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Abstract

Background: Genome-scale metabolic model reconstruction is a complicated process beginning

with (semi-)automatic inference of the reactions participating in the organism’s metabolism, followed by

many iterations of network analysis and improvement. Despite advances in automatic model inference

and analysis tools, reconstruction may still miss some reactions or add erroneous ones. Consequently

a human expert’s analysis of the model will continue to play an important role in all the iterations of

the reconstruction process. This analysis is hampered by the size of the genome-scale models (typically

thousands of reactions), which makes it hard for a human to understand them.

Results: To aid human experts in curating and analyzing metabolic models, we have developed

a method for knowledge-based generalization that provides a higher-level view of a metabolic model,

masking its inessential details while presenting its essential structure. The method groups biochemical

species in the model into semantically equivalent classes based on the ChEBI ontology, identifies reactions

that become equivalent with respect to the generalized species, and factors those reactions into generalized

reactions.

Conclusions: Generalization allows curators to quickly identify divergences from the expected struc-

ture of the model, such as alternative paths or missing reactions, that are the priority targets for further

curation. We have applied our method to genome-scale yeast metabolic models and shown that it im-

proves understanding by helping to identify both specificities and potential errors.

Keywords: metabolic modeling; generalization; genome-scale reconstruction.
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Introduction

Genome-scale metabolic models are complex networks that describe the thousands of reactions and molecular

species that participate in an organism’s metabolism. The complexity of these networks makes it difficult

for human curators to understand, analyze, and verify them, since the individual reactions that require

their attention are hidden among the reactions that are correctly described. The priority targets are gaps

in pathways, and reactions that are in some sense unusual, because they represent shortcuts or alternative

paths. Efficient curation of genome-scale models requires analysis and exploration tools that synthesize

high-level views of the network and focus curator attention on these small subsets of unusual reactions.

Curation is performed after the automatic inference of the draft metabolic model. Inference methods

combine databases of reactions and pathways with genomic information and existing models for similar

organisms (Swainston et al., 2011). Genomic data for the new organism is compared to the data of the

reference organism, to find genomic evidence such as the presence of catalysing enzymes for the reactions

conserved in the new organism. Starting from the inference of a draft model, the model refinement process

includes several iterations of model analysis, error detection, and improvement (Thiele and Palsson, 2010).

The models produced at each iteration are intended for computer simulation, and so describe all the reactions

thought to participate in the organism’s metabolism. Although automatic model inference tools and genomic

comparison methods are becoming steadily more sophisticated, they may still leave gaps in the model or add

erroneous reactions. Curation by human experts is necessary.

Much of the complexity of the reaction network comes from biochemically similar reactions that operate

on slightly different substrates. For example, in the peroxisome compartment of Yarrowia lypolitica model

(MODEL1111190000 (Loira et al., 2012)) six acetyl-CoA oxidase reactions are present, transforming fatty

acyl-CoAs differing in their carbon chain length (decanoyl-CoA, lauroyl-CoA, etc.) into the corresponding

unsaturated fatty acyl-CoAs. There are also several similar reactions for other steps of the β-oxidation of fatty

acids pathway (Metzler, 2001). Although all of these details are needed for accurate computer simulation,

and are common to many models, not all of them are interesting for a curator. It is instead the differences

from the common pattern that demand attention. They may be errors in the model, such as missing steps
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or erroneous connections between pathways, or they may be organism-specific differences such as alternative

pathways that are biologically interesting.

To aid human understanding of genome-scale models, while keeping the details needed for a computer

simulation, we propose a 3-level zoomable approach:

• The most abstract level represents compartmentalization of the model, and focusses on such questions

as: Are all the compartments present? Are they well connected by transport reactions?

• The second level shows the modules inside of each of the compartments. The questions to be addressed

on this level include: Are all the essential processes present? Is the structure of each process correct?

Is there any organism-specific adaptation of the structure?

• The most detailed level is intended for computer simulation and represents the inner structure of each

of the modules with all the species, reactions and their kinetics, stoichiometry and constraints.

The two abstract levels are intended for a human expert, and the last one for the computer.

In this study we focus on the second level of abstraction, that represents the modules inside compartments.

A fair amount of work has been done on identifying reusable modules. These approaches can be divided into

two groups: series and parallel. A series approach operates on chains of reactions, and generalizes them as

a series, consequently hiding the structure of the network. An example of a series approach is representing

the network as a set of metabolic pathways (KEGG (Kanehisa et al., 2012), MetaCyC (Caspi et al., 2012)),

that can be further divided, for example, into reaction modules (conserved sequences of reactions along the

metabolic pathways) (Muto et al., 2013).

The other type of approach operates on reactions that are parallel, keeping the steps and preserving

the general view of the network. An example of this approach is grouping reactions based on EC (Enzyme

Commission) numbers (Tohsato et al., 2000). The drawback of this approach is that it is not applicable to

networks with no EC number assigned or reactions with no catalysing enzymes identified. We have developed

another parallel -reaction method for knowledge-based generalization of metabolic models, which does not

depend on enzyme information. It provides a higher-level view of a model while keeping its essential structure
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and omitting the details.

Definition 1 The model generalization process groups chemical species present in the model into equivalence

classes, and merges each class into a generalized chemical species. Reactions that involve same generalized

chemical species are then factored together into a generalized reaction.

By applying the model generalization process, we can build a simplified model that focusses on the high

level relationships. The simplified model can be further divided into pathways.
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Mathematical basis

Basic definitions

We represent a metabolic model M as a pair of two sets: a set S of biochemical species, and a set R of

reactions between them:

M = 〈S,R〉 - model,

S = {s1, . . . , sn} - species set,

R = {r1, . . . , rm} - reaction set.

We represent each reaction r ∈ R as a pair of sets of species: its reactants and products. A chemi-

cal reaction may be represented by a balanced chemical equation, showing the formulae of the reactants

and products, and the changes that take place (Clugston and Flemming, 2000). This definition leads to

restriction (1) that all the species participating in the reaction must be different.

r = 〈{s
(rs)
1 , . . . , s

(rs)
k }, {s

(ps)
1 , . . . , s

(ps)
l }〉 ∈ R ⊂ 〈2S × 2S〉,

where s
(rs)
1 &= . . . &= s

(rs)
k &= s

(ps)
1 &= . . . &= s

(ps)
l (1)

To perform the model generalization, we define an equivalence operation ∼ on the species set, and group

species into equivalence classes: [s]∼ = {s̃ ∈ S|s̃ ∼ s}.

Species equivalence imposes reaction equivalence: two reactions are equivalent if their corresponding

reactant and product species sets are pairwise equivalent.

∀r, r̃ ∈ R
r = 〈{s

(rs)
1 , . . . , s

(rs)
k }, {s

(ps)
1 , . . . , s

(ps)
l }〉,

r̃ = 〈{s̃
(rs)
1 , . . . , s̃

(rs)

k̃
}, {s̃

(ps)
1 , . . . , s̃

(ps)

l̃
}〉

r ∼ r̃ ⇐⇒ ∧

k = k̃, l = l̃,

∀i 0 ≤ i ≤ k ∃!̃i 0 ≤ ĩ ≤ k̃ : s
(rs)
i ∼ s̃

(rs)

ĩ
,

∀j 0 ≤ j ≤ l ∃!j̃ 0 ≤ j̃ ≤ l̃ : s
(ps)
j ∼ s̃

(ps)

j̃
.
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Equivalent reactions are factored together into a generalized reaction that operates with generalized

species (i.e. species equivalence classes): [r]∼ = 〈{[s
(rs)
1 ]∼, . . . , [s

(rs)
k ]∼}, {[s

(ps)
1 ]∼, . . . , [s

(ps)
l ]∼}〉.

In order to maintain the number of distinct species participating in a reaction, restriction (1’), analogous

to restriction (1), must be satisfied:

[s
(rs)
1 ]∼ &= . . . &= [s

(rs)
k ]∼ &= [s

(ps)
1 ]∼ &= . . . &= [s

(ps)
l ]∼ (1′)

In order to avoid creation of paths in the generalized model that are not based on the evidence from the

initial model, we introduce restriction (2): Species that do not participate in any pair of equivalent reactions

and do not have any common equivalent species must not be grouped together.

∀s, s̃ ∈ S s ∼ s̃ ⇒ ∨

∃r ∼ r̃ ∈ R : s ∈ reactants(r) ∧ s̃ ∈ reactants(r̃)

∃r ∼ r̃ ∈ R : s ∈ products(r) ∧ s̃ ∈ products(r̃)

∃ṡ ∈ S : s∼̃ṡ ∧ ṡ∼̃s̃.

(2)

Note that restriction (2) can be reformulated as maximizing the number of species equivalence classes while

keeping the reaction equivalence classes unchanged.

The generalized model M/ ∼ is a pair of generalized species and reaction sets (quotient sets):

M/ ∼ = 〈S/ ∼, R/ ∼〉 - generalized model,

S/ ∼ = {[s1]
∼, . . . , [sñ]

∼} - quotient species set,

R/ ∼ = {[r1]
∼, . . . , [rm̃]∼} - quotient reaction set.

The generalized model is a zoom out of the initial model. It provides a higher-level view by including

less species and reactions, but more generic ones. For example, 3-oxodecanoyl-CoA, 3-oxolauroyl-CoA, and

3-oxohexanoyl-CoA species of the initial model can be generalized into oxo-fatty acyl-CoA.

Every reaction of the generalized model corresponds to at least one reaction of the initial model, having

the same topology (number of distinct reactant and product species) and operating on species that can
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be zoomed out into those participating in the generalized reaction. The appropriate level of abstraction is

defined with respect to the initial model as the most general one that satisfies restrictions (1’) and (2).

The method and restrictions are described in figure 1.

Specific and ubiquitous species

We say that a ubiquitous species is one that participates in many reactions (more than some threshold), such

as water, hydrogen, oxygen, etc. Grouping such species would increase the number of reactions each group

would participate in, beyond the sharing already common to most of the models, and decrease readability;

in fact, during visualisation these species are often even duplicated to improve readability (Rohn et al.,

2012). Consequently we do not generalize ubiquitous species. In the generalized model each forms a trivial

equivalence class:

S(ub) = {s
(ub)
1 , . . . , s

(ub)
n̆ } ⊂ S : ∀i [s

(ub)
i ]∼ = {subi }

Specific species are the others, which we divide into non-trivial equivalence classes and generalize accord-

ingly.

Model generalization problem

Problem 1 Given a metabolic model M = 〈S, S(ub) ⊂ S,R〉 that describes n species (including n̆ ≤ n

ubiquitous ones) and m reactions, find an equivalence operation ∼ that obeys restrictions (1’) and (2), and

minimizes the number of reaction equivalence classes "R/ ∼.

We will solve model generalization problem 1 in three steps:

1. Define the most general equivalence operation ∼̊ (having minimal number of species equivalence classes

"S/∼̊), that does not take into account the restrictions;

2. Modify the current equivalence operation to satisfy the restriction (1’);

3. Modify the current equivalence operation to satisfy the restriction (2).

8



Step 1. Equivalence operation ∼̊.

Definition 2 Given a model M = 〈S, S(ub) ⊂ S,R〉 : "S = n, "S(ub) = n̆ ≤ n, "R = m, we define an

equivalence operation ∼̊ on the species set S as forming n̆ + 1 equivalence classes in the quotient set S/∼̊:

one for each of the ubiquitous species, and one for all the other species:

∀s(ub) ∈ S(ub) [s(ub)]∼̊ = {s(ub)},

∀s, s̃ ∈ S\S(ub) [s]∼̊ = [s̃]∼̊ = S\S(ub).

Lemma 1 For any equivalence operation ∼ on the model M = 〈S, S(ub) ⊂ S,R〉, the corresponding quotient

species set S/ ∼ and quotient reaction set R/ ∼ are partitions of, respectively, the quotient species set S/∼̊

and the quotient reaction set R/∼̊ induced by ∼̊:

∀ equivalence operation ∼ defined on 〈S, S(ub), R〉

∀s ∈ S [s]∼ ⊂ [s]∼̊

∀r ∈ R [r]∼ ⊂ [r]∼̊
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Data: M = 〈S, S(ub) ⊂ S,R〉 : "S = n, "S(ub) = n̆ ≤ n, "R = m - metabolic model describing n species,

n̆ among them being ubiquitous, and m reactions.

Result: ∼̊ - equivalence operation described in Lemma 1, M/∼̊ = 〈S/∼̊, S(ub)/∼̊ ⊂ S/∼̊, R/∼̊〉 -

corresponding generalized model.

S/∼̊ ← ∅ ; // resultant quotient species set S/∼̊ ⊂ 2S

S(ub)/∼̊ ← ∅ ; // resultant quotient ubiquitous species set S(ub)/∼̊ ⊂ 2S
(ub)

R/∼̊ ← ∅ ; // resultant quotient reaction set R/∼̊ ⊂ 2R

∼̊ ← ∅ ; // resultant equivalence operation ∼̊ : S ∪R → S/∼̊ ∪R/∼̊

/* Generalize ubiquitous species */

for s(ub) ∈ S(ub) do

[s(ub)]∼̊ ← {s(ub)} ; // map s(ub) to its equivalence class

end

S(ub)/∼̊ ← {[s(ub)]∼̊|s(ub) ∈ S(ub)};

/* Generalize specific species */

for s ∈ S\S(ub) do

[s]∼̊ ← S\S(ub) ; // map s to its equivalence class

end

S/∼̊ ← S(ub)/∼̊ ∪ {S\S(ub)};

/* Generalize reactions */

// map a reaction to its generalized version that operates with generalized species

gen ← λr.〈{[s]∼̊|s ∈ reactants(r)}, {[s]∼̊|s ∈ products(r)}〉;

for r ∈ R do

[r]∼̊ ← {r̃ ∈ R|gen(r̃) = gen(r)};

end

R/∼̊ ← {[r]∼̊|r ∈ R};

return ∼̊, 〈S/∼̊, S(ub)/∼̊, R/∼̊〉
Algorithm 1: Compute∼̊
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The Compute∼̊ algorithm forms the equivalence classes for ubiquitous and then specific species as in

Definition 2 and then computes the generalized reactions.

Step 2. Stoichiometry preserving property obedience

Problem 2 Given an equivalence operation ∼ defined on a metabolic model M = 〈S, S(ub) ⊂ S,R〉 find an

equivalence operation ∼̆ that obeys restriction (1’) and induces a quotient species set S/∼̆ of minimal size

"S/∼̆, such that S/∼̆ is a partition of the quotient species set S/∼ induced by ∼, i.e., ∀s ∈ S [s]∼̆ ⊂ [s]∼.

Algorithm

We start with the given equivalence operation ∼0=∼, and iteratively improve it, until the stoichiometry

preserving property (1’) is obeyed. We denote the equivalence operation obtained at the i-th iteration step

as ∼i.

At each iteration, if there exists a species equivalence class that violates the stoichiometry preserving

property (1’), i.e.:

∃s &= s̃ ∈ S, r ∈ R : s ∈ species(r) ∧ s̃ ∈ species(r) ∧ [s]∼
i

= [s̃]∼
i

,

we partition this species equivalence class [s]∼
i

= [s̃]∼
i

into two: [s]∼
i+1

∨ [s̃]∼
i+1

= [s]∼
i

= [s̃]∼
i

to form

a new approximation ∼i+1 of the equivalence operation. When no species equivalence class violating the

restriction (1’) can be found, the current equivalence operation is returned as result.

At each iteration one equivalence species class is partitioned. In the worst case, the equality operation

= (each species is equivalent only to itself) will be achieved. As it obeys restriction (1’), the process will

terminate.
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Data: ∼ - equivalence operation defined on a metabolic model M = 〈S, S(ub) ⊂ S,R〉,

M/∼ = 〈S/∼, S(ub)/∼ ⊂ S/∼, R/∼〉 - corresponding generalized model.

Result: ∼̆ - equivalence operation described in Problem 3, M/∼̆ = 〈S/∼̆, S(ub)/∼̆ ⊂ S/∼̆, R/∼̆〉 -

corresponding generalized model.

S/∼̆ ← S/ ∼ ; // resultant quotient species set S/∼̆ ⊂ 2S

S(ub)/∼̆ ← S(ub)/ ∼ ; // resultant quotient ubiquitous species set S(ub)/∼̆ ⊂ 2S
(ub)

R/∼̆ ← ∅ ; // resultant quotient reaction set R/∼̆ ⊂ 2R

∼̆ ←∼ ; // resultant equivalence operation ∼̆ : S ∪R → S/∼̆ ∪R/∼̆

/* Partition quotient species that do not obey restriction (1’) */

for S(gen) ∈ {S̃(gen) ∈ S/∼̆|∃s &= s̃ ∈ S̃(gen), r ∈ R : s ∈ species(r) ∧ s̃ ∈ species(r)} do

Π = Partition(S(gen));

S/∼̆ ← Π ∪ S/∼̆\{S(gen)} ; // Update S/∼̆

for S̃(gen) ∈ Π do

for s ∈ S̃(gen) do

[s]∼̆ ← S̃(gen) ; // Update ∼̆

end

end

end

/* Generalize reactions */

gen ← λr.〈{[s]∼̆|s ∈ reactants(r)}, {[s]∼̆|s ∈ products(r)}〉 // map a reaction to its

generalized version that operates with generalized species

for r ∈ R do

[r]∼̆ ← {r̃ ∈ R|gen(r̃) = gen(r)};

end

R/∼̆ ← {∼̆(r)|r ∈ R};

return ∼̆, 〈S/∼̆, S(ub)/∼̆, R/∼̆〉
Algorithm 2: PreserveStoichiometry
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Species equivalence class partition

In a species equivalence class that violates the restriction (1’) there are usually only a few conflicts present,

and multiple solutions of the partition problem exist.

Species ontology

In order to make the choice of the species equivalence classes biologically meaningful, we use an ontology

that describes hierarchical is a relationships (more specific to more general) between biochemical species.

Definition 3 A term t is a model term if it corresponds to a specific species in the metabolic model.

We assume that no two model terms are connected by a descendant-ancestor (more specific–more general)

relationship in the ontology; otherwise, we mark the ancestor term ubiquitous:

∀t, T ∈ terms (∃ species(t), species(T ) ∈ S ∧ t ∈ descendants(T ) ⇒ t = T ).

We iteratively remove all the leaf terms that are not model terms from the ontology, so that all the model

terms become leaves, and all the leaves become model terms.

For each species equivalence class that needs to be partitioned, we first find the least common ancestor T

of the ontological terms corresponding to its species. If the ontology allows for multiple inheritance, and there

are several such least common ancestors, we pick the first one. Then we look among the T -th descendant

terms for those that are compatible (to avoid multiple inheritance).

Definition 4 Terms t1, . . . , tk are compatible if and only if their descendant model terms do not intersect:

t1, . . . , tk are compatible ⇐⇒ ∀i &= j ∈ {1, . . . , k} descendants(ti) ∩ descendants(tk) ∩ leaves(T ) = ∅.

Problem 3 Given a term T , find a compatible term set among its descendants, such that it has minimal
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size, covers all the T -th descendant leaf terms, and satisfies the stoichiometry preserving property (1”):

? t1, . . . , tk ∈ descendants(T ) : ∧

k = kmin,

t1, . . . , tk are compatible,

leaves(T ) ⊂ descendants(t1) ∪ . . . ∪ descendants(tk),

∀i &= j ∈ {1, . . . , k} ∀t ∈ leaves(ti), t̃ ∈ leaves(tj)

∀r ∈ R {species(t), species(t̃)} &⊂ species(r).

(1′′)

To do so, we first exclude all the terms that violate the stoichiometry preserving property (1”). We thus

obtain an exact set cover problem.

Problem 4 (Set cover) Given a set X and a collection of its finite subsets Ψ, such that
⋃

S∈Ψ S = X,

find a minimum-size subset Π ⊂ Ψ whose members cover all of X:
⋃

S∈Π S =
⋃

S∈Ψ S = X.

Remark 1 Set cover is NP-complete (Karp, 1972).

Problem 5 (Exact set cover) As in Set cover problem, except that here the sets used in the cover are not

allowed to intersect.

Remark 2 Exact cover is NP-complete (Goldreich, 2008).

Exact set cover applied to ontological terms

Each ontological term t defines a set S(t) of its descendant leaf terms (including t if it is a leaf). The instance

consists of a set X of the model terms of interest, and a collection Ψ of all sets defined by their common

ancestor T , its descendant terms, and their relative complements with respect to X: ∀S ∈ Ψ X\S ∈ Ψ,

excluding all the sets that violate the stoichiometry preserving property (1”). We look for a minimum-size

exact cover of X.

Note, that in this case an exact cover always exists, e.g. the one formed by all the leaf terms.
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Choice of the ontology

We assume that any term that violates property (1”) is removed from the ontology. Note that the term T

is also removed.

If the ontology has no multiple inheritance, i.e. ∀S, S̃ ∈ Ψ S ∩ S̃ &= ∅ ⇒ S ⊆ S̃ ∨ S̃ ⊆ S, the problem

becomes trivial: the set of the root terms forms the solution. The size of the solution, though, depends on

the characteristics of the ontology, e.g. for a completely flat ontology (i.e., with no relationships) the solution

consists of singleton equivalence classes.

If multiple inheritance is allowed, any Ψ ⊆ 2X becomes possible, and the problem becomes NP -complete.

We use the ChEBI ontology (de Matos et al., 2010) of chemical compounds, as it is de facto a standard

for species annotation in metabolic models. ChEBI consists of three main branches: chemical entity, role,

and subatomic particle. The chemical entity branch describes terms useful for annotation of biochemical

species in a metabolic model.

The level of detail in the ChEBI hierarchy is not uniform: some sub-branches are more developed than

others, so equally precise terms may be placed unequally deep in the hierarchical tree. For example,

both hydrogen peroxide (CHEBI:16240) and decanoyl-CoA (CHEBI:28493) terms describe precise chemi-

cal molecules; but hydrogen peroxide is only 5 terms away from the chemical entity in the ChEBI hierarchy,

while decanoyl-CoA is 11 terms away.

Besides that, different types of classification are combined together in the hierarchical tree, leading to

multiple inheritance. For example, in the fatty-acid (CHEBI:35366) sub-branch, several classification types

are present, including:

• classification based on the length of the carbon chain:

– short-chain fatty acid (CHEBI:26666): 2-4 carbons;

– medium-chain fatty acid (CHEBI:59554): 6-12 carbons;

– etc.

• classification based on the presence of double bonds in the carbon chain:
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– saturated fatty acid (CHEBI:26607): no double bonds;

– unsaturated fatty acid (CHEBI:27208): one or more double bonds;

• classification based on substituent groups:

– hydroxy fatty acid (CHEBI:24654): one or more hydroxy substituents;

– oxo fatty acid (CHEBI:59644): at least one aldehydic or ketonic group;

– etc.

Moreover, using only hierarchical relationships in the ChEBI ontology is not always enough. Examples

show, that similar reactions can happen to the acid and the base in a conjugate acid-base pair. A conjugate

acid-base pair is two species, one an acid and one a base, that differ from each other through the loss or gain

of a proton (Stoker, 2012). For instance, in the Rhea database of chemical reactions (Alcántara et al., 2012),

the acyl-CoA oxidase (RHEA:28354) reaction: decanoyl-CoA+FAD+H+ → trans-dec-2-enoyl-CoA+FADH2

is found for both decanoyl-CoA (CHEBI:28493) and its conjugate base decanoyl-CoA(4-) (CHEBI:61430).

But hierarchically these species are very far from each other in the ChEBI ontology: Their least common

ancestor is molecular entity (CHEBI:23367), a direct descendant of the root chemical entity. To establish a

conjugate acid-base pair correspondence in the ChEBI ontology, not the hierarchical (is a) but the special

is conjugate base of /is conjugate acid of relationships are used. To maximize the chances of a conjugate

acid-base pair being in the same quotient species set, we generalize the hierarchical relationship.

Definition 5 Term t is a generalized direct descendant/ancestor of a term T if and only if t or a conjugate

base or acid of t is a direct descendant/ancestor of T or of a conjugate base or acid of T .

Definition 6 Term t is a generalized descendant/ancestor of a term T if and only if t is a generalized direct

descendant/ancestor of T or of any generalized descendant/ancestor of T .

We extend Ψ so that it is closed under the operation of relative complement: ∀S, S̃ ∈ Ψ S\S̃ ∈

Ψ. This allows for solving the set cover problem instead of the exact cover one: As Ψ is closed un-

der the operation of complement intersection, we can obtain an exact set cover C̃ from any set cover
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C = {S1, S2, . . . , Sm} by replacing its elements with their relative complements with the previous elements

of C: C̃ = {S1, S2\S1, . . . , Sm\
⋃m−1

i=1 Si}.

To approximate the solution of the set cover problem, we use a greedy algorithm.

Greedy Algorithm

Among the available subset candidates Si ∈ Ψ, pick the one of the largest size and add it to the resulting

set cover Π. Repeat this operation until all elements of X are covered.

Data: X - set of interest, Ψ ⊆ 2X - set of subsets of X

Result: Π ⊆ Ψ - set cover of X

Π ← ∅ ; // resultant cover

while X &= ∅ do

// select S ∈ Ψ that covers maximum elements of X

S(max) ← max(Ψ, criterion = λS."(S ∩X));

Ψ ← Ψ\{S(max)};

X ← X\S(max);

Π ← Π ∪ {S(max)};

end

return Π
Algorithm 3: GreedySetCover

Greedy set cover is a polynomial time approximation algorithm that achieves an approximation ratio

of H("X), where H(n) is the n-th harmonic number: H(n) =
∑n

i=1
1
i
≤ lnn + 1 (Chvatal, 1979). It

is the best possible polynomial time approximation algorithm for set cover, under plausible complexity

assumptions (Feige, 1998).
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Step 3. Species equivalence class number maximization

Problem 6 Given an equivalence operation ∼ defined on a metabolic model M = 〈S, S(ub) ⊂ S,R〉, find

an equivalence operation ∼̃ that obeys restriction (2) and does not change the reaction equivalence classes:

R/ ∼= R/∼̃.

Algorithm

To satisfy restriction (2) we associate each species s in the initial model with a pair of sets of reaction

equivalence classes in the quotient reaction set R/∼, induced by reactions where it participates as a reactant

or product.

s → 〈R
(rs)
s = {[r

(rs)
1 ]∼, . . . , [r

(rs)
o ]∼}, R

(ps)
s = {[r

(ps)
1 ]∼, . . . , [r

(ps)
t ]∼}〉.

Definition 7 Given an equivalence operation ∼ defined on a metabolic model M = 〈S, S(ub) ⊂ S,R〉, we

define an equivalence operation ∼̃ as forming a separate species equivalence class for each of the ubiquitous

species, and putting ∼-equivalent specific species that intersect in their product or reactant reaction classes

in the same equivalence class:

∀s(ub) ∈ S(ub), s ∈ S s(ub)∼̃s ⇐⇒ s(ub) = s,

∀s, s̃ ∈ S\S(ub) s∼̃s̃ ⇐⇒ ∧
s ∼ s̃

(R
(rs)
s ∩R

(rs)
s̃ &= ∅) ∨ (R

(ps)
s ∩R

(ps)
s̃ &= ∅) ∨ (∃ṡ ∈ S : s∼̃ṡ ∧ ṡ∼̃s̃).

Any further partition of the quotient species set would imply the partition of the quotient reaction set.

Hence the number of species equivalence classes is maximal for the current number of reaction equivalence
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classes, and restriction (2) is satisfied.

Data: ∼ - equivalence operation defined on a metabolic model M = 〈S, S(ub) ⊂ S,R〉,

M/∼ = 〈S/∼, S(ub)/∼ ⊂ S/∼, R/∼〉 - corresponding generalized model.

Result: ∼̃ - equivalence operation described in Problem 2, M/∼̃ = 〈S/∼̃, S(ub)/∼̃ ⊂ S/∼̃, R/∼̃〉 -

corresponding generalized model.

S/∼̃ ← ∅ ; // resultant quotient species set S/∼̃ ⊂ 2S

S(ub)/∼̃ ← S(ub)/ ∼ ; // resultant quotient ubiquitous species set S(ub)/∼̃ ⊂ 2S
(ub)

R/∼̃ ← R/ ∼ ; // resultant quotient reaction set R/∼̃ ⊂ 2R

∼̃ ←∼ ; // resultant equivalence operation ∼̃ : S ∪R → S/∼̃ ∪R/∼̃

/* Update specific species generalization */

// Map a species to a set of its ∼-equivalent species that participate in

∼-equivalent reactions

r sim ← λs.{s̃ ∼ s|∃r, r̃ ∈ R : s ∈ reactants(r) ∧ s̃ ∈ reactants(r̃) ∧ r ∼ r̃};

p sim ← λs.{s̃ ∼ s|∃r, r̃ ∈ R : s ∈ products(r) ∧ s̃ ∈ products(r̃) ∧ r ∼ r̃};

sim ← λs.r sim(s) ∪ p sim(s);

S/∼̃ ← S(ub)/∼̃ ∪ {sim(s)|s ∈ S\S(ub)};

// Merge all quotient species sets that intersect

while ∃S(gen) &= S̃(gen) ∈ S/∼̃ : S(gen) ∩ S̃(gen) &= ∅ do

S/∼̃ ← (S/∼̃\{S(gen), S̃(gen)}) ∪ {S(gen) ∪ S̃(gen)};

end

for S(gen) ∈ S/∼̃ do

for s ∈ S(gen) do

[s]∼̃ ← S(gen) ; // map s to its equivalence class

end

end

return ∼̃, 〈S/∼̃, S(ub)/∼̃, R/∼̃〉
Algorithm 4: Maximize
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Complete algorithm

Data: M = 〈S, S(ub) ⊂ S,R〉 : "S = n, "S(ub) = n̆ ≤ n, "R = m - metabolic model describing n species,

n̆ among them being ubiquitous, and m reactions.

Result: ∼ - approximation of the equivalence operation described in Problem 0,

M/ ∼= 〈S/ ∼, S(ub)/ ∼⊂ S/ ∼, R/ ∼〉 - corresponding generalized model.

∼̊,M/∼̊ ← Compute∼̊(M);

∼̆,M/∼̆ ← PreserveStoichiometry(∼̊,M/∼̊);

∼,M/ ∼← Maximize(∼̆,M/∼̆);

return ∼,M/ ∼= 〈S/ ∼, S(ub)/ ∼, R/ ∼〉
Algorithm 5: Compute∼
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Applications

To illustrate the model generalization method we show its application to the genome-scale metabolic network

of the lipid-accumulating yeast Yarrowia lipolytica (MODEL1111190000 (Loira et al., 2012)). The general-

ized model is attached as additional files 1, 2. The generalization has created 100 non-trivial quotient species

and 217 non-trivial quotient reactions, and reduced the total number of species from 1847 to 1072 and of

reactions from 2002 to 893.

The generalization method shows the best performance if the model is well-annotated with ChEBI. The

species lacking ChEBI annotations are forced to form trivial quotient species in the generalized model as

there is no evidence of their biochemical similarity with any other species in ChEBI. For 430 species in the

Y. lipolytica model no appropriate ChEBI annotation was found, thus they could not be grouped with other

species.

Peroxisome is an example of a well-annotated compartment in the Y. lipolytica model: only two species

have no ChEBI annotations: YLR043C disulphide and TRX1. The generalization process reduced the

number of reactions in peroxisome from 65 to 27. Figures 2 and 3 represent the peroxisome before and after

the generalization and were produced using Tulip graph visualisation tool (Auber, 2004).

The model before the grouping of equivalent reactions and species into generalized ones is shown on

figure 2: different colors correspond to different equivalence classes. The same color code is used in figure 3

representing the generalized model that operates with quotient species and reactions. For example, the vio-

let unsaturated FA-CoA node is a quotient of 8 species: hexadec-2-enoyl-CoA, oleoyl-CoA, tetradecenoyl-CoA,

trans-dec-2-enoyl-CoA, trans-dodec-2-enoyl-CoA, trans-hexacos-2-enoyl-CoA, trans-octadec-2-enoyl-CoA, and

trans-tetradec-2-enoyl-CoA (colored violet in figure 2). In a similar manner, the light-green acCoA oxidase

quotient reaction, that converts fatty acyl-CoA (yellow) into unsaturated FA-CoA (violet), generalizes 6

corresponding light-green reactions of the initial model (figure 2).

The generalized model describes the β-oxidation of fatty acids pathway (Metzler, 2001) happening inside

the Y. lypolitica peroxisome in a generic way: as a transformation of fatty acyl-CoA (yellow) into unsaturated

FA-CoA (violet), then into hydroxy FA-CoA (green), 3-oxo FA-CoA (magenta), and back to fatty acyl-CoA
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(with a shorter carbon chain); while the initial model describes the same process in more details, specifying

those reactions for each of the fatty acyl-CoA species present in the organisms’ cell (e.g. decanoyl-CoA,

dodecanoyl-CoA, etc.). That is why the beta-oxidation chain of the reactions in the initial model, transforming

step-by-step the fatty-acyl-CoA with the longest carbon chain into the one with the shortest chain, in the

generalized model appears as a cycle (generalizing all the fatty-acyl-CoAs into one species, regardless the

chain-length).

The more precise model is needed for simulation, while the more general one is clearer to a human,

and reveals the main properties of the model. For example, the generalized model highlights the fact that

there is a particularity concerning C24:0-CoA (tetracosanoyl-CoA) (red, inside the cycle in figure 3): there

exists a ”short-cut” reaction, producing it directly from another fatty acyl-CoA (yellow), avoiding the usual

four-reaction beta-oxidation chain, used for other fatty acyl-CoAs.

Another application of model generalization is metabolic model comparison. The generalization brings

the models to the same level of abstraction and highlights the differences such as gaps. Examples can be

found in (Zhukova and Sherman, 2013).
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Discussion

We have developed a method that provides a semantically zoomed-out view of a metabolic model, that keeps

its essential structure but hides the details.

We have implemented our method as a Python program, that is available for download from

http://metamogen.gforge.inria.fr. It takes an SBML model as an input, annotates its species with

ChEBI terms (if the annotations are not present in the model) and generalizes it. It produces two SBML files,

as an output. The first output file contains the generalized model. The second output file uses groups(Hucka,

2012) extension of SBML, and contains the initial model plus the groups representing quotient species and

reaction sets.

We have applied our method to genome-scale metabolic models of yeasts. We have illustrated it here

on the lipid-accumulating yeast Y. lipolytica and have shown that generalization helps finding gaps and

peculiarities, as well as compresses the information stored in the model, which can be used for model

visualisation and model comparison. In the example, the chain of β-oxidation of fatty acids reactions in

the constitutive peroxisome of Y. lipolytica is generalized to a cycle of reactions, highlighting the alternative

path for C24:0-CoA (tetracosanoyl-CoA).

Currently the generalization method depends on the ChEBI ontology. It cannot generalize species that

lack ChEBI annotations. In future work we will overcome this limitation.

The method zooms out a model to the most general level of abstraction that is consisted with the

model structure, i.e. does not violate the restrictions (1’) and (2). It remains to be seen whether there are

intermediate levels of abstraction that can be useful for model analysis. In particular it may be interesting

to define the maximal generalization for a group of organisms, in order to highlight the specific differences

of the individual models with respect to a common generalization.
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Additional Files

Additional file 1 — The generalized SBML level 2 version 4 model of Yarrowia

lipolytica (derived from MODEL1111190000 )

The model contains generalized reactions and species.

Additional file 2 — The SBML level 3 version 1 model of Yarrowia lipolytica (de-

rived from MODEL1111190000 ) with groups extension representing equivalent

species and reactions

The model contains all the elements (reactions, species, etc.) of the initial MODEL1111190000 model, and

is enriched with groups representing species and reaction equivalence information.
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Figure 1: Model generalization method and restrictions. a) Generalization first groups the species
into equivalence classes, and then factors them into generalized species. The reaction equivalence classes
and factoring are inferred from the species classes. b) Restriction (1’). The top part shows a correct gener-
alization that obeys the restriction. Two bottom parts show generalizations that would change the reaction
stoichiometry, and thus are not allowed. c) Restriction (2). The top part shows a correct generalization
that obeys the restriction. The bottom part violates the restriction as there is no evidence in the model (i.e.
no equivalent reaction) of the species b3 belonging to the same equivalence class as b1 and b2.
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Figure 2: Peroxisome of the Y. lypolitica model (MODEL1111190000). Species are represented as
circular nodes, and the reactions as square ones, connected by edges to their reactants/products, according to
SBGN notation (Moodie et al., 2011). Ubiquitous species are of smaller size and colored gray. Specific species
are divided into six non-trivial equivalence classes, and colored accordingly (violet, light-blue, yellow, green,
light-green, magenta). The specific species that form trivial equivalence classes are all colored red. Reactions
are divided into fifteen non-trivial equivalence classes, also represented by different colors. Reactions that
form trivial equivalence classes are all colored blue. The size of the model does not allow for readable species
labels, so they are omitted.
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Figure 3: The generalization of the peroxisome of the Y. lypolitica model (see figure 2). The
generalized model operates on quotient species and reactions. The number given in parentheses and the size
of each node indicates how many entities it generalizes.
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