that describe them. 

Parallel treatment of these equations during simulation is of importance, yet difficult 

to achieve. Moreover, when we consider other functions of the metabolism, such as MCA 

methodology and bifurcation analysis, it is necessary for the tool to be powered by a more 

efficient algorithm. MatLab is one of the most popular software systems in the area of applied 

mathematics, so that integrating MatLab [http://www.mathworks.com/] in Petri net models is 

probably a good solution. In addition, MatLab itself can be applied as an attractive Petri net 

tool builder. Now it is possible to analyze and visualize Petri net models by transferring them 

to convenient graphical design tools. Export to matrix representation in MatLab is possible, 

and M. Svádová [Svá00] reported an approach to use the MatLab standard libraries and built a 

Petri nets toolbox that enabled Petri net modeling, analysis and visualization of simulation 

results. 
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As metabolism is far less well understood than a manufacture system. Consequently, 

biological simulations often yield highly uncertain results. So far, a bifurcation analyzer or 

fuzzy analyzer should be included in the software as Dbsolve does. And concentration values 

of metabolites within a cell fluctuate in a normal range; pre-arrangement of such data in the 

software is necessary.  

Furthermore, the pathway simulator is able to predict pathways, from several known 

biochemical reactions; we can predict the whole connected network of them based on the tool 

algorithm. It can also calculate thermodynamical characteristics. Each reaction is 

thermodynamically feasible, that is, ∆G be equal to or less than zero. Otherwise, the 

requirements for coupling of reactions (combined with ATP utilization) should be checked and 

any two-coupled reactions must proceed via a common intermediate.  The reversibility of one 

reaction is determined and displayed in case abnormal situations occur, though the metabolite 

flow tends to be unidirectional. 

3.5 Biology Petri Net Markup Language 
As previously mentioned, there are many biological simulators and Petri net tools available, 

but few common exchange formats, even with XML format. As a result it is difficult to 

exchange models between different analysis and simulation tools, and take advantage of 

different tools. In this section, a proposal for a common exchange language - Biology Petri Net 

Markup Language (BioPNML) is presented. 

3.5.1 Introduction 
In the post-genomic era new methods are proposed to store these data and retrieve them and 

analyze and reanalyze. XML, as an emerging standard for data interchanging, is more and 

more adopted to structure data exchange in bioinformatics. The following sections briefly 

discuss the relationship between XML, bioinformatics and PN. 

3.5.1.1 Bioinformatics & XML 
There are already two good review papers on this topic by V.H.Guerrini [Gue00] and 

F.Achard [Ach01]. We would like to highlight a few of their points and supplement them with 

a few fresh examples for biopathway applications. 

XML is derived from the Standard Generalized Markup Language (SGML), the 

international standard for defining descriptions of the structure and content of different types 

of electronic documents. XML is a web-dedicated data exchange language, which omits the 

complex and less used parts of SGML. The World Wide Web Consortium (W3C) has 

supervised the specifications of XML since its inception in 1996. More documentation can be 

found at http://www.w3.org/XML/.  
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In bioinformatics, XML was widely used within the last few years, and several XML 

based data formats have been developed. BSML (Bioinformatic Sequence Markup Language) 

[http://www.bsml.org/] uses XML to provide genomic information and a graphical BSML 

browser was developed. BioML (Biopolymer Markup Language) [http://www.bioml.com/ 

BIOML/] integrates nucleotide and protein sequence data. The XML based RDF format 

[http://www.w3.org/RDF/] is also adopted by the Gene Ontology Consortium 

[http://www.geneontology.org] to provide controlled vocabularies for the description of 

molecular functions, biological processes and cellular locations of gene products. Moreover, 

major biology databases such as NCBI, WIT and ExPASy also provide XML output after 

users’ database queries. Obviously, XML is widely adopted as a standard for the exchange of 

biological data.  

Both CellML (Cell Markup Language) [http://www.cellml.org/] and SBML present 

description languages for cellular simulation. CellML is intended to be used to represent many 

different types of models, for instance biochemical pathway models. Aside from specifying a 

model purely in terms of mathematics, CellML can use some additional elements to fully 

capture the information in biochemical pathway models. SBML is oriented towards 

representing biochemical networks common in research on a number of topics, including cell 

signaling pathways, metabolic pathways, biochemical reactions, genomic interactions, and 

many others. The main difference is that CellML has a very general and flexible syntax, while 

SBML’s syntax is specific to metabolic pathway modeling. Currently, SBML is closely 

collaborated among several teams that develop metabolic simulators. 

Although many biological databases and bioinformatics research groups use XML, it 

is however so flexible that anyone can create his/her own versions in entirely different ways. 

XML enables advancements in application integration, but they are difficult to achieve without 

a consistent framework for XML implementations.  

3.5.1.2 Petri nets & XML 
At present most Petri net tools import and/or export Petri nets in proprietary file formats and 

poorly support other data formats. In these proprietary file formats it is difficult to add and 

remove features to the language and to make modularization of diagrams as easy as it might be 

in an ASCII based text format such as XML. 

In order to solve the problems caused by the use of different file formats, many Petri 

net tools are currently being equipped with XML support. R.B. Lyngsø et al. [Lyn98] 

presented a text format based on SGML for Design/CPN diagrams and proved that the 

framework is indeed possible to use SGML to represent High-level Petri Nets. Renew 

[Kum00], from its version 1.3, supports XML import and display Petri net automatically. 

Matthias Jüngel et al. [Jue00] presented the concepts and terminology of PNML (Petri Net 
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Markup Language), and thus provided a starting point for the development of a standard 

interchange format for Petri nets.  

Although the above-mentioned Petri net XML standards are available, they are 

incompatible due to different design destinations. Actually, one cannot adapt ones Petri net 

XML file to fit them without any modification. Moreover, a common problem to implement it 

is, that every user has to write an XML file from the original data source. For instance, in 

order to construct a model out of our database, we have to transform the original data into the 

desired XML file. By using the W3C recommended Extensible Stylesheet Language 

Transformations (XSLT), new structured data formats can be created from existing XML 

documents. That is, XSLT is a language for transforming XML documents into other XML 

documents. An XSLT file (appendix B) is developed to convert the original XML source file 

from our metabolic pathway data stored in an Oracle system into the desired XML format that 

can be executed by the Renew XML parser. Figure 3.5.1.2A shows the automatic layout of 

Petri net model with Renew. The Petri net model layout with PNK is shown in Figure 

3.5.1.2B.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5.1.2A Petri net model layout based on XML (Renew). 
 
 
 
 
 
 
 
 

<?xml version="1.0" encoding="UTF-8"?>  
<?xml-stylesheet 
href="http://sanfrancisco/xml/db2xml/test.xsl" 
type="text/xsl"?>  
<database URL="jdbc:oracle:thin:@edradour.cs.uni-
magdeburg.de:1521:orcl">  
<table0 QUERY="select * from enzyme where ec = 
'3.5.3.1' or ec= '4.3.2.1' or ec='6.3.4.5' or ec='2.1.3.3' or 
ec='6.3.4.16'"  
>  

<record0>  
<EC><![CDATA[6.3.4.16]]></EC>  
<PRODUCT><![CDATA[ADP]]></PRODUCT>  
<SUBSTRATE><![CDATA[NH3]]></SUBSTRATE>  
</record0> 

<record0>  
<EC><![CDATA[6.3.4.16]]></EC>  
<PRODUCT><![CDATA[ADP]]></PRODUCT>  
<SUBSTRATE><![CDATA[CO2]]></SUBSTRATE>  
</record0>  

...  
</record0>  
...  
</table0>  
</database>  
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Figure 3.5.1.2B Petri net model layout with PNK2. 
 

 

As we know PNML is generic and can be extended according to the user specific needs. So 

that a special “Bio-PNTD” for PNML can be defined when a simple biological system is 

modeled. However, a metabolic network model can contain a large number of named 

components representing different parts of a model. In this case, SBML model definitions are 

more suitable. Therefore, with regard to the application of Petri net methodology to 

bioinformatics, particularly for modeling and simulation of metabolic networks, a new 

interchange format is what is really needed.  

The PNML code for the model is translated by an XSLT file and outlined as follows: 
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In this following section, the concepts and terminology of BioPNML interchange formats, as 

well as its syntax is to be presented.  

<?xml version="1.0" encoding="UTF-8"?> 
<!--pnml for metabolic reaction petri nets - mchen@techfak.uni-
bielefeld.de--> 
<pnml> 
 <net id="N" type="PTNet"> 
  <name>metabolic petri nets</name> 
  <place id="6.3.4.16"> 
   <marking> 
    <graphics> 
     <offset page="1" x="-4" y="-10"/> 
    </graphics> 
    <value>0</value> 
   </marking> 
   <name> 
    <graphics page="1" x="-15" y="-30"/> 
    <value>EC6.3.4.16</value> 
   </name> 
   <initialmarking> 
    <graphics> 
     <offset page="1" x="-4" y="-10"/> 
    </graphics> 
    <value>0</value> 
   </initialmarking> 
   <graphics> 
    <position page="1" x="300" y="120"/> 
   </graphics> 
  </place> 
  <transition id="T6.3.4.16"> 
   <name> 
    <graphics> 
     <offset page="1" x="-15" y="-30"/> 
    </graphics> 
    <value>T6.3.4.16</value> 
   </name> 
   <graphics> 
    <position page="1" x="300" y="160"/> 
   </graphics> 
  </transition> 
  <arc id="ARC6.3.4.16" source="6.3.4.16" 
target="T6.3.4.16"> 
   <inscription> 
    <graphics> 
     <offset page="1" x="0" y="-1"/> 
    </graphics> 
    <value>1</value> 
   </inscription> 
   <graphics> 
    <position page="1" x="300" y="140"/> 
   </graphics> 
  </arc> 
  <place id="NH3"> 
       ... 
     </place> 
 </net> 
</pnml> 
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3.5.2 Concepts and Terminology of BioPNML 
The intended BioPNML is a XML-based description language that allows the representation 

of metabolic networks as Petri nets. Before introducing the syntax of the interchange format, 

we briefly discuss its basic concepts and terminology, which is independent of the XML 

representation. Previous approaches proved, that by using hybrid Petri net methodology, it is 

feasible to model and simulate metabolic systems [Mat00] [Mat01] [Che00] [Che02a]. 

Therefore the first version of BioPNML supports the hybrid Petri net type. BioPNML contains 

Petri net objects as well as data needed for the exchange and graphical representation of 

metabolic networks. An XML schema defines the labels for a Petri net and its objects and 

metabolic models. 

3.5.2.1 Petri net objects and labels 
From Table 3.2.1 we know that places can be used for the representation of biological subjects 

such as genes, metabolites, proteins, enzymes, compounds and other molecules, while 

transitions represent biochemical reactions and interactions. The value of tokens in places can 

represent the actual concentrations of biological subjects. Transitions can be classified into 

two types: discrete and continuous. A discrete transition fires, if it has concession, and a delay 

time can be assigned to it. Continuous transitions are not comparable to the abrupt firing of 

discrete transition. The firing speed assigned to a continuous transition is defined by a constant 

or a function. Arcs between places and transitions fall into three categories: normal arcs, 

inhibitor arcs and test arcs. In metabolic pathways, arc weights of continuous transitions are 

assigned according to the stoichiometric coefficients of the biochemical reactions.  

3.5.2.2 Petri net graphics 
Every object is equipped with some graphical information. For a place and transition, the 

information is its shape, size and position; for an arc, it is a list of positions that defines start 

and end points of this arc. In the Biology Petri net, the main properties are, that the arc weights 

are described by the stoichiometric coefficient of the biochemical reaction, and the transition 

condition is described by using functions or by assigning a delay time. Figure 3.5.2.2 shows 

the Petri net representation of a biochemical reaction. S, E, P and ES denote substrate, 

enzyme, product and the enzyme-substrate complex respectively. The biochemical reaction 

indicates that a substrate is enzymatically catalyzed into a product with a transformation rate v. 

Three places represent substrate, enzyme and product with S, E and P as the label of places. 

The tokens (real concentrations) of each place in the Petri net can be used as variables, m1, m2 

and m3, while the transition rate is assigned with a known function, the Miachlis-Menten 

equation.  
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Figure 3.5.2.2 Petri net presentation in BioPNML. 

 

3.5.2.3 Classes 
Figure 3.5.2.3 shows the class diagram of BioPNML. The left side shows the Petri net part of 

BioPNML that was derived by extending PNML slightly. The right part shows the Biological 

part that is based on SBML. The Petri net part contains only very few extensions to PNML. 

More changes to SBML were made in the biological part, although those changes are open for 

discussion. This is due to the fact that Petri nets have a comparatively long history and well-

defined, generally accepted syntax and semantics, whereas molecular biology is still evolving 

at a rapid pace. The purpose of the schema is to give a rough idea of how Petri nets and 

biological systems are related. This diagram can also serve as a conceptual guidance to 

researchers who are designing databases to store networks and reaction data. 

Main classes include metabolic pathway, gene regulation and signal transduction, 

being consistent with the traditional classification of metabolic networks.  

1. Metabolic pathway 

In BioPNML, the metabolic reaction class is defined as biochemical reactions and 

related objects such as: enzyme, substrate(s), product(s), their stoichiometries, and parametric 

values for separately defined kinetic laws. In figure 3.5.2.3, the metabolic reaction class 

structure that was derived by extending SBML’s biochemical reaction class [Huc01] is shown. 

The metabolic reaction class contains mandatory fields (enzyme, substrate, product, 

and KineticLaw), as well as optional fields (enhancer and inhibitor). Enzyme is a reference to 

the gene that encodes the enzyme. Both substrate and product are references to molecules 

implemented using lists of SpecieReference structures. The SpecieReference structure contains 

fields for recording the names of molecules, the types of molecules that are references to lists 

of TypeRef structure; the stoichiometry filed indicates the proportions of substrate and product 

within a reaction. The KineticLaw structure is an optional field of the type KineticLaw, used to 

provide a mathematical formula for the reaction rate. The Boolean field, reversibility, indicates 

whether the reaction is reversible. The field is optional, and has default “true” when it is not 

specified. Information about reversibility is useful in certain kinds of structural analysis such 

as elementary mode analysis [Sch99].  
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In addition to these fields, the reaction structure also has a Thermodynamics field as a 

reference to ThermodynamicsRef. The ThermodynamicsRef structure is an optional field that is 

used to provide the Gibbs energy that indicates the favorability of the reaction. 

2. Gene regulatory 

In BioPNML, the gene regulation class is defined as a set of objects such as genes, 

promoters, transcription factors, inducers, repressors, the gene encoding proteins, other 

metabolites and the effect of interaction and kinetics.  

3. Signal transduction 

The Signal transduction class in the BioPNML is defined as a set of signal instances 

through the message passing between source and target. It references molecular interaction 

motifs, effects of the signals, components of the transductions, and properties of signal 

transduction.  

4. Other bioprocesses 

Biological cells are highly complex systems. Some biological systems, such as 

membrane transportation, do not fit in one of the above-mentioned three basic categories, but 

should also be taken into account when required. Many models assume that the amount of 

metabolites in a cell is uniform across the cell, i.e. it is assumed that the cell is a “well-mixed 

pool”. In many situations, however, concentration gradients exist which will affect the local 

rate of biochemical reactions. In particular for large systems with different compartments, we 

must consider explicitly the effect of diffusion or transportation.  

In BioPNML other bioprocesses classes can be defined. This concerns not only all 

effects of metabolites, but also different compartments and properties of biological processes. 

3.5.3 An Example 
In this section, we present some concrete XML syntax in order to exemplify the concepts 

discussed in the previous section by using a simple enzymatically catalyzed reaction (Figure 

3.5.3). The model defines the single biochemical reaction from L-arginine to L-ornithine 

catalyzed with the enzyme arginase. We assume the reaction kinetics complies with the 

Michaelis-Menten equation, and the values of Km and Vmax are 0.5mM and 0.3mM 

respectively. 

 
Figure 3.5.3 An example for biology Petri net model, where m1, m2 and m3 are variables for the 

concentrations of the substances involved. 
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<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE net SYSTEM "BioPNML.dtd"> 
<BioPNML> 
 <Petrinet id="pn1" type="Hybrid"> 
  <!--place--> 
  <place id="p1" type="continuous"> 
   <name id="C00062"> 
    <text>L-arginine</text> 
    <value>m1</value> 
   </name> 
   <graphics> 
    <size>10</size> 
    <position x="-20" y="10"/> 
    <color>red</color> 
   </graphics> 
   <initialMarking> 
    <value>1</value> 
   </initialMarking> 
   <annotation> 
    <name>L-arginine</name> 
    <TypeRef>Amino acid</TypeRef> 
    <species>human</species> 
    <location>plasma</location> 
    <concentration>0.1mM</concentration> 
    <comment/> 
   </annotation> 
  </place> 
  <!--transition--> 
  <transition id="t1" type="continuous"> 
   <!--reaction--> 
   <PathRef>metabolic reaction</PathRef> 
   <reaction name="reaction_1" reversible="false"> 
    <enzyme>arginase</enzyme> 
    <substrate stoichiometry="1">L-
arginine</substrate> 
    <product stoichiometry="1">L-ornithine</product> 
    <KineticsRef> 
     <formula>0.5*m1/(0.3+m1)</formula> 
    </KineticsRef> 
    <thermodynamics/> 
   </reaction> 
   <graphics> 
    <size>10</size> 
    <position x="-30" y="0"/> 
    <color>yellow</color> 
   </graphics> 
   <annotation/> 
  </transition> 
  <!--arc--> 
  <arc id="a1" source="p1" target="t1" type="normal"> 
   <graphics> 
    <size>1</size> 
    <offset x="0" y="0"/> 
    <color>blue</color> 
   </graphics> 
   <weight> 
    <value>1</value> 
   </weight> 
   <annotation/> 
  </arc> 
<!--more places and arcs--> 
… 
 </Petrinet> 
</BioPNML> 
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The first part of the XML example contains the biological information, whereas the second 

part is mainly PNML. idref tags are used to link the PNML 'place' and 'transition' tag to the 

respective SBML based 'species' tag. Since it was tried to develop BioPNML in a way that it 

should be readable both by existing PNML and SBML tools, some redundancies could not be 

avoided, i.e. the names of the compounds and the initial concentrations appear in both parts of 

the file. Properties which are not part of the present PNML standard, such as the formula used 

to calculate the changes in the concentrations of the substrates and the product, are only stored 

in the SBML part of the file. The example shows the basics of idea of BioPNML. In real 

applications, the PNML part may contain many reactions. 

3.5.4 Discussion 
BioPNML is a XML framework for the exchange and unification of molecular biological Petri 

net models. By formalizing the process of expressing bioprocess interchanges in a consistent 

and extendible way, BioPNML makes it easier for users and developers of biological software 

to map data in different formats. Easier mapping enables developers of biological software 

who are using open standards, such as XML, to adopt changes in biological data formats 

faster.  

BioPNML defines a core set of XML elements, attributes, and tags that enable 

researchers to develop technologies that are optimized for data exchange. This XML based 

core data model is important because it eliminates the need to find a common application 

programming interface or implementation platform. Currently, its XML schema is based on 

the SBML and PNML standard. However, BioPNML is not static; we continue to develop it. 

BioPNML will be updated in line with future changes of SBML and PNML. 

Extensions to Petri nets have been developed which transform Petri nets into a 

powerful tool for modeling biological systems. These enhancements include timing, token 

typing, non-homogeneous places, priorities and resources. It is possible to extend our 

BioPNML classes to these requirements by using additional tag sets.  

BioPNML files can be generated computationally from existing data sources. Users 

can extract XML data from molecular biological databases via the Internet and transform them 

into BioPNML files via XSLT (Figure 3.5.4).  

There are many approaches that address the challenging problem of interoperability 

among biological databases. They are based on different data integration techniques, e.g. 

federated database systems, multi database systems and data warehouses. In order to model 

and simulate gene controlled metabolic networks, we focus on a flexible and thin, but 

universally applicable solution with powerful query and retrieval capabilities. The architecture 

of our system MARGBench [http://cweb.uni-bielefeld.de/agbi/home/index.html?id=104] is a 

mediator-based approach for database integration. The aim of MARGBench is to support the 
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seamless integration of multiple heterogeneous molecular biology databases and to allow the 

development and the execution of global applications that extend beyond the boundaries of 

individual databases [Fre02a]. 

The general principle of BioPNML data integration is shown in Figure 3.5.4. 

Integration of heterogeneous and physically distributed databases is implemented by the 

BioDataServer (BDS) system, which provides a homogeneous database view. IIUDB 

(Individually Integrated User Database) accesses JDBC (Java Database Connectivity) 

interfaces followed up by an object network. Provided with the JDBC driver, the IIUDB is 

developed for users to define their own specific integrated schemes, i.e. the system is adaptive 

by connecting to heterogeneous databases and integrates the information retrieved into user-

defined persistent databases and analyses the networks that can be found in these databases. 

The structure of metabolic networks and the molecular information contained is changing, and 

depending on the user view. Then based on the Object Management (OMG) architecture, we 

can do SQL queries and build up a metabolic network. IIUDB also includes several interfaces 

to export the resulting networks into common formats, e.g., CORBA, GML and XML as well 

as BioPNML.  

So far, the IIUDB offers integrated access to biological databases, currently mainly to 

KEGG, BRENDA and RegulonDB, which cover considerable features including details on the 

enzymatic reactions, substrates and products, binding parameters, catalytic constants and gene 

regulations. Based on these techniques, bio-Petri net tools could be provided with models of 

metabolic pathways, gene regulation and signaling pathways. 

 

 
 

Figure 3.5.4 BioPNML data integration schema. 
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3.6 Summary 
This chapter shows that the Petri net allows easy incorporation of qualitative insights into a 

pure mathematical model and adaptive identification and optimization of key parameters to fit 

system behaviors observed in gene regulated metabolic pathways. The advantages of the 

hybrid Petri nets applying to model and simulate are: The HPN model has a user-friendly 

graphical interface that allows an easy design, simulation and visualization. With the discrete 

and continuous events, the HPN can easily handle gene regulatory and metabolic reactions. 

The inhibitor arcs are useful for mechanistic studies to learn about how enzymes interact with 

their substrates, to know the role of inhibitors in enzyme regulation and gene expression. 

Moreover, powered with mathematical equations, simulation is executed and dynamic results 

are visualized. 

As in the cell, there are usually hundreds of interconnected metabolic pathways and 

gene regulatory networks and control of these presents more complex features. It is feasible to 

extend the Petri net model with a plug-in way. A large complex network model can be handled 

with the same set of structural and behavioral properties. When applying to such a large one, 

the HPN model will be very complex and the hierarchical concept makes it possible to develop 

a generalized variant of HPN at a global level. On the other hand, the subnet of Petri net model 

provides us the basic model that we already know its inner behavior and functions. Then we 

can construct a system by plugging together sub-models and can understand the working of 

the higher-level system and are able to predict its behavior.  

Building integrative models of the whole cell (virtual cell modeling) that incorporate 

gene regulation, metabolism and signaling is becoming a promising field during the post-

genomic era. Several projects have been established under way. The challenge created with 

Petri nets is to understand how all the cellular proteins work collectively as a living system. 

Using powerful Petri nets and computer techniques, data of metabolic pathways, gene 

regulation, signaling pathways can be converted for Petri net destination application. Thus, a 

virtual cell Petri net model can be implemented; the attempt to understand the behavior of cell 

activity could be accomplished.  

The aim of the BioPNML is to present a common data exchange format and to enable 

exchange of models between metabolic data and Petri net tools as well as other bio-simulators. 

It uses a simple, well-supported, textual substrate (XML) and can add components that reflect 

the natural conceptual constructs used by modelers in the domain.  The ultimate purpose is to 

serve as a common framework for exchanging data about metabolic networks, and to provide 

guidance to researchers who are designing databases to store pathway and reaction data. 

Obviously, in order to model a biopathway, we need a structural knowledge of the 

system. Nevertheless in reality, most often only parts of a system are known. Rudimentary 
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knowledge, such as sequences, involved metabolites or enzymes, can be examined by 

experimental work. The gap between rudimentary experimental data, and a satisfied model, 

should be overcomed. In the next chapter we are going to present a metabolic pathway 

prediction approach. It is developed as a web-based metabolic information retrieval and 

pathway reconstruction system. A predicted metabolic pathway can be assigned with kinetic 

values and automatically translated into XML data format that can be parsed by some Petri net 

tools for further modeling and simulation. 
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Chapter 4 

In Silico Prediction of Metabolic 
Pathways* 
 

 

 
In order to model and simulate a metabolic network, the more information available the better. 

Fortunately, there are more than 500 database systems available that represent molecular data. 

However, for the analysis of complex metabolic networks only rudimentary data and 

knowledge are available today. Therefore, we have to develop and implement special 

algorithms for the analysis and synthesis of complex metabolic networks, which are able to 

complete the rudimentary data. Previous approaches and existing metabolic pathway databases 

have a number of limitations in metabolic pathway reconstruction. Some present knowledge of 

the genome alone does not contain comprehensive information about metabolic pathways, 

such as physical and chemical properties of the enzymes that are involved. Some are not fully 

computer-aided. The individual database search process requires too much human intervention 

and the quality of annotation, largely depends on the knowledge and work behavior of human 

experts. The aim of this chapter is to develop such a web-based information retrieval system 

that will help in the prediction of metabolic pathways 

4.1 Introduction 
In silico retrieval/reconstruction of metabolic pathways based on the information of genes, 

enzymes and metabolites requires access to suitable databases ranging from genomics to 

metabolics. In Table 2.2 we have listed some major databases that make the integrative 

information retrieval of metabolic pathways possible. Here we describe some of them in more 

                                                 
* Part of Chapter 4 is to be published in IEEE Transactions on Nano-Bioscience [Che04a]. 
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detail. GenBank [Ben03] is a database that contains an annotated collection of all publicly 

available DNA sequences. Internet access is provided through several interfaces directly from 

the NCBI web pages. Each sequence is linked to other sequences that are similar based on 

sequence alignments. Swiss-Prot [Boe03] is a curated protein database that provides a protein 

retrieval interface that can be searched by AC, ID, description, gene name, organism and 

more. Several mirror sites of Swiss-Prot are distributed in Europe, America and Asia. 

BRENDA [Sch02b] systematically collects enzyme data. It is essential for both interpretation 

of the kinetic aspects of enzymatic reactions and retrieval of enzymes by various query terms.   

Metabolic pathway databases such as KEGG [Kan02], WIT/EMP [Ove00] and 

EcoCyc/MetaCyc [Kar02] have been developed to present diagrams depicting metabolic 

pathways. KEGG is composed of three interconnected sections: genes, molecules, and 

pathways. It represents the data of interacting molecules or genes by using the simplest form 

of representation: binary relations that correspond to pairwise interactions. It provides both an 

online map of metabolic pathways and the ability to focus on metabolic reactions in specific 

organisms. WIT/EMP includes some 3000-pathway diagrams covering primary and secondary 

metabolism, membrane transport, signal transduction pathways, intracellular traffic, 

translation, and transcription. Initially, EcoCyc/MetaCyc described only metabolic pathways. 

Now it is extended towards an integrative information system that represents genes 

(sequences, function), enzyme (amino acids, function and structure), and metabolic pathways 

of E. coli [Kar99]. Figure 4.1 shows the databases that make the integrative information 

retrieval of metabolic pathways possible. 

 

 
 

Figure 4.1 A schematic diagram of information sources for metabolic pathways prediction. 
 



 78

We exploited these databases for the construction of our pool of metabolic pathway datasets 

that are at present mainly based on KEGG and MetaCyc. Other databases, such as PIR 

[McG00], PDB [Ber02] and TRANSPATH [Kru03] / TRANSFAC [Mat03b] can also be 

potentially utilized in our future research for protein information, molecular structure and gene 

regulation and signal transduction. The pool database consists of 623 metabolic pathways of 

E.coli. Data servers handle the access (storage and retrieval). While the use of an up-to-date 

metabolic pathway database is essential to any similarity search. The pool database is 

constantly being updated. In the future, a more powerful integrated metabolic pathway 

database system, BioDataSever [Fre02b], which contains all metabolic pathway data from 

KEGG, WIT and MetaCyc will support our system. 

With the achievement of biological data collection, in silico metabolic pathway 

retrieval/reconstruction and sophisticate analysis becomes possible. Here we limit our 

discussion to sequence analysis. Suppose that we have a set of sequences S={s1,s2,…sn}. It is 

most widely used to search for each sequence similarity against the sequence databases such 

as GenBank. If there is a strong evidence in terms of sequence similarity, we may conclude 

that si belongs to a certain protein family or other similar genes with a known function. 

Obviously, one of the main problems with the database search strategy is that the search result 

needs to be evaluated manually by human experts. Although there are several integration 

systems, such as SRS [Etz96], available to realize the data query process, it still requires much 

human intervention, and the quality of annotation largely depends on the knowledge and skills 

of human experts. Moreover, scientists have to invest extensive efforts to learn how to use all 

different database interfaces, query languages, and parameter specifications for specific 

analytical programs. On the other side, for the prediction of metabolic pathways from 

rudimentary data, powerful tools are still missing. Biologists wish to perform metabolic 

pathway prediction and analysis with local or Internet-based tools.  

4.2 Methods and System 
In an attempt to answer these questions, a web-based information retrieval system is proposed. 

The system would at least include an Internet-based client/server architecture that allows 

remote and local access to the system. The main benefit of building such a web-based system 

is that it exploits the results of the existing databases on the web, and meanwhile acts as a 

virtual environment that allows the access to remote databases using Internet resources. 

Internet mechanisms support and maintain communication between web-browsers and 

database shells. The system is not transparent to the users. They do not need to known 

anything about how the system processed their problems.  

We discuss relevant issues for conducting sophisticated metabolic pathway 

reconstruction and metabolic information retrieval. The basic methodology used to reconstruct 
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metabolic pathways is retrieving all related EC numbers and searching or aligning against our 

pool database. This process selects all metabolic pathways from our database that currently 

embraces all pathways from MetaCyc.  

4.2.1 Pathway Reconstruction Method 

We consider a metabolic pathway as a special case of a metabolic network with distinct start 

and end-points, initial and terminal vertices, respectively, and a unique path between them 

[For99]. 

Let M={m1,m2,...,mn} be a set of metabolites that are involved in the enzymatic 

reactions acting as substrates and products; E={e1,e2,...em} be a set of enzymes. Normally a 3-

tuple (M,E,A) is called linear metabolic pathway, where A={(mi,ej) ∪ (ej,mi+1)  | 1≤i≤n, 1≤j≤m} 

is the subset of the successive relationship between M and E. 

The enzymes normally are separate enzymes. For those enzymes that can form a 

multienzyme complex (noncovalent aggregates of enzymes) or may be a membrane-bound 

system, we can choose a representative enzyme unless there is a unique term for it. However, 

in many of the metabolic reactions in living cells, enzymes act as catalysts in the conversion of 

certain metabolites (substrates) into other metabolites (products). So enzymes are the cores of 

metabolism and make the whole cellular processes connected, and the metabolic network can 

be interpreted as sets of enzyme catalyzed biochemical reactions. The representation of a 

metabolic pathway might be given as a set of successive related E. In addition, E can be a set 

of enzyme names or the corresponding 4-hierarchical-level EC numbers. 

The problem studied here can be stated formally as follows (Figure 4.2.1): 

 

 
 

Figure 4.2.1 The concept of functional pathway prediction. 
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The aim is to use a rudimentary metabolic pathway, e.g. a list of metabolites (M0), enzymes 

(E0), genes (G0) and sequences (S0), either nucleotide or amino acid sequences or both, in 

order to retrieve all relevant EC numbers. When they are queried to the remote data resources, 

then sets of associated EC numbers are extracted: 

M0�EM0={Em1,Em2,Em3,...,Emi}; 

G0�EG0={Eg1,Eg2,Eg3,...,Egj}; 

S0�ES0={Es1,Es2,Es3,...,Esk}; 

where Emi is a set of EC numbers related to the mi (mi∈M0); Egj is a set of EC numbers related 

to the gj (gj∈G0); Esk is a set of EC numbers related to the sk (sk∈S0).  

  

Example 4.1 Given (M0,E0,G0), where M0={L-arginine, L-ornithine}, E0={6.3.4.5}, 

G0={ASL, OTC}, then EM0={(1.5.1.11, 1.5.1.19, 1.13.12.1, 1.14.13.39, 2.1.4.1, 2.1.4.2, 

2.3.1.109, 2.4.2.31, 2.7.3.3, 3.2.2.19, 3.4.17.3, 3.4.17.10, 3.5.3.1, 3.5.3.6, 4.1.1.19, 4.3.2.1, 

5.1.1.9, 6.1.1.19, 6.3.2.24), (1.5.1.24, 2.1.3.3, 2.1.4.1, 2.1.4.2, 2.3.1.35, 2.3.1.127, 2.6.1.13, 

2.6.1.68, 3.5.1.16, 3.5.1.20, 3.5.3.1, 4.1.1.17, 4.3.1.12, 5.1.1.12)} and EG0={(4.3.2.1), 

(2.1.3.3)}. 

 

Then the sets of associated EC numbers are combined to produce a new list of sets of EC 

numbers. That is 

EM={Em1×Em2×Em3×...×Emi}; 

EG={Eg1×Eg2×Eg3×...×Egj}; 

ES={Es1×Es2×Es3×...×Esk}; 

In Example 4.1 we get: 

EM={(1.5.1.11, 1.5.1.24), (1.5.1.11, 2.1.3.3), …, (1.5.1.11, 5.1.1.12), (1.5.1.19, 1.5.1.24), 

(1.5.1.19, 2.1.3.3), …, (1.13.12.1, 1.5.1.24), …, (1.14.13.39, 1.5.1.24), …, (6.3.2.24, 1.5.1.24), 

…, (6.3.2.24, 5.1.1.12)}; 

EG={(4.3.2.1, 2.1.3.3)}; 

Now we select the set elements of EM, EG and ES to perform a combinatorial operation. The 

results are a set of possible pathways P, 

P=EM+E0 +EG+ES={Emi∪E0j∪Egk∪Esl}, 

where Emi∈EM ; Eoj∈E0; Egk∈EG; Esl∈ES. 

Finally we have: 

P={P1,P2,...Pn}, 

where Pi={ei1,ei2,...,eik | 1≤i≤n} is a set of EC number. 

When we continue Example 1, we have a set of pathways P, 
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P={(1.5.1.11, 1.5.1.24, 6.3.4.5, 4.3.2.1, 2.1.3.3), (1.5.1.11, 2.1.3.3, 6.3.4.5, 4.3.2.1, 2.1.3.3), 

…, (6.3.2.24, 5.1.1.12, 6.3.4.5, 4.3.2.1, 2.1.3.3)}. 

Pi is then searched against a pool database to find the metabolic pathway with the highest 

similarity score. 

To execute such data retrieval and combinatorial problems, an algorithm can be 

specified, which takes online data query and calculates an integrated relation over all specified 

data sources, using the already defined combinatorial operations. The algorithm outlined 

above can now be expanded into the following pseudo-code: 

 
In the algorithm, all the three different types of requests are processed in batches. After 

processing the queued metabolite requests, batches of sequence requests are processed, before 

processing the demands of gene requests. Here, once the control has passed over to the 

sequence loop, all retrieved metabolite requests (M0’) will get processed with the metabolite 

loop before EC number finding is resumed. The main drawback is that all requests are web-

communication depended. However, there is no problem with the data being out of date 

because it queries databases remotely instead of locally. The accessibility and update are 

guaranteed since the databases are global oriented and maintained by reputed institutes. The 

computing time cost is largely depended on the Internet communication. While in the 

combinatorial part, suppose there are k rudemantory elements, each element retrieve n EC 

numbers, then the combination costs nk. The combination of all assoiated EC numbers cost nk 

times nk. Therefor the total complexity is of order O(n2k). 

Begin: a query with rudimentary element set of M0, E0, S0, G0 

While (all requests are not processed) loop 

while (the Metabolite queue is not empty) loop  

process M0 request: M0=>EM0 

end loop 

while (the Sequence queue is not empty) loop 

process S0 request: S0=>(M0’)=>ES0 

end loop  

while (the Gene queue is not empty) loop 

process G0 request: G0=>EG0 

end loop 

recombine EM0, ES0, EG0 => EM, ES, EG 

end loop 

recombine EM, ES, EG, E0 => P 

search P against a pool database 

End: a metabolic pathway predicted 
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4.2.2 Web-based Metabolic Data Retrieval 

4.2.2.1 PathAligner system architecture 
PathAligner is a web-based biological information retrieval system designed with one main 

purpose:  the retrieval and alignment of metabolic pathways. The PathAligner system contains 

a PathModeler and a pathway alignment tool (Figure 4.2.2.1). PathModeler consists of four 

parts. The first part is a database mining tool that pulls out potential metabolic relationships 

from various databases, based on the queried rudimentary components such as metabolites, 

genes, sequences, etc. It allows easy access to distributed heterogeneous biological resources 

through a simple interface. The relationships are then organized and recombined, and queried 

against metabolic pathway database to retrieve a metabolic pathway result. Genetic and 

metabolic information involved in the retrieved pathway are extracted and displayed in the 

second part. In the third part, the retrieved metabolic information is visualized using an 

interactive graph display module. Finally, a XML data file that contains the basic information 

of metabolic and regulatory network as well as their kinetic values is formed for further 

modeling and analysis.  

 

 
 
 

Figure 4.2.2.1 The concept of PathAligner system. An initial set of rudimentary components such as 

metabolites, genes and sequences (left side) are submitted to the “Pathway Retrieval”. The core modules 

will recognize all components and make queries against relevant remote databases such as BLAST, 

KEGG and ExPASy. Then they pull out potential metabolic relationships from these databases, and 

search through a pool metabolic pathway database to predict a metabolic pathway. The result pathway 

can be further analyzed to retrieve other metabolic information, such as kinetic values of enzymatic 

reactions. A graphical model can be constructed based on the retrieved information afterwards. The 

result pathway can also be aligned with other pathways by using a “Pathway Alignment” tool. 
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By introducing a remote access communication architecture, the system allows different 

distributed heterogeneous biological resources communicating through the same common 

easy-to-use web-interface and enables researchers to perform efficient and effective biological 

data retrieval and metabolic pathway reconstruction. The processes of the core modules are for 

distributing and locating the responding database system to answer user’s local queries via the 

web-interface. It has a single common data representation to handle the diverse range of 

biological data formats, and the ever increasing amount of bioinformatics data can be accessed 

and analyzed in a synchronous, integrated manner, allowing biologists to concentrate on 

gathering and analysis of data and relieving them of the burden of learning and utilizing 

individual stand alone tools. The prototype system is designed to handle enzymes, proteins, 

metabolites, as well as incomplete or fragments of gene/protein sequences via the Internet. We 

have also constructed a pool pathway database of known metabolic reactions from several 

online databases such as EcoCyc/MetaCyc, regarding the metabolism of E. coli and other 

organisms. It contains metabolic pathways with EC numbers. 

4.2.2.2 System workflow 
The PathAligner work differs from previous attempts due to a combination of system design 

decisions. PathAligner is oriented toward assisting biologists in retrieving and reconstructing 

metabolic pathways rather than fully automatic construction and storage, thus avoiding 

information retrieval precision limitations. The procedures of PathAligner toward 

reconstructing the metabolic network are: 

Step 1: User input. Keyboard input of rudimentary pathway components of interest by 

the user. Components range from gene names, genomic sequences, enzymes, EC numbers, 

other compounds and more. 

Step 2: Component identification. Classify all components and query their responding 

databases. For example, nucleotide and protein sequences are queried by BLAST, proteins and 

other compounds are searched against Swiss-Port, and so on. 

Step 3: Data retrieval. The nucleotide sequences and protein sequences are aligned 

against the BLAST, with the aim of identifying the aligned encoded proteins. Other 

rudimentary metabolic components such as compounds and proteins are searched against 

Swiss-Port that provides the richest information on enzymatic reactions. The problem of 

synonymy and polysemy is solvable by using Swiss-Port search engineering to obtain all 

enzyme EC numbers by remote retrievals.  

Step 4: Pathway building. After the relevant EC numbers to all components of the 

rudimentary metabolic pathway are retrieved, a set of rough pathways expressed as sequences 

of EC numbers are combined.  

Step 5: Pathway identification. Using our pool pathway database, map the assigned 

pathways (sequence of EC numbers) to find the one with highest similarity. 
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The pathways can be modified afterwards. Finally, the reconstructed metabolic 

pathways (network) with kinetic values, which might be obtained from BRENDA or from 

literatures if any, are ready for modeling and simulation. 

4.3 System Implementation 

4.3.1 Perl Scripts 
Perl originally was designed to be able to easily process text files. Powered by the Internet 

connection ability, it becomes the leading language in everything regarding text data mining. 

The process can range from simple rearranging of the information to heavy statistical analysis.  

The way Perl scripts are capable to grab data from the web and manipulate it, is a Perl module, 

which is effectively an optional, very specialized set of Perl commands.  One of the particular 

Perl modules is called LWP, short for “Library for WWW access for Perl”.  LWP is a 

collection of programs and programming tools to allow surfing the web from inside your 

programs. In general, a “request” is created for data from the web, give it to a “user agent” 

which will actually make the request, coordinate the transfer of data, etc., and in return receive 

a “response” (called a response object by LWP) is received.  An example of using LWP to 

retrieve a single protein entry from NCBI web site is shown below. 

 

Users can specify the parameters “cmd”, “db” and so on according to their purposes. The 

precise form of the query to Medline or any other NCBI database, including GenBank, is 

detailed at: http://www.ncbi.nlm.nih.gov/entrez/query/static/linking.html. In this program, we 

# This is a Perl program to retrieve a single protein entry from the 
entrez web site.   
#!/usr/bin/perl -w 
 
use LWP;     
# This tells Perl you want to use the web access modules 
use strict; 
 
my $url = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db= 
nucleotide&dispmax=100&term=OTC&doptcmdl=FASTA";    
# Here we set a variable with the class URL 

 
my $agent = LWP::UserAgent->new; 
# This initializes the LWP system 
 
my $request = HTTP::Request->new(GET => $url); 
# Here we create an HTTP GET request 

 
my $response = $agent->request($request); 
# Give it to the user agent 
 
$response->is_success or die "failed"; 
# Get request back & check if agent did the job correctly. Then, print  
# the result: 
 
print $response->content; 
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just print out the whole big HTML file, although we could choose to parse and extract out 

information and analyze it.  However, we can often figure out the form of the URL just by 

looking something up in a database, then noting the address of the web page with the data. A 

brief tour of some of the biological data on the web available for our program is listed below. 

Table 4.3.1 A collection of biological database for the construction of metabolic pathways*. 

Database Records The URL and its parameters 
(example) 

KEGG 
Most known pathways, in 151 
graphical diagrams and 78 
ortholog group tables 

http://www.genome.ad.jp/dbget-
bin/www_bfind?reaction or ?compound or 
?ligand 

SWISS-PROT 129,768 sequence entries from 
8,202 species 

http://www.expasy.org/cgi-bin/enzyme-
search-ec or /enzyme-search-ca 

EcoCyc/MetaCyc 173 pathways/ 150 species http://biocyc.org/META/substring-
search?type=ENZYME&object= 

Genbank 18,197,000 sequence records 

http://www.ncbi.nlm.nih.gov/entrez/query.f
cgi?db=Nucleotide&cmd=search&term= or 
http://www.ncbi.nlm.nih.gov/entrez/viewer.
fcgi?db=nucleotide&val= 

TRANSFAC®/ 
TRANSPATH® 

5,241 factors; 12,976 sites / 
12,262 molecules; 2,604 genes 

http://www.biobase.de/cgi-
bin/biobase/TRANSFAC/8.1/bin/getTFProf
.cgi? 

BRENDA 3635 EC numbers http://www.brenda.uni-
koeln.de/php/result_flat.php4?ecno= 

* Last Statistic: July 1, 2003 

This very simple approach could easily be the basis for a program to consult biological 

databases and to map the Internet in real time. Moreover, some of these computational works 

are provided by Bioperl association (http://www.bioperl.org). Bioperl is a collection of Perl 

modules that facilitate the development of Perl scripts for bioinformatics applications. It is the 

leading open source project. It contains modules for representing biological sequences, protein 

structure, sequence alignments, BLAST and FASTA reports, biological maps, sequence 

features and their locations including complex locations, annotations & bibliographic 

references, phylogenetic trees, and gene structures. Provided by various Bioperl module, it is 

becoming more and more easier to automate your request results with a desirable format. 

4.3.2 Web Interface 
PathAligner provides an easy-to-use interface environment to access the related heterogeneous 

databases, analysis and display results. A web-based interface of PathAligner system has been 

established to implement the retrieval of metabolic pathways. The web-interface is responsible 

for the communication with the client queries. It receives the query in terms of an HTTP 

request. After parsing the request, it triggers the corresponding functionality of the query 

engine that processes the query and returns the result. Then the result for each query and the 

protocols between them are returned as HTML data to be displayed in a browser. The result 

includes the responding metabolic pathway, and some URL links to the original databases and 
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a graph of the metabolic pathway. There is no problem with the data being out of date because 

it queries databases remotely instead of locally. Although the procedure might take a little 

while to retrieve the data, the accessibility and update are guaranteed since those databases are 

global oriented and maintained by reputed institutes. 

Users access the PathAligner system via the web-interface, while standard, platform 

independent Perl applications and modules are used to connect the applications to the central 

database and external data sources. Using web-browsers, users will not need special hardware 

or software to consult these services. The PathAligner home page is located at 

http://bibiserv.techfak.uni-bielefeld.de/pathaligner. 

4.4 Applications 
An example of PathAligner usage is retrieval of a metabolic pathway using several initial 

rudimentary components: Metabolite (L-citrulline), Enzyme (arginase//4.3.2.1), DNA 

sequence (ctgtgttcactg…), protein sequence (mtkdfrqnvfq…) and gene symbol (OTC). 

PathAligner retrieves all relevant EC numbers from various public databases and searches 

pathways against the pool pathway database. The example query and its query result is shown 

in Figure 4.4A.  

 
 

Figure 4.4A A pathway retrieval example in PathAligner. 
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The highest scoring metabolic pathway “urea cycle pathway”: {6.3.4.16, 2.1.3.3, 6.3.4.5, 

4.3.2.1, 3.5.3.1} is retrieved and displayed (Figure 4.4B). 

   

 
 

Figure 4.4B An example query of the PathAligner for pathway retrieval. 
 
By clicking the button “More info about the ECs” under the retrieved pathway, additional 

information about the involved enzymes and enzyme-associated pathways are displayed 

(Figure 4.4C). The table lists not only the enzymes that are involved in the query, but also 

more related metabolic and genetic information. Clicking the corresponding hyperlinks can 

retrieve additional information about the enzymatic reactions and Km values. The Km values 

and the reaction data are retrieved from BRENDA. The encoding genes and their transcription 

factors are also displayed. The genes involved, as well as the pathways associated, are 

obtained from KEGG; while the factors and GeNetView are extracted from BioBase. For 

instance, for EC 2.1.3.3, is encoded by gene OTC and a number of transcription factors which 

are shown in the column Factor. Moreover, the interactions between the genes and the 

transcription factors are also available by clicking the hyperlink OTC in the column 

GeNetView. However, not all data is available due to incompleteness of the source database. 

In the current version of PathAligner, this additional information is restricted to Homo sapiens. 
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Future work will be extended to various species. The enzyme associated metabolic pathways 

out KEGG are also presented. 

 

 
 

Figure 4.4C Screenshot of the representation of metabolic/genetic information of the retrieved 

enzymes. 

 
PathAligner provides a graphic representation that illustrates the interrelationships between the 

retrieved enzymes and their metabolic reactions and gene regulations. The graph visualization 

is based on visualizing and interacting with dynamic information spaces. The graph layout 

program is dot, which as a part of the Graphviz [Gan00] program, developed at AT&T 

(http://www.research.att.com/sw/tools/graphviz/). The web-interface uses the layout and 

graphics engine to transform the graph into a picture and delivers it to the client as a PNG 

image-file (Figure 4.4D). The graph may just be too large to be viewed as a whole on the 

screen. The user can resize the graph to examine different parts of the graph in varying levels 

of detail.  

PathAligner models the initial rudimentary pathway so that important relationships 

can be retrieved and illustrated. The retrieved functional data provide a basis for further 
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analysis. For instance, the graph can be used as a blueprint for modeling and simulation with 

some biological simulators such as Petri net tools. A hybrid Petri net model that contains 

qualitative and quantitative aspects can be used as a predictive tool.  As quantitative model 

requires kinetic values, assignment of initial value of metabolites and kinetics are to be made 

after data retrieval. The table in the Figure 4.4D requires the user to fill in the blanks with 

actual concentrations of substrates and products, and Km values involved in responding 

enzymatic reactions. Although some of such data nowadays are available, some other data 

may not be complete. A series of predefined kinetic types that are most often used in the 

biochemical reaction models are available in the literatures. However, there are some 

circumstances in which the kinetic types are not yet defined. Then a new kinetic type is to be 

self-defined by the mass law. In that case, mass conservation relations must be taken into 

account in order to carry out the simulation. In principle, we construct the model with the 

identification of the reaction stoichiometry. 
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Figure 4.4D Screenshot of a network graph. The bold arrows represent catalyst links. The green arrows 

are gene regulation links. The blue arrows are gene-encoding links. Enzymes are shown as red ellipses. 

The graph is resizable. The table above the graph indicates an initial kinetic value assignment. These 

data are intended for modeling. Some Km values are extracted from BRENDA. 

 
After the assignment of concentration and kinetic values to the reconstructed metabolic 

pathway, a data file is generated for storage and interchange. We propose it to be specified in 

an XML format, BioPNML (see §3.5 in Chaper 3). Figure 4.4E shows the web-layout of 

BioPNML data for the retrieved and value-assigned metabolic pathway. The BioPNML is 

designed to provide a starting point for the development of a standard interchange format for 

Bioinformatics and Petri nets. The language will make it possible to present biology Petri net 

diagrams between all supported hardware platforms and versions. It is also designed to 

associate Petri net models and other known metabolic simulators. PathAligner provides a 

translation tool to transform BioPNML into other XMLs. 

 

 
 

Figure 4.4E BioPNML presentation of the retrieved metabolic pathway. 
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4.5 Evaluation 
The object of the evaluation is to verify the usability of the system. Some evaluation exercises 

were undertaken and the results are summarized: 

• To determine the availability of information retrieval, evaluation is done 

programmatically by assessing the accessibility of URL sources. We examined the 

source code for URLs of different remote databases, allowing a more complete 

assessment. 

• To evaluate the accuracy of the prediction, we compared automatic searches with 

manual searches against various data sources, and then checked back the predicted 

results to find the related genomic and metabolic information. Experiment results 

show that the predicted pathway consistently contains the known pathway.  

• To evaluate the comprehensiveness of our approach, we chose fragments of 

sequences, genes and metabolites to perform metabolic pathway prediction. We 

observed that our approach is quite versatile in the sense that it can handle a variety of 

rudimentary elements. Most of pervious approaches can either only accept queries of 

metabolites/enzymes, or only require annotated sequences.  

• In terms of compatibility, several different web-browsers were tested. There are no 

significant differences between Internet Explorer, Netscape and Mozilla. The user 

interface of the systems is quite simple and very user-friendly. It starts with the main 

query page; users can follow the web annotation to perform further steps.  The design 

is kept simple for clarity. 

PathAligner is a web-based information retrieval tool and an alignment tool. The following 

table is created to compare the features of PathAligner with other databases and tools.  

 

Table 4.5 Comparison of PathAligner with related approaches. 

Features KEGG/WIT PathoLogic PathFinder PathMiner PathAligner 

Algorithm 
EC numbering, 
genome 
annotation 

Genome 
annotation 

Annotation 
data parsing 

Heuristic 
search 

Web-based 
information 
retrieval 

Access WWW Local 
installation WWW WWW (Java 

applet) WWW 

Input Molecules, 
enzymes Specific files Sequences, 

enzymes Specific files Rudimentary 
data 

Output Pathway PGDB form Pathway Unknown Pathway 

Pathway 
visualization + Database + Unknown + 

Extra linkage + + - - + 

Alignment 
possibility - - - - + 

User interface Dialog Complex Dialog Menu Dialog 
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4.6 Summary 
Modern biology requires rapid development of new methodologies and algorithms in order to 

make an optimal use of intelligent computational tools. Our work has lead to the development 

of a web-based biological information retrieval system that exhibits an ability to reconstruct 

metabolic pathways.  

This chapter demonstrated how the PathAligner system implements metabolic 

pathway reconstruction problems in a simple way, and significantly reduces the effort and 

difficulty involved in data integration and analysis. PathAligner is designed to handle 

metabolites, enzymes, proteins as well as incomplete or fragments of gene sequences, it 

handles nucleotide and protein sequences from the GenBank, proteins and metabolites from 

the ExPASy. By introducing a remote Internet access communications architecture, the ever 

increasing amount of metabolic biological related data can be accessed and analyzed in a 

synchronous, integrated manner, allowing biologists to concentrate on gathering and analysis 

of metabolic data, and relieving them of the burden of learning and utilizing individual stand 

alone tools. 

In silico metabolic pathway reconstruction from rudimentary components requires 

combining information from a large number of sources: classical biochemistry, genomics, 

functional genomics (e.g. microarray experiments). As ever more experimental biological data 

are generated and analysis tools are developed and accessible to us, the expansibility of 

PathAligner system, via simple addition of modules that would allow the system to 

incorporate new technologies such as molecules’ physical and chemical properties and 

microarray data analysis, become possible. 

In summary, PathAligner is such a web-based tool for metabolic pathway retrieval. It 

possess the following operation features: 

• It has a simple user interface. 

• The web-based system requires no additional hardware or software. Users do not 

need to known anything about how the system processed their problems by using 

the system itself, or remote system through remote accessing techniques or 

communication protocols. 

• No problem with data updating. With distributed biological and biomedical data 

sources supporting online, PathAligner facilitates and retrieves active participation 

of all data sources. 

• Visualization. PathAligner presents the retrieved pathway using a graph 

visualization tool.  Results are directly processed as web page layout. PathAligner 

implements the alignment algorithm and provides a graphical representation.  



 93

PathAligner focuses efforts on reconstructing metabolic pathways from diverse rudimentary 

components. It also provides a method to analysis the similarity and distance of different 

metabolic pathways. Assuming that the two pathways are related in some biologically 

meaningful way, whether from different organisms or the same, it is capable to discover their 

regulation and their evolution (to be discussed in Chapter 5). 
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Chapter 5 

Metabolic Pathway Alignment* 
 

 

 
In this Chapter a formal definition of metabolic pathway is given. Metabolic pathway 

alignment algorithms are presented and discussed. Alignment examples are demonstrated by 

the PathAligner system. 

5.1 Metabolic Pathway Definitions 
Traditionally biochemical pathways have been defined in the context of their historical 

discovery, often named after key molecules (e.g. “glycolysis”, “urea cycle”, “pentose 

phosphate pathway” and “citric acid cycle” and so on). In that context, pathway refers to a 

path from substrate to product or receptor to transcription factor, even though usually some of 

the molecules involved are also found in other pathways. The classification of molecules into 

pathways has historical reasons, and is not explicitly based on qualitative differences of the 

interactions. One reason for this is that it is easier to think about the network as pathways 

which are connected densely. But we should emphasize that the definition of a metabolic 

pathway is not exact, there are always interactions among pathways. A pathway's substrates 

are usually the products of another pathway, and there are junctions where pathways meet or 

cross. Now, the question is how to define a boundary for a pathway under these circumstances 

that the biology processes are so interacted and actually there is no such clear boundary 

between two pathways (glycolysis and urea cycle pathway, or MAPKinase signaling pathway 

and p38 MAPK signaling pathway). 

Normally, the basic strategy to represent and compute pathways is the reactant-

product binary relation. Properties of the pathway that rely upon the integration of two or more 

                                                 
* Part of Chapter 5 is to be published in Applied Bioinformatics [Che04b] and BGRS’04 [Hof04] 
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input molecules and unrelated output molecules, and feedback effects are ignored (Figure 

5.1A). 

 

 
 

Figure 5.1A Abstract metabolic pathway with binary relation compare to that in reality. 
 

Obviously, a metabolic pathway is a special part of complex network of reactants, products 

and enzymes with multiple interconnections representing reactions and regulation. Metabolic 

pathways are defined in the literature [Voe95] [Har97] [Sel98] in various ways with varying 

degrees of formality. A biochemical pathway is defined by Mavrovouniotis M.L. [Mav95] as 

an abstraction of a subset of intricate networks in the soup of interacting biomolecules. A 

prevailing definition is, that a metabolic pathway is a special case of a metabolic network, with 

distinct start and end-points, initial and terminal vertices, respectively, and a unique path 

between them, i.e. a directed reaction graph with substrates as vertices and arcs denoting 

enzymatic reactions [For99]. Some databases such as KEGG, WIT represented metabolic 

pathway graphs with labeled arcs indicating the involved enzymes. 

Schuster et al. [Sch00a] provided a general definition of metabolic pathways based on 

the concept of elementary flux modes. It allows one to test whether sets of enzymes form a 

consistent pathway allowing mass balancing for each intermediate and complying with the 

directionality of reactions (irreversibility). However, it represents modes under idealized 

situations without regulation and feedback and from simulation point of view it is impossible 

to analyze the whole metabolism of organisms. Moreover, in order to determine a single mode, 

the large metabolic network has to be decomposed into smaller ones based on graphical 

algorithm. 

One is called a pathway only if they are linear and unbranched. A metabolic pathway 

is an unrepeatable, irreversible sequence of a series of vertices and arcs leading from a 

molecule vertex, labeled as substrate via a molecule vertex, labeled as enzyme, to a molecule 

vertex, labeled as product. When the end vertex meets the previous vertex of the sequence, 

they make a complete close pathway, called a (partial) cyclic metabolic pathway.  

There are four linear pathways in the example of Figure 5.1Ba. In practice, 

representation of enzymatic catalysization is omitted (Figure 5.1Bb). However, in many of the 

biochemical reactions in living cells, enzymes act as catalysts in the conversion of certain 

compounds (substrates) into other compounds (products). So enzymes are the cores of 

metabolism and make the whole cellular processes connected, and the metabolic network can 

be interpreted as sets of enzyme catalyzed biochemical reactions. That is, pathways are 
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abstractions of sets of enzymatic reactions; they are substructures that are partitions of the 

metabolism. Then the representation of metabolic pathways might be given as graph G(E,A), 

Figure 5.1Bc shows the graph example, which is exploited for our Enzyme-Enzyme 

relationship metabolic pathway alignment. 

 
 

Figure 5.1B An example of metabolic pathways; A, B, …, I are metabolites, e1, e2, …, e10 enzymes. 
 

As a result the traditional well-known pathways such as glycolysis or TCA will not be 

considered as a well-defined pathway, because they often contain some branches or alternative 

pathways. In fact there are several pathways inside them. Obviously there are always 

interactions among pathways.  

We consider that a metabolic pathway is a subset of these reactions that describe the 

biochemical conversion of a given reactant to its desired end product. Rather to say, several 

biochemical reactions act together in a pathway to transform a set of initial substrates into 

products with very different structures, a new proposed definition of the metabolic pathway is 

presented and discussed in the following paragraphs. 

Let { }nmmM ,...,1=  be a set of metabolites in cells. Let fi : M → M be a function for 

bioprocess events taking place in the cells. Bioprocess events are any kinds of biological 

actions among metabolites in cells. 

 The fact that fi is a bioprocess function from a set of reactants R (R ⊆ M) into a set of 

products P (P ⊆ M) is written as follows: 

fi : R → P 
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for all m1, m2, m3 ∈ M, the following property holds: 

f1(m1) = m2  and  f2(m2) = m3 � f2(f1(m1)) = m3 . 

Let f1(m1) = m2, f2(m2) = m3, …., fk(mk) = mk+1, we define f1f2…fk (m1) = fk(fk-1…f1(m1)) = mk+1. 
 
Definition 5.1 Given f : M → M, a bioprocess pathway is defined as a subset of successive 

bioprocess events ��= f1f2…fk.  

For each fi (1 ≤ i ≤ k), there exist a pair of metabolites (mi, mi+1), mi ∈ M, mi+1 ∈ M, 

involved in the bioprocess event as reactant and product. � is a composition function of the 

functions fi, and we have �(m) =  fkfk-1…f1(m). Given an initial substrate m1, then the ending 

product mk+1 is predictable. If mk+1 = mi (1 ≤ i ≤ k), i.e. the product of fk is the one of the 

metabolites involved in the previous steps, then the pathway is called as a cyclic pathway. 

Otherwise, if mk+1 ≠ mi (1 ≤ i ≤ k), then it is a linear (non-cyclic) pathway. 

Note that the function f is a genetic term for all bioprocess events in a cell, including 

biochemical reactions, membrane transportations, signal transductions, and so on. In case of 

enzymatic reaction, the function “f” can be written as “e” in order to distinguish the enzymatic 

reaction function from the genetic reaction function.  

Definition 5.2 A metabolic pathway is defined as a subset of successive enzymatic reaction 

events P = e1e2…ek.  

Each enzymatic reaction ei (1 ≤ i ≤ k) is catalyzed by a certain enzyme that is denoted 

as a unique EC number. The EC number is expressed with a 4-level hierarchical scheme that 

has been developing by the International Union of Biochemistry and Molecular Biology 

(IUBMB) [Web92]. The 4-digit EC number, d1.d2.d3.d4 represents a sub-sub-subclass 

indication of biochemical reaction. For instance, arginase is numbered by EC 3.5.3.1, which 

indicates that the enzyme is a hydrolase (EC 3.*.*.*), acts on the “carbon-nitrogen bonds, 

other than peptide bonds” (sub-class EC 3.5.*.*) in linear amidines (sub-sub-class EC 3.5.3.*). 

The enzymes normally are separated enzymes. For those enzymes may form a multienzyme 

complex (noncovalent aggregates of enzymes) or may be a membrane-bound system, we can 

choose the representative one of the enzymes unless there is a unique term for it. Thus we can 

adapt the EC number as a unique name for the responding enzyme catalyzed reaction.  

 
Example 5.1 e3.5.3.1 means the biochemical reaction that is catalyzed by the enzyme 3.5.3.1, 

which catalyze arginine into urea. 

e3.5.3.1(arginine) = urea 

and 

e2.1.3.3e6.3.4.5e4.3.2.1e3.5.3.1(carbamoyl-P) = urea, 
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indicates that a metabolic pathway e2.1.3.3e6.3.4.5e4.3.2.1e3.5.3.1 starts from the enzymatic reaction 

2.1.3.3 with carbamoyl-P as reactant, and after a series of reactions (2.1.3.3, 6.3.4.5, 3.5.3.1) 

results in urea as product. 

5.2 Metabolic Pathway Alignment 
Alignment as one of the most powerful methods to comparatively analyze the relationship 

between two sequences has been widely investigated in the field of bioinformatics to further 

understand the biological homology and estimate evolutionary distance. A common approach 

is to align sequences to each other, and measure distances by direct usage of molecular 

sequence data with, e.g. parsimony or maximum likelihood methods, or to calculate a 

corresponding similarity/distance matrix in multiple sequence alignment algorithms. Recently 

the emphasis of research efforts begins to turn back from gene sequences to cell functions as 

the completion of a long series of genomes and the accumulation knowledge of metabolism 

have made the comparison of complete metabolic pathways possible. Some approaches 

emphasized on either comparisons of gene sequence of involved enzymes [Dan99] [For01] or 

maximum likelihood mapping of enzyme using EC numbers [Toh00a] [Toh00b] have been 

made.  

Our metabolic pathway alignment is a mapping of one pathway onto another by 

calculating the similarity of them at a metabolic level instead of genomic level. The basic 

concept is to measure the similarity. 

5.2.1 Theory Basics 

In order to score the similarity (percent identity) between two metabolic pathways, we define 

the similarity function. The notion of similarity function is the key to the pathway alignment. 

Definition 5.3 Let Ε be a finite set of e functions, an edit operation is an ordered pair (α,β) ∈ 

(Ε ∪{ε})×(Ε ∪{ε})\{(ε,ε)}. 

α and β denote 4-digit EC strings of enzymatic reaction function, e.g. α=e1.1.1.1 

β=e2.3.4.5,  ε denotes the empty string for null function. However, if α≠ε and β≠ε, then the edit 

operation (α,β) is identified with a pair of enzymatic reaction function. 

An edit operation (α,β) is written as α→β (we can simply written α, β as EC 

numbers). There are three kinds of edit operations: 

α→ε denotes the deletion of the enzymatic reaction function α, 

ε→β denotes the insertion of the enzymatic reaction function β, and 

α→β denotes the replacement of the enzymatic reaction function α by the enzymatic 

reaction function β. 

Notice that ε→ε never happens. 
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Definition 5.4 Let E1=e1e2…em and E2=e1’e2’…en’ be two metabolic pathways, an alignment 

of E1 and E2 is a pair sequence 

(α1→β1,…,αh→βh) 

of edit operations such that E1’=α1,…,αh and E2’ = β1,…, βh. 

Note that the unique alignment of ε and ε is the empty alignment, that is, the empty 

sequence of edit operations. Empty element ε can be inserted at any position, i.e. also at the 

beginning or end. An alignment is usually written by placing the EC numbers of the two 

aligned pathways on different lines. 

Example 5.2 The alignment A = (2.4.2.3→2.4.2.4, 3.5.4.5→ε, 3.1.3.5→3.1.3.5, ε→2.7.4.9) of 

the pathways e2.4.2.3e3.5.4.5e3.1.3.5 and e2.4.2.4e3.1.3.5e2.7.4.9 is written as follows, one over the other: 

 

��
�

�
��
�

�

9.4.7.25.3.1.34.2.4.2
5.3.1.35.4.5.33.2.4.2

ε
ε

 

Example 5.3 Five alignments of E1=e2.7.4.14e3.1.3.5e3.5.4.5e2.4.2.3 and E2= 

e2.7.4.14e3.2.2.10e3.5.4.1e2.4.2.3e3.5.4.5 

A1 = ��
�

�
��
�

�

5.4.5.33.2.4.21.4.5.310.2.2.314.4.7.2
3.2.4.25.4.5.35.3.1.314.4.7.2

εε
εεε

 

A2 = ��
�

�
��
�

�

5.4.5.33.2.4.21.4.5.310.2.2.314.4.7.2
3.2.4.25.4.5.35.3.1.314.4.7.2

εε
εεε

 

A3 = ��
�

�
��
�

�

5.4.5.33.2.4.21.4.5.310.2.2.314.4.7.2
3.2.4.25.4.5.35.3.1.314.4.7.2

εε
εεε

  

A4 = ��
�

�
��
�

�

ε
εε

5.4.5.33.2.4.21.4.5.310.2.2.314.4.7.2
3.2.4.25.4.5.35.3.1.314.4.7.2

  

A5 = ��
�

�
��
�

�

5.4.5.33.2.4.21.4.5.310.2.2.314.4.7.2
3.2.4.25.4.5.35.3.1.314.4.7.2 ε

 

Lemma 5.1 Let A=(α1→β1,…,αh→βh) be an alignment of E1=e1e2…em and E2=e1’e2’…en’. 

Then m+n ≥ h ≥ max{m,n}. 

Proof. 1.) The alignment  

��
�

�
��
�

�

'...''...

......

21

21

n

m

eee

eee

εεε
εεε

 



 100

of E1 and E2 is of maximal length. Its length is m+n, hence m+n ≥ h. 

2.) Let m ≥ n. then 

��
�

�
��
�

� ++

εεε ...'...''
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21

2121

n

mnnn

eee

eeeeee
 

3.) The case m < n is similar to case 2. Hence h ≥ max{m,n}. 

To estimate the number of pathway alignments, we define that Aligns(m,n) is the number of 

alignments of one pathway E1 of m EC numbers with another pathway E2 of n EC numbers. 

Lemma 5.2 For all m,n ≥ 0, Aligns(0,0) = 1, Aligns(m,0) =1 and Aligns(0,n) = 1, then 

Aligns(m,n) = Aligns(m-1,n) + Aligns(m, n-1) + Aligns(m-1,n-1) 

Proof. The idea is to focus on the end of the alignment. If em is deleted, then there exist 

Aligns(m-1,n) alignments of the earlier part of the pathway. If en’ is deleted, then Aligns(m,n-

1) alignments result. If em and en’ are aligned, Aligns(m-1,n-1) alignments result. Therefore, 

Aligns(m,n) = Aligns(m-1,n) + Aligns(m, n-1) + Aligns(m-1,n-1) 

If not to count 
j

i

e

e

ε
ε

and 
ε

ε

j

i

e

e
as distinct, the new way of counting alignments is to 

identify aligned pairs 
2

1

e

e
 and to ignore permutations of ⋅⋅⋅

3

21

e

ee

εε
ε

. The notation of index 

alignment is introduced. 

Definition 5.5 A index alignment of E1 and E2 is a set of index pairs, (i1,j1),(i2,j2),…,(ir,jr) 

satisfying: 

1 ≤ i1 < i2 < …< ir ≤ m 

and 

1 ≤ j1 < j2 < … < jr ≤ n. 

For 1 ≤ h ≤ r, the index pair (ih,jh) stands for the replacement eih → e’jh. We say that eih 

is matched or aligned with e’jh. All EC numbers in E1 and E2 not occurring in an index 

alignment are considered to be deleted in E1 or E2. In a graphical representation, the index 

pairs of the index alignment appear as lines connecting the EC numbers (Example 3). 
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Example 5.4 The following index alignment of E1= e2.7.4.14e3.1.3.5e3.5.4.5e2.4.2.3 and E2= 

e2.7.4.14e3.2.2.10e3.5.4.1e2.4.2.3e3.5.4.5 represent the alignments of Example 7.2. In particular, P1 

represents A1, A2 and A3, while P2 represents A4, and P3 represents A5. 
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Lemma 5.3 Let Indexaligns(m,n) be the number of index alignment of two fixed pathways of 

length m and n. Then 
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Proof. 1.) For each r∈[0,min{m,n}] we have: for the ordered selection of the indices i1,…,ir 
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possibilities; for the ordered selection of the indices j1,…,jr there are 

��
�

�
��
�

�

r

m
possibilities. All these possibilities have to be combined: 

�
≥

��
�

�
��
�

�
⋅��
�

�
��
�

�
=

),min(

0

),(
nm

r r

n

r

m
nmsIndexalign . 

2.) The key to the last equality is to consider the binomial expansion (x+y)n. For 

details see Appendix C. 

Obviously, Indexaligns(m,n) is a sepcial case of Aligns(m,n), and it is possible to further 

reduce the number of alignments by requiring conditional matches. There are at least�

��
�

�
��
�

� +
n

nm
 different alignments between E1 and E2. 
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5.2.2 Similarity Function 

The notion of alignment requires some scoring or optimization criterion. A variety of different 

similarity measures can be used to calculate the similarity. A scoring scheme must account for 

replacements, insertions and deletions. Scores are measures of sequence similarity (similar 

sequences have high scores); this is given by a similarity function. A characteristic of a 

similarity function is that the results of the function increase as the comparing item become 

more similar. The value is zero if the items are totally dissimilar. The similarity function is 

measured by the following definition: 

Definition 5.6 A similarity function σ assigns to each edit operation (α,β) a nonnegative real 

number. The similarity σ (α,ε) and σ (ε,β) of the deletion operation (α,ε) and insertion 

operation (ε,β) is 0. For all replacement operations (α,β) α≠ε, β≠ε, say, α=d1.d2.d3.d4 and 

β=d1’.d2’.d3’.d4’, then the similarity function σ (α,β) is defined by: 

0, if (d1 ≠ d1’); 

0.25, if (d1 = d1’ and d2 ≠ d2’); 

σ (α,β) =      0.5, if (d1 = d1’ and d2 = d2’ and d3 ≠ d3’); 

0.75, if (d1 = d1’ and d2 =d2’ and d3 = d3’ and d4 ≠ d4’); 

1, if (d1 = d1’ and d2=d2’ and d3= d3’ and d4 = d4’ i.e. α=β). 

 
The definition does not exclude the possibility that d4, d3.d4, and d2.d3.d4 can be 

respectively expressed as wide card symbols *, *.* and *.*.* which means no clear 

classification of the enzyme. 

According to the Enzyme Nomenclature (IUBMB) [Web92], the EC number is 

function-based (the substrate-product conversion) instead of structure-based (the physical 

nature of the catalyst). So it is possible that two structurally dissimilar enzymes could catalyze 

a single reaction. In this case, the similarity score of σ (α,β) is unrelated to the physical nature 

of enzymes but dependent on theire catalytic reactions. The higher similarity score, the closer 

the classes of the two reactions. 

Single pair of EC string comparison just means to measure how different EC strings 

are. Often it is additionally of interest to analyze the total difference between two strings into a 

collection of individual elementary differences. The most important mode of such analyses is 

an alignment of the pathways. The function σ can be extended to alignments in a 

straightforward way: the similarity σ (A) of an alignment A=(α1→β1,…,αh→βh) is the sum of 

the similarities of the edit operations A consists of. 

�
=

→=
h

i
iiA

1

)()( βασσ  

 
Example 5.5 The similarity of the alignment A5 in the example 3 is:  
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σ (A5) = σ (2.7.4.14→2.7.4.14) + σ (3.1.3.5→3.2.2.10) + σ (3.5.4.5→3.5.4.1) 

    + σ (2.4.2.3→2.4.2.3) + σ (ε→3.5.4.5) 

          = 1+0.25+0.75+1+0 

          = 3.0 

 
When considering the lengths of pathways, an alignment scoring scheme is given. 

Definition 5.7 An alignment scoring scheme, Score(E1,E2) of two metabolic pathways is the 

average degree of their similarity of the alignment 

)(
),max(

1
),( 21 A

nm
EEScore σ=  

Obviously, the worst case of scoring is that there is no index pair exists in the alignment, i.e. 

all edit operations are deletions and/or insertions. Hence similarity σ(A) is zero. The best case 

is that the similarities of all edit operation are 1, i.e. α=β, there is neither deletion nor 

insertion. Hence similarity σ(A) is n, and E1 and E2 share the same length, m=n. Therefore 

Score(E1,E2) =
n
n

=1. They are actually the same. 

In order to achieve a maximum possible score of the alignment, the edit distance could 

be adapted to measure the similarity between two pathways by calculating the minimal cost of 

the edit operations [Lev66] [Wag74] [Sel80]. However, when taking the biological aspects of 

metabolic pathways into account, especially when we considering that two evolutional related 

pathways are diverged for some certain biological purpose, the alignment with the edit 

distance is arbitrary and sometimes biological meaningless. For example, the same metabolic 

pathway from two organisms may have diverged since the organisms evolved from their 

common ancestor, and individual metabolites and enzymes may have been changed or added 

or lost in one pathway. There are two theories exist. The “retrograde evolution” theory 

[Hor45] states that sequential disappearance of key intermediary metabolites induces the 

recruitment of similar available substrates via new enzymes. The “substrate ambiguity” theory 

[Jen76] indicates that enzyme recruitment from a pool of ancestral enzymes with basic 

functions and substrate ambiguity. So the intended function similarities of metabolic pathways 

are taken into account, i.e., two pathways are supposed to be function related. They performed 

some similar biological purposes from certain starting substrates to the ending products. Based 

on these considerations, we define a new function to perform the removal of unmatched 

elements from both ends of the pathway. 

5.2.3 Strip and Index Function 

Definition 5.8 Strip function δ and index function λ of E1=e1e2…em and E2= e1’e2’…en’ are 

defined as 
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δ (e1e2…em, e1’e2’…en’) = (ei+1ei+2...ek-1, ej+1’ej+2’..el-1’) 

λ(e1e2…em, e1’e2’…en’) = {(i,j),(k,l)} 

where: 1 ≤ i ≤ k ≤ m and 1 ≤ j ≤ l ≤ n, 

ei, ek ∈ E2,  

e1,e2,...ei-1, ek+1’,...em’ ∉ E2, 

ej’ is the first element matching from left to right such that ei=ej’, 

and el’ is the first element matching from right to left such that ek=el’. 

Also set 

δ (e1e2…em, e1’e2’…en’) = (e1e2…em, e1’e2’…en’) 

when ei ≠ ej (1 ≤ i ≤ m and 1 ≤ j ≤ n) | e1e2…em=ϕ | e1’e2’…en’=ϕ | e1e2…em=e1’e2’…en’=ϕ. 

The result of δ (e1e2…em, e1’e2’…en’) can be further performed with δ until δ (E1, E2) = (E1,E2) 

(Figure 5.2.3A). 

δ k (E1, E2) = δ (δ k-1 (E1,E2))  

 

Figure 5.2.3A A schematic alignment with strip function. 

The set of all matched points will be denoted as λ*(E1, E2). Such that: 

λ*(E1, E2) = λ(E1, E2) ∪ λ(δ (E1, E2)) ∪ ⋅⋅⋅ λ(δ k (E1, E2)) 

      = �
k

i

r EE
0

21 )),((
=

δλ = {(i, j), (i’, j’),..., (k’, l’), (k, l)} 

where λ(δ 0 (E1, E2))= λ(E1, E2); 1 ≤ i < i’ < ... < k’< k ≤ m, 1 ≤ j < j’ < ... < l’< l ≤ n. 
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According to Definition 5.5, we know that (i, j),(i’, j’),…, (k’, l’),(k, l) is a index alignment of 

E1 and E2. 

Example 5.6 Let two pathway E1=e2.7.7.6e3.6.1.5e2.7.4.14e3.1.3.5e3.5.4.5e2.4.2.3e1.3.1.1e3.5.2.2e3.5.1.6  and 

E2=e2.7.7.6e2.7.4.6e2.7.4.14e3.2.2.10e3.5.4.1e1.3.1.2e3.5.2.2e3.5.1.6, then δ 2(E1, E2)= δ (δ (E1, E2))= 

(e3.1.3.5e3.5.4.5e2.4.2.3e1.3.1.1, e3.2.2.10e3.5.4.1e1.3.1.2). 

Lemma 5.4 Let Indexaligns(δ r(E1, E2)) be the number of index alignment of two fixed 

pathways of length m and n with r matched points. Then  
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EEsIndexalign r )),((1 21δ  

Proof. See Appendix D. 

Lemma 5.5 Let E1 and E2 be two pathways of length m and n, there exists a minimum r that 

enables ),())),((( 2121 EEEE
r

=⋅⋅⋅
�����

δδδ , then Score(E1,E2)= �
=

r

k

k EE
nm

r

0
21 )),((

),max(
δσ . 

Algorithms for optimal alignment can seek either to minimize a dissimilarity measure or 

maximize a scoring function. However our scheme is based on the index pair matching with 

strip functions. An alignment scores is the maximum over all possible alignments 

s=max{�
=

h

i
ii

1

),( βασ : all alignments}. 

Definition 5.9 Given two pathway E1 and E2, a mapping M(E1,E2) is defined as a set of 

position correspondences (i, j) satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n such that ei :::: ej’. The 

notation “::::” denotes that ei and ej’ are compared to be identical in turn according to their 4-

digit hierarchical patterns. A mapping is maximal if there does not exist another pair (l, k) 

such that el :::: ek’.  

Obviously, each map site has two characteristics, site position (location) i and site feature 

name ei. The map�E1=e1e2…em consists of a sequence of pairs ei = (ai, ri), where ai = the 

location of the i-th site in number of pathways and ri = the feature name at the i-th site. 

Similarly, E2= e1’e2’…en’ is a map where ej’ = (bj, sj). For further analysis, let the symbol 1E  

denote natural order sequence of ai, and 2E denote the sequence of corresponding position bj. 

The number of E1, E2 maps is defined as 1E  and 2E . Clearly, 1E  = 2E  ≤  m, n. 
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Example 5.7 The maximal mapping of two pathways E1= e3.6.1.5e2.7.4.14e3.1.3.5e2.7.1.48 and E2= 

e3.6.1.8e3.1.3.5e2.7.1.48 e2.7.4.14 is {(1,1),(2,4),(3,2),(4,3)}. 1E  = 1, 2, 3, 4 and 2E = 1, 4, 2, 3. The 

mapping can be represented as line 1E  over line 2E : 
3241
4321

. 

Suppose a mapping M = 
jdjj

idii

bbb

aaa

E

E
⋅⋅⋅
⋅⋅⋅

=
21

21

2

1 (Figure 5.2.3B), the following properties 

hold: 

1. 1E  = 2E  = d, 

2. ai1< ai2<⋅⋅⋅< aid-1< aid, 

3. bj1< bj2<⋅⋅⋅< bjd-1< bjd is not always true. 

 
 

Figure 5.2.3B An illustrative map of two pathways. 
 

As emphasized above, locations of 2E  is not necessary in natural order. We define a map 

alignment as a mapping where 2E  is a sequence in natural order. 

Lemma 5.6 Given the maximal mapping M of two pathways E1=e1e2…em and E2= e1’e2’…en’, 

and let 1E = ai1ai2…aid-1aid and 2E = bj1bj2…bjd-1bjd be two maps of M. Then we have: 

A sub-sequence of 2E in natural order with the longest length is the maximal map 

alignment of E1 and E2. 

A sub-sequence of 2E  in natural order between bj1 and bjd is the index alignment. 

Proof. 1.) Suppose bjk0bjk1…bjkt is a sub-sequence of 2E in natural order with the longest 

length, we can obtain the responding positions of this sub-sequence: aik0aik1…aikt, so that they 

are a map alignment of E1 and E2. For contradiction, let us assume that there exist another 

mapping pair (aik’, bjk’) excluded from the maximal map alignment, then bjk0bjk1…bjkt is not 

the longest subsequence, which is a contradiction. 

2.) According to the definition of index alignment, the first step is to map from both 

ends of E1, bj1 and bjd are found. Next step is to map ai2 and aid-1, bj2 is one map of 2E only 
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when bj2 is greater than bj1, and bjd-1 is one map only when bjd-1 is less than bjd and greater than 

bj2. Repeat the mapping till no more bjk is satisfied. 

 

Example 5.8 The map of two pathways in the Example 5.7 is: 

3241
4321

 � 
�
�
�

�

�

�
�
�

�

�

14.4.7.248.1.7.25.3.1.38.1.6.3
|

48.1.7.25.3.1.314.4.7.25.1.6.3

 

The maximal map alignment 

321
431

 � 
�
�
�

�

�

�
�
�

�

�

14.4.7.248.1.7.25.3.1.38.1.6.3
|

48.1.7.25.3.1.314.4.7.25.1.6.3

 

The index alignment is 

321
431

 � 
�
�
�

�

�

�
�
�

�

�

14.4.7.248.1.7.25.3.1.38.1.6.3
|

48.1.7.25.3.1.314.4.7.25.1.6.3

 

  

Lemma 5.7 Pair number of index alignment is less or equal than that of maximal map 

alignment, which is less or equal than that of maximal matching. 

Proof. Given two pathways E1= e3.6.1.5e2.7.4.14e3.1.3.5e2.7.1.48 and E2= e3.6.1.8e3.1.3.5e2.7.1.48 e2.7.4.14, 

then Score(E1,E2)= ¼*σ(2.7.4.14->2.7.4.14)+σ(3.6.1.5->3.6.1.8)=1/4*(1+0.75)=0.43. 

While the score of the maximum alignment will be 

Smaxa=1/4*(0.75+1+1)=0.69. 

The score of the maximal matching is  

Smaxm=1/4*(0.75+1+1+1)=0.94. 

5.2.4 Algorithms 

Before describing our algorithms, we introduce four different subscript notations of the Strip 

function δ and the Index function λ. From its definition we know that the Strip function δ is 

able to strip two pathways if there are two pairs of elements that are matched, e.g. ei=ej’ and 

ek=el’. Here, ei, ej’, ek and el’are 4-hirarchical numbers. We count all four numbers by default. 

Now if we count only the first three numbers for matching, then the Strip function δ can be 

written as δ 3 in order to distinct the default setting δ that can also be written as δ 4 in this case. 

Similarly for δ 2 and δ 1. Accordingly λ4 is defined as the default 4-number indexing, and λ3, 

and so on. 
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5.2.4.1 Pairwise alignment 
In general, we align metabolic pathways one above the other. The alignment algorithm is 

based on likelihood calculations of index pairs. Given two metabolic pathways P1 and P2 

(Figure 5.2.4.1), the implemented algorithm is given by the following pseudo-code: 

 

 
 

Figure 5.2.4.1 Two aligned metabolic pathways. 

 
Begin 

Input P1: E1=e1e2…em  

      P2: E2=e1’e2’…en’  

Initial set Score=0.0 

Strip δ4
*(E1, E2) 

Compute λ4
*(E1, E2) 

Foreach stripped sub-pathway, do 

 E1’=e1e2…emi  

E2’=e1’e2’…enj’  

Strip δ3
*(E1’, E2’) 

Compute λ3
*(E1’, E2’) 

Foreach stripped sub-sub-pathway, do 

E1”=e1e2…emii  

E2”=e1’e2’…enjj’  

Strip δ2
*(E1”, E2”) 

Compute λ2
*(E1”, E2”) 

Foreach stripped sub-sub-sub-pathway, do 

E1”’=e1e2…emiii  

E2”’=e1’e2’…enjjj’  

Strip δ1
*(E1”’, E2”’)  

Compute λ1
*(E1”’, E2”’) 

Foreach stripped sub-pathway, do 

Count score 

Next 

Count score 
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Next 

Count score 

Next 

Count score 

Next 

Output λ4
*, λ3

*, λ2
*, λ1

* and Score 

End 

 

Line 1-3: Initialize the set of unaligned EC number sequences, their lengths and score value. 

Line 4-29: Starting from both ends towards the middle, align one sequence to another and 

attempt to find all EC numbers with same 4-level hierarchical numbers. Score the similarities. 

Recall the alignment positions, where EC number are identical, and cut the sequences into 

more sub-sequences by removing the identical EC numbers.  

Line 7-27: Each pair of sub-sequences is initialized to begin a new round of 3-level 

hierarchical EC number matching. Till all pairs of sub-sequences are aligned. A similarity 

score is calculated afterwards.  

12-25: Apply the same rule again, find the similarities of rest unaligned sub-sub-sequences 

based on 2-level hierarchical EC number matching. 

17-23: Then sub-sub-sub-sequences on 1-level are matched. 

5.2.4.2 Time complexity analysis 

The best case to strip two pathways and obtain their index pairs is that they are identical, 

which costs O(m) computing time. While the worst case is that they are un-matchable, it needs 

O(mn) to cover all elements. In general, we define O(m•n) to show the “average” time 

complexity. Therefore, to create λ4
*(E1, E2), it takes O(m•n). λ3

*(E1’, E2’) takes 
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nmO , where K denotes numbers of index alignment of (E1, E2), Rl denotes 

each striped sub-pathway of (E1’,E2’), Si denotes each striped sub-sub-pathway of (E1”, E2”), 

and l
ij m  and l

ij n  represent the length of each striped sub-sub-sub-pathway (E1”’, E2”’). 

Therefore, the total time complexity is 
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The best-case complexity of the algorithm is the minimum number of steps taken on 

any instance of size m and n. It represents the alignment of two identical pathways, which 

takes O(n). 

The worst-case complexity of the algorithm is the maximum number of steps taken on 

any instance of size m and n. It represents the alignment of two pathways with no first 2-

number is same, which takes at least O(3mn).  

5.2.4.3 Multiple alignment 
Multiple alignment is useful for finding the phylogenetic analysis. Multiple sequence 

alignment is important for the recognition of patterns or motifs common to a set of function-

related DNA sequences and is of assistance in structure prediction and molecular modeling. 

Multiple sequence alignment algorithms use variations of the dynamic programming method. 

Dynamic programming methods use an explicit measure of alignment quality, consisting of 

defined costs for aligned pairs of residues or residues with gaps and use an algorithm for 

finding an alignment with minimum total cost.  

The multiple metabolic pathway alignment allows us to extract and represent 

biologically important but faintly/ widely dispersed pathway similarities, which, for instance, 

makes it possible to identify pathways preserved by evolution that play an important role in 

the cellular function and can give us hints about the evolutionary history of certain pathways. 

By allowing the alignment of more than two metabolic pathways, the pairwise 

alignment algorithm can be extended. A multiple alignment of metabolic pathways E1, E2, …, 

Ek, can be seen as a generalization of pairwise metabolic pathway alignment - instead of 

aligning two pathways, k pathways are aligned simultaneously, where k is any number greater 

than two. A heuristic algorithm is used to perform the multiple metabolic pathway alignment. 

The general idea of the method is to construct a succession of pairwise pathway alignments: 

Step 1: Choose one pathway E1 from E={E1,E2,…,Ek} and align with {E2,…,Ek} one 

after another to find the most similar pathway Ei (2 ≤ i ≤ k). 

Step 2: Choose the pathway Ei and align with E\{E1,Ei} to get the most similar 

pathway Ei’. 

Step 3: Iterate step 2 until all pathways are aligned. 

 

The time complexity of multiple alignment of k pathways is 
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p∈(1,k-1), the lengths of pathway p and p+1 are pm and p+1n. 

The multiple alignment is a complicated problem and there are some technical 

difficulties such as the choice of the pathways. The method proposed only makes sense if they 
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are assumed to be dealing with a set of homologous pathways i.e., pathways sharing a 

common ancestor. Given inappropriate (unrelated) pathways, the multiple alignment method 

will nonetheless produce an alignment. It will be the responsibility of the biologist to realize 

that this alignment is meaningless 

5.3 PathAligner Implementation and Examples 

5.3.1 Implementation 

The algorithm has been implemented in the PathAligner system (http://bibiserv.techfak.uni-

bielefeld.de/pathaligner). It is written in Perl and runs under UNIX.  The graphical 

representation of alignment is done with the help of a simple graphical Perl module. Three 

web-based alignment interfaces are implemented in the current version. They are “E-E 

Alignment”, “M-E-M Alignment“ and “Multiple Alignment”. “E-E Alignment“ uses the basic 

algorithm to align two linear metabolic pathways (represented as EC number sequences). 

Users can also align any such a metabolic pathway against our pool database to find a list of 

hits. “M-E-M Alignment“ considers the differences of metabolites in two pathways, which are 

presented as ”Metabolite-EC number-Metabolite” patterns of sequence. It is possible to pick 

up two such pathways and align them to identify whether they are alternative pathways or 

partial ones. “Multiple Alignment” allows the alignment of more than two metabolic pathways. 

Some examples are illustrated in the following sections.  

5.3.2 E-E Pairwise Alignment 

The retrieved metabolic pathway can be aligned with other functionally similar metabolic 

pathways from other species. Based on the KEGG’s pathway database, two metabolic 

pathways related to the urea cycle are selected and aligned. User can align the metabolic 

pathway with all pathways in the pool database (Figure 5.3.2).  The upper left window shows 

the web-interface of pathway alignment. Users can align one pathway either with another 

pathway, or with all pathways deposited in the database. The lower left screenshot is an 

example of pairwise pathway alignment. All paired enzymes are highlighted in color.  Blue 

color indicates that two EC numbers are exactly the same. EC numbers with green color share 

same d1,d2 and d3 of EC 4-digit hierarchy. Pink EC numbers have the same d1 and d2. While 

red colored EC numbers only belong to the same main class of enzyme nomenclature. The 

similarity score is calculated after the comparison of two pathways. The right window is the 

alignment result of aligning against the database. 
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Figure 5.3.2 Screenshots of metabolic pathway alignment. 
 

5.3.3 M−−−−E−−−−M Pairwise Alignment 

In addition, the current version of PathAligner can also align metabolic pathways that are 

presented as (M−E−M). It is possible to pick up two such pathways and align them to identify 

whether they are alternative pathways or partial ones. This method differs from classic 

alternative pathway finding, based on Dijkstra/Floyd’s algorithm [Dij59] [Flo62], that is used 

by some well known metabolic pathway databases such as KEGG [Oga96].  

Pathway alignment is considered as a substrate-enzyme-product unit alignment. It again can be 

possibly analyzed and investigated in terms of gene sequences and evolution. The metabolic 
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pathways can be different from organisms to organisms. A screenshot example of M-E-M 

pairwise alignment is shown in Figure 5.3.3. 

 
 

Figure 5.3.3 Screenshot of M-E-M alignment. 

 

The algorithm takes two pathways and determines the similarity between them. We must 

define what the similarity is, in order to understand this problem. Alignment score of 

alternative pathways is equal and greater than 50%, 50% is the case that only the both ends of 

pathways are 100% identical. However, inconsistent naming conventions, synonymy and 

open, growing vocabulary for many classes lead to task difficulties in molecular biology 

ontologies. For instance, L-Arginine may have synonyms: 2-Amino-5-guanidinovaleric acid; 

Arg; Arginine; L-(+)-Arginine; 2-Amino-5-guanidinopentanoic acid. So, the entry numbers for 

compounds from KEGG are used as the unique IDs to the molecular elements in BioPNML, 

e.g. C00062 for L-Arginine. 
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5.3.4 Multiple Alignment 

Multiple metabolic pathway alignment can be seen as a generalization of pairwise metabolic 

pathway alignment. A heuristic algorithm is used to perform the multiple metabolic pathway 

alignment. An example of multiple alignment of methionine pathways from different species 

as well as alternative methionine pathways from the same specie is performed (Figure 5.3.4) 

 
 

Figure 5.3.4 Graphic representation of multiple alignment of metabolic pathways. The same 

metabolites between two aligned pathways are colored in black and linked by a black line. Enzymes 

with the same 4-digits are colored in blue, with the same first 3-digits are colored in green, with the 

same first 2-digits are colored in purple, and with the same 1-digits are colored in red. 

 

5.4 Summary 
We have presented an algorithm to study the problem of metabolic pathway alignment. The 

entire processing for pairwise E-E alignment takes the time of order 
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aligned metabolic (sub)pathways. The algorithm described here has been successfully 

implemented and is in current use in the context of the PathAligner system. 

The identification and analysis of metabolic networks is a complex task due to the 

complexity of the metabolic system. Abstract pathway defined as a linear molecule sequence, 

is practical for our alignment algorithm. However, when the topology of network is concerned, 

more information related to the components of the pathways, like their length, size, number of 

feedback cycles, number of crosstalks between pathways and area reachable from any point in 

the network, should be considered as much as possible. In this case, the pathway comparison 

will be the comparison of sub-network, or as a tree, rather as a single linear path sequence. As 

a result, this leads to another type of pathway computation, which can be categorized as the 

comparison of biological networks. By comparing such type of networks from different 

biological system, it is possible to identify similarities and variations among different species.  

It is important to note that we are assuming that the two pathways are related in some 

biologically meaningful way, whether from different organisms or the same. Because high 

conservation of identity between two pathways is a strong indicator of their biologically 

significant relationship, we model every comparison as an experiment that seeks to quantify 

the related-ness of two putatively previously related pathways. 

We can adopt our alignment algorithms to comparatively analyze other kinds of 

biopathways, such as signaling pathways. However, there is no nomenclature system for signal 

contradictions at the moment. We are going to present our classification of signal 

transductions in the next chapter. We will construct a database to host the classification system 

and perform signaling pathway alignment based on the classification and the algorithms we 

have discussed. 
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Chapter 6 

Signaling Pathway Alignment* 
 

 

 
Signal transduction has been of great interest to many academic and pharmaceutical scientists 

as it is becoming increasingly clear that the regulation of signal transduction is critical for 

understanding both basic biological processes, as well as how they may go awry leading to 

disease. The widespread use of modern biological technique to a unit operation in various 

fields of cellular technology has led to a proliferation of terminology. However, no reference 

has been made to the classification and definitions of transductions involving the signal 

reception, transportation and function. In this chapter, a classification and nomenclature of 

signal transduction is proposed. A systematic classification scheme is given for the various 

types of signal transduction and related reactions currently available. 

Based on the nomenclature, each type of signal transduction processes a unique ST 

number. The alignment algorithms of metabolic pathways alignment are used to compare the 

similarity of signaling pathways. It makes the biopathway alignment possible. 

6.1 STCDB: Signal Transduction Classification 
Database 

6.1.1 Introduction 

Signal transduction, at the cellular level in general, is the mechanism by which a signal 

encountered at a cell's surface (i.e. an extracellular signal) is transformed into an intracellular 

signal, that in turn invokes cellular responses such as proliferation, differentiation, secretion 

and apoptosis within the responding cells. Signal transduction refers to the movement of 

                                                 
* Part of Chapter 6 has been published in NAR [Che04c]. 
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signals from outside the cell to the inside. Schematic representation of the signal transduction 

within a eukaryotic cell includes (Figure 6.1.1):  

 
Figure 6.1.1 Basic schematic presentation of signal transduction within a eukaryotic cell. 

 
A systematic classification scheme is given for the various types of signal transduction and 

related reactions currently available: 

• Starting with the arrival of a signaling molecule, typically a hormone or a 

neurotransmitter on the cell surface.  

• The signaling molecules bind to specific membrane proteins, the receptors, which are 

activated. 

• These receptors activate proteins, which themselves stimulate other proteins in the 

cytosol. 

• The active proteins bind to the transcription factors which when activated regulates 

gene expression. 

• Finally, changes in gene expression initiate the biological answer of the cell to the 

original signal. 

The movement of signals can be simple, like that associated with receptor molecules of the 

acetylcholine class: receptors that constitute channels which, upon ligand interaction, allow 

signals to be passed in the form of small ion movement, either into or out of the cell. These ion 

movements result in changes in the electrical potential of the cells that, in turn, propagates the 

signal along the cell. More complex signal transduction involves a complex network of 

interwoven signaling cascades (e.g. Phosphorylations by tyrosine kinases and/or 

serine/threonine kinases). These cascades change enzyme activities and protein conformations 

and cause a change in the level of a second messenger (for example calcium or cyclic AMP) 
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and ultimately regulate such cellular responses as proliferation, differentiation, secretion and 

apoptosis in the responding cells. 

Extracellular signals (typically a hormone or neurotransmitter), perceived at the 

surface of a cell, must be translated into an intracellular response that involves a complex 

network of interwoven signaling cascades (e.g. phosphorylation). Signal transduction cascades 

cause a change in the level of a second messenger (for example calcium or cyclic AMP) and 

ultimately regulate such cellular responses as proliferation, differentiation, secretion and 

apoptosis in the cell. 

With the widespread use of modern biological techniques in various fields of cellular 

technology, more and more cellular data are accumulated which has led to a proliferation of 

knowledge and its terminology. The complexity created by the crosstalk among signal 

transduction network makes it virtually impossible to infer by hand all the consequences that 

follow after the modification of one part of the network. Fortunately, a number of databases 

such as SPAD [Tat95], CSNDB [Iga98] and TRANSPATH [Sch01b] have been constructed to 

bring the signal transduction knowledge into a well-organized format, providing simple and 

fast access to the signal transduction system. Moreover, signal molecules and pathways are 

classified and illustrated by graphs [Bio01]. At present, other major databases are known 

describing different aspects of gene network organization, e.g. CSNDB contains and 

information about signal transduction mechanisms in the human cells; TRANSFAC (The 

Transcription Factor Database) compiles data about gene regulatory DNA sequences and 

protein factors binding to and acting through them; TRANSPATH is an information system on 

gene-regulatory pathways. It focuses on pathways involved in the regulation of transcription 

factors in different species, mainly human, mice and rats. Elements of the relevant signal 

transduction pathways like hormones, receptors, enzymes and transcription factors are stored 

together with information about their interaction and references in an object-oriented database. 

SPAD contains the structure-functional data on the mechanisms of signal transduction; EPD 

(the Eukaryotic Promoter Database) contains general information about promoters, as they are 

defined by an experimentally proven transcription start site, and their tissue-specificity. The 

Transcription Regulatory Regions Database (TRRD) is designed for accumulation of 

experimental data on extended regulatory regions of eukaryotic genes. However, none of these 

databases provides the solving of the whole complex of tasks necessary for a gene network 

effective studying, which demands analysis of the large bulk of heterogeneous experimental 

data. Some integrative databases or models, e.g. Genenet, E-Cell and MARG are attempting to 

fulfill this task, but there is still a long way to go. However, no reference has been made to the 

classification of transductions involving the signal reception, transportation and function.  

This section presents classifications concerned with signal transductions and brings 

order into a nomenclature recommendation of them. 
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6.1.2 Classification 

An important first step toward acquiring understanding of molecular and cellular function is to 

build systems for organizing and categorizing functions of bioprocesses. Biochemical 

reactions that are normally catalyzed by enzymes can be easily inferred from the enzymes 

involved. For example, the transformation of L-arginine to L-ornithine is normally catalyzed 

by arginase, 3.5.3.1. According to the Classification and Nomenclature of Enzymes (IUBMB 

Recommendation), it is clear that the reaction belongs to the hydrolyzation (EC 3.*.*.*). It acts 

on “carbon-nitrogen bonds, other than peptide bonds” (EC 3.5.*.*), and so on. A similar 

strategy is employed to classify signal transductions.  Below is the overview listing of 

recommended classification, whereas the expanded “full” listing can be found at the web page: 

http://bibiserv.techfak.uni-bielefeld.de/STCDB. 

A four-digit ST number d1.d2.d3.d4 denotes a particular signal transduction, with 

classes defined as: 

d1 := location of transduction 

d2 := type of interaction 

d3 := signal molecule’s nature 

d4 := ID 

The sub-class notations are briefly described as  

d1 = 1: Extracellular signal reception events 

  d2 = 1: Physical stimulation of receptors 

  d2 = 2: Binding with hormones 

  d2 = 3: Binding with non-GF cytokines 

  d2 = 4: Binding with Growth Factors 

  d2 = 5: Binding with neuronal receptors 

          d2 = 6: Binding with other ligands 

d1 = 2: Plasma membrane transduction events 

  d2 = 1: Channels operation 

          d2 = 2: Ion channel transduction 

d2 = 3: G-proteins transduction 

d2 = 4: Other Ser/Thr phosphorylation 

d2 = 5: Tyr phosphorylation 

d2 = 6: Cleavage 

d2 = 7: Others 

 d1 = 3: Plasma membrane to cytoplasmatic transduction events  

d2 = 1: Membrane receptor releasing 

  d2 = 2: Protein-protein interaction 

          d2 = 3: Others 
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d1 = 4: Intracellular signal transduction events 

  d2 = 1: Ser/Thr phosphorylation 

  d2 = 2: Tyr phosphorylation 

  d2 = 3: Other phosphorylation 

  d2 = 4: Dephosphorylation 

  d2 = 5: Ubiquitination 

          d2 = 6: Methylation 

  d2 = 7: Deamination 

  d2 = 8: Nitrosylation 

  d2 = 9: GDT/GTP exchange 

  d2 = 10: Dimerization 

          d2 = 11: Protein-protein interaction 

         d2 = 12: Others 

d1 = 5: Cytoplama to nucleoplasma transduction events 

  d2 = 1: Ungrouped 

 d1 = 6: Nucleoplasma to nucleoplasma transduction events 

  d2 = 1: Nuclear receptor binding 

  d2 = 2: Transcription factor binding 

  d2 = 3: Acetylation 

 d2 = 4: Histone deacetylation 

 d2 = 5: Others 

6.1.3 STCDB Description 

6.1.3.1 Data source 
The main source for the data in the STCDB database comes from the CSNDB. A minor part of 

the data has been extracted from TRANSPATH and Biocarta as well as the literature. 

Additionally, a web-based submission form is available for the users’ contribution. 

6.1.3.2 Database structure 
The STCDB database contains data for each type of characterized signal transduction for 

which an ST number has been provided. The entries in the database data file (ST number.html) 

are structured so as to be usable by human readers, as well as by computer programs. Each 

entry in the database is composed of lines. Different types of lines, each with its own format, 

are used to record the various types of data that make up the entry. The general structure of a 

line is the following: 

   -  ST number 

   -  Recommended name 
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   -  Alternative names (if any) 

   -  Reference 

   -  Pointers to the CSNDB entrie(s) that correspond to 

the signal transduction (if any) 

   -  Pointers to the BioCarta entrie(s) that correspond 

to the signal transduction (if any) 

A search interface for the Internet service provides two kinds of direct search: by keyword and 

by ST number. Searching by keyword allows the user to input free text that might be found in 

the content of each data file. A ST number can be chosen which will restrict the search to the 

specific entry. A wild card (*) search is available and more than one word in the text field will 

find a match to either word. Screenshots of STCDB are shown in Figure 6.1.3.2. 

 

 
 

Figure 6.1.3.2 An example of ST entries. 
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6.1.3.3 Latest data update 
STCDB is regularly updated to reflect updates and additions to the classification. We also 

update the CSNDB and BioCarta pointers, correct eventual errors, and complete the 

information concerning synonyms using the literature. We welcome and encourage any type of 

feedback. 

The latest data release of STCDB was given out on Dec. 2003. Sequence corrections, 

mainly frame shift errors, led in most cases to the modification of classification. In a few 

cases, more dramatic changes, such as merging several entries or adding/removing entries, 

were required. Furthermore, additional corrections of signal transduction classifications 

resulted from a revised analysis of sources data. Currently STCDB contains over 486 

entries/pages, 400 cited references and 700 external hyperlinks. The numbers of entries of 

main class of signal transduction is shown in Table 6.1.3.3. 

 
Table 6.1.3.3 Summary of signal transduction classification entries in the latest release (Dec. 2003). 

 
Signal transduction classification Entries 

ST 1.*.*.* 
ST 2.*.*.* 
ST 3.*.*.* 
ST 4.*.*.* 
ST 5.*.*.* 
ST 6.*.*.* 

176 
53 
22 

201 
4 

31 
 
We would like to encourage users to submit their request for a new classification via the web-

based submission form (http://www.techfak.uni-bielefeld.de/~mchen/STCDB/submit.html or 

to contact us directly by e-mail if they have large data sets. Further analyses and database 

searching would validate every record that is entered in this way. We would also reply on 

assistance from a number of specialist advisors and communication with the scientific 

community in general to maintain accuracy. 

6.2 Signaling Pathway Alignment 
Signaling pathways are not only interconnected to other pathways in the cell. One of 

additional perspectives to analyze their interactions and regulations is signaling pathway 

alignment. Signaling pathway alignment reveals differences in signal transduction flux, 

conversion and regulation in different species. In this section, we present signaling pathways 

as ST number sequences and exploit the PathAligner system to align them. 

 6.2.1 ST Representation of Signalling Pathways 

To enhance the exploration of signal transduction in a pathway context, one requires an 

application that allows the visualization of the signaling process in a pathway map. The 
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current graphic representation of signaling pathway is based on a concept description and lack 

of a fully understanding mechanism or a common taxonomy. However, according to our 

classification of signal transduction, it is possible to commonly represent signaling pathways 

by a “metabolic pathway”-like structure in which the proposed nomenclature of signal 

transductions as the ST classification system.  

Figure 6.2.1A shows a ST representation of signaling pathways of IFN-gamma 

pathways. 

 

 
 

Figure 6.2.1A ST representation of interferon gamma signaling pathway. The ST number consists of 

four distinct numbers that classify the signal transduction based on our classification. For example, the 

signal transduction IFN-Gamma -> IFN-GRJ has the ST number 1.3.3.4, which designates an external 

event (class 1), binding with non-GF cytokines (subclass 1.3) with IFN GR as receptor (sub subclass 

1.3.3). The number 4 designates the fourth transduction in this class.  

 

A strong advantage of ST numbers is that they provide unique identifiers for signal 

transductions. For example, when comparing the signal transductions of two signaling 

pathway, the ST number is used to determine if two signal transductions have the same 

function without the need to understand the multiple and confusing names that can be used for 

the same signal molecule. Similarly, the multiple names used for signal molecules cause 

confusion when we try to determine if two signal transductions refer to the same molecule. 

Extensive synonym lists for signal molecules are essential in a signaling database.  

Based on the STCDB classification and nomenclature, graphic signaling pathways are 

produced (Figure 6.2.1B).  
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Figure 6.2.1B A part of signal transduction pathways based on the STCDB entries. The whole network graphic representation is available at STCDB web site.



 125

  

6.2.2 An Alignment Example 

By applying the metabolic pathway alignment algorithm, it is possible to align signaling 

pathways. We extract partial signaling pathways from STCDB and list them below. 

 
PKA::PKA->2.3.3.1->phosphorylase kinase->4.3.11.13->glycogen phosphorylase 
Apaf1::Apaf-1->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.3->Acinus 
Cam-KK2::CaM-KK->4.1.5.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-

>MEKK1->4.1.11.3->IKK->4.1.6.1->NF-kB 
Cam-KK3::CaM-KK->4.1.5.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-

>MEKK1->4.1.11.3->IKK->4.1.6.2->I-kB-alpha 
CDK5_1::CDK5->4.3.3.3->PAK1->4.1.3.2->LIMK-1->4.3.11.10->cofilin 
PDK2_2::PDK2->4.1.4.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-

>MEKK1->4.1.11.3->IKK->4.1.6.2->I-kB-alpha 
Lck1::Lck->2.5.1.1->VAV->4.12.2.1->Rac->4.9.1.6->PAK3->4.1.3.4->c-Raf-1 
Lck2::Lck->2.5.1.1->VAV->4.12.2.1->Rac->4.9.1.5->p35->4.3.3.3->PAK1->4.1.3.2->LIMK-

1->4.3.11.10->cofilin 
cytochrom2::cytochrome c->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.10->MEKK1-

>4.1.11.3->IKK->4.1.6.2->I-kB-alpha 
Cam-KK1::CaM-KK->4.1.5.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.6-

>presenilin1 
Lck3::Lck->2.5.1.1->VAV->4.12.2.1->Rac->4.9.1.5->p35->4.3.3.3->PAK1->4.1.3.3-

>MLCK->4.3.11.11->myosin light chain 
cytochrom1::cytochrome c->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.3->Acinus 
CDK5_2::CDK5->4.3.3.3->PAK1->4.1.3.3->MLCK->4.3.11.11->myosin light chain 
procaspase-3::procaspase-3->4.12.8.2->caspase-3->4.12.8.3->Acinus 
caspase-8_1::caspase-8->4.12.8.11->caspase-3->4.12.8.10->MEKK1->4.1.11.3->IKK-

>4.1.6.1->NF-kB 
CDK5_3::Cdr2->4.3.4.2->Wee1->4.3.10.1->CDK1->4.3.10.2->cyclin B 
survivin::survivin->4.12.7.1->caspase-3->4.12.8.10->MEKK1->4.1.11.3->IKK->4.1.6.2->I-

kB-alpha 
caspase-8_2::caspase-8->4.12.8.11->caspase-3->4.12.8.10->MEKK1->4.1.11.3->IKK-

>4.1.6.2->I-kB-alpha 
Apaf2::Apaf-1->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.10->MEKK1->4.1.11.3-

>IKK->4.1.6.2->I-kB-alpha 
PDK2_1::PDK2->4.1.4.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-

>MEKK1->4.1.11.3->IKK->4.1.6.1->NF-kB 
 

In order to distinguish these pathways, a temporary name is labeled. That is, each pathway 

begins with “name::”. When we input these pathways to the PathAligner’s interface and 

perform multiple pathway alignment, the alignment result and screenshot, are shown in Figure 

6.2.2. 
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Figure 6.2.2 The multiple alignment result of the listed signaling pathways. 
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6.3 Biopathway Alignment 
So far, biochemical reactions that are normally catalyzed by enzymes can be easily inferred 

from the enzymes involved. For example, the transformation of L-arginine to L-ornthine is 

normally catalyzed by arginase, 3.5.3.1, then it is clear that the reaction is catalyzed by a 

enzyme that is a hydrolase, acting on the “carbon-nitrogen bonds, other than peptide bonds” in 

“linear amidines”. Signal transductions can also be inferred from its ST numbers. The ST 

4.1.1.6 signal transduction indicates that the process takes place in the intracellular 

compartment, it is a kind of Ser/Thr phosphorylation, acting from the MAP/MAPK family to 

the specific molecule Rsk (MAP-kinase -> Rsk). 

However, this partial understanding is very artificial. Cells respond in this 

interconnected fashion, involving several pathways. We need integrated information and 

generalized biopathway representation and analysis. In fact, by combining the EC numbers 

and ST numbers, the integrative biopathway alignment is reliable. 

6.4 Summary 
Signal Transduction Classification Database (STCDB) is a database of information relative to 

the classification of signal transduction. It is primarily based on a proposed classification of 

signal transduction and it describes each type of characterized signal transduction for which a 

unique ST number has been provided. This document presents, in a first version, the 

classification and nomenclature of signal transduction. Approved classifications are available 

for browsing and querying at http://bibiserv.techfak.uni-bielefeld.de/STCDB.  

The ST number is a 4-level hierarchical structure, which makes it possible to exploit 

our metabolic pathway alignment algorithm to perform signaling pathway alignment. We have 

presented a graphical representation of signaling pathways with ST numbers indicating every 

signal transduction. An example of signaling pathway alignment has been presented. By 

combining the EC numbers and ST numbers, alignment of biopathways is reliable. 

In the next chapter, we will present a concrete example of biopathway, the urea cycle, 

for the systems analysis. Some examples of urea cycle have been discussed in the prediction 

and alignment parts. We will mainly focus on the modeling and simulation and further 

analysis of urea cycle disorders. 
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Chapter 7 

A Biological Application 
 

 

 
In this Chapter a case study is presented to describe our approaches that have been discussed 

in the previous chapters, mainly in the Petri net chapter. Several applications of PathAligner 

have been described in Chapter 4 and 5. 

For the past century, studies of urea cycle disorders have focused research efforts to 

improve clinical diagnosis and management. The availability of human genome sequences and 

other metabolic data provides us with a challenging opportunity to develop computational 

tools for systematically analyzing urea cycle disorders. We exploit the current data available, 

and integrate these from genomics and poteomics at novel levels of understanding urea cycle 

disorders. We also systematically analyze transcription factors and signaling pathways 

involved in the urea cycle biopathways. 

7.1 Urea Cycle and its Regulation 
In human cells, excess nitrogen is removed either by excretion of NH4

+ (of which only a little 

happens) or by excretion of urea. Urea is largely produced in the liver by the urea cycle, a 

series of biochemical reactions that are distributed between the mitochondrial matrix and the 

cytosol (Figure 7.1A). The cycle centers around the formation of carbamoyl phosphate in 

hepatocyte mitochondria to pick up NH4
+ incorporate it into ornithine to make citrulline that is 

transported to the cytosol where aspartate is added. As urea is removed it is converted back to 

ornithine that goes back into the mitochondria to start over again. Deficiencies in the urea 

cycle enzymes lead to excessive NH4
+ and its intermediates accumulation, which results in 

neurological disorders. Any of the five enzymes of the urea cycle may be deficient: carbamoyl 

phosphate synthetase (CPS) deficiency, ornithine transcarbamylase (OTC) deficiency, 

citrullinemia, argininosuccinic aciduria and argininemia.  
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Figure 7.1A Key enzymes in regulation of urea cycle in cells. CPS1: Carbamyl phosphate synthetase, 

EC 6.3.4.16; OTC: Ornithine transcarbamylase, EC 2.1.3.3; ASS: Argininosuccinate synthetase, EC 

6.3.4.5; ASL: Argininosuccinate lyase, EC 4.3.2.1; ARG: Arginase, EC 3.5.3.1. 

 

Although the urea cycle was discovered by Dr. Hans A. Krebs early in 1930’s, analysis of the 

urea cycle so far has never been systematically explored. This chapter therefore will also focus 

on the possibility of integrative analysis of the urea cycle within the scope of systems biology. 

An integrative model is built. A Petri net model is constructed in order to estimate the 

regulation both on genomic and metabolic levels. Simulations can be used to test the physico-

chemical limitations and feasibility of certain proposed reactions. We are also going to analyze 

the genetic variations and figure out the regulation of signaling pathways. One of the aims is to 

highlight at large in the identification and treatment of urea cycle disorders, and give some 

hints on the systems analysis of inborn errors of metabolism. 

Figure 7.1B shows a graphical representation of the urea cycle using the objects 

presented above for describing entities and interactions. It shows an intricate network that 

links entities and interactions. This network includes not only the succession of chemical 

reactions that lead to the transformation of CO2 and NH4
+ to urea, but also the regulation of 

gene expression and enzymatic activities. It furthermore displays (e.g. asparate, fumarate) the 

links to other pathways, which are, to preserve clarity, not detailed in the graph.  

In some cases if the complete interrelationships of the biopathway is unclear, or only a 

rudimentary pathway is provided, we can use PathAligner to retrieve metabolic information 

and reconstruct the complete network, as discussed in Chapter 4.  

7.2 Petri Net Model 
Based on the proposed modeling strategy in Chapter 3, a hybrid Petri net model of the urea 

cycle and its transcriptional regulation is presented (Figure 7.2). The model of intracellular 

urea cycle is made of the composition of the gene regulatory network and the metabolic 

pathways. It comprises 152 Petri net elements, 14 kinetic blocks, 39 dynamic variables, and 22 

reaction constants.  
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Figure 7.1B Schematic diagram of urea cycle. Data sources: Metabolic pathway (enzyme reactions) from KEGG and BRENDA; Gene regulation: TRANSFAC; Drug 

information: MDDrugDB (http://edradour.cs.uni-magdeburg.de/~rkauert/MDDrugDB/Main.htm; drawing by Dr. Ralf Kauert). 
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Experimental data, partially listed in Table 7.2, are used for the initial evaluation of certain 

parameters of enzymatic reactions with the system. The value of model parameters lacking in 

the literature are verified through numerical experiments or modifed from several references. 

 

Table 7.2 Some kinetic parameters of enzyme reactions in human cells. 

Enzyme Substrate (mean concentration, mM) Compartment Km, mM Kcat, S
-1 Reference 

CPS1 HCO3
− (0.05), NH4

+ (0.025), ATP Mitochondia 
HCO3

−, 6.7 
NH4

+, 0.8 
Mg ATP, 1.1 

17 [Pie80] 

OTC Carbamoyl phosphate (0.001), L-
ornithine (0.05) Mitochondia CP, 0.16 

L-ornithine, 0.40 180 [Scr97] 

ASS L-citrulline (0.02), L-aspartate (0.325), 
ATP Cytoplasm L-citrulline, 0.03 

L-aspartate, 0.03 400 [Scr97] 

ASL Argininosuccinate (0.034) Cytoplasm Argininosuccinate 
0.017 3 [Pie80] 

[Scr97] 
ARG L-arginine (0.06) Cytoplasm L-arginine, 10 2200 [Scr97] 
 
 

The dynamic behavior of the model system, such as metabolite fluxes, NH4
+ input and urea 

output are well described with continuous elements, while control of gene expression is 

modeled using discrete ones due to the insufficiency of explicit expression data. Nevertheless, 

when explicate knowledge about expression levels of the enzymes are available; it is possible 

to exploit our model of gene regulatory network to handle realistic gene expression data with 

state equations. The initial values of variables are assigned and tuned so that the model system 

behavior would comply maximally with available experimental data on the dynamic 

characteristics of the system’s behavior, based on the following considerations:  

The availability of ammonia or amino acids (denoted as NH3) is ingested continuously from 

plasma into mitochondria with a stable speed, i.e. the changes of ammonia concentration due 

to the rate of protein metabolism are not taken into account. The concentration of nitrogen 

excreted (urea) in plasma ranges from 3mmol/L to 8mmol/L and is then discharged. The 

degradation of all enzymes is 0.001 times of their concentration.  

In the model, inhibitor arcs are also used to present negative effects of repressors 

and/or inhibitors to gene expression. In order to get a better understanding of these 

relationships, several test arcs are used, e.g. the test arc between asparate and transition of 

ASS. On the biochemical reaction level, negative effects of metabolites are expressed as 

enzyme inhibitions that include competitive inhibition, noncompetitive inhibition, irreversible 

inhibition and feedback inhibition. Sequentially, the regulation of the urea cycle enzyme 

activities can be modeled in these two ways. First, gene expressions that are regulated by 

activators and inhibitors control enzyme synthesis, while enzyme synthesis and degradation 

determine the amount of enzymes. Second, the activities of these enzymes can be altered 

during metabolic catalyzations. 
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Figure 7.2 Hybrid Petri net model and simulation results of the gene regulated urea cycle metabolic network.
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7.3 Investigation of the Behaviors of the Model 
The formalization of the urea cycle model allows the quantitative simulation of this metabolic 

pathway. Dynamics of the main components on the model regulating the urea cycle were also 

shown in Figure 7.2. Moreover, several tests on interfering the fluxes intentionally are 

conducted and results are observed in Table 7.3. 

Table 7.3 Interfering tests on the urea cycle Petri net model. 

Value of metabolites Interfering 
test NH4+ Citrulline 

(plasma) 
Argininosuccinate 

(plasma) 
Ornithine 
(plasma) Arginine 

Urea cycle defect 

CPS1 
blockade ↑ ↓ ↓ ↓ ↓ 

Carbamylphosphate 
synthase deficiency 

OTC 
blockade ↑ ↓ ↓ ↑ ↑ 

Ornithine 
transcarbamylase 

deficiency 

ASS blockade ↑ ↑ ↓ ↑ ↑ 
Argininosuccinate 

synthase deficiency 

ASL blockade ↑ ↑ ↑ ↑ ↑ 
Argininosuccinase 

deficiency 
ARG 

blockade ↑ ↑ ↓ ↓ ↑↑ Arginase deficiency 

Membrane 
transportation 

blockade 
↑ ↑ - ↑↑ ↑ HHH syndrome 

Note: the symbol “↑” indicates an increment of the concentration, “↑↑” indicates a quick increment, 

while “↓” indicates a decrement. “-” indicates no dramatic changes of the concentration. 

 
The urea cycle eliminates excess nitrogen. A high concentration level of ammonia in the cell 

results in hyperammonemia that leads to coma and even death. Laboratory studies can reveal 

elevated arginine levels, mild hyperammonemia, and a mild increases in urine orotic acid. The 

diagnosis now can be confirmed by enzymatic analysis in the model. On high-protein diets or 

under starvation, proteins are degraded and amino acid carbon skeletons are used to provide 

energy. Thus the quantity of nitrogen that must be excreted is increased, but the amino 

nitrogen must be excreted. To facilitate this process, enzymes of the urea cycle are controlled 

by regulating the expansion of their genes to enhance the concentration of enzymes. As the 

urea cycle takes place both in mitochondria and cytoplasma, these effects can also be caused 

by membrane transportation deficiencies. Some mitochondial membrane diseases, e.g. 

ornithine transporter deficiency, surely effect the transportation of ornithine into matrix and 

result in high concentration of ornithine accumulation in plasma, which creates a feedback 

regulation to the transition of arginine into urea and finally hyperammonnemia. From the 

model we know the treatment for defects in urea cycle enzymes could be either to limit input 

of ammonia (limit protein intake) or to replace missing intermediates from cycle (supplement 

with arginine or citrulline). Patients with OTC deficiency benefit from citrulline 

supplementation, because citrulline can accept ammonia to form arginine. 
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7.4 Treatment of Urea Cycle Disorders 
It is important to understand the mechanism of urea cycle disorders in order to properly treat 

the disorder. Once the disease is diagnosed and the model is presented, several treatments are 

proposed. Limit the toxic ammonia by placing the patient on a diet with limited amount of 

food protein, is generally the first course of treatment which is considered. Another treatment 

is to remove the toxic ammonia through alternative pathways. Scientists developed methods to 

exploit other vehicles of waste nitrogen synthesis and excretion to substitute for the defective 

urea pathway.  Batshaw and Brusilow et al. [Bat82] devise several ways of allowing people to 

remove ammonia without having to make urea. One way was to give the patient large doses of 

the preservative sodium benzoate. An enzyme in our livers couples the benzoate molecule 

with a molecule of the amino acid glycine. The resulting compound, hippurate, is rapidly 

removed by the kidney and is excreted in the urine. The liver can produce glycine from 

ammonia, carbon dioxide, and a folic acid compound. Each glycine produced in this way 

removes one ammonia from the body. Other compounds such as arginine, sodium 

phenylacetate, and sodium phenylbutyrate can remove ammonia by similar mechanisms. 

Buphenyl	 (sodium phenylbutyrate, Ucyclyd Pharma, Hunt Valley, MD, 1996) has been 

developed and approved by the FDA. A prospective treatment trial of this drug for neonatal 

onset urea cycle disorders showed that cognitive function is improved. Phenylbutyrate also has 

a dramatic effect on the survival of patients with arginosuccinate synthetase deficiency, 

another urea cycle disorder. Despite treatment and dietary manipulation, it is not possible to 

restore patients with neonatal urea cycle disorders to a state of normal or near normal health. 

The greatest impact of phenylbutyrate is its efficacy in treating late onset disease.  

Considering the insufficiency of five enzymes involved, we might also be able to 

activate enzymes with cofactors, as some enzymes require non-protein cofactors for their 

activity. Another interest involves two enzymes of the urea cycle, argininosuccinate synthetase 

(AS) and argininosuccinate lyase (AL), and their role in the arginine-citrulline cycle. The 

primary physiological role of AS and AL is in the urea cycle, but along with nitric oxide 

synthase (NOS), these enzymes form the arginine-citrulline cycle which is found in all 

mammalian tissues. The significance of the arginine-citrulline cycle was only recently realized 

with the discovery that arginine-derived nitric oxide (NO). The key cell signaling molecule, 

was responsible for the hypotension in septic and cytokine-induced circulatory shock. The 

rate-limiting step in the production of NO is the availability of arginine. Since AS is the rate-

limiting step in the de novo production of arginine, AS, but also AL, are attractive drug 

targets. Inhibitors of these enzymes have the potential not only to be useful in the treatment of 

septic shock, but could also increase the usefulness of a number of anticancer agents (e.g. IL-

2), as co-administration of an inhibitor would suppress the dose-limiting hypotension caused 
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by these drugs. Catalytic mechanisms for the proteins have been proposed and are currently 

being tested. The design of novel inhibitors for AS has been initiated (Quote as reported by 

The Hospital for Sick Children at the University of Toronto). 

After 20 years of experience, it must be acknowledged that alternative pathway 

therapy has limited effectiveness in preventing hyperammonemia and must be combined with 

effective dietary management. Therefore in children with neonatal-onset disease or in those 

with very poor metabolic control, liver transplantation should be considered. There should also 

be the continued search for innovative therapies that may offer a more permanent and 

complete correction, such as gene therapy [Bat01]. 

7.5 Gene Therapy and Expression 
Because the basis of the disorders is a defect in a gene, researches have been working on ways 

of getting a working gene into cells. Scientists have established that in the animal model, 

sparse fur (spf/Y) mouse, partial correction with gene therapy may be sufficient to normalize 

urea synthesis. Because the hepatotropic properties of human adenoviruses make them suitable 

vectors if injected parenterally, and because the hepatocyte is so easily accessible via the 

circulation, in-vivo approaches to gene therapy have been developed [Ye96] [Ye97] [Ye00]. 

However, the current therapy is unsatisfactory for humans. Optionally, we would like to target 

the working gene to the right cells and have it regulated and expressed just as well as the 

normal gene would be. Single nucleotide polymorphism (SNP) and transcription factor 

binding sites are two aspects that have to be considered. 

In the progress of Human Genome Project, scientists recognized that the existence of 

SNP in genome is helpful to explain the rich diversity of individuals, and the difference of 

susceptibility to diseases. A single base variation may cause gene function abnormities. 

Therefore, searching and studying SNPs has become an important objective of biomedical 

informatics. Appendix E shows the computationally annotated mutations of genes in the urea 

cycle.  Further information can be obtained by browsing the related web-pages at 

http://mutdb.org/cgi-bin/Search.py?GOCODE=0000050. However, these mutations are meant 

to be used for basic research and not to make clinical decisions. In this section, we focus on 

the discovery of transcription factor binding sites by computational searching the 1kb 

upstream promoter region sequences. 

A TRANSFAC database search for the transcription factor binding sites, using the 

human promoter sequences that are provided by UCSC [http://genome.ucsc.edu/], are shown 

in Figure 7.5 and in Appendix F. All potential binding sites of the urea cycle genes are 

summarized in Table 7.5. The search found 23 functional binding sites. ARG and OTC share 4 

binding sites, which means that the expression of ARG and OTC might be simultaneously 

regulated by Cdx-2, Cdc5, Nkx2-5 and POU1F1. Nkx2-5 also affects ASL regulation.  
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ARG promoter/upstream 1kb 
>hg16_refGene_NM_000045 range=chr6:131873935-131874934 5'pad=0 3'pad=0 
revComp=FALSE strand=+ repeatMasking=none 
ataattttaaagtcggaaggatctttaaggtgcctttattttaaattcat 
acttttgtatggtgacaaatggtagctcaggggcatagaggttgacacct 
tcccagcatttagactataagctcgacggttaagtggattcagaatggca 
gagactaaatcccgacttttcttctacagcctatgttggcaacgggtctg 
agcttcagtttattcatcagtataatggcaccaatgatgagacttcacat 
aaaattggtataaatataaatatggtattttgaaacagaactgcatcgga 
cacatggtaaaaactcaatgttagctatttttatttctatactttgatta 
tgatatgattctacaattattttcctgtacaccatacttcaaaaatggta 
acctctctgggttaccaatcaagtaactaattttttaaagtaatcatcaa 
aaaaggaagttatatactctttattatattataccctaaaagtttatgaa 
atgtgtctcatggattaaccatttaccctcatgtgtgaaatctcaactca 
ggattttagggctggaagggatgtgacagacgatcttgccaagcccggcc 
cttcttctacaaggacgtcttcagagatctggaggaggaaagggccttgc 
cctgagttcgctgagccagaacaataggacttcttctgtagttgtgaaac 
ttgtcagttgttgaagtcaggttaatgtcatctggctggctttttaaaag 
ggtgtgaagtgagaacatgaataattgtcacttgattagagacctagact 
cagagttaggttactccatgtatgaagtaaccccatatagttacttcata 
catggagtaaccatatagttactccatgtatgaaaaattgcaagactgtt 
gactgtcattctttggtttagtgggtggagccagctgtcctcattagata 
aaggttgtttattcaacccaagtataaatggaaaaaaaagatgcgccctc 
 
Figure 7.5 Computational prediction of transcription factor binding sites of the human ARG genes. 

 
 

Table 7.5 List of potential transcript factor binding site of the urea cycle genes. 
 

 ARG ASL ASS CAD OTC 

AML1  + +   

Cdx-2 +    + 

Cdc5 +    + 

E2F-1   +   

GATA-4   +  + 

HEB +     

HNF-3alpha     + 

HNF-4alpha2     + 

Lentiviral Poly A     + 

MAZ   +   

NF-1   +   

NF-kappaB   +   

Nkx2-5 + +   + 

Pax-2     + 

Pax-4a  +   + 

POU1F1 +    + 

POU2F1     + 

RFX1   +   

Cdx-2 
Cdc5 
TFIIA 
TCF-1(P) 
POU1F1 
Nkx2-5 
HEB 
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SREBP-1    +  

TCF-1(P) +     

TFIIA +     

USF   +   

Xvent-1    +  

 

7.6 Signaling Pathway and Assoiated Diseases 
Further analysis on the gene and their transcript factors are conducted. We obtain a list of 

signaling events that effect the gene expression of urea cycle by browsing the BIOBASE 

database. A graphical layout of the signaling pathways is constructed by using the Biolayout 

tool [Enr01] (Figure 7.6A).  

 

Figure 7.6A A graphical layout of the signaling pathways involved in the urea cycle. Colored nodes are 

those molecules with intensive divergence interconnection with others. They are NF-1 (57), NF-kappaB 

(38), POU2F1 (38) and HNF-3alpha (29). 

 

Molecules with high degree of convergences are calculated. They are Cdx2 (5), SREBP-1 (4), 

NF-1 (2) and POU1F1 (2). Obviously, the degree of divergence is large, greater than that of 

convergence, which seems to be a common phenomenon in cellular signaling pathways. A 

possible explanation could be that cells have to reserve much more regulation mechanisms. On 
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one hand, activation/inactivation of important molecules are regulated by many other 

molecules. On the other hand, most molecules regulate only a small amount of specific 

molecules. This mechanism can enable cellular functions to be of robustness, sustain cells in 

face of various environment changes. 

We also investigate the associated diseases of these signaling pathways. By querying 

against biological databases, such as Swiss-Prot and KEGG, all related enzymes can be 

retrieved. Then, searching the BRENDA database helps to determine the involved diseases. 

All diseases that are regulated by these signaling pathways are listed in Appendix G. On the 

left column, we do not consider the redundancy of enzymes that encoded by different genes. 

For example, there are 10 hits of the enzyme protein kinase (EC 2.7.1.37) that is involved in 

various diseases, such as “acromegaly”, “adhesions”, “amyotrophic lateral sclerosis”, “anemia, 

sickle cell”, and so on. While on the right column, these 10 hits are regarded as 1 hit. Under 

this treatment, some diseases with high hits on the left column may show low hit score on the 

right column. On both lists, there are some already known diseases related to the urea cycle 

diseases, including “chronic liver disease”, “ornithine carbamoyltransferase deficiency”, 

“citrullinemia”, etc. We are more interested in those with high hit scores. Common diseases 

with association degree (hits ≥ 3) are shown in Figure 7.6B. 
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Figure 7.6B Diseases related to the list of signaling pathways. 

 

We surprisingly find that Rheumatoid arthritis is highly related. This is consistent with a 

recent research by Nissinen R, et al. [Nis03]. They studied whether the enzyme 

peptidylarginine deiminase (PAD; EC 3.5.3.15), responsible for the post-translational 

modification of peptide-bound arginine residues to citrulline, constitutes an antigen for 

patients with rheumatoid arthritis (RA). The study shows that the arginine-citrulline 



 139

converting enzyme PAD was recognized as a new antigen against which patients with 

inflammatory rheumatic diseases frequently show IgG class antibodies. From Figure 7.6B, we 

can see that systemic lupus erythematosus (SLE) also shows a significant involvement. Both 

RA and SLE are due to disorders of the musculoskeletal system and connective tissue, which 

is intensively related to immune systems. It is interesting that three decades ago researches 

have observed the altered immunoglobulin metabolism between SLE and RA [Lev70]. Later, 

the prevalence clinical and laboratory associations of SLE and RA were determined by many 

researches [New93] [Wit00] [Car03]. Other latest observations of the association between RA 

and urea cycle relevance were achieved by Yonekura Y. et al. [Yon03] and Iwashige K. et al. 

[Iwa04]. 

7.7 Summary 
We have presented an analysis of urea cycle in a systematical way. Regarding the 

development of methods and concepts of bioinformatics to analyze metabolic disorders, the 

integrative aspect stands in the center. By exploiting the existing large amounts of data 

available in the various databases, we described metabolic mechanisms and pathways, 

structural genomic organization, patterns of regulatory regions, proteomics, transcriptomics, 

and metabolomics data of urea cycle.  

We also presented a Petri net model to reveal the mechanism of urea cycle disorders. 

Petri net allows easy incorporation of qualitative insights into a pure mathematical model and 

adaptive identification and optimization of key parameters to fit system behaviors observed in 

gene regulated metabolic networks. The study of modeling and simulation plays an important 

role in detecting genetic/metabolic defects, as well as drug research.  

Currently the main urea cycle disorders’ management is dietary manipulation by 

reducing the protein intake. It is possible to increase residual enzyme activity by supplying 

cofactors. The alternative pathway therapy [Bat82], by intake of chemicals to remove NH3 via 

other pathways, are practiced, but have limited effectiveness in preventing hyperammonemia, 

and must be combined with effective dietary management [Bat01]. The future therapy will 

focus on gene repair, or genetic counseling. This needs more knowledge about cellular 

functions. The systems analysis approach will also represent the backbone of the concept of 

disorders management in the post-genomic era. We hope our approach can give a highlight in 

this direction. 



 140

 

 

 

Chapter 8 

Conclusions 
 

 

 
The rapid development of molecular biology and achievements of modern technology have 

raised many questions of great bioinformatics interest. Analysis of biopathways is one of the 

key topics in the post-genomic era. In order to understand the cellular mechanisms, to 

automatically retrieve metabolic information and predict metabolic pathways, and also to 

perform comparison of biopathways, we have to develop and implement useful 

methodologies, algorithms and tools for the analysis of complex biopathways. In this thesis we 

have investigated several problems of biopathway analysis based on the above considerations. 

1) Modeling and simulation of biopathways 

The hybrid Petri net has been exploited for modeling and simulation of gene regulated 

metabolic networks. A global Petri net modeling and simulation strategy and technique is 

described to systematically investigate metabolic networks. The methodology of this model 

can be used to all other metabolic networks or the virtual cell metabolism. Moreover we 

discussed the perspective of Petri nets on modeling and simulation metabolic networks. 

A Biology Petri Net Markup Language (BioPNML) for biological data interchange 

among diverse biological simulators and Petri net tools has been proposed. The BioPNML is 

designed to provide a starting point for the development of a standard interchange format for 

Bioinformatics and Petri nets. The language makes it possible to present biology Petri net 

diagrams between all supported hardware platforms and versions. It is also designed to 

associate Petri net models and other known metabolic simulators. 

2) Prediction of metabolic pathways  

A web-based system for prediction of metabolic pathways has been developed. The 

system, PathAligner, allows to reconstruct metabolic pathways from rudimentary elements 

such as genes, sequences, enzymes, metabolites, etc., and to extract metabolic information 
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from biological databases via the Internet. PathAligner also provides a navigation platform to 

investigate more related metabolic information, and transforms the output data into XML-files 

for further modeling and simulation. Using the PathAligner system, it is possible to construct a 

complete Petri net model of biopathway from a rudimentary dataset. 

3) Alignment of biopathways  

A global definition of bioprocess pathways has been presented. A new method to align 

metabolic pathway has been described and implemented into the PathAligner system. The 

algorithm is based on strip scoring the similarity of 4-heirachical EC numbers involved in the 

pathways. 

We have set up the STCDB database. STCDB is an information system on cellular 

signal transductions. It recommends a classification of cellular signal transduction, and 

attempts to standardize the representation of signaling pathways. Every characterized signal 

transduction is assigned a unique 4-heirachical ST number. Our alignment algorithm can be 

applied to both metabolic pathways and signaling pathways. The general representation of 

alignment of biopathways is possible by using the recommended signal transduction 

classification system and the introduced alignment algorithm.  

In addition, a concrete biological example has been studied. A detailed model of the 

urea cycle has been modeled and systematically analyzed. The discoveries of transcription 

factors and their associated diseases are useful for the treatment of the urea cycle disorders. 

The process of “from sequence to structure to function to application” will dominate 

bioinformatics in the next decades. Biopathways presents many questions and problems 

worthy to focus on. Some are well studied while others are entirely open problems. We hope 

that our work has brought us a small step forward in applying computational methods to 

handle the complexity of metabolic data and that it may some day bring us closer to 

understand life itself. 
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Appendix A. 
Predefined functions of biochemical reaction kinetic types (irreversible). 
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Si: substrate 

Pi: Product 

Vmax: forward maximm velocity 

Km: forward Miachaelis-Menten Constant 

Ki: Inhibition constant for the substrate 
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Appendix B. 
A XSLT source code for Petri net XML transformation. 

 
<?xml version="1.0"?> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:fo="http://www.w3.org/1999/XSL/Format"> 
 <xsl:output method="xml" doctype-system="http://apogonidae.techfak.uni-
bielefeld.de/BioPNML/xrn1.dtd"/> 
 <xsl:template match="*|/"> 
  <xsl:apply-templates/> 
 </xsl:template> 
 <xsl:template match="text()|@*"> 
  <xsl:value-of select="."/> 
 </xsl:template> 
 <xsl:template match="/"> 
  <xsl:comment>xml for metabolic reaction petri nets - mchen@techfak.uni-
bielefeld.de</xsl:comment> 
  <net id="N" type="hlnet"> 
   <xsl:variable name="enur"> 
    <xsl:value-of select="0"/> 
   </xsl:variable> 
   <xsl:variable name="snur"> 
    <xsl:value-of select="0"/> 
   </xsl:variable> 
   <xsl:variable name="pnur"> 
    <xsl:value-of select="0"/> 
   </xsl:variable> 
   <xsl:for-each select="//record0"> 
    <xsl:for-each select="EC"> 
     <xsl:if test="not(.=preceding::*)"> 
      <xsl:variable name="enur"> 
       <xsl:value-of select="($enur)+1"/> 
      </xsl:variable> 
      <EC_order> 
       <xsl:value-of select="position()"/> 
      </EC_order> 
      <place> 
       <xsl:attribute name="id"><xsl:value-of select="."/></xsl:attribute> 
       <graphics> 
        <size> 
         <xsl:attribute name="w"><xsl:value-of 
select="$round"/></xsl:attribute> 
         <xsl:attribute name="h"><xsl:value-of 
select="$round"/></xsl:attribute> 
        </size> 
        <offset> 
         <xsl:attribute name="x"><xsl:value-of select="ceiling(($enur)div 
10)*300-100"/></xsl:attribute> 
         <xsl:attribute name="y"><xsl:value-of select="80*(($enur)-
floor(($enur)div 10)*10)+40"/></xsl:attribute> 
        </offset> 
        <xsl:call-template name="ECgraph"/> 
       </graphics> 
       <annotation> 
        <xsl:attribute name="id">EC<xsl:value-of 
select="."/></xsl:attribute> 
        <xsl:attribute name="type">name</xsl:attribute> 
        <text> 
         <xsl:value-of select="."/> 
        </text> 
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        <xsl:call-template name="Namegraph"/> 
       </annotation> 
       <annotation> 
        <xsl:attribute name="id">initialmarking<xsl:value-of 
select="."/></xsl:attribute> 
        <xsl:attribute name="type">initialmarking</xsl:attribute> 
        <text> 
         <xsl:value-of select="1"/> 
        </text> 
        <xsl:call-template name="Textgraph"/> 
       </annotation> 
      </place> 
      <transition> 
       <xsl:attribute name="id">T<xsl:value-of select="."/></xsl:attribute> 
       <graphics> 
        <size> 
         <xsl:attribute name="w"><xsl:value-of 
select="$Twidth"/></xsl:attribute> 
         <xsl:attribute name="h"><xsl:value-of 
select="$Theight"/></xsl:attribute> 
        </size> 
        <offset> 
         <xsl:attribute name="x"><xsl:value-of select="ceiling(($enur) div 
10)*300-100"/></xsl:attribute> 
         <xsl:attribute name="y"><xsl:value-of select="80*(($enur)-
floor(($enur) div 10)*10)+80"/></xsl:attribute> 
        </offset> 
        <xsl:call-template name="Tgraph"/> 
       </graphics> 
       <annotation> 
        <xsl:attribute name="id">TT<xsl:value-of 
select="."/></xsl:attribute> 
        <xsl:attribute name="type">expression</xsl:attribute> 
        <text>T<xsl:value-of select="."/> 
        </text> 
        <xsl:call-template name="Namegraph"/> 
       </annotation> 
      </transition> 
     </xsl:if> 
    </xsl:for-each> 
    <xsl:for-each select="SUBSTRATE"> 
     <SUB_nm> 
      <xsl:value-of select="."/> 
     </SUB_nm> 
     <xsl:if test="not(.=preceding::*)"> 
      <xsl:variable name="snur"> 
       <xsl:value-of select="($snur)+1"/> 
      </xsl:variable> 
   …… 
 
</xsl:stylesheet> 
 
The complete source code is available at: 
http://www.techfak.uni-bielefeld.de/~mchen/BioPNML/XML2PN.html 
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Appendix C. 

Proof of Lemma 5.3 2.) The key to the last equality is to consider the binomial expansion 

(x+y)n. We have 
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Appendix D. 

Proof of Lemma 5.4 With no loss of generality assume that the r matched point (i, j),(i’, 

j’),…, (k’, l’),(k, l) (Figure 5.2.2) then Indexaligns(δ r(E1, E2)) = 
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Appendix E. 
Computationally annotated mutations of genes in the uear cycle. 
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Legend: 
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Appendix F. 
Computer research for transcription factor binding sites of the human 

ASL, ASS, CAD and OTC genes. 
 
ASL promoter/upstream 1kb 
 
>hg16_knownGene_BC008195 range=chr7:64951430-64952429 5'pad=0 3'pad=0 
revComp=FALSE strand=+ repeatMasking=none 
gggttcaagagattctcctgcctcagcctccggagtcgctgggattgcag 
gcacccgccaccgtgcccggctaatttttgtattcttagtagagacgggg 
tttcaccaccttggccaggctggtctcaaactcctgacctcgtgatccac 
ccgcctcggccttccaaagtgctgggattacaggcgtgagccaccgcgcc 
cggcctccggccgcgtttcttttcttttttagaggagtcaggctggagtg 
ccgtggcacaatagctcactgcagcttcgaactcctgggctcaagtgctc 
ctcccgcctcagcctcctgagtagctaggactgcaggcgtgcaccaccac 
gcccggctttttttttattattattaatttttttgtagagacgggatctt 
gttgtattgcccaggctggtctccaactcgtagcctcaagcgatcctccc 
acctcggcctcccaaagtgctgggattacagctgtgagccaccgcgcctg 
gcacaggcttcatttctgatggtccttcctttttccttgatgcctttctc 
tgtacctggcacatagaggtgcctggtacgtgtttgttgaatgaatgaat 
gaatgagtgaatgagcgaacatgccatttcaccttatatatcttgtgaac 
ctgccaggcccgggcctgatgtcatagcctctacccctggcccgagtctc 
cagtcccctgcgtgtctgctgaccacagcacgaacgccagcgcactaccc 
tcctcaaccccagcccaggccccttccccgtcggggtccccccaaccctt 
tccccgcccgcttccccgccccggggccgcttagcctccagctcagcggg 
aggtatccccgcccacggccaggattggaggatggaggcaacgcccaccc 
cgccgggcggcctcctattggcgcggccgtcgccaggggtggggacagga 
ccggcggctgctgacgccatcccggccagaaaagccctggccagtggcgg 
 
 
ASS promoter/upstream 1kb 
 
>hg16_knownGene_BC009243 range=chr9:128595361-128596360 5'pad=0 3'pad=0 
revComp=FALSE strand=+ repeatMasking=none 
taaaaggagcactgactccagggtagcggctgggcaaggcttggggctcc 
cacctcccccaggttcagagccggctgaggaccgggagtcctcccttctg 
gggtcagtgctcactatggagcaactgccttggatggggtcccaggactt 
gctcttttactggggctgtggttgcagtgatcagggctttggagccggca 
gaccaagctgggaaactcctgaggtagagaagctgttgaaggcgggcctg 
gggtcacaactcccagctgctttttacaagcaagagacttctctctgaac 
ctcaaccttccctcctgtctagtgggttcgcagccagacagtcttttact 
cactgcttactgggtgccctctggagtctgggcaggtgccaggctctgag 
aagacaggccagcaatcagccctggcctaagggatgaaagccgggccttc 
ccgcgccggctcacctcggttttctcatccttactcggctaccagaggct 
atggttggggagggagggggctctgggggctgcagaaggcccaggctgcc 
ggcaccggatagaagtgagcacgaagctccctgcgccagtggaactttta 
tcccggctcccaccgcgaagcgtttaaattgcttccccagggccaggagg 
caagtctctcgaaggacggctgcggccaccctccgcccctgagttacatg 
ggtcgcagccactgccgccctccttggcgcctccagcccgcgggccaggg 
ccaggaaccgcgagccgcctgcgcccccgccggcgcgcccctgggagggt 
gagccggcgccgggcccaggcccggacctggtgggaggcggggggaggtg 
gggacgaggcctggggaggcgggccccgcccatctgcaggtggctgtgaa 
cgctgagcggctccaggcgggggccgggcccgggggcggggtctgtggcg 
cgcgtccccgccacgtgtccccggtcaccggccctgcccccgggccctgt 
 

AML1 
NF-kappaB 
GATA-4 
NF-1 
RFX1 
MAZ 
E2F-1 
USF 

Pax-4a 
Nkx2-5 
AML1 
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CAD promoter/upstream 1kb 
 
>hg16_knownGene_D78586 range=chr2:27413929-27414928 5'pad=0 3'pad=0 
revComp=FALSE strand=+ repeatMasking=none 
tgtgtcctgagaatggatcttgtgtacctgatggtccaggtcttttgcag 
tgtgtttgtgctgatggtttccatggatacaagtgtatgcgccaggtgag 
gaattaggccgtctaactagggatacaaggaatgcatagagcaagtcttc 
tcagaaaggagagccacaagaccaggagctgatacaaatttcctataggt 
ggaaaactatagaattgccctagacaaagtgataggtatattaggaaaga 
actaggtgttaggatgtggccctccgtgtaacgttgtatgggggtgtttt 
ttggtctgttgttcacagggctcgttctcactgcttatgttcttcgggat 
tctgggagccaccactctatccgtctccattctgctttgggcgacccagc 
gccgaaaagccaagacttcatgaactacataggtcttaccattgacctaa 
gatcaatctgaactatcttagcccagtcagggagctctgcttcctagaaa 
ggcatctttcgccagtggattcgcctcaaggttgaggccgccattggaag 
atgaaaaattgcactcccttggtgtagacaaataccagttcccattggtg 
ttgttgcctataataaacacttttttctttttttttcctctctttctttt 
taaggaaaggcgccctgcctttacgtgtttcttgcttggggtgggaggga 
ctgctttagggcagccggttttttcaggtttcccccggttttgcagtgcg 
gagaccacgggggcccactccccgtggctccgcggaccccgccccttacg 
tgcccggccccgcccctcacgccgcctgtgtccgcgccgccgcagtctct 
gctgctgccgccaagcgcgcccgaggctcctacgctgccgcgcccggctt 
ctctccagcgccccgcgccgttagccacgtggaccgactccggcgcgccg 
tcctcacgtggttccagtggagtttgcagtccttcccgcttctccgtact 
 
 
OTC promoter/upstream 1kb 
 
>hg16_knownGene_K02100 range=chrX:37241716-37242715 5'pad=0 3'pad=0 
revComp=FALSE strand=+ repeatMasking=none 
ctcggtatctgatacagaattgactttgaatcacctgatttctaactgag 
gataaatgaataaatgtgaagttgcagatggccccttagtgatctgaata 
ggctgctaggggaagagcatatggtatccccacttcccacttgtactgac 
tgtcaggtgctgttagaatcaataggcaactatttcttttctttttcttt 
ctttctttcttttttttgagacagtgtctctctctgtcacccaggctgga 
gtacagtggtgcaatctgggctcactgcaacctctgtctcccgggttcaa 
gcgactctcatgcctcagcctcccaaatagctgggattacaggtgtgcac 
caccacgtctagctaatttttgtatttttagtggagacggggattcacca 
tgttggccaggctggtctcgaactcctgggctcaagtgatccgcccgcct 
cagcctcccaaagtgctgggattacaggcgtgagccaccgtgcccggcca 
gcaattatttctttattgaagacttatgtgcaaggcacaaagggagctcc 
aggactgagatatttttactataccttctctatcatcttgcacccccaaa 
atagcttccagggcacttctttctatttgtttttgtggaaagactggcaa 
ttagaggtagaaaagtgaaataaatggaaatagtactactcaggactgtc 
acatctacatctgtgtttttgcagtgccaatttgcattttctgagtgagt 
tacttctactcaccttcacagcagccggtaccgcagtgccttgcatatat 
tatatcctcaatgagtacttgtcaattgattttgtacatgcgtgtgacag 
tataaatatattatgaaaaatgaggaggccaggcaataaaagagtcagga 
tttcttccaaaaaaaatacacagcggtggagcttggcataaagttcaaat 
gctcctacaccctgccctgcagtatctctaaccaggggactttgataagg 
 
 

POU1F1 
Pax-4a 
Nkx2-5 
Lentiviral Poly A 
Pax-2 
GATA-4 
HNF-3alpha 
POU2F1 
Cdc5 
Cdx-2 
HNF-4alpha2 

Xvent-1 
SREBP-1 
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Appendix G. 
Assoiated Diseases involved in the urea cycle disorders 

(Numbers show the degree of association, right column consider the redundancy, listed 
only those hits greater than 2). 

 
2 Acanthosis Nigricans 
2 Acidemia 
2 Aortic Aneurysm, Abdominal 
2 Bronchopulmonary Dysplasia 
2 Cerebral atrophy 
2 Chronic heart failure 
2 Coma 
2 Coronary Arteriosclerosis 
2 Deep vein thrombosis of lower limb 
2 Developmental delay 
2 Epilepsy 
2 Epstein-Barr Virus Infections 
2 Gastritis 
2 Hamman-Rich Syndrome 
2 Heart Diseases 
2 Helicobacter Infections 
2 Hematologic Diseases 
2 Hepatitis, Chronic Active 
2 Hepatitis, Toxic 
2 Hyperinsulinemia 
2 Hyperthyroidism 
2 Hypochondroplasia 
2 Immunologic Deficiency Syndromes 
2 Infections of musculoskeletal system 
2 Inflammatory Bowel Diseases 
2 Ischemic stroke NOS 
2 Kidney Failure, Chronic 
2 Labor, Premature 
2 Lens Diseases 
2 Liver Cirrhosis, Alcoholic 
2 Liver Diseases, Alcoholic 
2 Liver Failure, Fulminant 
2 Mastocytosis 
2 Mastocytosis, Systemic 
2 Motor Neuron Disease 
2 Nervous System Diseases 
2 Osteopetrosis 
2 Peripheral Vascular Diseases 
2 Piebaldism 
2 Proliferative diabetic retinopathy 
2 Prostatic Hypertrophy, Benign 
2 Psoriasis 
2 Salivary Gland Diseases 
2 Streptococcal lymphadenitis of swine 
2 Thrombocytopenia 
2 X-linked agammaglobulinemia 
2 alcohol flush reaction 
3 Acquired Immunodeficiency Syndrome 
3 Acute pancreatitis 
3 Arthritis 
3 Cerebrovascular accident 
3 Chronic liver disease 
3 Duodenal Ulcer 
3 Glomerulonephritis 
3 Gonorrhea 
3 Heart Failure, Congestive 
3 Hepatitis 
3 Hepatitis, Chronic 
3 Kidney Diseases 
3 Kidney Failure 

2 Aortic Aneurysm, Abdominal 
2 Arthritis 
2 Bronchopulmonary Dysplasia 
2 Chronic heart failure 
2 Coma 
2 Coronary Arteriosclerosis 
2 Deep vein thrombosis of lower limb 
2 Diabetes Mellitus, Insulin-Dependent 
2 Duodenal Ulcer 
2 Epilepsy 
2 Essential hypertension, NOS 
2 HELLP Syndrome 
2 Hamman-Rich Syndrome 
2 Heart Diseases 
2 Heart failure, NOS 
2 Hepatitis, Chronic 
2 Hepatitis, Chronic Active 
2 Hereditary Diseases 
2 Hyperglycemia 
2 Hyperthyroidism 
2 Hypothyroidism 
2 Infections of musculoskeletal system 
2 Inflammatory Bowel Diseases 
2 Ischemic stroke NOS 
2 Kidney Failure, Chronic 
2 Lens Diseases 
2 Liver Failure, Fulminant 
2 Motor Neuron Disease 
2 Nervous System Diseases 
2 Peripheral Vascular Diseases 
2 Proliferative diabetic retinopathy 
2 Prostatic Hypertrophy, Benign 
2 Psoriasis 
2 Salivary Gland Diseases 
2 Thrombocytopenia 
2 Thyroid Diseases 
2 Viral hepatitis 
3 Acquired Immunodeficiency Syndrome 
3 Adenovirus Infections 
3 Adhesions 
3 Cerebrovascular accident 
3 Chronic liver disease 
3 Fetal Alcohol Syndrome 
3 Glomerulonephritis 
3 Gonorrhea 
3 Heart Failure, Congestive 
3 Hepatitis 
3 Huntington Disease 
3 Kidney Diseases 
3 Kidney Failure 
3 Muscular Dystrophy, Duchenne 
3 Parkinson Disease 
3 Prostatic Diseases 
3 Retinal Diseases 
3 Septicemia 
4 Acute myocardial infarction 
4 Consumption-archaic term for TB 
4 Diabetes Mellitus, Non-Insulin-Dependent 
4 HIV Infections 
4 Hypertension induced by pregnancy 
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3 Muscular Dystrophy, Duchenne 
3 Parkinson Disease 
3 Retinal Diseases 
3 Septicemia 
3 Thyroid Diseases 
3 Viral hepatitis 
4 Acute myocardial infarction 
4 Adenovirus Infections 
4 Multiple Sclerosis 
4 Prostatic Diseases 
5 Consumption-archaic term for TB 
6 Asthma 
6 Cirrhosis 
10 Bacterial Infections 
10 Cerebral Vasospasm 
10 Common Variable Immunodeficiency 
10 Diabetic complication, NOS 
10 Endothelial dysfunction 
10 Glomerulosclerosis, Diabetic 
10 Hypos 
10 Keratoconjunctivitis Sicca 
10 Mixed Connective Tissue Disease 
10 Myelofibrosis 
10 Myopathy 
10 Myotonic Dystrophy 
10 Pneumonia 
10 Severe Combined Immunodeficiency 
10 Subarachnoid Hemorrhage 
11 Acromegaly 
11 Amyotrophic Lateral Sclerosis 
11 Anemia, Sickle Cell 
11 Cardiomyopathy, Congestive 
11 Disseminated Intravascular Coagulation 
11 Epilepsy, Temporal Lobe 
11 Mole NOS 
11 Muscular Dystrophies 
11 Myocardial Ischemia 
11 Neurodegenerative Diseases 
11 Systemic vasculitis 
11 Uterine Diseases 
12 Diabetes Mellitus, Insulin-Dependent 
12 Erythema gyratum repens 
12 Essential hypertension, NOS 
12 HELLP Syndrome 
12 Heart failure, NOS 
12 Hereditary Diseases 
12 Hypothyroidism 
13 Huntington Disease 
13 Hyperglycemia 
14 Adhesions 
14 Hypertension induced by pregnancy 
14 Pre-Eclampsia 
14 Virus Diseases 
15 Diabetes Mellitus, Non-Insulin-Dependent 
15 Fetal Alcohol Syndrome 
15 HIV Infections 
15 Lupus Erythematosus, Systemic 
16 Lung diseases 
18 Colonic Diseases 
19 Rheumatoid Arthritis 
 

4 Multiple Sclerosis 
4 Pre-Eclampsia 
4 Virus Diseases 
5 Asthma 
5 Cirrhosis 
5 Colonic Diseases 
5 Lung diseases 
5 Lupus Erythematosus, Systemic 
8 Rheumatoid Arthritis 
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