266 research outputs found

    Totally Ordered Broadcast and Multicast Algorithms: A Comprehensive Survey

    Get PDF
    Total order multicast algorithms constitute an important class of problems in distributed systems, especially in the context of fault-tolerance. In short, the problem of total order multicast consists in sending messages to a set of processes, in such a way that all messages are delivered by all correct destinations in the same order. However, the huge amount of literature on the subject and the plethora of solutions proposed so far make it difficult for practitioners to select a solution adapted to their specific problem. As a result, naive solutions are often used while better solutions are ignored. This paper proposes a classification of total order multicast algorithms based on the ordering mechanism of the algorithms, and describes a set of common characteristics (e.g., assumptions, properties) with which to evaluate them. In this classification, more than fifty total order broadcast and multicast algorithms are surveyed. The presentation includes asynchronous algorithms as well as algorithms based on the more restrictive synchronous model. Fault-tolerance issues are also considered as the paper studies the properties and behavior of the different algorithms with respect to failures

    Group membership in asynchronous distributed environments using logically ordered views

    Get PDF
    A group membership protocol ensures agreement and consistent commit actions among group members to maintain a sequence of identical group views in spite of continuous changes, either voluntary or otherwise, in processors' membership status. In asynchronous distributed environments, such consistency among group views must be guaranteed using messages over a network which does not bound message delivery times. Assuming a network that provides a reliable, FIFO channel between any pair of processors, one approach to designing such a protocol is to centralize the responsibility to detect changes, ensure agreement, and commit them consistently in a single manager process. This approach is complicated by the fact that a protocol to elect a new manager with a consistent membership proposal must be executed when the manager itself fails. In this report, we present a membership protocol based on ordering of group members in a logical ring that eliminates the need for such centralized responsibility. Agreement and commit actions are token-based and the protocol ensures that no tokens are lost or duplicated due to changes in membership. The cost of committing a change is 2n point-to-point messages over FIFO channels where n is the group size. The protocol correctness has been proven formally. Agreement, Asynchronous, Commit, Distributed, Failure, Group Membership, Logical Ring, Reliable Multicast, TokenMonterey, California. Naval Postgraduate Schoolhttp://archive.org/details/groupmembershipi00shukMonterey, California. Naval Postgraduate SchoolNAApproved for public release; distribution is unlimited

    Agreement-related problems:from semi-passive replication to totally ordered broadcast

    Get PDF
    Agreement problems constitute a fundamental class of problems in the context of distributed systems. All agreement problems follow a common pattern: all processes must agree on some common decision, the nature of which depends on the specific problem. This dissertation mainly focuses on three important agreements problems: Replication, Total Order Broadcast, and Consensus. Replication is a common means to introduce redundancy in a system, in order to improve its availability. A replicated server is a server that is composed of multiple copies so that, if one copy fails, the other copies can still provide the service. Each copy of the server is called a replica. The replicas must all evolve in manner that is consistent with the other replicas. Hence, updating the replicated server requires that every replica agrees on the set of modifications to carry over. There are two principal replication schemes to ensure this consistency: active replication and passive replication. In Total Order Broadcast, processes broadcast messages to all processes. However, all messages must be delivered in the same order. Also, if one process delivers a message m, then all correct processes must eventually deliver m. The problem of Consensus gives an abstraction to most other agreement problems. All processes initiate a Consensus by proposing a value. Then, all processes must eventually decide the same value v that must be one of the proposed values. These agreement problems are closely related to each other. For instance, Chandra and Toueg [CT96] show that Total Order Broadcast and Consensus are equivalent problems. In addition, Lamport [Lam78] and Schneider [Sch90] show that active replication needs Total Order Broadcast. As a result, active replication is also closely related to the Consensus problem. The first contribution of this dissertation is the definition of the semi-passive replication technique. Semi-passive replication is a passive replication scheme based on a variant of Consensus (called Lazy Consensus and also defined here). From a conceptual point of view, the result is important as it helps to clarify the relation between passive replication and the Consensus problem. In practice, this makes it possible to design systems that react more quickly to failures. The problem of Total Order Broadcast is well-known in the field of distributed systems and algorithms. In fact, there have been already more than fifty algorithms published on the problem so far. Although quite similar, it is difficult to compare these algorithms as they often differ with respect to their actual properties, assumptions, and objectives. The second main contribution of this dissertation is to define five classes of total order broadcast algorithms, and to relate existing algorithms to those classes. The third contribution of this dissertation is to compare the expected performance of the various classes of total order broadcast algorithms. To achieve this goal, we define a set of metrics to predict the performance of distributed algorithms

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    CarRing IV- Real-time Computer Network

    Get PDF
    Ob in der Automobil-, Avionik- oder Automatisierungstechnik, die Fortschritte in der Echtzeitkommunikation richten sich auf weitere Verbesserungen bereits existierender Lösungen. Im Kfz-Bereich führen die steigenden Zahlen computerbasierter Systeme, Anwendungen und Anschlüsse sowie die Verwendung mehrerer proprietärer Kommunikationsstandards zu einem immer komplexeren Kabelbaum. Ursächlich hierfür sind inkompatible Standards, wodurch nicht nur die Kosten, sondern auch das Gewicht und damit der Kraftstoffverbrauch negativ beeinflusst werden. Im ersten Teil der Dissertation wird das Echtzeitprotokoll von CarRing IV (CRIV) vorgestellt. Es bietet isochrone und harte Echtzeitgarantien, ohne dass eine netzwerkweite Synchronisation erforderlich ist. Mit bis zu 16 Knoten pro Ring kann ein CR-IV-Netz aus bis zu 256 Ringen bestehen, die durch Router miteinander verbunden sind. CR-IV verwendet ein reduziertes OSI-Modell (Schichten 1-3, 7), das für seine Anwendungsbereiche sowohl typisch als auch vorteilhaft ist. Außerdem unterstützt es sowohl ereignis- als auch zeitgesteuerte Kommunikationsparadigmen. Der Transparent-Modus ermöglicht es CR-IV, als Backbone für bestehende Netze zu verwenden, wodurch Inkompatibilitätsprobleme beseitigt werden und der Wechsel zu einer einheitlicheren Netzlösung erleichtert wird. Mit dieser Funktionalität können Nutzergeräte über ein CR-IV-Netz miteinander verbunden werden, ohne dass der Nutzer eingreifen oder etwas ändern muss. Durch Multicast unterstützt CRIV auch die Emulation von Feldbussen. Der zweite Teil der Dissertation stellt den anderen wichtigen Aspekt von CR-IV vor. Alle Schichten des OSI-Modells sind in einem FPGA mit Hardware Description Languages (HDLs) ohne Hard- oder Softprozessoren implementiert. Das Register-Transfer-Level (RTL)-Hardwaredesign von CR-IV wird mit einem neuen Ansatz erstellt, der am besten als tokenbasierter Datenfluss beschrieben werden kann. Der Ansatz ist sowohl vertikal als auch horizontal skalierbar. Er verwendet lose gekoppelte Processing Elements (PEs), die stateless arbeiten, sowie Arbiter/Speicherzuordnungspaare. Durch die granulare Kontrolle und die Aufteilung aller Aspekte einer Lösung eignet sich der Ansatz für die Implementierung anderer Software-Level-Lösungen in Hardware. Viele Testszenarios werden durchgeführt, um die in CR-IV erzielten Ergebnisse zu verdeutlichen und zu überprüfen. Diese Szenarien reichen von direkten Leistungsmessungen bis hin zu verhaltensspezifischen Tests. Zusätzlich wird eine Labor-Demo erstellt, die grundsätzlich auf ein Proof of Concept zielt. Die Demo stellt einen praktischen Test anstelle szenariospezifischer Tests dar. Alle Testszenarien und die Labor-Demo werden mit den Prototyp-Boards des Projekts durchgef¨uhrt, d.h. es sind keine Simulationstests. Die Ergebnisse stellen die realistischen Leistungen von CR-IV mit bis zu 13,61 Gbit/s dar.Whether be it automotive, avionics or automation, advances in their respective real-time communication technology focus on further improving preexisting solutions. For in-vehicle communication, the ever-increasing number of computer-based systems, applications and connections as well as the use of multiple proprietary communication standards results in an increasingly complex wiring harness. This is in-part due to those standards being incompatible with one another. In addition to cost, this also impacts weight, which in turn affects fuel consumption. The work presented in this thesis is in-part theoretical and in-part applied. The former is represented by a new protocol, while the latter corresponds to the protocol’s hardware implementation. In the first part of the thesis, the real-time communication protocol of CarRing IV (CR-IV) is presented. It provides isochronous and hard real-time guarantees without requiring network-wide clock synchronization. With up to 16 nodes per ring, a CR-IV network can consist of as many as 256 rings interconnected by routers. CR-IV uses a reduced OSI model (layers 1-3, 7), which is both typical of and preferable for its application areas. Moreover, it supports both event- and time-triggered communication paradigms. The transparent mode feature allows CR-IV to act as a backbone for existing networks, thereby addressing incompatibility concerns and easing the transition into a more unified network solution. Using this feature, user devices can communicate with one another via a CR-IV network without requiring user interference, or any user device or application changes. Combined with the protocol’s reliable multicast, the feature extends CR-IV’s capabilities to include field bus emulation. The second part of the thesis presents the other important aspect of CR-IV. All of its OSI model layers are implemented in a FPGA using Hardware Description Languages (HDLs) without relying-on or including any hard or soft processors. CR-IV’s Register-Transfer Level (RTL) hardware design is created using a new approach that can best be described as token-based data-flow. The approach is both vertically and horizontally scalable. It uses stateless and loosely coupled Processing Elements (PEs) as well as arbiter/memory allocation pairs. By having granular control and compartmentalizing every aspect of a solution, the approach lends itself to being used for implementing other software-level solutions in hardware. Many test scenarios are conducted to both highlight and examine the results achieved in CR-IV. Those scenarios range from direct performance measurements to behavior-specific tests. Moreover, a lab-demo is created that essentially amounts to a proof of concept. The demo represents a practical test as opposed to a scenariospecific one. Whether be it test scenarios or the lab-demo, all are carried-out using the project’s prototype boards, i.e. no simulation tests. The results obtained represent CR-IV’s real-world realistic outcomes with up to 13.61 Gbps

    On Consistency and Network Latency in Distributed Interactive Applications: A Survey—Part I

    Get PDF
    This paper is the first part of a two-part paper that documents a detailed survey of the research carried out on consistency and latency in distributed interactive applications (DIAs) in recent decades. Part I reviews the terminology associated with DIAs and offers definitions for consistency and latency. Related issues such as jitter and fidelity are also discussed. Furthermore, the various consistency maintenance mechanisms that researchers have used to improve consistency and reduce latency effects are considered. These mechanisms are grouped into one of three categories, namely time management, Information management and system architectural management. This paper presents the techniques associated with the time management category. Examples of such mechanisms include time warp, lock step synchronisation and predictive time management. The remaining two categories are presented in part two of the survey

    A cluster based communication architecture for distributed applications in mobile ad hoc networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishx, 85 leavesIn this thesis, we aim to design and implement three protocols on a hierarchical architecture to solve the balanced clustering, backbone formation and distributed mutual exclusion problems for mobile ad hoc network(MANET)s. Our ÂŻrst goal is to cluster the MANET into balanced partitions. Clustering is a widely used approach to ease implemen-tation of various problems such as routing and resource management in MANETs. We propose the Merging Clustering Algorithm(MCA) for clustering in MANETs that merges clusters to form higher level of clusters by increasing their levels. Secondly, we aim to con-struct a directed ring topology across clusterheads which were selected by MCA. Lastly, we implement the distributed mutual exclusion algorithm based on Ricart-Agrawala algo-rithm for MANETs(Mobile RA). Each cluster is represented by a coordinator node on the ring which implements distributed mutual exclusion algorithm on behalf of any member in the cluster it represents. We show the operations of the algorithms, analyze their time and message complexities and provide results in the simulation environment of ns2

    Client-access protocols for replicated services

    No full text
    Published versio

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions
    • …
    corecore