1,173 research outputs found

    A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries

    Get PDF
    We present a new multigrid scheme for solving the Poisson equation with Dirichlet boundary conditions on a Cartesian grid with irregular domain boundaries. This scheme was developed in the context of the Adaptive Mesh Refinement (AMR) schemes based on a graded-octree data structure. The Poisson equation is solved on a level-by-level basis, using a "one-way interface" scheme in which boundary conditions are interpolated from the previous coarser level solution. Such a scheme is particularly well suited for self-gravitating astrophysical flows requiring an adaptive time stepping strategy. By constructing a multigrid hierarchy covering the active cells of each AMR level, we have designed a memory-efficient algorithm that can benefit fully from the multigrid acceleration. We present a simple method for capturing the boundary conditions across the multigrid hierarchy, based on a second-order accurate reconstruction of the boundaries of the multigrid levels. In case of very complex boundaries, small scale features become smaller than the discretization cell size of coarse multigrid levels and convergence problems arise. We propose a simple solution to address these issues. Using our scheme, the convergence rate usually depends on the grid size for complex grids, but good linear convergence is maintained. The proposed method was successfully implemented on distributed memory architectures in the RAMSES code, for which we present and discuss convergence and accuracy properties as well as timing performances.Comment: 33 pages, 15 figures, accepted for publication in Journal of Computational Physic

    Fractal homogenization of multiscale interface problems

    Get PDF
    Inspired by continuum mechanical contact problems with geological fault networks, we consider elliptic second order differential equations with jump conditions on a sequence of multiscale networks of interfaces with a finite number of non-separating scales. Our aim is to derive and analyze a description of the asymptotic limit of infinitely many scales in order to quantify the effect of resolving the network only up to some finite number of interfaces and to consider all further effects as homogeneous. As classical homogenization techniques are not suited for this kind of geometrical setting, we suggest a new concept, called fractal homogenization, to derive and analyze an asymptotic limit problem from a corresponding sequence of finite-scale interface problems. We provide an intuitive characterization of the corresponding fractal solution space in terms of generalized jumps and gradients together with continuous embeddings into L2 and Hs, s<1/2. We show existence and uniqueness of the solution of the asymptotic limit problem and exponential convergence of the approximating finite-scale solutions. Computational experiments involving a related numerical homogenization technique illustrate our theoretical findings
    • …
    corecore