
CarRing IV- Real-time Computer Network

Doctoral Thesis
(Dissertation)

to be awarded the degree
Doctor of Engineering (Dr.-Ing.)

submitted by
M.Eng. Ahmad Obeid
from Baghdad, Iraq

approved by the Faculty of Mathematics/Computer Science and Mechanical Engineering
Clausthal University of Technology

Date of oral examination
24 May 2022

Dean
Prof. Dr. rer. nat. Jörg P. Müller

Chairperson of the Board of Examiners
Prof. Dr.-Ing. Volker Wesling

Supervising tutor
Prof. Dr. rer. nat. Christian Siemers

Reviewer
Prof. Dr. rer. nat. Rüdiger Ehlers

This work is licensed under CC-BY-NC-SA

CarRing IV- Real-time Computer Network

M.Eng. Ahmad Obeid

Abstract

Whether be it automotive, avionics or automation, advances in their respective real-
time communication technology focus on further improving preexisting solutions. For
in-vehicle communication, the ever-increasing number of computer-based systems,
applications and connections as well as the use of multiple proprietary communication
standards results in an increasingly complex wiring harness. This is in-part due to
those standards being incompatible with one another. In addition to cost, this also
impacts weight, which in turn affects fuel consumption.

The work presented in this thesis is in-part theoretical and in-part applied. The
former is represented by a new protocol, while the latter corresponds to the protocol’s
hardware implementation. In the first part of the thesis, the real-time communica-
tion protocol of CarRing IV (CR-IV) is presented. It provides isochronous and hard
real-time guarantees without requiring network-wide clock synchronization. With up
to 16 nodes per ring, a CR-IV network can consist of as many as 256 rings intercon-
nected by routers. CR-IV uses a reduced OSI model (layers 1-3, 7), which is both
typical of and preferable for its application areas. Moreover, it supports both event-
and time-triggered communication paradigms. The transparent mode feature allows
CR-IV to act as a backbone for existing networks, thereby addressing incompatibility
concerns and easing the transition into a more unified network solution. Using this
feature, user devices can communicate with one another via a CR-IV network without
requiring user interference, or any user device or application changes. Combined with
the protocol’s reliable multicast, the feature extends CR-IV’s capabilities to include
field bus emulation. The second part of the thesis presents the other important aspect
of CR-IV. All of its OSI model layers are implemented in an FPGA using Hardware
Description Languages (HDLs) without relying-on or including any hard or soft pro-
cessors. CR-IV’s Register-Transfer Level (RTL) hardware design is created using a new
approach that can best be described as token-based data-flow. The approach is both
vertically and horizontally scalable. It uses stateless and loosely coupled Processing
Elements (PEs) as well as arbiter/memory allocation pairs. By having granular con-
trol and compartmentalizing every aspect of a solution, the approach lends itself to
being used for implementing other software-level solutions in hardware.

Many test scenarios are conducted to both highlight and examine the results
achieved in CR-IV. Those scenarios range from direct performance measurements to
behavior-specific tests. Moreover, a lab-demo is created that essentially amounts to
a proof of concept. The demo represents a practical test as opposed to a scenario-
specific one. Whether be it test scenarios or the lab-demo, all are carried-out using the
project’s prototype boards, i.e. no simulation tests. The results obtained represent
CR-IV’s real-world realistic outcomes with up to 13.61 Gbps.

3

4

Acknowledgments

My sincere, earnest and deepest gratitude to Professor Christian Siemers without

whom this would not have been possible. I feel incredibly fortunate, especially in

these difficult times. Christian’s helpful advice, encouragement, guidance and support

were indispensable. Few people have been pivotal in my life trajectory, Christian is

absolutely one of them. Hopefully, I would someday be able to pay-it-forward.

Thanks to Professor Harald Richter for the employment opportunity through-

which I was able to support my parents and sisters.

Many thanks to my second supervisor Professor Rüdiger Ehlers, chairman Profes-

sor Volker Wesling and my thesis committee members.

I am greatly thankful to Florian Pramme, Alexander Keidel and Christian Marg

for their friendship, support and sharing the ups and downs with empathy and many

many moments of levity. And I would like to also thank Peter Platzdasch, Christine

Kammann, Thomas Bravin, Sandra Karpenstein and Professor Jörg Müller.

Finally, this thesis is dedicated to the most important people in my life, my family.

Their supportive and loving environment helped immensely.

5

6

Table of Contents

Abstract 3

1 Introduction 19

1.1 Background . 19

1.2 Problem Description . 21

1.3 Thesis Contributions . 22

1.4 Challenges . 26

1.5 Thesis Scope and Organization . 27

2 Preliminaries 31

2.1 System Design and Hardware Description Languages 31

2.1.1 VHDL . 31

2.1.2 Verilog . 33

2.1.3 SystemC . 34

2.2 Tool Chain . 36

2.2.1 Cadence C-to-Silicon . 36

2.2.2 Xilinx ISE and Vivado Design Suites 39

2.3 Prototype Boards and Development Kits 41

2.3.1 FPGAs and development boards 42

2.3.2 IP Cores and ICs . 46

2.3.3 Clock Signals and Generators 48

2.3.4 Reset Logic . 50

7

3 Industrial networks and real-time communication 53

3.1 Introduction . 53

3.1.1 Real-time approaches . 54

3.1.2 Event- and time-triggered communication 57

3.1.3 Selection criteria . 57

3.1.4 Ethernet, determinism, PLCA and TSN 59

3.2 Automotive . 61

3.2.1 CAN/-FD, MilCAN A . 62

3.2.2 FlexRay . 63

3.2.3 MOST150 . 64

3.2.4 LIN . 65

3.3 Avionics . 66

3.3.1 TTCAN, CANaerospace . 66

3.3.2 AFDX, uAFDX . 67

3.3.3 TTP/C . 68

3.3.4 MIL-STD-1553C . 68

3.3.5 IEEE 1394B . 69

3.3.6 TTEthernet . 70

3.4 Automation . 70

3.4.1 EtherCAT . 71

3.4.2 PROFINET IO CC-C/CC-D 72

3.4.3 SERCOS III . 72

3.4.4 Ethernet POWERLINK . 73

3.4.5 ControlNet . 74

3.4.6 EPA . 75

3.5 Summary . 75

4 Overview of CarRing IV 79

4.1 General description . 79

4.1.1 Prototype . 79

8

4.1.2 Protocol . 82

4.2 Functional description . 83

4.3 Application Areas . 85

5 CarRing IV Layers 87

5.1 Physical layer . 90

5.1.1 Overview . 90

5.1.2 Services provided to higher layers 91

5.1.3 Sub-layers . 91

5.1.4 Functional description . 93

5.1.5 Error detection and recovery 96

5.1.6 Router vs Node design . 97

5.2 Data-Link layer . 98

5.2.1 Overview . 98

5.2.2 Services provided to network layer 99

5.2.3 Access control . 100

5.2.4 Addressing and frame format 101

5.2.5 Sub-layers . 104

5.2.6 Functional description . 105

5.2.7 Router vs Node design . 114

5.3 Network layer . 115

5.3.1 Overview . 115

5.3.2 Services provided to application layer 116

5.3.3 Addressing and packet format 117

5.3.4 Local vs non-local destination 118

5.3.5 Static topology and routing protocol 119

5.3.6 Route computation algorithm and routing table 120

5.3.7 Functional description . 121

5.4 Application layer . 125

5.4.1 Overview . 125

9

5.4.2 Services provided to user . 126

5.4.3 Functional description . 126

5.4.4 User applications . 130

5.4.5 Router vs Node design . 132

5.4.6 Transparent mode . 133

5.4.7 Device controller . 134

5.4.8 IP Cores and auxiliary protocols 135

5.4.9 Supported interfaces . 137

6 Clock Synchronization 141

6.1 Introduction . 141

6.2 Timer module . 142

6.3 Synchronization within one ring . 145

6.4 Synchronization across rings . 146

7 Reliable Multicast 149

7.1 Introduction . 149

7.2 Data link layer . 150

7.2.1 Addressing and frame format 151

7.2.2 Group membership . 152

7.2.3 Reliability . 153

7.2.4 Functional description . 154

7.3 Network layer . 156

7.3.1 Packet format . 156

7.3.2 Reliability . 157

7.3.3 Multicast routing . 157

7.3.4 Functional description . 158

8 RTL Hardware Design and Implementation 161

8.1 Overview of the designs . 161

8.1.1 Structure and main components 161

10

8.1.2 Node design . 163

8.1.3 Router design . 164

8.2 Design concepts and patterns . 165

8.2.1 Frame and packet processing 165

8.2.2 Arbiters . 167

8.2.3 Transaction-level modeling . 168

8.2.4 Token-based data-flow . 170

8.3 Memory management . 172

8.4 Hardware implementation . 174

8.4.1 Node . 176

8.4.2 Router . 195

9 Results and Measurements 197

9.1 Introduction . 197

9.1.1 Metrics . 197

9.1.2 Test scenarios . 199

9.1.3 Pipeline effect . 204

9.2 Virtex5-prototype . 205

9.2.1 Scenario 1 . 206

9.2.2 Scenario 2 . 210

9.2.3 Scenario 3 . 212

9.2.4 Scenario 4 . 215

9.2.5 Scenario 5 . 218

9.3 Kintex7-prototype . 219

9.3.1 Scenario 6 . 220

9.4 Tech demo . 222

10 Summary 227

10.1 Conclusions . 227

10.2 Future Work . 230

11

References 238

12

List of Publications

A. Obeid and H. Richter. Routing in CarRing 4 - a transparent communi-

cation mean for field buses and LANs. In 2017 IEEE 7th Annual Computing

and Communication Workshop and Conference (CCWC), pages 1–8, 2017. URL:

https://doi.org/10.1109/CCWC.2017.7868396.

H. Richter and A. Obeid. Architecture and performance of CR4 - a transparent com-

munication mean for field buses and LANs. In 2015 7th International Congress on

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT),

pages 53–60, 2015. URL: https://doi.org/10.1109/ICUMT.2015.7382405.

H. Richter and A. Obeid and M. Glukhikh and M. Moiseev. Layer 1

and 2 of a ring-based, real-time network for in-vehicle communication. In

2014 6th International Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT), pages 123–130, 2014. URL:

https://doi.org/10.1109/ICUMT.2014.7002090.

13

14

List of Figures

2-1 Serial Management Interface Timing 47

4-1 CarRing IV and its main components 80

4-2 Virtex5-based (a) and Kintex7-based (b) prototypes 81

4-3 Layers in node and router designs . 83

4-4 Direct and indirect usage of CarRing IV 84

4-5 Lab demonstration of CarRing IV . 85

5-1 Typical inter-layer data-exchange vs CarRing IV 88

5-2 Sub-layers of CarRing IV’s physical layer 92

5-3 Overview of encapsulation/decapsulation and memory operations . . 94

5-4 Generic Frame format . 102

5-5 Typical sub-layers of data-link vs of CarRing IV 104

5-6 Reset Frame format . 106

5-7 i-To-j feature illustration . 111

5-8 Packet format . 118

5-9 Typical components involved in software-level user application 130

5-10 Second approach to creating a user application 131

5-11 Illustration of the components that comprise the transparent mode . 134

5-12 Device controller frame format . 135

7-1 Multicast Frame format . 152

8-1 General structure of both node and router designs 162

8-2 General structure of node design . 163

15

8-3 General structure of router design . 165

8-4 Timing diagram of valid/ready protocol 169

8-5 Internal structure of main memory 173

8-6 Illustration of layout symbols and flow diagram elements 175

8-7 Physical layer sender- and receivers-side designs 179

8-8 Flow diagram of physical layer receiver-side arbiter 180

8-9 Flow diagram of physical layer sender-side arbiter 181

8-10 PE and Auxiliary designs of the Access Control and Framing (ACF)

sub-layer sender-side . 182

8-11 SendState design of the ACF sub-layer sender-side 183

8-12 Flow diagram of ACF sub-layer sender-side arbiter 183

8-13 ACF sub-layer receivers-side design 184

8-14 Flow diagram of ACF sub-layer receiver-side arbiter 185

8-15 PE and Auxiliary designs of the Acknowledgment and SendAt (ASA)

sub-layer sender-side . 185

8-16 SendState and SendAtState designs of the ASA sub-layer sender-side . 186

8-17 Flow diagram of ASA sub-layer sender-side arbiter 187

8-18 PE and Auxiliary designs of the ASA sub-layer receiver-side 187

8-19 Flow diagram of ASA sub-layer receiver-side arbiter 188

8-20 Network layer sender- and receivers-side designs 189

8-21 Flow diagrams of network layer sender- and receiver-side arbiter . . . 189

8-22 Application layer sender-side design 190

8-23 PE and Auxiliary designs of the application layer receiver-side 192

8-24 Flow diagram of application layer receiver-side arbiter 193

8-25 L7 L1 arbiter acquisition design . 194

8-26 Flow diagram of arbiter acquisition sub-component 194

8-27 Network layer receiver-side design . 196

9-1 Illustration of the pipeline effect . 205

9-2 Scenario 1 bandwidth measurements for Ethernet Service 207

16

9-3 Scenario 1 elapsed time measurements for Ethernet Service 208

9-4 Scenario 1 bandwidth measurements for Acknowledged Point To Point209

9-5 Scenario 1 elapsed time measurements for Acknowledged Point To

Point . 209

9-6 Scenario 2 bandwidth measurements for Ethernet Service 211

9-7 Scenario 2 elapsed time measurements for Ethernet Service 211

9-8 Scenario 3 bandwidth measurements for Ethernet Service 212

9-9 Scenario 3 elapsed time measurements for Ethernet Service 213

9-10 Scenario 3 bandwidth measurements for Acknowledged Point To Point214

9-11 Scenario 3 elapsed time measurements for Acknowledged Point To

Point . 215

9-12 Scenario 4 bandwidth measurements 216

9-13 Scenario 4 delay measurements . 217

9-14 Scenario 4 jitter measurements . 217

9-15 Scenario 5 bandwidth measurements 218

9-16 Scenario 5 jitter measurements . 220

9-17 Scenario 6 bandwidth measurements 221

9-18 Scenario 6 elapsed time measurements 222

9-19 Lab demonstration of CarRing IV . 224

9-20 Device controller design used in lab demo 224

17

18

Chapter 1

Introduction

This chapter introduces the background for the primary topic of this thesis, which is

hard real-time communication. Then, a description of the problem being addressed

in this thesis is provided, and followed by thesis contributions. Finally, the scope of

this thesis and its organization is described.

1.1 Background

Real-time spans multiple topics in computer science and engineering ranging from

high performance computing, Operating Systems (OSs), embedded systems to com-

puter networks. For example:

∙ The authors in [24] use the processing time of the used algorithms, the computa-

tion time of the used Central Processing Units (CPUs) and Graphical Processing

Units (GPUs) as well as the frame rate of their architecture measured in frames

per second for their real-time high performance computation. They combine

Cloud technology with GPUs within the framework of real-time high perfor-

mance computation architecture for the application of detecting and tracking

multiple moving targets based on Wide Area Motion Imagery (WAMI).

∙ Real-time OSs are typically used when designing a real-time embedded system,

e.g. FreeRTOS [34] and uC/OS-III [28]. An example of those real-time embed-

19

ded systems can be found within automobile control systems and production

line control systems. Such control systems are inherently distributed, where the

various system components (e.g. sensors and actuators) are placed at different

physical locations. Therefore, they rely on an underlying real-time network(s)

to maintain the system’s real-time behavior.

In addition to the wide spectrum of application areas, guaranteeing and maintain-

ing real-time behavior is achieved using a range of different approaches. Those are

covered in sub-section 3.1.1 with respect to real-time communication. Despite this

wide range of applications and approaches, there are common core definitions and

classifications.

Real-time is defined as a quantitative notion of time and is measured using a

physical (real) clock [25]. Real-time systems are systems that need a quantitative

expression of [maximum reaction] time to describe their behavior [25]. Those systems

and their applications are commonly classified as soft, firm or hard real-time [25].

Within the latter, there is also weakly hard real-time [13] and isochronous real-time.

In soft real-time, failure to satisfy timing constraints does not put the system

in a failed state, rather it causes a degradation in the utility of a task’s result or

transmitted data. Similarly, no system failure occurs in firm real-time. However, the

task’s result or transmitted data is not utilized, i.e. rejected.

On the other hand, in hard real-time, a failure to satisfy timing constraints does

put the system in a failed state. As for weakly hard real-time, it corresponds to a

system in which the distribution of its met and missed deadlines during a window

of time is precisely bounded [13]. Last but not least, isochronous real-time can be

defined as delivering data at a specific time instant, which is more strict than having

a hard upper time limit, i.e. hard real-time.

In this thesis, the problem being addressed and the contributions made, fall into

the category of real-time communications and under the classifications of isochronous

and hard real-time.

20

1.2 Problem Description

Whether due to driver assistance, safety, infotainment or various x-by-wire applica-

tions, in-vehicle networks and communications are growing ever-more complex. The

increased complexity is also driven by the ever-increasing number of computer-based

systems, applications and connections. This in-part results in adding more sensors

and Electronic Control Units (ECUs) as well as increased communication require-

ments. For example, the latter is a by-product of the introduction of more advanced

driver assistance systems, e.g. camera-based solutions.

Furthermore, in-vehicle networks are divided internally into separate branches or

domains interconnected by gateway(s). Those domains use multiple different propri-

etary communication standards that are incompatible with one another. Those stan-

dards also use different network interfaces and cabling. This approach to in-vehicle

networks not only results in a more complex wiring harness, but also drives-up the

cost of cabling and maintenance. Moreover, it also increases the vehicle’s weight,

which negatively impacts fuel consumption.

Thus far, advances within in-vehicle networks have focused predominantly on fur-

ther improving preexisting solutions, rather than reducing the number of standards,

i.e., moving towards a more unified solution. Such a solution should ideally be capable

of complying with strict timing requirements, have high bandwidth as well as be able

to act as a backbone for preexisting solutions, thereby easing their transition to said

solution. Another equally important aspect of such a solution is its implementation

approach.

Regardless of the communication protocol, higher layers are typically realized by

means of a software implementation and lower layers are implemented in hardware.

The software implementation is composed of the higher protocol layers and a device

driver that is used to communicate with the hardware side, e.g. a Network Interface

Card (NIC).

As for the hardware implementation, it is typically composed of a PHYsical in-

terface transceiver (PHY), Media Access Control (MAC), an Application-Specific Inte-

21

grated Circuit (ASIC), memory and an interface to the system’s data bus. The ASIC

acts as a control unit that handles interrupts and manages the flow of data, which

includes the transmission data buffered in memory. The transfer of data to and from

the network is handled by MAC and PHY. Those two components implement the data

link and the physical layers of the Open Systems Interconnection (OSI) model [21],

respectively.

Such a software-hardware implementation approach of a communication protocol

suffers from the implicit overhead caused by connecting the two, e.g., device drivers

and intermediate interfaces. Furthermore, real-time behavior, especially one with

more strict timing requirements, is typically maintained by the higher protocol lay-

ers. This necessitates the inclusion of those layers and consequently the associated

overhead.

Converting the aforementioned software implementation of higher protocol layers

into hardware can not be easily done without inefficiencies. There is currently no

standard approach of implementing software-level solutions in hardware. However,

there are software tools that provide guided steps to convert an existing software code

to hardware design code, which can result in an inefficient implementation. Other

tools focus on accelerating the software solution by offloading parts of the software

code to hardware in hope of achieving faster execution time.

1.3 Thesis Contributions

The contributions of this thesis are mainly in two parts, a new communication protocol

and hardware implementation approach.

First contribution: new protocol

The CarRing IV communication protocol supports both isochronous and hard real-

time as well as event- and time-triggered communication paradigms. The latter is

primarily based on the protocol’s SendAt feature, which allows for periodical and

delayed data transmissions.

22

The provided real-time guarantees do not require network-wide clock synchro-

nization. Nevertheless, synchronization is included and it uses a new decentralized

approach, where the main reference node is only responsible for synchronizing the

nodes within its own ring as opposed to the entire network.

The backbone capability, mentioned in the previous section, is made possible by

the protocol’s transparent mode feature. It transparently transfers data between user

devices, wherein multiple devices can be connected per network node. No modifica-

tion to the device or user interference is required, rather the device can be directly

connected and proceed to transmit data. Combined with the protocol’s reliable mul-

ticast, the transparent mode feature extends CarRing IV’s capabilities to include

field bus emulation, where Controller Area Network (CAN) is regarded as the primary

use-case.

Second contribution: the protocol’s hardware implementation

All OSI model layers of CarRing IV’s communication protocol are implemented in

hardware and more precisely in a Field-Programmable Gate Array (FPGA) using

Hardware Description Languages (HDLs). This allows CarRing IV to be as close as

possible to wire-speed.

Not only is the protocol implemented in hardware, but the implementation is

achieved using a new approach. It can be best described as token-based data-flow. It is

inspired by the data-flow model in that process execution is driven by the availability

of a token. However, this token is not used to transfer data between processes, rather

it is used to transfer the state of the data being processed. It is also inspired by

control-flow model, in that shared memory is used between layers for the data being

processed and access to this shared memory is managed by the aforementioned tokens.

The approach is both vertically and horizontally scalable. It does not include any

hard- or soft-processors, i.e. no CPUs. Rather, it uses stateless and loosely coupled

Processing Elements (PEs) as well as arbiter/memory allocation pairs. Each pair

corresponds to a frame being processed. The arbiters manage memory access and

execution order between PEs.

23

By having granular control and compartmentalizing every aspect of a solution,

the approach can also be used to efficiently implement other software-level solutions

in hardware, where the design and implementation presented in this thesis can be

referenced as an example implementation.

Previous work and other contributions

As the title implies, the work presented in this thesis represents the fourth result of a

long-term project, called CarRing. As stated in [20], the overarching goal of CarRing

is to establish a real-time computer network that has high reliability, predictable

time-behavior, good scalability from small to large systems, high flexibility, high

interoperability, high data rates, low delay and affordable cable lengths. In practical

terms, the project aims at providing both a theoretical result, i.e. a communication

protocol, and a tangible result, i.e. a prototype.

In what follows, brief descriptions of other contributions made by me and other

participants in this long-term project are provided. In addition to contextualizing

the work presented in this thesis, they also include previous protocol-specific contri-

butions.

The first result, i.e. CarRing I, of the long-term project is a network simulation

and the second result is based on ten Microblaze soft-core processors. Microblaze is

a full-featured and FPGA-optimized 32-bit Reduced Instruction Set Computer (RISC)

soft-core processor created by Xilinx. The second result used the software-hardware

implementation approach described in the previous section.

Although the fourth result is presented in this thesis, my work and contributions

started with the CarRing project’s third iteration. Within the context of CarRing III,

I was a co-contributor, where I have made major and substantial contributions. While

CarRing III is outside the scope of this thesis, my contributions included, but were

not limited to, application and network layers as well as router design, the SendAt

and transparent mode features. The later two are described in sub-sections 5.2.6 and

5.4.6, respectively.

Due to being the first hardware-only implementation of the protocol, CarRing III

24

had only few commonalities with its predecessors. The implementation relied heavily

on First-In-First-Out (FIFO)-buffers as the main design component for the protocol

layers. In other words, the third result is in-part a FIFO-based implementation of the

CarRing communication protocol.

During the CarRing III and CarRing IV projects’ life-time, two prototypes were

created by three contributors (Me, Project Manager Prof. H. Richter, Third-party

manufacturer). Throughout the thesis, those prototypes are referred to as Virtex5-

and Kintex7-prototype, i.e. named after their respective FPGA device families. While

a detailed description is outside the scope of this thesis, those prototypes are never-

theless briefly described in multiple chapters based on context.

There is also a fifth result of the long-term project. However, the sole purpose

of CarRing V is the development of the Kintex7-prototype. In other words, the

fifth result does not affect the communication protocol, i.e. the long-term project

is finalized with the work presented in this thesis. As mentioned earlier, I am a

co-creator of the latest prototype.

Last but not least, prior to the work presented in this thesis, the most recent

contribution to the communication protocol was made in CarRing II by M. Wille. In

his thesis, a six layer communication protocol is described along with an exemplary

implementation, which relies on the aforementioned soft-core processors.

In contrast to M. Wille’s version, the CarRing IV communication protocol differ

drastically in all areas, i.e. functionality, design and implementation. Comparing

and contrasting both protocol versions, in all the aforementioned areas, is outside the

scope of this thesis. Nevertheless, in what follows, a brief description of the main

differences is provided.

The former version is a six layer protocol starting with layer 2 up to 7, as op-

posed to the four layer version (1-3,7) presented in this thesis. As for the protocols’

functionality, few basic concepts and some carry-over keywords are preserved in the

new version for continuity reasons, e.g. names of the protocol operation modes. How-

ever, the inner-workings are entirely changed in most cases and drastically modified

in some others. Moreover, the former version is implemented using C-language and

25

the resulting instructions are executed in-part using hard and soft-processors, i.e.

software-level solution. As such, the valuable contributions of M. Wille are regarded

as a feasibility study that helped inform the development of the new protocol.

1.4 Challenges

As stated in the previous section, thesis contributions are in-part theoretical and

in-part applied. Combined with the Register-Transfer Level (RTL) implementations,

realizing the CarRing IV project goals presented significant challenges. To focus on

those challenges and maintain brevity, detailed descriptions of the topics highlighted

in this section, are delegated to subsequent chapters within the thesis.

The most important aspect of a real-time protocol is providing timing guaran-

tees. Within the context of CarRing IV, this is further complicated by the protocol’s

implementation. RTL designs have their own timing constraints, which are separate

and apart from the protocol’s timing behavior. Abiding by those timing constraints

is crucial not only for the protocol’s functionality, but also for its timing guarantees.

In other words, the timing behavior of both the design and the protocol must be

maintained. For example, abiding by the design’s timing constraints could result in

changes to the logic operations associated with the protocol’s functionality. Such

changes must either be negligible or have no impact on the protocol’s delay.

The designs are complicated even further by one of the protocol’s features, called

transparent mode. By definition, the feature requires the protocol’s application layer

to control and transfer data via multiple other interfaces within the project’s proto-

type, e.g. Ethernet, CAN. Those additional interfaces represent different networks,

i.e. different protocols and transceivers. This introduces multiple other non-CarRing-

protocol specific designs that must be separately developed and tested. Furthermore,

it shifts the main design from a single-clock to a multi-clock domain design, where

meta-stability is a more present and urgent issue.

Other than implementation, Protocol Data Unit (PDU) sizes vary between the

different protocols. As such, possible unfair delays must be accounted-for and fairness

26

must be maintained when transmitting those differently sized PDUs.

Another challenge is the RTL implementation of higher protocol layers, which are

typically realized on the software-level. Even if pre-existing software-level approaches

were to be adapted, this would result in multiple new sub-projects. In other words,

the convenience of relying on existing frameworks or libraries, while typical on the

software-level, is practically non-existent for hardware-level implementations.

Although freely accessible libraries do exist and some are used within CarRing

IV, they are of no relevance to the issue at hand, i.e. implementing software-level

solutions in hardware. Rather, they are either specific to a design component or cover

rudimentary logic operations. As for the commercial counterpart, they are associated-

with and specific-to the manufacturer’s product or product-line, i.e. either associated

with specific chips or a device family.

Last but not least, the combined complexities of the designs, hardware components

as well as the used software tool-chain and its compute intensive operations resulted in

a relatively limited amount of tests that can be carried out on the project’s prototype.

It was at most 2 to 3 tests per work day. Furthermore, the development of both

the protocol and prototypes were carried out simultaneously. This necessitated the

introduction of multiple verification steps in addition to those typically associated

with FPGAs and RTL designs, thereby lengthening the development process.

Note that the complexities introduced by the tool-chain’s software applications

were in-part due to the underlying FPGAs and chips. In other words, the complexities

are in-part inherent to the devices at hand, rather than being completely due to the

fact that those applications were developed by different companies, or the quality of

the developed applications.

1.5 Thesis Scope and Organization

The thesis focuses on two main topics, which are hard real-time communication pro-

tocols and hardware implementation of software-level solutions. However, the scope

of this thesis is not limited to the aforementioned topics.

27

During the development process, several simulation and hardware tests were per-

formed. Among those hardware tests, there are additional tests that incorporated

multiple different interfaces from other existing networks, e.g. Ethernet and CAN.

The purpose of those additional tests is to provide a tangible proof that CarRing can

be used as a backbone for existing networks, which is one of the use-cases for the

protocol’s transparent mode feature.

For that purpose a lab demo was created in which a car headlight, two laptops,

a network camera and two motors were connected to and communicated with each

other via a CarRing network. Consequently, this extended the scope of the work done

in this thesis to include other interface-specific hardware designs and components.

Furthermore, other hardware implementation challenges were also introduced, e.g.

Multi-Clock domain designs.

The rest of this thesis is organized as follows. It starts by describing the prelim-

inaries, in chapter 2, required for the rest of the thesis. This chapter includes the

used languages, tools and technologies as well as their respective specific terms and

keywords.

Although, to the best of our knowledge, there is no existing solution that can be

used for direct comparison, chapter 3 discusses related work.

The big picture is presented in chapter 4. From the point of view of a user, it

describes how the solution’s various parts are used and how they interact to provide

the expected functionality.

After discussing related work and describing the functionality of the solution as

a whole, a description of the underlying layers that form the solution is provided.

Chapter 5 starts with the bottom layer all the way up to the user interface. This

chapter also describes the aforementioned feature, i.e. transparent mode.

Some key parts of the protocol layers require their own dedicated chapters. Chap-

ter 6 presents a non-classic approach to achieving a network-wide clock synchroniza-

tion, which is aimed at time-triggered real-time data transmissions. And chapter 7

presents the solution’s reliable multicast approach, which can also be used for bus

emulation.

28

Chapter 8 describes the second topic of this thesis, which is the RTL hardware

design and implementation of the solution.

After covering the thesis two main topics, the results and measurements are pre-

sented in chapter 9. Finally, chapter 10 summarizes the thesis and briefly describes

future work.

29

30

Chapter 2

Preliminaries

The work presented in this thesis is in-part theoretical i.e. the fourth version of

the CarRing communication protocol, and in-part applied i.e. the protocol imple-

mentation and additional protocol-related implementations. The applied part uses

preexisting languages, software tools and technologies. Those include their own sets

of terms, which are used throughout the thesis. This chapter briefly explains those

languages, software tools and technologies as well as their terms.

2.1 System Design and Hardware Description Lan-

guages

Three languages are used to design and implement the CarRing IV communication

protocol and its features. Two languages, SystemC and VHSIC Hardware Description

Language (VHDL), are explicitly used, while Verilog is used implicitly. In what follows,

a brief description of those languages is given as well as the associated terms and the

context in which they were used.

2.1.1 VHDL

VHDL is a hardware description language standardized by IEEE [2]. It contains lan-

guage constructs that are used to describe hardware digital designs. The language

31

allows for hierarchical designs, and it supports both top-down and bottom-up design

approaches. From the top-level perspective, the CarRing IV design as a whole, is

implemented using VHDL. The design consists of various sub-designs that are im-

plemented using both VHDL and Verilog. Those sub-designs are covered in chapter

5. The VHDL-specific sub-designs are mainly concerned with the control logic for the

various types of CarRing IV supported interfaces and their corresponding transceivers

in the CarRing IV prototype board, which are described in section 2.3. Managing

and handling those interfaces, is essential for one of the CarRing IV features, called

transparent mode, which is explained in sub-section 5.4.6.

There are two basic description styles in VHDL, behavioral and structural.

A structural description is essentially a schematic, representing a block diagram or

a circuit diagram [16]. Rather than the actual circuit, a behavioral description is

more abstract and focuses on describing the behavior of the design, which includes

the use of language constructs that resemble sequential semantics. Those semantics

include the use of variables and sequential execution, which are encapsulated in a VHDL

process [16]. Such a process is invoked, i.e. runs, when there is a change detected

in any signal in its sensitivity list. A VHDL signal is the equivalent of a "wire"

and it represents a communication channel among processes or sub-designs within a

design. As the name suggests, a sensitivity list is a list of signals that a process is

sensitive to any change in any of its signals. Each VHDL process has its own sensitivity

list.

Regardless of the description style, whether the design is a set of processes or

a set of interconnected components or a combination of both, the basic building

block of a design is called an entity. An entity has two main parts, port and

architecture. Ports represent the entity’s external interface, i.e. the communication

channel with other entities or design components. However, ports of the top-level

entity are connected to the physical pins in the actual hardware. The software tool

that makes the connection possible is explained in section 2.2. As for the architecture,

it is a language construct that encapsulates the aforementioned descriptions. An

entity can have multiple architectures, where one can be a structural and another can

32

be a behavioral description of the design.

Another noteworthy feature of VHDL, that was used in CarRing IV, is the concept

of a package. It is a language construct that groups a variety of declarations, e.g.

user defined data types, which can then be shared between several entities.

2.1.2 Verilog

Verilog is another hardware description language standardized by IEEE [1]. Similar

to VHDL, it also contains language constructs that are used to describe hardware dig-

ital designs. In the CarRing IV design, the use of Verilog is implicit. One of the used

software tools, accepts as an input a SystemC design and outputs a Verilog version

of the SystemC design. This software tool is called C-TO-Silicon (CTOS) and it is

explained in section 2.2. Although there were no designs written explicitly using Ver-

ilog, knowledge of the language was still required for simulation tests and debugging

purposes.

Verilog is quite similar to VHDL. Therefore, rather than partially repeating the pre-

vious section, in what follows, VHDL equivalencies and contrasts are provided.

Similar to VHDL, Verilog also supports both description styles, behavioral and

structural. The Verilog equivalent of a VHDL entity is a Verilog module. Although

modules also have ports, they lack the language construct equivalent of an architec-

ture. As a result, a module is restricted to one description of the design. In Verilog,

wire is the functional equivalent of signal in VHDL. A process is represented by an

always statement and it too has a sensitivity list.

The use of VHDL instead of Verilog, was an early design decision. Despite the

advantage of reducing the number languages used in the project, we have continued

to use VHDL due to its notable advantages in behavioral modeling and design re-

usability. More specifically, the support for user defined data types, which is very

helpful in behavioral description of a design. Also, there is no equivalent concept in

Verilog for a VHDL package. Last but not least, VHDL is a strongly typed language,

which gives the advantage of reducing potential modeling errors. For example, Verilog

allows automatic padding of signals, when there is a difference in bit widths.

33

2.1.3 SystemC

SystemC is a system design and modeling language [14]. It is based on a well estab-

lished language, C++, and is on a higher level of abstraction than VHDL and Verilog.

It provides a set of modeling constructs that are similar to those used for RTL and

behavioral modeling within VHDL and Verilog [36].

Although it is meant primarily for system design and modeling, SystemC is used

to implement the CarRing IV communication protocol. This is made possible using

a software tool called CTOS, which is described in section 2.2.

CarRing IV protocol’s SystemC design is composed of interconnected design com-

ponents called SystemC modules. They are similar to VHDL entities or Verilog mod-

ules. A SystemC module or SC_MODULE is the smallest container of functionality with

state, behavior and structure for hierarchical connectivity [14]. SystemC modules

are C++ classes that can be interconnected using SystemC channels, which are also

C++ classes. SystemC channels serve as a container for communication functionality.

They provide a higher layer of abstraction by encapsulating communication details

between design components. Modules use SystemC ports to connect to one or more

channels. Ports are represented as class members within a module and each port is

basically a C++ pointer to a channel. Once ports are set, the channel’s class methods

are used by the corresponding modules to communicate with each other. Although

those methods are implemented by the channel, they are inherited from a separate

abstract class called SystemC interface. Ports connect to channels through inter-

faces.

Within the context of SystemC channels, an additional CTOS library[15] is used

in this project. The Flex Channel library contains a set of highly reusable basic

blocks for point-to-point communication. It relies on the use of Transaction Level

Modeling (TLM) put and get interfaces to send and receive data through the channel.

TLM is a modeling concept that is language independent. In this thesis, TLM

is used as captured by the SystemC language. At the time of writing this thesis,

there are two versions of SystemC TLM. The first version includes core interfaces,

34

TLM_FIFO and analysis interface and port. The second version includes the first and

adds new utilities and an interoperability layer that, in turn, includes new features

and interfaces. In this thesis, the SystemC TLM used is CTOS TLM, which is a subset

of the first version of SystemC TLM.

Essentially, TLM-based modeling allows for early testing and functional verifica-

tion, which has significant improvements on productivity. In the early phase of the

CarRing IV design, the development efforts were focused on the design of the pro-

tocol layers and their components, rather than the communication channels between

them. Using TLM approach, the communication channels were abstracted using TLM

interfaces. As development progresses, the timing accuracy of the communication

channels was increased from un-timed to approximately timed and then to accurately

timed without affecting the protocol layers and their design components. In the case

of un-timed, it was direct C++ software code within the communication channels. As

for approximately timed, those same software code segments were developed further

to include artificial delays. The use of Flex Channels in CarRing IV design, is an

example of an accurately timed communication channel.

Last but not least SystemC processes, they are the basic unit of execution in

SystemC [14]. They are represented as class methods of a module and use the mod-

ule’s ports to access external channels. They have two main types, SC_METHOD and

SC_THREAD. An SC_METHOD is a SystemC process that executes without interruption,

i.e. it cannot be suspended. On the other hand, SC_THREAD can be suspended. The

suspension is performed by calling the wait() function within the process. In case of

SC_THREAD, execution is resumed when one of the signals in the process’s sensitivity

list changes. A process sensitivity list in SystemC is similar to that of VHDL and

Verilog. SC_CTHREAD or clocked thread process, is another process type and can be

seen as a derivative of the SC_THREAD process type. It is the main process type used

in the SystemC design of the CarRing IV protocol. Its sensitivity list consists of only

one signal, called clock. In SystemC, a clock is a signal that emulates the hardware

behavior of a single-ended clock which is explained in section 2.3.

35

2.2 Tool Chain

During the development phase of the project, multiple software tools are used to

create, test and implement VHDL and SystemC designs. Those tools include an In-

tegrated Development Environment (IDE) and Electronic Design Automation (EDA)

software tools. The EDA tools are explained in the following sub-sections. As for the

IDE software tool, Microsoft Visual C++ (MSVC) is used . Since SystemC is C++-

based, a SystemC simulation test is essentially a software application created by a

C++ compiler which is in this case, MSVC. Thus, each new test entails compiling

and running a new executable. And the test results are either directly displayed or

logged to a file.

2.2.1 Cadence C-to-Silicon

CTOS is a software tool that allows a design engineer to generate a functionally equiv-

alent RTL Verilog design from a higher-abstraction SystemC design. In this project, it

is used to implement SystemC designs. This implementation is a multi-step process,

where the input is a SystemC design and the output is a functionally equivalent Ver-

ilog version of the design. Those steps include preparing a SystemC design, specifying

micro-architecture, scheduling, analysis and implementation.

Preparing a SystemC design

The term preparation refers to relatively few and minor adjustments made to a Sys-

temC design. The aim is to meet coding constraints, which are defined by CTOS.

This step consists of two sub-steps. First, limiting the use of SystemC language to

the synthesizable subset of SystemC, also known as SystemC RTL. Second, abiding

by CTOS restrictions on coding styles and SystemC. Both sub-steps are detailed in the

CTOS user guide [15]. In what follows, a brief explanation of the term synthesizable

is provided.

In SystemC, designs can be written using all the features offered by the language.

Those features include debugging, signal tracing, error and message reporting. Such

36

features can not be directly represented by real hardware. For example, bit-wise

operators can be represented by gates, whereas a SystemC function that logs signal

changes to a file, can not be directly represented by a hardware element. If such

features are used in a SystemC design, then that design is not synthesizable.

Specifying micro-architecture of a design

It is a step where the implementation of the design’s micro-architecture must be

resolved. In this context, the design’s micro-architecture refers to the design’s func-

tions, loops and arrays. And the term resolved refers to the way those three are

represented/implemented. For example, for-loops do not have a direct synthesizable

HDL construct, i.e. some form of a hardware component. As such, they must be

resolved into a synthesizable design, e.g. a loop can be unrolled. In this case, the

loop is represented as a replicated set of statements, where each set refers to one loop

iteration.

CTOS provides multiple resolution techniques. They depend in-part on the capabil-

ities of the underlying hardware. Furthermore, they affect the area and timing of the

SystemC design. In other words, they affect the required amount of FPGA resources

and the consumed number of clock cycles, i.e. latency of design. Explaining each

resolution technique is beyond the scope of the thesis. Nevertheless, those techniques

are briefly mentioned for completeness. Also, some of them are self-explanatory.

Resolving a function can be performed by inlining, pipelining, conversion to a

Look-Up Table (LUT), or importing an RTL IP. And Loops can be resolved via un-

rolling, breaking or pipelining. As for arrays, they are treated as memory components

of a design. As such, they can be implemented using registers or Random Access

Memory (RAM). Resolving arrays can be performed by flattening, merging, splitting,

restructuring or allocating memory and RTL IP, as well as floating Input/Output (I/O)

and array accesses.

37

Scheduling a design

It is the most time-consuming and critical step. If successful, the output of this

step is the aforementioned RTL Verilog design, i.e. a synthesizable design that can

be used in a Xilinx ISE or Vivado project. In short, the CTOS scheduler maps op-

erations to resources and thereafter bind those resources to states [15]. The term

operations refers to statements written within a SystemC process, e.g. add opera-

tion or read/write to memory component. And the term resources refers to hardware

representation/implementation of those operations. For example, the operation of

multiplying two values is mapped to a multiplier component, wherein the bit-width

of the input/output ports is specified.

In essence, the term states refers to the mechanism with which CTOS ensures the

order of operations within a SystemC process. For example, they could be created

as a by-product of managing the order of read/write operations from/to a memory

component, or as a by-product of managing operations within a pipelined loop. More

commonly, they are created due to wait() function calls, which is described in sub-

section 2.1.3. With respect to the scheduled output, i.e. the RTL Verilog design, those

states are represented by multiple Finite-State Machines (FSMs).

Analysis and Implementation

Depending on the output of the CTOS scheduler, this step can be reduced to generat-

ing the RTL Verilog design files. It revolves around improving timing and area of the

resulting design as well as design verification. Within the context of timing-related

improvement, a timing report is generated wherein possible timing requirement vio-

lations can be identified. For example, negative slacks can be identified and resolved

based on the context in which they occurred, i.e. the corresponding SystemC process

and related operations. The term negative slack is described in more detail within

sub-section 2.3.3.

Resolving negative slacks is also aided by another CTOS feature called Cycle Anal-

ysis. It allows for a more granular check. Each cycle, in which a negative slack occurs,

38

can be individually examined. Those cycles are depicted using diagrams that show

the operations involved and the amount of time each operation consumes within the

clock cycle.

As for area-related improvement, this refers to measures that could be applied to

reduce the overall area, i.e. FPGA resources required, by the design. For example,

reducing size of registers used, resource sharing, or reconsidering resolution techniques

used in the micro-architecture step e.g. flattening arrays.

2.2.2 Xilinx ISE and Vivado Design Suites

Despite serving the same purpose, two software tools are used in CarRing IV to

convert RTL-level designs into an FPGA-specific configuration file. In essence, this

conversion consists of three main steps, i.e. logic synthesis, implementation and

bitstream generation. In turn, each step consists of multiple sub-steps. Providing a

detailed coverage of all (sub-)steps is beyond the scope of this thesis. Nevertheless,

in what follows, a brief description is provided for each step.

As for the necessity of using both tools, it stems from their respective list of

supported FPGAs and CarRing IV’s prototype boards. Since Vivado does not support

Virtex-5 FPGAs, Xilinx ISE is used for the previous Virtex5-prototype, whereas Vivado

is used for the current Kintex7-prototype. FPGAs are covered in more details in sub-

section 2.3.1.

Synthesis

It is a refinement process that realizes a netlist from an RTL design. Three HDLs

can be used for the input RTL design, namely VHDL, Verilog and SystemVerilog.

The term netlist corresponds to the structural view of a design, wherein the internal

implementation is described. It is list of nets, where each net corresponds to a set

of wire connections and its respective component. As such, the list describes which

components are used and how they are interconnected. Thus, it can be considered as

a circuit description or the design’s schematic.

39

As the refinement process progresses, multiple netlists are generated i.e. RT-, gate-

and cell-level netlists. Within each level, the corresponding circuit is constructed us-

ing components from the level’s respective library. Examples of RT-level components

are arithmetic operators, multiplexers, registers. Using such components, the cir-

cuit description, i.e. RT-level netlist, is generated from the input RTL behavioral

description.

As the name implies, a gate-level netlist is generated using gate-level components.

Both RT- and gate-level netlists are technology independent, i.e. generated using

generic components that are not specific to the underlying FPGA. On the other hand,

cell-level netlist is generated by essentially mapping the generic gate-level components

into logic cells of the target FPGA. FPGAs as well as logic cells are described in more

detail in sub-section 2.3.1.

Implementation

This step implements the netlist, that is generated in the previous step, onto the

target FPGA. The implementation can be divided into two main sub-steps, logic

optimization and placement & routing of logic cells.

Logic optimization can be considered as a refinement process. The logical design,

resembled by the aforementioned netlist, is further simplified prior to placement and

routing. The aim is to reduce the area of the design and improve efficiency, before

committing physical resources. Furthermore, the optimization can also be tailored to

reduce power consumption e.g. Block RAM power optimization.

As for the second sub-step, it revolves around deriving a layout based on the input

netlist. Such a layout contains the detailed placement of logic cells and the respective

routing of their interconnecting wires, i.e. nets. In other words, it specifies which

exact logic cells within the FPGA are used to implement the design, i.e. placement.

Thereafter, it specifies their respective connections, i.e. routing.

Based on the netlist and constraints file(s), the corresponding logic cells are placed

into appropriate locations within the FPGA. Appropriateness is in-part based on the

provided constraint file(s). For example, a timing constraint file is used to identify

40

which interconnecting wires/signals are time-critical. As such, their respective logic

cells are placed in close proximity to one another, thereby achieving shorter time

delays, i.e. improving timing efficiency.

Although optional, the second sub-step also includes optimizations. Those are

performed twice, once after placement and then again after routing. They can be tai-

lored to reduce power consumption as well as meeting the design’s timing constraints.

The aforementioned constraints can be physical, timing or power. For example,

physical constraints define the FPGA configuration settings, package pin placement,

placement of logic cells or restricting logic cell placement to certain regions of the

FPGA. The latter is referred to as floorplanning. As for timing constraints, those

define the design’s frequencies/periods. Last but not least, power constraints define

voltage settings, power and current budgets.

Bitstream

In this step, the aforementioned layouts are converted and consolidated into one

output, called Bitstream. This output is also referred to as bit file, configuration file

or device image. In short, it contains a specific pattern based on which logic cells and

interconnects are configured inside the FPGA. In other words, this pattern specifies

which logic cell must be configured and its respective state, i.e. which part of the

logic cell is used and how it operates. Furthermore, it also specifies the interconnect

structure, i.e. which connections are enabled. Configuring both the interconnect

structure and logic cells, implements the functionality required within the FPGA.

Sub-section 2.3.1 covers FPGAs and their internal components in more detail.

2.3 Prototype Boards and Development Kits

One of the main advantages of the CarRing IV communication protocol is being

implemented entirely in hardware, more specifically in an FPGA. Although FPGAs

are the central components, the development and implementation process includes

several other hardware components and concepts. In addition to FPGAs, this section

41

provides a brief description of the main hardware components and concepts that are

crucial to both the development process and the understanding of the work presented

in this thesis.

Note that FPGAs used in this work are manufactured by Xilinx. In what follows,

the used terminology and figures are based on Xilinx as opposed to other manufac-

turers e.g. Altera. In other words, terms like Configurable Logic Block (CLB) and

logic cell are used instead of their analogous terms Logic Array Block (LAB) and logic

element.

2.3.1 FPGAs and development boards

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices that are based

around a matrix of CLBs connected via programmable interconnects [38].

The term “field-programmable” refers to the ability of configuring the device in

the field as opposed to configuration or customization performed during the device

manufacturing or fabrication process. In other words, configuration is performed on

a manufactured and prefabricated device. This is in-contrast, for example, to gate-

array/structured or standard-cell ASICs. Those are “programmed” via one or more

tailored masks, i.e. mask programmable [16]. In short, mask programmable refers to

ASIC customization that involves constructing multiple stacking pre-designed layers

of metal, silicon and polysilicon with customized patterns, i.e. tailored masks. Some

layers form transistors, while others form connection wires, i.e. the interconnects.

As for the term “gate array”, it refers to the FPGA’s internal components and

structure. An FPGA consists predominantly of an array of base cells or generic logic

cells with a distributed and flexible interconnect structure. More specifically, in a

generic FPGA architecture, CLBs consist of multiple slices, which in turn consist of

the aforementioned generic logic cells [26]. Each slice has one set of clock, clock-enable

and set/reset signals that are common to its logic cells. Sub-section 2.3.3 covers clocks

in more detail.

The CLB/slice/logic cell hierarchy is complemented by an equivalent hierarchy in

the interconnect [26]. In short, logic cells have faster interconnect than that which

42

exists between slices, which in turn is faster than CLBs’ interconnect. Furthermore,

the exact ratio of CLBs to slices to logic cells depends on the particular FPGA family

or FPGA product line.

As mentioned previously, “programming” an FPGA corresponds to configuring or

customizing the functionality of its internal logic cells and interconnect structure.

Since logic cells are the primary components that implement the functionality of a

user design, in what follows a brief overview of their configuration method is provided.

In short, configuring a logic cell amounts to configuring its primary sub-component,

which is mainly responsible for driving its output signals. Whether be it logic cells in

particular or more broadly logic blocks, there are essentially two variations, LUT-based

and MUltipleXer (MUX)-based. The former is the predominantly used approach.

Comparing and contrasting both approaches is outside the scope of this chapter.

Within the context of the work presented in this thesis, the LUT-based approach is

considered in the example below.

As the name implies, LUT-based approach corresponds to a look-up table where

input signals represent a table index that drives the desired output. For example,

consider a logic function within a user design and its associated truth table. The

input signals for the LUT sub-component are configured to match the desired output

of the aforementioned truth table. Configuring such input signals depends on the

type of FPGA used.

In this thesis, Static RAM (SRAM)-based FPGAs are used. The basic premise is

that values are loaded into SRAM cells, which are connected to the aforementioned

LUT inputs. Since those cells are SRAM-based, the loaded values persist over time until

they are manually modified or the FPGA is powered-down. The entire cell comprises

a multi-transistor SRAM storage element, whose output drives an additional control

transistor that is either OFF(disabled) or ON(enabled) based on the loaded value

[26]. As for the loaded values, they are derived from the configuration file described

in sub-section 2.2.2.

Other noteworthy types are antifuse-, Electrically Erasable Programmable Read-

Only Memory (EEPROM)- and FLASH-based FPGAs. Similar to SRAM-based FPGAs,

43

the latter two can be repeatedly reconfigured, while the former is One-Time Pro-

grammable (OTP). In case of antifuse, configuration amounts to identifying and

applying high voltage to physical links associated with configurable paths within the

FPGA. In their default state, those links or antifuses correspond to an open circuit

which can be closed by applying the aforementioned high voltage.

As for the other two types, their approaches to configuring an FPGA are com-

parable, with FLASH being the faster and newer technology. Instead of a link, the

circuit contains a transistor-based memory cell whose basic structure is comparable

to a standard Metal-Oxide Semiconductor (MOS) transistor. In contrast to antifuses,

applying high voltage charges an internal gate within the transistor which in turn

results in the cell resembling a logic 1. Discharging the aforementioned gate erases

the cell.

With the FPGAs’ preliminaries covered, in what follows, a brief description of the

prototypes and used development boards is provided. While the descriptions below

do not encompass all details, they are sufficiently adequate for the purposes of this

chapter. In order to avoid repetition, the aforementioned details are covered in the

appropriate chapters below.

As mentioned previously, two prototypes were created in the CarRing project.

Those differ drastically in their features and more importantly in the amount of FPGA

resources available. Briefly describing those prototypes as well as their differences,

provides essential preliminary information for the protocol implementation and design

decisions described in subsequent chapters.

The first prototype consists of a preexisting product (Xilinx Virtex-5 Mini-Module

Plus) and a complementary custom board. The boards are interconnected using two

FPGA Mezzanine Card (FMC) connectors. In addition to the FPGA (XC5VFX70T-

2FF665), the mini-module also contains dedicated memory modules and interfaces

(e.g. Ethernet). As for the custom board, it provides power supply (12V) and con-

tains the main data transmission interfaces used with the Multi-Gigabit Transceivers

(MGTs). Moreover, it also contains multiple other interfaces (e.g. CAN, RS232).

In the initial phase of the project, the base node design and development was the

44

main focus. For that purpose, the Virtex5-prototype has sufficient FPGA resources

for implementation and testing. However, as soon as the project progressed further

in terms of protocol features and developing the router design, those resources were

no longer sufficient. Consequently, a considerable amount of time was dedicated to

redesigns that focused on reducing resource consumption rather than the main project

goals i.e. the protocol and its feature set. This was the main drive behind creating

another prototype.

The second prototype consists of one board created by a third-party manufac-

turer and further modified to match the project requirements. In contrast to the first

prototype, it uses a 5V power supply and includes intermediate interfaces (Raspber-

ryPi, MikroBUS and PMod) instead of directly incorporating specific interfaces (e.g.

Ethernet). As such, it offers more flexibility and a wider range of third-party attach-

ments, which in turn contain specific interfaces. In addition to more resources within

its FPGA (XC7K160T-2FBG676), more lanes are connected to its main data trans-

mission interfaces, thus resulting in higher bandwidth. In short, a lane is a transceiver

sub-component that manages the physical connections to the transmission medium.

Last but not least, additional non-FPGA and FPGA-based kits and boards were

used during the CarRing IV project’s development. They facilitated the development

and realization of one of the project’s other goals, which is to transparently transfer

data belonging to other networks (e.g. CAN, Ethernet). This allows the project’s

solution to be seamlessly integrated into existing systems, or serve as a backbone for

other networks thereby easing the transition into a pure CarRing-based system.

Non-CarRing-protocol specific designs were developed to control and communicate

with other networks’ interfaces. Such designs largely reside on top of the protocol’s

application layer. Some of them were developed using other FPGA-based kits in order

to better isolate possible design issues, since the prototypes were still not finalized

i.e. a work-in-progress. Both non-FPGA and FPGA-based kits were used for testing

and verification. While being noteworthy, a detailed description of those additional

kits and boards is outside the scope of this thesis.

45

2.3.2 IP Cores and ICs

In order to provide the features described in chapter 5, the CarRing protocol must be

able to communicate with and control other hardware components, i.e. other chips

and interfaces that are external to the FPGA chip within the prototypes.

As briefly mentioned in the previous section, separate designs must be developed

and configured into the FPGA. In short, those designs drive specific FPGA I/O pins,

which in turn are connected to other chips within the prototypes. Not all such designs

must be created from scratch. There exists a similar principle to the Do not Repeat

Yourself (DRY) principle from software development, i.e. design re-use. Rather than

classes, libraries or frameworks, this involves reusing pre-developed and well-tested

hardware components. Whether be it in netlist or HDL form, such components are

typically referred to as Intellectual Property (IP) cores and their eventual physical

representation being Integrated Circuits (ICs).

Within the context of FPGAs, IP cores can be classified into soft, firm and hard

[26]. The latter physically occupies a certain portion or area of an FPGA, i.e. an IC

that is heavily optimized and integrated as part of the FPGA chip itself. As such,

hard IP cores can be directly included within HDL-level designs. In other words, they

do not undergo synthesis and implementation as described in sub-section 2.2.2. An

example of such IP core is the Tri-Mode Ethernet MAC used to control the Ethernet

interface within the Virtex5-prototype.

Unlike hard IPs, firm cores are not physically integrated into an FPGA. Rather,

they are designs that have already underwent synthesis and implementation. Thus,

multiple instances can be instantiated and included in a design. As such, the limiting

factor is the availability of FPGA resources rather than number of integrated physical

components. Firm IP cores are typically represented in netlist form.

As for soft IP cores, they are HDL-level designs that require synthesis and imple-

mentation. In the case of SystemC designs, they require an additional step in-which

a functionally equivalent RTL Verilog or VHDL design is generated as described in

sub-section 2.2.1. All three IP core variations are used within the CarRing project.

46

Figure 2-1: Serial Management Interface Timing

Within a design, ICs are typically associated with at least one IP core. They

have varying degrees of complexities. In short, lower complexity ones offer less func-

tionality but more flexibility, since the control logic can be created, modified and

updated separately within the FPGA. On the other hand, higher complexity ICs offer

more functionality and require less FPGA resources, since the control logic typically

revolves around interrupts and register manipulation.

Whether its an IP core or IC, controlling and communicating with such compo-

nents typically consists of two main parts, implementing and handling their respective

control interface(s) followed by interrupt management and/or register manipulation.

Regardless of the component’s complexity, it always has at least one control inter-

face, also referred to as management interface, e.g. Inter-Integrated Circuit (IIC),

Serial Peripheral Interface (SPI) or Serial Management Interface (SMI). Continuing

the earlier software development analogy, a management interface can be viewed as

an Application Programming Interface (API).

The implementation of a management interface must abide by timing diagram(s)

described in the component’s documentation, called data-sheet. Note that both ICs

and IP cores are accompanied by such a documentation. Figure 2-1 shows the timing

diagram of an Ethernet’s control interface within Virtex5-prototype. Such diagrams

are described in the component’s electrical specification and depict the behavior of

the interface’s signals. They typically consist of input signals, which are driven by a

custom design, and output signals that are driven by the IC or core in question.

There are varying degrees of difficulties when interacting with an IC or IP core.

Depending on the component, management interface implementation must be addi-

tionally accompanied by HDL processes that handle registers and interrupts. The

47

latter can be in form of dedicated interface signals accessible through one or more

IC pins, or in the form registers within the IC. Similar to the management inter-

face, register manipulation is also documented in the functional description of an IC’s

data-sheet.

Furthermore, ICs have additional requirements and conditions. For example, an

IC can have an initiation phase that in-part translates into a waiting period, where

interaction with its management interface must be delayed until the time interval

expires.

2.3.3 Clock Signals and Generators

As described in section 2.1, HDL-level design processes are driven by any change within

signal(s) in their respective sensitivity lists. An HDL-level process is typically driven

by one special type of signal, called clock signal. It is a periodic digital signal that

alternates between two signal levels, a high level which corresponds to a bit value

of 1, and a low level which corresponds to a bit value of zero. Within the CarRing

project, all design components are driven by clock signals.

Typically, a clock signal is described by its clock period (in seconds), frequency

(in Hertz) and duty cycle (in percentage). The latter indicates the percentage of the

clock period where the signal is at a high logic level. Within a process, data signals are

typically sampled and thereafter used, when the corresponding clock signal transitions

from low to high, or high to low levels. These transitions are called rising and falling

edge. Collectively, they are referred to as a clock edge.

In order for a design to operate properly, the process’s logic operations must be

concluded within the clock’s period. More specifically, logic operations must abide

by the clock signal’s setup and hold time constraints. Those constraints refer to the

time intervals before and after a clock edge. In short, setup time refers to the time

interval, with respect to the clock period, where a stable value of a data signal must

be set before a clock edge. Whereas, hold time refers to the time interval where the

data signal’s value must be held after the clock edge.

Designs have a lower limit on the clock periods that they are able to support.

48

Such a limit is typically determined by a design’s longest data path. In other words,

the longest data path, within a design, determines the smallest achievable setup/hold

times, thereby determining the lowest clock period supported. Using an unsupported

clock period, i.e. lower than the design’s limit, results in a timing violation. In this

case, the data path must either be modified to match the faster clock signal or a

negative slack is encountered. The latter refers to the negative value obtained due to

a data path delay being longer than the clock period. On the other hand, a design can

be seamlessly switched to a faster clock as long as no negative slack is encountered.

As mentioned in the previous sub-section, the CarRing project incorporates multi-

ple IP cores and ICs into its design. Those use different clock signals and operate with

different clock frequencies, which results in a multi-clock domain design. In short,

a clock domain refers to a portion of a design, where components are driven by the

same clock signal. If all components of a design are driven by the same clock, then

such a design has one clock domain.

The CarRing project has a multi-clock domain design. One of the main difficulties

of such a design, is passing signals between different domains. In other words, signal

values must be correctly set and passed into another clock domain without violating

the timing constraints of either domains, i.e. source and destination. This is where

Meta-stability is encountered. If setup and hold times are violated, then the transi-

tioning signal can be in a meta-stable state, where its logic value is neither 1 nor 0.

In short, this translates to a transistor that can not be reliably set to a voltage value

that correspond to logic 1 or 0.

Several solutions can be used to handle single signal transition as well as data

transfer between clock domains. Those range from multi-stage (re-)synchronization

to independent-clock FIFOs. Although they are used in the CarRing project, covering

such solutions is beyond the scope of this thesis.

Note that despite being technically a third signal state, this meta-stable state is

separate and apart from high impedance or ’Z’ value. The latter is an expected and

used state/value, when handling tri-state signals. Such signals are typically used to

carry values in both directions between design components, more specifically, using

49

FPGA pins with I/O buffer support. Tri-state signals are also used in the CarRing

project.

With the exception of an internal ring oscillator, a clock signal is typically provided

by a clock generator or synthesizer, which is an IC that is external to the FPGA. With

respect to the internal oscillator, it outputs a clock that is typically used for FPGA

configuration. Such a clock signal typically has a 50% tolerance, i.e. not accurate

enough for the CarRing IV project’s design. Note that not all FPGAs include an

internal clock source.

The project’s prototypes include multiple clock generators, which are used both

directly and indirectly by the project’s design. In the latter case, they are used

indirectly by other interfaces within the prototype. For example, the main clock

that drives the protocol design is generated by an IP core that uses external clocks

provided by a clock generator. This IP core is associated with the prototype’s MGTs,

i.e. the main clock is a useful by-product of the core and not its main purpose. In

subsequent chapters, the main clock is referred to as design-clock, while the MGT

clocks are referred to as aurora-clocks.

Furthermore, there are two main types of clocks, single-ended and differential. In

short, differential consists of two complementary signals as opposed to one. As for

the clock pulse value, i.e. logic 1 or 0, it is derived based on the difference between

the two corresponding voltage levels of the respective signals. Moreover, differential

clocks have less skewness and jitter than single-ended. Therefore, they are typically

used for high speed interfaces. The aforementioned design-clock is a single-ended one,

while the aurora-clocks are differential.

2.3.4 Reset Logic

In addition to clocks and clock management, reset logic is another important and

crucial aspect of an FPGA design. Mishandling reset logic could lead to hard-to-

detect design issues. Furthermore, mismanaged reset logic could negatively impact

performance and/or results in a suboptimal usage of FPGA resources.

A design’s reset state is typically engaged on system power-up. It could also be

50

invoked manually via an external source, e.g. a physical button or switch. Addition-

ally, it can be invoked internally by the design itself as an automated response to

a specific system event. For example, the detection of multiple consecutive errors,

which exceeded a specific error count threshold within a short time interval from

a specific interface. In this case, one of the countermeasures implemented into the

design could be resetting the interface in an attempt to restore it to an operational

state.

Reset logic typically revolves around initializing signals, counters, FSMs, dedicated

memory components to a predefined value(s) as well as external ICs to a known state.

In the latter, the design initiates the IC’s reset operation as described within its data-

sheet. This usually involves abiding by predefined time intervals and monitoring

feedback from the IC in the form of an IC output signal change, and/or a register

value change internal to the IC.

For design components entirely contained within the FPGA, reset can be classified

as either synchronous or asynchronous. In short, it describes how the incoming reset

signal is captured in-relation to the component’s clock signal. Each clock domain

requires its own dedicate reset logic, in-which the reset signal is accurately captured

and synchronized to the domain’s clock. Thereafter, the signal’s value change is dis-

seminated via intermediate internal signal(s) to other components within the domain.

With respect to reset signals originating from physical buttons or switches, reset

logic must also account for the stability of the input. This is separate and apart from

possible reset signal timing violations or meta-stability issues. In short, an additional

dedicated component, typically called debouncer, is implemented to handle possible

input signal frequent fluctuations over a short time interval. It acts as a form of a

barrier, where frequent consecutive changes in reset signal value are captured and

filtered until the signal settles on a specific value, i.e. either logic 1 or 0.

Within the CarRing IV project, the design’s reset is not only connected to the

input pin of a physical button, but also affected by the reset logic of the MGTs’ IP

cores as well as the status signals of the MGTs themselves. Depending on the clock

domain and design component in-question, asynchronous, synchronous and hybrid

51

reset solutions are used within the project. In the latter, the input reset signal is

de-asserted synchronously to the corresponding domain’s clock and asserted asyn-

chronously. Assertion refers to the active state of the signal, while de-assertion refers

to its inactive state. As for the logic value associated with a signal state, it depends

on whether the signal is active high or active low. Within the context of a reset signal,

reset is indicated by a logic 1 in the former and logic 0 in the latter.

52

Chapter 3

Industrial networks and real-time

communication

This chapter gives an overview of the current real-time networks used in automotive,

avionics and factory automation. More specifically, it focuses on the used real-time

approaches and communication paradigms. In addition to event- and time-triggered

communication, the first section also describes the approaches used to achieve and

maintain real-time behavior. Furthermore, it describes the scope of the chapter,

i.e. the selection criteria based on which the aforementioned networks are included.

Thereafter, each network is covered in a dedicated section. Finally, a summary is

provided.

3.1 Introduction

Prior to delving into the real-time approaches, isochronous real-time must be defined.

As described in section 1.1, real-time systems can be classified into soft, firm and hard

real-time. Within the context of real-time communication, network traffic can also be

classified into real-time and non-real-time as well as isochronous real-time. The latter

can be defined as delivering user data at a specific time instant, i.e. more strict than

having a hard upper limit on latency, which is the case for hard real-time. Within

the context of Profinet IO [33], it corresponds to cycle-based communication in-which

53

individual data frames are transmitted at time instances that are equidistant with

respect to consecutive communication cycles.

3.1.1 Real-time approaches

There are several approaches to achieving and maintaining real-time behavior, i.e.

adhering to timing constraints. Those approaches manage and control access to the

underlying transmission medium.

Priority-based arbitration

As the name implies, timing guarantees are provided by prioritizing messages, i.e.

data transmissions. Such priorities are assigned based on either the deadline associa-

tion with the message, time spent by the message waiting in the transmission queue

or time-criticality of the message, e.g. isochronous traffic having the highest priority.

Alternatively, priorities can also be assigned by the user application or based on

the properties of the frame/packet carrying the message. In the latter case, priorities

are assigned dynamically at the time of arrival of the frame/packet. Within the

context of connection-oriented protocols, the assignment can also be made statically

for all packets/frames in a connection.

In addition to transmission order, those priorities can also affect which packet-

s/frames are discarded in case of a full transmission queue.

Rate-constrained or Bandwidth reservation

This method revolves around reserving available network resources to incoming traffic.

Reservations can be made either statically or dynamically.

In the static case, network resources are split into multiple classes each with its

own Quality of Service (QoS). As such, timing guarantees are provided based on the

class of the message. Another variation is to split the underlying communication

channel/link into multiple virtual ones. Thus, isochronous real-time, real-time and

non-real-time traffic are isolated from one another. And each virtual channel/link has

54

its own level of QoS.

As for the dynamic case, the sender attempts to reserve resources prior to trans-

mitting messages. This process of resource reservation is called Admission Control.

In short, the sender first checks for the availability of the required network resources

along the message path, i.e. within routers, switches, etc. If the required resources

are available, then the resources are allocated. Otherwise, the sender might attempt

to renegotiate with a lower QoS constraints. This dynamic reservation is typically

applied to a connection i.e. to a group of messages.

Scheduler-based

Timing guarantees are provided based on scheduling system in which usage of net-

work resources remains below 100% i.e. no over-commitment. Such schedules are

typically managed/enforced by a central node within the network, called controller

node. Additionally, the controller node is also responsible for network-wide time

synchronization. In short, local clocks within network nodes are synced based on a

reference node, which is typically the controller node itself. The synchronization can

be time-stamp based or relative timing with respect to the reference node/clock.

Alternatively, the schedule can be created prior to deployment and manually

loaded into network nodes before run-time. In such a case, the controller node is

still responsible for time synchronization.

Analogous to real-time systems, schedulers can be preemptive or non-preemptive.

In the former, an active transmission might be preempted in which the corresponding

packet is replaced by a newly arrived one prior to transmission start. The replacement

is based on priorities, i.e. similar to priority-based arbitration. Note that preemption

can not take place if transmission already started, i.e. while a packet is being trans-

mitted. Otherwise, it would result in a failed transmission. This is in stark contrast

to real-time systems in which schedulers are able to interrupt ongoing tasks during

their execution and resume them thereafter.

In the previous approach, QoS constraints are grouped together into classes. Whether

they are statically or dynamically assigned, this results in a less fine control over un-

55

derlying constraints. Whereas in this approach, schedules can be created where the

main focus is on a specific QoS constraint e.g. delay, jitter. Thus allowing a more

granular control with respect to resource allocation.

Time-slicing or cycle-based

In this method, data transmission is organized into periodically repeated send cycles.

Each cycle is split into multiple time-slots. As such, timing guarantees are provided

based on bounded access, i.e. time-slots.

Time-slots can be based on the number of nodes within a network. In such a case,

each node has its own time-slot within a send cycle. This allocation can be static or

dynamic. In the former, the time-slot is dedicated to its node regardless whether it

has user data to transmit. As for the latter, the time-slot can be used by another

node if its owner is idle.

Moreover, the size of a time-slot corresponds to a certain level of QoS. As such,

time-slot sizes can be set based on the corresponding node’s requirements i.e. the

requirements of the user application(s) associated with the node. In other words,

nodes are assigned adequately sized time-slots. Thus, time-slots do not necessarily

need to be equally sized i.e. their sizes can be varied.

Regardless, network-wide time synchronization is required in order for nodes to

accurately start data transmission within their respective time-slots. Similar to the

previous approach, the synchronization can be time-stamp based or relative timing

based on a reference node.

Last but not least, the approaches described above are not mutually exclusive.

For example, the cycle-based approach can be combined with the priority-based arbi-

tration. Within a time-slot, the corresponding node transmit packets based on their

respective priorities. Another example is combining scheduler and cycle-based ap-

proaches. In such a scenario, the send cycle is split based on time-criticality of the

message. And nodes are allowed to transmit their messages based on the schedule.

56

3.1.2 Event- and time-triggered communication

In short, event-triggered communication corresponds to data transmission being driven

by or in response to the occurrence of an event. As the name implies, time-triggered

communication is time-based and requires network-wide time synchronization within

the context of real-time communication.

The real-time approach used in a network also affects the communication paradigms

supported i.e. event-, time-triggered or both. With respect to the approaches de-

scribed above, priority-based arbitration and rate-constrained are more compatible

with event-triggered communication. On the other hand, scheduler- and time-slicing

approaches are more compatible with time-triggered communication.

As mentioned in the previous sub-section, those approaches are not mutually

exclusive. Thus, support for event-triggered communication can be introduced into a

network where communication is time-triggered. For example, adding a "dynamic"

slot in a network that uses time-slicing approach, where nodes can transmit based

on the availability of the underlying communication channel/link, thereby adding

support for event-triggered communication.

3.1.3 Selection criteria

Within the context of computer networks, there exists a wide variety of solutions, i.e.

standards and protocols. In order to provide references that are relevant to the work

presented in this thesis, a selection criteria must be established.

∙ The solution must be current and hard real-time capable, or soft real-time

capable that is used in time-critical applications e.g. x-by-wire. This is due

to the impact of providing real-time guarantees on the achievable performance

metrics when compared to the capability of the underlying transceivers and

transmission medium. Thus, solutions aimed at best-effort networks are not an

adequate comparison. Note that the term "current" refers to the solution still

being accepted/valid and not whether it is wide-spread. In other words, it is

not based on market-share or adoption level in the industry or academia.

57

∙ The solution must include and be able to transmit payloads i.e. can carry user

data, not signals.

∙ The solution must be complete i.e. include a user interface as well as a physical

layer interface. For example, single-layered solutions are not adequate for com-

parison. Moreover, assembling protocol suites/stacks based on existing partial

solutions is not attempted in this chapter. While the network performance can

be inferred in such a scenario, the assembled solution is not tested in its entirety.

However, this does not exclude preexisting and tested solutions that are based

on multiple partial solutions i.e. protocols suites.

∙ If the solution has multiple versions/variations/classes/profiles, then the one

with most deterministic behavior and time guarantees is selected.

∙ Wireless networks and their respective solutions are excluded. This is due to the

nature of the underlying transmission medium and the challenges that arise from

it with respect to timing guarantees. An open medium is subject to interference

and is more difficult to be physically contained. Therefore, it can be argued

that wired networks have an advantage over wireless networks with respect to

providing timing guarantees. As such, wireless networks are considered as a

separate category that is outside the scope of this chapter.

In subsequent sections, the covered standards/protocols are organized based on

their primary networks i.e. the main networks in which they are used. The specifics

and internal operation of the networks as well as their respective standards/protocols

are not covered. In other words, no descriptions pertaining to packet/frame formats

or user data processing within layers. For such information, there is already an

existing wide body of work for it. In this chapter, the focus is on the approach with

which real-time behavior is achieved and maintained as well as the communication

paradigm.

58

3.1.4 Ethernet, determinism, PLCA and TSN

Ethernet-based solutions should not be automatically considered as being not deter-

ministic. Within the context of Standard Ethernet, worst case packet/frame latency

can not be bounded due to the way collisions are handled. In case of a collision,

nodes pause for a random period of time before attempting to retransmit. While

the probability of consecutive collisions is reduced, it is not eliminated. As such,

real-time capable Ethernet-based solutions either use a modified Ethernet, or design

protocols that ensure collision-free data transmissions. In the latter, a different com-

munication method is used, i.e. not Carrier-Sense Multiple Access with Collision

Detection (CSMA/CD).

A noteworthy and relatively recent example of modified Ethernet is PHY-Level

Collision Avoidance (PLCA), which is defined in clause 148 of [10]. It is a reconciliation

sublayer that addresses the non-deterministic behavior of the CSMA/CD method. In

other words, PLCA improves CSMA/CD rather than replacing it. Using this sublayer,

physical collisions are avoided, while providing an upper limit on latency. It revolves

around dynamically managing sending opportunities such that nodes transmit one at

a time, thereby avoiding collisions. PLCA uses the cycle-based approach.

Within the network, nodes are assigned unique identifiers. The node with identifier

value of 0 is referred to as coordinator. It is responsible for managing communication

cycles, i.e. signaling to other nodes the start of a new cycle. In a round-robin manner,

each node gets one sending opportunity per cycle. If a node does not transmit within

a certain time limit, then the sending opportunity is yielded, thus proceeding to the

next node. Note that transmitted packets can vary in size i.e. no fixed length.

On the other hand, several protocols have been developed which aim at achiev-

ing/improving the deterministic behavior of Ethernet. They have been introduced as

proprietary solutions and standards. Of particular interest are the standards intro-

duced by Time-Sensitive Networking (TSN), an IEEE task group. Due to the broad

focus of the group, in what follows, only a subset of those standards are covered.

Within TSN terminology, they are referred to as traffic shapers. In short, they are a

59

set of mechanisms that control the flow of egress traffic in order to provide timing

guarantees.

∙ IEEE 802.1Qbv - Enhancements for Scheduled Traffic. This standard

defines the Time-Aware Shaper (TAS). Within TSN traffic shapers, it provides

the most strict timing guarantees i.e. used for isochronous transmissions. As for

the underlying real-time approach, it is primarily cycle-based. Data transmis-

sions are organized into periodically repeating fixed size communication cycles.

Time critical data are assigned dedicated time-slots, thereby guaranteeing un-

interrupted transmission. As for non-critical data, priority-based arbitration is

used. Isolating the traffic is made possible using a time-aware scheduler. It

operates at the port level, wherein traffic is organized into time-gated queues.

∙ IEEE 802.1Qch - Cyclic Queuing and Forwarding. Unlike the previous

shaper, the Peristaltic Shaper (PS) of this standard operates within switches.

The main objective is to bound the frame residence time within the switch. As

such, latency bounds depend in-part on the number of hops traversed during

transmission. Similar to TAS, the underlying approach is cycle-based. However,

incoming traffic is processed based on its priority and time of arrival. As for

the communication cycles, they correspond to an alternating and equally sized

time intervals, labeled "even" and "odd". Within the switch, incoming frames

are labeled based on the time interval in which they have arrived. And they are

transmitted in the next time interval, i.e. "even" frames are transmitted in the

subsequent "odd" time interval and vice versa.

∙ IEEE 802.1Qcr - Asynchronous Traffic Shaping. The approach used by

Asynchronous Traffic Shaper (ATS) closely resemble priority-based arbitration.

Similar to the previous standard, the deterministic behavior is primarily main-

tained by switches, whereas network nodes are required to adhere to specified

rate limits. ATS uses Urgency-Based Scheduler (UBS), which processes incoming

traffic using a per-flow shaped queuing scheme followed by a per-class queu-

ing scheme. In the former, frames are classified into per-flow shaped queues

60

based on fixed-priority assigned by the upstream source i.e. the 3-bits Priority

Code Point (PCP) of the Virtual LAN (VLAN) tag. Thereafter, the latter uses

Internal Priority Values (IPVs) to classify/merge frames into per-class shared

queues. In turn, UBS assigns eligibility times to frames, which are then used

to indicate when the next frame can be transmitted. UBS uses an interleaved

scheduling algorithm, called Token Bucket Emulation (TBE), in order to achieve

asynchronous traffic shaping with low delay. It is derived from the token-based

leaky bucket algorithm. In short, the time value corresponds to the time needed

to accumulate enough tokens to transmit a frame. The number of tokens re-

quired depends on the frame’s length. At the egress port, frames are selected

for transmission using strict priority queuing, which prioritizes transmission of

frames in higher priority queues over lower ones.

The first two shapers require network-wide time synchronization. Note that they

only specify that synchronization is required. As such, they can be combined with

another standard introduced by TSN, IEEE 802.1AS-rev Timing and Synchronization.

On the other hand, ATS does not require time synchronization.

Last but not least, TSN traffic shapers also includes Credit-Based Shaper (CBS)

defined in IEEE 802.1Qav. However, it’s capable of soft real-time transmission and

is primarily used for audio/video broadcasting. In other words, it must be com-

bined with another mechanism, e.g. Strict Priority [44], in order to provide timing

guarantees that are sufficient for industrial networks.

3.2 Automotive

Vehicular communication or networks can be divided into three main categories, Ve-

hicle to Infrastructure (V2I), inter-vehicular and intra-vehicular. The former two can

also be grouped together as Vehicle to Everything (V2X). And they are based on

Wireless LAN (WLAN) and cellular i.e. wireless networks. Therefore, in what fol-

lows, the solutions covered are specific to intra-vehicular communication, i.e. wired

networks.

61

Such a network employs a wide variety of standards and protocols. Each one is

aimed at a certain level of timing and performance requirements. Therefore, the net-

work is split into multiple smaller networks based on the requirements and standards

used. In other words, each smaller network employs one standard.

These smaller networks are interconnected by a specialized component, called

gateway. Using a gateway, nodes belonging to different smaller networks are able

to communicate. Intra-vehicular networks either use one central gateway or mul-

tiple smaller gateways, referred to as domain gateways. While being an essential

component of the network, gateways are outside the scope of this chapter. Although

they involve a routing-like functionality, they are considered as a workaround solution

addressing the multiple incompatible standards used.

3.2.1 CAN/-FD, MilCAN A

Within the context of medium access control protocols, CAN [4] uses Carrier-Sense

Multiple Access with Collision Resolution (CSMA/CR), which is non-deterministic.

Nevertheless, determinism can still be provided for high priority messages. The pri-

orities are assigned to the messages as opposed to the nodes transmitting them. Each

CAN message is equipped with a unique identifier which is the first value sent upon

transmitting a message. It is used as the priority value as well as the means by which

other nodes distinguish and receive the message. The latter is a filter-based approach,

i.e. no explicit destination address.

The underlying network topology is a shared bus in which all network nodes are

able to monitor and receive any message being transmitted. In other words, CAN uses

broadcast/multicast transmission. As such, a collision can occur if multiple nodes

transmitting at the same time. To provide timing guarantees, the approach used is

priority-based arbitration, which takes place in case of a collision. Transmission of

lower priority message is stopped in favor of the highest priority message. Note that

the conflict resolution method is not destructive i.e. lower priority messages are still

transmitted by their respective nodes thereafter. However, due to the arbitration

method used, low priority messages may starve.

62

With respect to communication paradigm, CAN is event-triggered in which mes-

sages can be transmitted periodically or sporadically based on an external trigger.

And network-wide time synchronization is not a requirement for CAN’s core func-

tionality. As for performance, it can reach up to 5 Mbps with CAN Flexible Data-

rate (CAN-FD) [3].

Within the context of vehicular networks, there are other variations of CAN that

employ different approaches to provide timing guarantees e.g. MilCAN A [30]. In

this case, nodes transmit messages based on a predefined schedule, which bounds the

latency of each message. In turn, the schedule is based in-part on using sync slots,

each with its own identifier. Nodes periodically receive a sync frame/message, which

contains the current active sync slot number. This number is incremented with each

sync frame transmitted, 0 to 1023 and repeats.

3.2.2 FlexRay

To provide timing guarantees, FlexRay [6] incorporates multiple approaches, wherein

time-slicing serves as the primary approach. Data transmission is organized into

periodical communication cycles. Each cycle consists of static, network idle time,

dynamic and symbol window segments. The former two segments are mandatory,

while the latter two are optional.

Data transmission takes place within the static and dynamic segments of a com-

munication cycle. Only one network node transmits at a time, while others wait

until it finishes. Scheduling is used within the aforementioned two segments. Stat-

ically scheduled frames are transmitted in the static segment (bounded latency),

whereas the dynamic segment employs the mini-slotting scheme to transmit dynami-

cally scheduled frames. This scheme is also known as Flexible Time Division Multiple

Access (FTDMA).

Within the static segment, frames are transmitted using equally sized static slots.

A node can have multiple slots within a communication cycle. As for the dynamic

segment, a dynamic slot consists of one or more mini-slots. A node is assigned multiple

mini-slots based on the length of the frame being transmitted. If the node has no

63

frame to transmit, then it is assigned one mini-slot and the rest can be used by other

nodes. Therefore, dynamic slot length can vary. This allows for dynamic bandwidth

allocation.

With respect to communication paradigms, FlexRay supports both event- and

time-triggered. The standard implements distributed clock synchronization and can

be configured to operate in event- and time-triggered modes. In the latter, the com-

munication cycle consists of either only static slots or a mix of both static and dynamic

slots. As for event-trigger mode, one static slot is used while the rest of the slots are

dynamic. In this case, priority-based arbitration is used within the dynamic slots.

The priorities are based on time-offset values i.e. higher priority messages are al-

located mini-slots that are closer to the beginning of the dynamic segment. If the

number of frames exceeds the segment length, then the lower priority messages are

transmitted in the subsequent communication cycles.

FlexRay supports both star and bus network topologies. As for performance, it

can reach up to 10 Mbps.

3.2.3 MOST150

In Media Oriented Systems Transport (MOST) [8], timing guarantees are primarily

provided using the bandwidth reservation approach. There are multiple versions of

MOST, namely MOST25, MOST50 and MOST150. The latter added support for

isochronous transmission.

In essence, the underlying communication channel is split into control, packet data

and streaming data channels. The latter two are used to transmit user data, while the

former is used for network administration, i.e. control commands and status messages.

Since it is shared by all network nodes, no guarantees can be provided within the

packet data channel. On the other hand, streaming data channel supports real-

time transmission of synchronous and isochronous data. In both cases, a connection

is established before data transmission starts, thereby reserving network resources.

Thereafter, Time Division Multiplexing (TDM) is used wherein data is transmitted

cyclically based on a specified time pattern.

64

The streaming data channel is mainly used for audio/video data. The isochronous

data transfer eliminates the need for user applications to synchronize their streams to

MOST , i.e. it’s time base. Within the context of isochronous data, three mechanisms

are supported, Audio/Video packetized, DiscreteFrame and QoS IP streaming. The

former two are aimed at audio and video data, while the latter is used for QoS-based

packet transmission. In a QoS IP channel, a user application has exclusive access to

the reserved bandwidth.

MOST also implements time synchronization. One dedicated node continuously

transmits frames that synchronize other nodes within the network. Thus, nodes

are continuously resynchronizing using the preamble at the beginning of the frame

transfer. Despite being a shared bus, MOST network is typically uses a (logical) ring

topology. With respect to performance, it can reach up to 150 Mbps.

3.2.4 LIN

Using the scheduler-based approach, Local Interconnect Network (LIN) [7] is able to

provide timing guarantees. Prior to deployment, a schedule is generated that contains

all transmissions. During run-time, a dedicated network node is responsible for, i.e.

manages, the schedule. This node is referred to as the LINmaster node. Transmissions

can only be initiated by the master node, wherein the polling method is used. In short,

a LIN frame consists two parts, header and response. They are transmitted separately.

The header is always sent by the master node, while the response is either sent by

another node or the master node itself.

LIN also implements time synchronization. Using the header part of the frame,

other nodes are synchronized to the master node’s timing. As such, LIN uses the

time-triggered communication paradigm. With respect to network topology, LIN is a

shared bus. As for performance, it can reach up to 20 kbps.

65

3.3 Avionics

In avionics, nodes are primarily interconnected via switches within a meshed network.

This is in contrast to automotive networks, which are primarily shared buses intercon-

nected by either a central gateway or multiple domain gateways. Unlike automotive,

Ethernet is adopted and used for safety critical applications, i.e. fly-by-wire.

3.3.1 TTCAN, CANaerospace

In avionic networks, CAN is used in a relatively wide range of systems ranging from

flight control to passenger comfort. Since CAN is already covered in sub-section 3.2.1,

in what follows, other used variations of CAN are described, namely Time Triggered

CAN (TTCAN) [18] and CANaerospace [35].

TTCAN adds support for time-triggered communication paradigm to standard

CAN. It primarily uses scheduler-based approach to provide timing guarantees. Within

the network, a dedicated node, referred to as time master, is responsible for the sched-

ule as well as local/global time synchronization.

In essence, the schedule is organized as a matrix where each row corresponds to

a Basic Cycle (BC), i.e. a communication cycle. As for columns, they are organized

into time windows. Although time window sizes can vary within a row, the size must

be the same across rows, i.e. fixed size columns. Thus, all BCs consists of similarly

sized time windows, wherein the window type can vary.

There are three types of windows, exclusive, arbitration and free. The former

two are used for data transmission, while the latter is reserved for possible TTCAN

expansions. The exclusive window is reserved for a predefined message. Whereas

message transmission within the arbitration window is based on standard CAN. Thus,

both communication paradigms are supported by TTCAN.

Data transmission is initiated by the time master. Each BC starts with a special

message sent by the time master, called Reference message. This message is used for

time synchronization as well as to indicate which BC is currently active. Using the

cycle count, nodes transmit their messages based on the schedule.

66

As alluded to above, TTCAN implements two levels time synchronization. The

first level is based on a 16-bits counter that is restarted with each reference message,

i.e. with each BC. Whereas the second level is based on a 19-bits counter that is

synced to the master node’s time.

Similar to TTCAN, CANaerospace also uses a scheduler-based approach to provide

timing guarantees. In contrast with TTCAN, it uses a relatively simplified approach

that does not require a dedicated master node. As such, it is required that each

network node abide by its transmission schedule.

Data transmission is organized as fixed size time slots, called minor time frames.

Thus, the number of transmitted messages is limited within the boundaries of a time

slot. However, the number of messages transmitted by each node may vary. As for

the time slot size, it is calculated along with the schedule prior to deployment. As

such, CANaerospace uses the time-triggered communication paradigm.

3.3.2 AFDX, uAFDX

Despite being Ethernet-based, Avionics Full-Duplex Switched Ethernet (AFDX) [32]

achieves determinism using the rate-constrained approach. The underlying communi-

cation channel is divided into multiple logical links, called Virtual Links (VLs). Each

VL has its own identifier, Bandwidth Allocation Gap (BAG), max/min frame size and

a bandwidth limit.

The identifier is incorporated into the MAC address. More specifically, it replaces

the last 16-bits i.e. used in delivery as part of the destination address. BAG is used

to manage possible congestion within the network. It defines the min delay between

sending two consecutive frames. By defining max/min frame sizes, fragmentation is

no longer needed, thereby eliminating a possible source of non-determinism. Com-

bining the bandwidth limit with the aforementioned VL properties, bandwidth can

be guaranteed for each VL.

While also used by network nodes, those VL properties are maintained and en-

forced by specialized AFDX switches. In other words, the deterministic behavior is

primarily maintained by the AFDX switches as opposed to nodes. AFDX uses the

67

event-triggered communication paradigm. With respect to network topology, it uses

the star topology. As for performance, the underlying bandwidth can reach up to 1

Gbps.

A noteworthy extension of AFDX, called uAFDX, can also be used in automotive

networks. It uses the same switching/VL concept as AFDX. The main distinction is

in the functionality of the specialized switches. The uAFDX switch operates as a hub

for down-links and as an AFDX switch on up-links. While using a star topology, an

uAFDX network is functionally comparable to a bus.

3.3.3 TTP/C

In Time Triggered Protocol class C (TTP/C) [11], timing guarantees are primarily pro-

vided using the time-slicing approach. Data transmission is organized into periodical

communication cycles, called cluster cycles. In turn, a cluster cycle is further divided

into equally sized Time Division Multiple Access (TDMA) rounds. Within a TDMA

round, each network node is assigned a time slot in which it can transmit messages.

The size of such a time slot is fixed across rounds. However, it can differ from one

node to another. As such, a node can transmit different messages in different rounds

within its time slot.

In order to identify which message must be transmitted at which round/time-slot,

nodes use a static schedule that is generated and locally configured prior deployment.

TTP/C implements distributed clock synchronization. And it uses the time-triggered

communication paradigm. With respect to network topology, it can be configured as

bus or star. As for performance, it can reach up to 25 Mbps.

3.3.4 MIL-STD-1553C

Using the scheduler-based approach, timing guarantees are provided by MIL-STD-

1553C [29]. Data transmission can only be initiated by a dedicated node within the

network, called bus controller. Using a message-scheduling scheme, it enables other

nodes to transmit data. Based on the scheme, the bus controller sends a command,

68

which in turn triggers the data transmission. Thereafter, the node sends back a

response indicating the status of its data transmission. Both the data transmission

and the following response have a time limit. As for the commands, they can be

sent asynchronously or periodically based on the bus controller’s local time, i.e. time

synchronization is not a necessity for the core functionality.

MIL-STD-1553C uses the event-triggered communication paradigm. With respect

to network topology, it can be configured as bus or star. The latter can reach up to 10

Mbps with respect to performance. Furthermore, a fiber optic version of the standard,

called MIL-STD-1773, can reach up to 20 Mbps.

3.3.5 IEEE 1394B

IEEE 1394B [5] has two data transfer modes, asynchronous and isochronous. The

latter is used for real-time data transmission. Within this mode, timing guarantees

are primarily provided using the bandwidth reservation approach. Data transmission

is organized into periodical fixed size (125 us) communication cycles. Within each

cycle, bandwidth is reserved as channels i.e. portions of the 125 us time interval. Even

when the isochronous mode is engaged, only up to 80% of the total bus bandwidth can

be used for isochronous data transfer and the remaining 20% is used for asynchronous

mode. The latter corresponds to best-effort delivery.

During the initialization phase of the network, a node is elected and designated as

the root node. In addition to arbitration between nodes, it is responsible for managing

the communication cycles. As such, it is also referred to as the cycle master. In order

to indicate the start of a cycle, it broadcasts a cycle start telegram which also syncs

network nodes. Thereafter, if a node needs to transmit data, then it sends a request

back to the root node. In case of multiple simultaneous requests, priority-based

arbitration is used. Priorities correspond to the proximity of the respective node to

the root node, i.e. the closer, the higher.

With respect to communication paradigm, IEEE 1394B is event-triggered. Despite

being a bus, it uses tree topology. As for performance, it can reach up to 3.2 Gbps.

69

3.3.6 TTEthernet

To overcome the non-determinism of standard Ethernet, Time Triggered Ethernet

(TTEthernet) [12] manages data transmissions in such a way that prevents collisions,

i.e. no arbitration is performed. It supports Time-Triggered (TT), Rate-Constrained

(RC) and Best-Effort (BE) traffic. The former two provide timing guarantees using

the scheduler-based and rate-constrained approaches, respectively.

In case of TT mode, data transmission is carried out based on a predefined sched-

ule. Prior to deployment, the schedule is generated and configured locally within each

network node. During run-time, conflict/collision free transmission is guaranteed by

the pre-calculated schedule, i.e. no overlapping time-slots. In this mode, TTEthernet

implements a fault-tolerant distributed clock synchronization.

As for the RC mode, data transmission is organized as RC data-flows, i.e. sequence

of messages. Similar to AFDX, networks nodes transmit while maintaining a minimum

Inter-Frame Gap (IFG) between consecutive RC data-flows. While nodes must abide

by minimum IFG, the deterministic behavior is ensured by network switches, wherein

transmissions that violate the minimum gap are dropped. No time synchronization is

required in this mode. As such, buffer sizes are allocated based on peak-load scenarios

in order to prevent possible loss.

Due to the TT and RC traffic classes, TTEthernet supports both time- and event-

triggered communication paradigms. With respect to network topology, it can be

configured as a star or ring. As for performance, it can reach up to 1 Gbps.

3.4 Automation

There is a wide variety of standards and protocols used in this domain. They can

be divided based on their target networks, management level i.e. business and su-

pervisory networks, as well as automation- and field-level i.e. fieldbus networks. In

this chapter, the main focus is on standards/protocols used within the latter due to

its real-time requirements. Such standards/protocols are used in process and control,

where network nodes are typically machines, sensors, actuators and control devices.

70

Similar to avionics, Ethernet-based solutions are also more broadly adopted and

used in time-critical applications. Within those solutions, there is a wide variety of

proprietary protocols. This is in-part due to the necessity of providing backward-

compatibility to previous already deployed standards. In other words, Ethernet is

used for lower layers, while higher layers maintain compatibility with existing/previ-

ous non-Ethernet version of the standard. When compared to automotive, gateways

are also used to interconnect machines using different standards.

3.4.1 EtherCAT

The approach used by Ethernet for Control Automation Technology (EtherCAT) [19],

to provide timing guarantees, closely resemble a scheduler-based approach. Data is

transmitted at specific time instants or periodically, wherein time cycles with varied

lengths can be used. For example, in the latter, shorter time cycles are used for

commands, e.g. refresh local data with network nodes, while longer time cycles are

used to retrieve new data.

In EtherCAT, network nodes form a logical ring. Data transmission can only be

initiated by a dedicated node, referred to as the master node. It uses the summation

frame method, wherein an Ethernet frame, called EtherCAT frame, is used to exchange

data between all nodes. Multiple datagrams can be encapsulated within the frame.

Each node retrieves/inserts data (if targeted by master) into the frame, and forwards

it to the next node within the network. The last node sends the processed frame back

to the master node.

Note that there is another variant of this transmission method that uses UDP/IP.

This has a larger overhead and it is used for less time-critical applications.

EtherCAT is primarily time-triggered and implements a distributed clock synchro-

nization. While it is logically a ring, it can be physically configured as star, line, tree

or daisy-chain. As for performance, it can reach up to 1 Gbps.

71

3.4.2 PROFINET IO CC-C/CC-D

The PROcess FIeld NET (PROFINET) [33] standard is divided into multiple Confor-

mance Classs (CCs), A through D. Starting with CC-A as the "basic" class, each class

supports a certain QoS and set of basic functionality. Since isochronous real-time

support is established in CC-C, this class is covered in this section. As for CC-D, it is

a TSN compliant version of CC-C, i.e. provides the same functionality.

Timing guarantees are primarily provided using the cycle-based approach. Data

transmission is organized as send cycles, which in turn is divided into multiple time

intervals or phases. Each phase is aimed at a specific traffic class. Starting with

isochronous real-time phase followed by real-time and non-real-time phases. Within

the first phase, a scheduler-based approach is used. Data transmission is carried out

based on a static schedule that is generated prior to deployment and configured locally

within each network node. Furthermore, special PROFINET switches are required to

maintain a low consistent jitter. As for the second phase, priority-based arbitration

is used, i.e. real-time traffic is prioritized over non-real-time using the VLAN header

field.

With respect to communication paradigms, PROFINET IO CC-C is time-triggered.

It implements network-wide time synchronization, which also includes the aforemen-

tioned special switches. Regarding network topologies, it supports star, line, tree and

bus. As for performance, it can reach up to 1 Gbps.

3.4.3 SERCOS III

In SErial Real-time COmmunication System (SERCOS) III [37], timing guarantees

are provided using the cycle-based approach. Data transmission is organized into

communication cycles consisting of a real-time and non-real-time interval/channel.

Within the real-time channel, transmissions are initiated by a dedicated node within

the network, referred to as master node. Within a SERCOS III network, nodes form a

logical ring.

In the real-time channel, the summation frame method is used to exchange data

72

between nodes. It is carried out over two phases. First, the master node transmits a

Master Data Telegram (MDT), wherein network nodes have read-only access. There-

after, the master node transmits an Acknowledge Telegram (AT) in which nodes insert

data as a response to the former transmission. Up to four MDTs and ATs each can be

transmitted within one communication cycle. Those are used in case that the amount

of data exceeds the limits of one MDT or AT.

As for the non-real-time channel, it corresponds to the time left within a com-

munication cycle, i.e. after real-time transmissions have concluded. As such, nodes

transmit non-time critical data, i.e. status and diagnostic messages.

SERCOS III implements network-wide time synchronization. As for communication

paradigms, it is time-triggered. A SERCOS III network can be configured in a line or

ring topology. With respect to performance, it can reach up to 100 Mbps.

3.4.4 Ethernet POWERLINK

Timing guarantees are provided by Ethernet POWERLINK [17] using the cycle-based

approach. Data transmission is organized into communication cycles which consist of

isochronous, asynchronous and idle phases. The latter is optional and corresponds to

the leftover time between the end of the second phase, i.e. asynchronous phase and the

start of the next communication cycle. As the name implies, no data transmissions

are carried out during the idle phase.

Within the network, a dedicated node, referred to as managing node, is responsi-

ble for those communication cycles. Furthermore, data transmissions are controlled

by the managing node using the polling method. To indicate a new cycle, the man-

aging node multicasts a Start-Of-Cycle (SoC) frame to all network nodes. During the

isochronous phase, a node is able to transmit only if it receives a Poll-Request (Preq)

frame from the managing node. The Preq frame is sent as a unicast transmission.

Thereafter, the targeted node replies with a Poll-Response (Pres) frame. Such a

frame is sent as a multicast, thereby replacing target-specific transmission with a

producer/consumer model.

Similar to the first phase, the managing node multicasts a Start-Of-Asynchronous

73

(SoA) frame to all nodes. However, unlike the isochronous phase, only one data

transmission is carried out by either the managing node itself, or one of the other

nodes within the network. Nodes can include send requests within the aforementioned

Pres frame, i.e. during the first phase. In case of multiple requests, priority-based

arbitration is used, while maintaining that no send request is indefinitely delayed.

Ethernet POWERLINK implements distributed clock synchronization, wherein

nodes are synced based on the managing node’s timing. With respect to communica-

tion paradigms, Ethernet POWERLINK is time-triggered. And it can be configured

in star or line topologies. As for performance, it can reach up to 1 Gbps.

3.4.5 ControlNet

ControlNet [31] provides timing guarantees by using the time-slicing approach. It uses

Concurrent Time Domain Multiple Access (CTDMA), wherein network nodes transmit

data within a periodically repeating time interval, referred to as Network Update

Interval (NUI). This interval is divided into scheduled, unscheduled and maintenance

parts.

As the name implies, data transmission within the first part takes place at specific

time instants using a predefined schedule. A so-called keeper node is responsible

for maintaining and distributing the schedule as well as other network information.

During the scheduled part of NUI, scheduled nodes can transmit once per NUI.

On the other hand, both scheduled and unscheduled nodes can transmit within the

second part of NUI. Starting with the smallest node address (0), nodes transmit data

on a sequentially rotating basis. Within a rotation, one data transmission is allowed

per node. This repeats until the time allocated for the unscheduled part is consumed.

Last but not least, network nodes are synchronized within the maintenance part.

In a ControlNet network, data is exchanged using the producer/consumer model,

wherein transmissions can be carried out as unicast or multicast. Within the context

of communication paradigms, ControlNet is time-triggered. And it can be configured

in line, tree or star topologies. As for performance, it can reach up to 5 Mbps.

74

3.4.6 EPA

Ethernet for Plant Automation (EPA) [9] uses a modified data-link layer to achieve

deterministic behavior. This translates to a Communication Scheduling Management

Entity (ECSME) situated between the network layer and the MAC sub-layer.

Timing guarantees are provided using the time-slicing approach. Data transmis-

sions are organized into communication cycles, referred to as macro-cycles. There are

two phases within a macro-cycle, periodic and non-periodic message transfer phases.

The sending time of such messages is controlled by the aforementioned ECSME.

Within the first phase, message are transferred at specific time instants based on

a pre-configured schedule. Furthermore, the last part of the periodic message trans-

mission includes a non-periodic message announcement. As such, nodes announce

whether they need to transmit in the second phase of the macro-cycle. In addition to

time availability, priority-based arbitration is used as the main approach within the

non-periodic message transfer phase.

EPA uses the time-triggered communication paradigm and implements time syn-

chronization. An EPA network can be configured in line, star, ring or daisy-chain

topologies. As for performance, it can reach up to 100 Mbps.

3.5 Summary

In this chapter, the coverage focuses on real-time approaches used within industrial

networks. With the exception of bandwidth, this includes aspects that are directly

related to those approaches. Table 3.1 provides a summary of the coverage.

Depending on the standard, different metrics are used to highlight its timing be-

havior e.g. cycle times instead of latency. Furthermore, those timing-related metrics

are directly affected by the network size and/or cable length in certain standards. On

the other hand, the effect of such values is negligible in other standards. Therefore,

those metrics were not used, when comparing the standards covered in this chapter.

In other words, a direct comparison using timing-related metrics necessitates specific

use-case and user requirements.

75

Table 3.1

Real-time
approach

Communication
paradigm

Require
time/clock
sync.?

Require
controller
node?

Topology Bandwidth

AFDX rate-cons. event-triggered NO NO star 1 Gbps
CAN priority event-triggered NO NO bus 5 Mbps
CAN-
aerospace

scheduler time-triggered NO NO bus 1 Mbps

ControlNet time-
slicing,
scheduler

time-triggered YES YES line, tree,
star

5 Mbps

EPA time-
slicing,
scheduler

time-triggered YES NO line, star,
ring, daisy-
chain

100 Mbps

EtherCAT scheduler time-triggered YES YES star, line,
tree, daisy-
chain

1 Gbps

Ethernet
Power-
Link

cycle time-triggered YES YES star, line 1 Gbps

FlexRay time-
slicing,
scheduler

time-, event-
triggered

YES NO star, bus 10 Mbps

IEEE
1394B

bandwidth
reserv.,
priority

event-triggered NO YES tree 3.2 Gbps

LIN scheduler time-triggered YES YES bus 20 kbps
Mil-std-
1553C

scheduler event-triggered NO YES bus, star 10 Mbps

Milcan A scheduler time-triggered YES YES bus 1 Mbps
MOST150 bandwidth

reserv.
time-, event-
triggered

YES YES bus 150 Mbps

Profinet
IO CC-
C/CC-D

cycle,
scheduler

time-triggered YES NO star, line,
tree, bus

1 Gbps

Sercos III cycle time-triggered YES YES line, ring 100 Mbps
TT-
Ethernet

scheduler,
rate-cons.

time-, event-
triggered

YES NO star, ring 1 Gbps

TTCAN scheduler time-triggered YES YES bus 5 Mbps
TTP/C time-

slicing,
scheduler

time-triggered YES NO bus, star 25 Mbps

76

In certain standards, having a dedicated node within the network, i.e. a controller

node, is essential for achieving real-time. Rather than the used real-time approach,

this stems from the communication model/method that the network employs, e.g.

polling method, producer/consumer model and summation frame method. Even in a

scheduler-based approach, the schedule can be configured locally within nodes prior

to deployment. In case of dynamic scheduling, changes can be announced and com-

mitted based on exchanges between nodes i.e. based on the defined protocol. And

conflicts can be resolved using arbitration methods that incorporate properties of the

messages being transmitted and/or their senders. Beside the communication method,

a dedicated controller node is used to ease network administration and maintenance.

Within the context of time-triggered communication paradigm, network nodes

are typically synchronized. As shown in table 3.1, synchronization is not required

in CANaerospace. In such standards/networks, a greater emphasis is placed on the

quality, i.e. accuracy and precision, of the node’s local clock/timer. For example,

the jitter/skew of the clock generator/synthesizer chip used within nodes. As such,

the minor drifts or shifts in time slots or communication cycles between nodes are

considered tolerable i.e. have negligible impact on the overall timing behavior of the

network.

As described in sub-section 3.1.4, several standards have been introduced by TSN

in order to improve the deterministic behavior of Ethernet. In table 3.1, Ethernet-

based standards have introduced relatively minor adjustments to comply with TSN

standards, e.g. SERCOS III, PROFINET IO CC-D, AFDX, etc. Those adjustments are

minor, because the approaches are mostly similar. For example, AFDX approach can

be mapped to ATS traffic shaper on egress ports within the switch. And SERCOS III’s

traffic scheduling can be mapped to TAS traffic shaper. As for time synchronization,

Precision Time Protocol (PTP) implementation , i.e. IEEE 1588 can be replaced by

IEEE 802.1AS-Rev.

77

78

Chapter 4

Overview of CarRing IV

Before delving into the design and implementation details, this chapter provides an

overview of CarRing IV from the point of view of a user. A general and brief de-

scription of CarRing IV is provided along with a functional description. In short, this

chapter briefly covers what CarRing IV is, how it operates and its possible use-cases.

4.1 General description

CarRing IV can be simply described as a ring-based wired Local Area Network (LAN)

that is hard real-time capable, figure 4-1. It is part of a long-term project that is

divided into three parts: a protocol, prototype board, and prototype electric car

(TUCar). Although I have worked on all three parts, the car or TUCar is outside the

scope of this thesis.

4.1.1 Prototype

It is a standalone FPGA-based hardware component with its own memory components

and power supply. Two prototypes were developed throughout the project’s life-time,

a Virtex5-based and a Kintex7-based prototype, check figure 4-2. They include 5-

and 12-volt power supplies, respectively.

Regardless of which version, CarRing IV prototypes or nodes are connected to each

79

Figure 4-1: CarRing IV and its main components

80

(a) 101.6 x 57.15 mm (b) 65 x 56 mm

Figure 4-2: Virtex5-based (a) and Kintex7-based (b) prototypes

other using one physical transmission path, up to 3m cable. In other words, each node

has a dedicated point-to-point connection with its predecessor and successor within

the ring. This connection is unidirectional or simplex. The entire capacity of the

channel is used to send data in one direction. Thus, the data flows in one direction

within the ring until it reaches its destination. Additionally, ring topology makes

it relatively easier to add or remove nodes. However, this must be done before the

network is operational, i.e. when the network is powered-off.

Both prototypes not only have MGTs to transmit protocol data, but also have

interfaces that would allow them to transmit data of other networks. In the case

of Virtex5-prototype, these interfaces include CAN, RS232, IIC and Ethernet. On

the other hand, Kintex7-prototype does not directly include such interfaces, rather

it includes intermediary interfaces through which a third-party attachment can be

connected. Those intermediary interfaces are RaspberryPi, MikroBUS and PMod.

For example, if a CAN interface is required, then a CANberry attachment is connected

to the RaspberryPi interface.

81

4.1.2 Protocol

It is a connectionless hard real-time communication protocol for ring-based LANs. It

supports up to 256 rings with 16 nodes per ring. Within each ring, there is one master

node that is responsible for initializing it. During ring initialization, all nodes receive

their addresses and are permitted to create and push their own frames onto the ring.

After initialization, no new frames are created, i.e. the ring has a constant number of

frames (3 per node). Those frames are the means by which a node is able to transmit

user data. They are continuously circulating the ring regardless of whether the user

has any data to send.

While sending user data within a ring, the receiving node copies the frame’s pay-

load, update its header and pushes it back onto the ring, i.e. continuous circulation

is maintained. As for across-ring transmission, routed packets are not moved from

one ring to another until the destination is reached. Rather, only the payload and

necessary header information are copied and used to send again using frames that

are circulating on the destination ring. In addition to own frames, a node is also

permitted to use frames owned by other nodes under certain conditions.

Without delving into the details, hard real-time behavior is achieved due to mul-

tiple protocol design decisions. First and foremost is maintaining controlled access

to the underlying transmission medium as well as a constant number of continuously

circulating frames. Combined with fixed frame size and processing time, the protocol

is able to maintain a hard upper limit on latency. Another contributing factor is the

removal of prioritization, i.e. no priority field within headers and no priority queues

are used. Rather, frame processing is based on arrival time, i.e. first come, first

served. Furthermore, fragmentation or segmentation is also removed.

When compared to the OSI model, the protocol includes 4 of the 7 layers, namely

physical, data-link, network and application layers. Unlike typical implementation

approaches, all layers of the protocol are implemented in hardware (FPGA) using

HDLs. Although soft processors can be created and used within an FPGA, no soft or

hard processors were used in CarRing IV.

82

Figure 4-3: Layers in node and router designs

Two implementations of the protocol were created. They allow the prototype

to function as either a regular network node or a router. Whether be it Virtex5-

or Kintex7-prototype, the router functionality is possible because the prototype has

two ports that is split into separate TX/RX interfaces (4), i.e. can be connected to

two rings. Therefore, a router has two addresses, one from each ring. Consequently,

connecting two rings reduces the overall number of nodes by one. As depicted in

figure 4-3, both implementations include all layers.

Unlike typical approaches, the router includes the same layers as a node. This

allows the router to maintain the same functionality as a node, i.e. can also be used to

send user data. Although each router port has its own physical and data-link layers,

they are exact replicas of the corresponding node layers. Beyond protocol layers, the

two implementations differ drastically in the amount of FPGA resources used to realize

them. Therefore, if a user’s requirements can be satisfied with one ring, this would

reduce to some extent the power consumption, but more importantly the amount of

FPGA resources needed and consequently the cost.

4.2 Functional description

From the user’s perspective, the prototype equipped with the protocol is ready for

immediate use. As depicted in figure 4-4, its usage can be broadly categorized into

direct and indirect. As the name implies, direct use requires the user to introduce

their own custom design, written in an HDL, into the prototype’s FPGA. In this case,

the custom design would use the application layer’s interface to send/receive data.

Moreover, the additional interfaces, described in subsection 4.1.1, can be used as

83

Figure 4-4: Direct and indirect usage of CarRing IV

source/sink for the data being transmitted throughout the network.

On the other hand, indirect use does not require any custom designs or changes on

the user’s side. Rather, the user simply pushes data through the supported interfaces

without interacting with the protocol’s application layer. This is made possible using

one of the protocol’s features, called the transparent mode. Prior to operation, the

user simply sets the destination address. During operation, multiple internal custom

designs handle data transmission to/from the supported interfaces. Additionally, this

feature is also capable of handling multiple supported interfaces simultaneously.

Whether be it direct or indirect use, the protocol’s multicast capability allows

CarRing IV to emulate field buses, e.g. CAN bus. Moreover, when combining both

the transparent mode and multicast, CarRing IV can be used as a backbone for other

networks via its supported interfaces. This allows CarRing IV to be easily integrated

into existing user systems. In short, user components that are logically connected via

CarRing IV are not affected in any respect.

So far, the functionality described above supports event-triggered real-time sys-

tems. In such systems, the occurrence of an event triggers data transmission, e.g. the

availability of new data on a CarRing IV supported interface. On the other hand,

CarRing IV is also capable of supporting time-triggered real-time systems. This is

made possible via the protocol’s SendAt feature as well as its network-wide clock

synchronization. In short, the SendAt feature allows data to be sent at a later point

in time, which is provided by the user. It also allows to periodically send the same

data based on a time interval provided by the user.

84

Figure 4-5: Lab demonstration of CarRing IV

4.3 Application Areas

The project’s application areas are seen in real-time communication systems within

land, air and space vehicles. Whether be it drive- or fly-by-wire, electronic x-by-wire

applications are becoming more widespread in both, the automotive and aeronautic

industries. Distributed embedded electronic applications are the norm in the auto-

motive industry. There are a variety of such applications with some requiring hard

real-time constraints (e.g. braking), while others have less strict constraints (e.g.

infotainment). CarRing IV is able to fulfill the requirements of both types of appli-

cations. Furthermore, due to CarRing IV high bandwidth, it can also handle traffic

generated by both types of applications simultaneously, i.e. they can co-exist and

operate in the same CarRing IV network.

The main case-study for CarRing IV is in-vehicle communication. And for that

purpose, a lab demonstration was created as a proof of concept and functionality.

As show in figure 4-5, both node and router designs are used as well as a variety of

supported interfaces per node. This demonstration highlighted the routing capability

and the transparent mode feature of CarRing IV. Each node is handling data from

multiple interfaces simultaneously and sending the data to another node in the adja-

cent ring. The numerical values written within the node and router symbols resemble

the network-wide address, which is covered in detail in chapter 5.

85

86

Chapter 5

CarRing IV Layers

After providing an overview of CarRing IV in chapter 4, this chapter describes the

protocol and its layers in detail. Each layer is covered in its own dedicated section

below. Prior to describing the specifics of each layer, in what follows, the non layer-

specific information is covered, such as topology or aspects in which the protocol and

its design differs from typical or standard approaches. Moreover, there are protocol

features that incorporate multiple layers to operate. Those have been moved to

their own dedicated chapters, namely network-wide clock synchronization and reliable

multicast.

CarRing IV is a ring-based LAN that is capable of hard real-time communication.

A ring allows for bidirectional communication between network nodes using unidi-

rectional wires, thereby reducing cable length. A CarRing IV network is a set of

coupled physical rings as opposed to logical ones. In the latter, a node does not have

a dedicated and direct point-to-point connection, i.e. a physical transmission path,

with its predecessor and successor within the ring. For example, a star ring topology

where a central hub acts as connector, or a bus ring topology where all nodes are

connected to one cable, i.e. bus. On the other hand, if one node fails in a physical

ring topology, then the network’s operation is halted. Such a problem can be solved

by standard remedies, such as implementing a physical bypass within each node or

via hardware redundancy, e.g. using a dual ring topology where the secondary ring

acts as a backup or reserve.

87

Figure 5-1: Typical inter-layer data-exchange vs CarRing IV

Up to 256 rings, with 16 nodes each, can be created in a CarRing IV network.

Those rings are interconnected using a CarRing IV router. It can connect two rings

to one another and therefore, it has two addresses, one from each ring. Unlike typical

router designs, it has the same number of protocol layers as a regular CarRing IV

node. In other words, the router retains the same functionality as a node, i.e. can

be used to transmit user data. Consequently, connecting rings together reduces the

total number of nodes within a network which in turn, reduces power consumption

and network cables required.

Whether be it a node or router, they both implement the CarRing IV protocol.

It is a connectionless hard real-time communication protocol that consists of 4 layers,

namely physical, data-link, network and application. Although the protocol layers are

based on the OSI model, the protocol design does not strictly adhere to it. The main

two reasons are, reducing processing time which affects latency as well as reducing

the amount of FPGA resources required to implement the protocol.

As shown in figure 5-1, the physical layer interacts with and is fully aware of the

frame and packet formats of both the data-link and network layers. The correspond-

ing inter-layer data exchange is done via shared memory, where each layer has its

own address range. Memory management and the associated design components are

covered in detail in chapter 8.

Within the context of protocol layering, encapsulation and decapsulation per-

formed in CarRing IV, differs from typical approaches where each layer has its own

88

header and possibly trailer. The protocol’s data-link and network layers still have

separate headers each with their own fields. However, those headers are merged into

one during multicast which is covered in chapter 7. The new header is still processed

by both layers for different purposes. Whether be it a merged or two separate head-

ers, the overall number of bits allocated for headers remains fixed, while the internal

structure differs based on the frame’s type. This is possible because frame processing

in the protocol is designed and implemented to always start with the type field of the

frame’s header.

In order to maintain a deterministic behavior, the protocol uses a fixed size frame,

i.e. a fixed payload and header(s) size despite variable internal structure. In addition

to the measures described in the following sections and having a deterministic be-

havior, achieving hard real-time communication is also made possible by deliberately

removing protocol features that negatively impacts latency, i.e. by removing any form

of segmentation, fragmentation or prioritization. More specifically, no segmentation

or fragmentation by a sender node or intermediate router(s). And there is no priority

field(s) within headers and no priority queues when sending or routing user data.

In other words, all user traffic within the network has the same priority, i.e. hard

real-time requirement is assumed for all traffic. Thus, avoiding starvation condition

which is present in priority queuing. Despite having a fixed frame size, using weighted

fair queuing would still introduce delays in user data delivery. Nevertheless, CarRing

IV use is not limited to systems with hard real-time requirement. Due to its high

bandwidth, it can support and be used for systems that have firm, soft and non-real-

time requirements.

Last but not least, the protocol also includes measures that limits the effects of

a misbehaving user application to its own node within the ring. Those measures are

implemented in the data-link and application layers. In short, a user application is

neither allowed to create and introduce new frames into the ring, nor is it allowed to

indirectly block the processing of new incoming frames within a node. The latter is

possible if a user application either delays or does not read a received payload from

memory. In other words, if a user application misbehaves or attempts to exceed the

89

allocated resources for its node, then it would only affect its own node and it will not

disrupt the timing of other nodes and consequently other applications.

5.1 Physical layer

5.1.1 Overview

Similar to other protocols, the purpose of the CarRing IV’s physical layer is as stated

in the OSI model [21]. However, since this body of work also includes a hardware

implementation, the layer description below includes detailed information that are

influenced by the underlying prototype. As described previously, two prototypes

were developed throughout the project’s lifetime, Virtex5- and Kintex7-prototype.

Although no longer current, Virtex5-prototype is still covered due to the valuable

insight gained with respect to the protocol’s behavior and measurements, which are

described in chapter 9.

CarRing IV’s physical layer uses digital transmission coupled with a block coding

technique, 8B/10B encoding [41] for both the previous Virtex5-prototype and the

current Kintex7-prototype. Using a dedicated physical transmission path, the physi-

cal layer transmits the protocol’s data sequentially from one node to another within

the ring. It uses synchronous serial transmission, where serial data is transmitted in

differential Non-Return-to-Zero (NRZ) format.

The only layer that can be replaced is the physical layer with the condition that

the replacement is able to match the requirements and provide the same services as

the original. Those services are covered in the section below. As for the require-

ments, it must have a deterministic behavior and supports a framing interface. More

specifically, the amount of time to send a frame from one node to its successor within

the ring must be fixed. This can be achieved by using a dedicated physical trans-

mission path, where the entire capacity of the corresponding channel is dedicated to

transferring data between two nodes.

As for the framing interface support, this is separate and apart from and not to

90

be confused with the protocol’s frames. In short, data can be transferred between

two nodes either as a stream of data or framed data. The latter adds delimiters to

start and end of the data being transferred. Using a streaming interface implies that

the protocol must introduce its own delimiters to distinguish between two consecutive

frames.

5.1.2 Services provided to higher layers

Similar to OSI model, the layer provides:

∙ Point-to-point physical connections, where each node has a unidirectional phys-

ical transmission path to its successor and predecessor within the ring.

∙ Preserve the transmission order of bits, whether be it Most Significant Bit (MSB)

to Least Significant Bit (LSB) or vice versa.

∙ Error detection and notification of a corrupted frame.

∙ QoS parameters i.e. error rate, transmission rate and transit delay.

Unlike typical approaches, incoming data is not pushed from one layer to another,

rather the physical layer is responsible for encapsulation/decapsulation for both the

data-link and network layers. Moreover, it pushes the necessary information for both

layers to initiate processing of the incoming frame/packet. This includes the memory

addresses of the headers and payload.

Last but not least, CarRing IV prototype can be connected up to only two rings.

Therefore, in case of a router design, the physical layer is not required to provide

explicit identifiers for the underlying ports.

5.1.3 Sub-layers

The physical layer consists of 3 sub-layers, as depicted in figure 5-2. While encoding,

serialization and transceiver are beyond the scope of this thesis, only relevant informa-

tion of both sub-layers are covered. This information is crucial to the understanding

91

Figure 5-2: Sub-layers of CarRing IV’s physical layer

of the protocol’s behavior and performance. In what follows, a brief description of

each sub-layer as well as the transmission medium is provided.

Frame processing

It encapsulates/decapsulates the protocol’s headers and payload. As well as, read-

ing/writing protocol frames from/to shared memory. Using LocalLink (LL) interface

[39], it pushes protocol data to Aurora.

Encoding and Serialization

It is responsible for the encoding and serialization of the protocol’s data. This data is

received from the above layer in chunks i.e. smaller parts. The size of each chunk of

data directly affects the amount of time required to send the protocol’s frame. The

size depends on the properties of the underlying transceiver. Xilinx’s Aurora 8B/10B

[43] is used for this sub-layer.

Transceiver

As the digital data is converted to digital signals, transceiver transmits them to the

next node using the underlying transmission medium. It consists of one or more

physical lanes. The number of lanes affects the size of data chunks described above.

The transceiver used is Xilinx’s GTX transceiver [40] [42].

92

Transmission medium

To support high-speed transmission, i.e. MGTs, network cables that have high band-

width were used. In case of Virtex5-prototype, shielded twisted copper cables of

category 7e. As for Kintex7-prototype, Twinaxial or "Twinax" cables were used.

5.1.4 Functional description

As described previously, the physical layer is responsible for encapsulation/decapsu-

lation and reading/writing the corresponding headers and payload into shared mem-

ory. Figure 5-3 provide a general depiction of the memory allocations and operations

involved in sending/receiving of a frame. The description below follows the same

structure of the sub-layers section.

Frame processing

While sending a frame, this sub-layer only interacts with the data-link layer. As shown

in figure 5-3, the shared memory is composed of six logical areas with read/write

interfaces. Within each area, memory address offset is the means by which headers

and payload are correlated, i.e. form a frame/packet. To distinguish between the

sender and receiver side address offsets, additional information is provided along with

the address offset. This is covered in more detail in chapter 8.

After receiving the address offset, it uses the appropriate memory read interface

to encapsulate and pushes the frame to the next sub-layer. As shown in figure 5-3,

the memory address offset could be pointing to a frame that is carry user data or a

frame that is being forwarded, i.e. belongs to another node. Regardless of the source,

after the frame is pushed to the next sub-layer, the frame processing sub-layer signals

that the corresponding memory allocations can be reused for a new transmission.

On the other hand, the receiver side interacts with both the data-link and network

layers. In order to receive an incoming frame, a memory address offset must be first

fetched. Unlike the sender side, the receiver side is responsible for acquiring it. This

is aided by one of the memory management design components.

93

Figure 5-3: Overview of encapsulation/decapsulation and memory operations

As soon as each header is received, the corresponding address offset and processing

information is immediately pushed to the appropriate layer. This allows higher layers

to initiate processing while the payload is being received. Thus, any time consumed

by processing that overlaps with receiving the payload is effectively masked. De-

pending on the destination of the incoming frame/packet, the corresponding memory

allocations are signaled for reuse by either the receiver side of the application layer

or the sender side of this sub-layer.

Encoding and Serialization

This sub-layer is implemented using Xilinx’s Aurora 8B/10B [43]. While the internal

workings of Aurora are beyond the scope of this thesis, some of its aspects and prop-

erties have direct implications for the protocol’s implementation and performance.

However, it does not affect the protocol’s deterministic behavior. In what follows,

those implications and the associated properties are covered.

Whether be it sending or receiving a frame, the LL interface is used to exchange

data between Aurora and the frame processing sub-layer. Since the protocol is im-

plemented in hardware, processing time is primarily expressed in clock ticks or clocks

as opposed to seconds. Clocks are covered in more detail in chapter 2. Similar to

any data interface, LL can accept only a limited number of bits per clock. This is

referred to as the data-width of the LL interface. Thus, the data-width of LL affects

the number of clocks, i.e. time, required to push or receive a frame to/from Aurora.

94

In turn, the data-width can not be set arbitrarily. Rather, it depends on the

customization and implementation of Aurora. More specifically, it depends on the

number of lanes in the underlying transceiver sub-layer as well as the number of bytes

per lane set within Aurora. Aurora permits either 2 or 4 bytes per lane. In short,

data-width is equal to number of lanes multiplied by the number of bytes per lane.

Other than the number of clocks required to push a frame to Aurora, the number

of bytes per lane directly affects the transceiver latency. In other words, it affects the

number of clocks required for the first chunk of data sent to appear on the receiver

side of the adjacent node. The higher the bytes per lane, the more clocks are required

to send a chunk of data between two adjacent nodes.

Transceiver

Another effect of setting 2 or 4 bytes per lane is the period-value of the design-clock

outputted by Aurora. Fewer bytes per lane results in a smaller design-clock period.

As described in chapter 2, in order for an RTL hardware design to operate successfully

within an FPGA, its timing constraints must be matched. Each RTL hardware design

has a lower limit on clock period beyond which it would fail its timing constraints.

In other words, it would not operate successfully within the FPGA.

On the other hand, to allow any meaningful processing in the protocol’s higher

layers, the first chunk of data received from Aurora must include the frame’s header.

Thus, LL’s data-width must be large enough to include the frame’s header which is

24-bits in size.

In the Virtex5-prototype, the transceiver has a total of two lanes. In order to

accommodate a router design that connects two rings, only one lane is used to transmit

data in a ring. Therefore, Aurora is set to 4 bytes per lane, i.e. 32-bits data-width.

And the corresponding transceiver latency was 61 clocks. The resulting design-clock

period (12.8 ns) is within the limits of the protocol’s RTL hardware design.

As for Kintex7-prototype, the transceiver has 8 lanes. Similarly, to account for a

router design, 4 lanes per ring can be used. Although setting 2 bytes per lane would

amount to 64-bits data-width, the corresponding clock period (3.2 ns) is inadequate

95

for the protocol’s RTL hardware design. Therefore, Aurora is set to 4 bytes per lane,

i.e. 128-bits data-width and the resulting clock period is 6.4 ns. As for the transceiver

latency, its 41 clocks.

Last but not least, the combination of Aurora’s protocol engine and transceiver

latencies causes a pipeline effect in data transmission. In other words, while the first

chunk of data is being transmitted, Aurora still accepts new chunks of data as long

as its internal buffers are not full.

Transmission medium

Each of the aforementioned transceiver lanes consists of TX and RX parts. Those

parts are physically connected to ports within the prototype. In order to form a

physical ring topology, the prototype has a total of four ports. Each port is connected

to either the TX or RX parts of one or more lanes. In the case of Virtex5-prototype,

each port connects to either the TX or RX parts of one lane. As for Kintex7-prototype,

each port connects to either the TX or RX parts of four lanes.

In other words, the transceiver lanes and the underlying physical ports are divided

into 2 TX and 2 RX interfaces. Thus, four cables are used to connect those four

interfaces, where each network cable forms a unidirectional physical transmission

path between two nodes.

5.1.5 Error detection and recovery

In CarRing IV protocol, error detection and recovery is not required at each layer.

The protocol is designed to be used in its entirety, i.e. not partially where one

layer is extracted and used in a different protocol suite, e.g. TCP/IP protocol suite.

Furthermore, the physical layer is the same for all nodes/routers within a CarRing IV

network. Therefore, error detection and recovery is performed once on the physical

layer. As opposed to networks with varying physical layers which requires error

detection to be performed on the next identical layer, e.g. data-link layer.

The 8B/10B encoding inherently includes error detection capability, single-bit

96

and most multi-bit errors [43]. In addition to the built-in error detection, Aurora

also includes 32-bit Cyclic Redundancy Check (CRC). Along with the LL interface,

Aurora also includes an interface that propagates any errors detected to the frame

processing sub-layer. Using Aurora’s interface, the frame drop count is propagated

upwards through layers as statistical information which can then be used by the

network administrator. Based on prolonged tests of the prototypes, no frame errors

where encountered. Those tests included frame generator and checker RTL hardware

design components where an ongoing data transmission was carried out for up to

three full days without pause or break.

If encountered, any error frame is immediately dropped. The dropped frame is

automatically detected, recreated and reintroduced into the ring by the data-link

layer of the node to which the frame belonged.

Nevertheless, if there is a constant source of error either due to the network’s

environment, change of transmission medium (e.g. interference in wireless connection)

or the protocol is applied to another different prototype, then error correction must

be used, e.g. Punctured Turbo Convolutional Coding (PTCC).

5.1.6 Router vs Node design

CarRing IV routers do not have a dedicated prototype. However, they do have a

dedicated design. So far, the descriptions provided above apply to the node design.

In order for a router to connect two rings, all prototype physical ports are activated

and used to transmit frames, while in a node design only half are active.

In the router design, each ring that the router connects to, has its own physical

layer and own memory allocations, i.e. two physical layers. Those two layers are

essentially duplicates of the physical layer in the node design. Therefore, the number

of routers within a ring does not affect its timing, i.e. the deterministic behavior is

maintained.

The only difference between router and node physical layers is the sender side

of the layer. Within a router, each layer’s sender side is able to access the memory

allocations of the other physical layer. Thus, reducing the overhead, i.e. processing

97

time, associated with routing.

5.2 Data-Link layer

5.2.1 Overview

As described above, the physical layer exhibits a deterministic behavior while trans-

mitting data from one node to another. While each node has a dedicated direct

point-to-point connection to its successor and predecessor within the ring, the con-

nection is unidirectional. In other words, each node must also transmit frames that are

destined for other nodes. This effectively makes the underlying transmission medium

a shared resource between all nodes within the ring. And each node has a secondary

function similar to that of a repeater. More specifically, frames received from the

predecessor node are sent again to the successor node, i.e. pushed back again into

the ring.

To maintain the deterministic behavior of the protocol, access to the underlying

transmission medium, i.e the shared resource, must be controlled. This is the main

purpose of the data-link layer. It is also capable of detecting dropped frames in the

physical layer. Such dropped frames are recreated and reintroduced into the ring by

the data-link layer.

Although both unicast and multicast transmission are supported, broadcast trans-

mission is excluded from the protocol. It is considered as a special case multicast

transmission, where all nodes within the network belong to the same multicast group.

Due to data-link layer’s SendAt feature, CarRing IV is also able to support not

only event-triggered systems, but also time-triggered ones. In short, the feature allows

periodical transmission of the same frame based on a specified time interval as well as

delayed transmission using a specified time value. Both the time value and interval

are given by the user.

In addition to node and router, the data-link layer adds another functional distinc-

tion, primary and secondary. Only one primary or primary node is allowed per ring.

98

In short, it is responsible for initializing the ring, which includes assigning addresses

and distributing other metrics that are required for network operation. Since a router

has the same functionality as a node, it too can be a primary. All other nodes and

routers within the ring are considered secondary. Secondaries do not have special

functionality. Last but not least, transmitting user data across rings is delegated to

the network layer. In other words, there are no data-link layer switches in CarRing

IV. Rather, a router that is capable of connecting two rings.

5.2.2 Services provided to network layer

When compared to the OSI model, the data-link layer of CarRing IV only supports

connectionless mode and provides the following services:

∙ Data-link addresses where two types of addresses are supported, unicast and

multicast.

∙ Framing using fixed size frames that include a header, but neither include nor

require a trailer. While this service is provided by the data-link layer, the

encapsulation/decapsulation task is delegated to the physical layer as described

previously.

∙ Both acknowledged and unacknowledged data transmission.

∙ Acknowledgment notification. In the case of Acknowledgment, a node or router

is able to confirm (with a positive acknowledgment) or negate (with a negative

acknowledgment) the reception of the corresponding frame’s payload. In addi-

tion to positive and negative acknowledges, the data-link layer also notifies the

upper layer if no acknowledges are received within a certain time limit.

∙ Destination found notification. In both acknowledged and unacknowledged data

transmission, the data-link layer notifies whether the destination was found.

∙ Reliable multicast. This is covered in detail in chapter 7.

∙ SendAt which allows periodical and delayed transmission of a frame.

99

∙ Acquiring and providing the node’s or router’s network-wide address.

Last but not least, the data-link layer does not include error detection, notification

and recovery. As previously described, such tasks are delegated to and performed once

at the physical layer.

5.2.3 Access control

The access method used by the data-link layer of CarRing IV falls under the category

of controlled-access protocols. This is in contrast to random-access and channelization

protocols, where they utilize collision detection and avoidance techniques, or some

form of frequency, time or code division techniques.

After power-up, i.e. at the beginning of network operation, each node creates and

introduces its own frames into the ring. Regardless whether they are carrying user

data, those frames are continuously circulating the ring. Each node must create only

a fixed number of frames (3). Once all nodes create their own frames, no new frames

are created during network operation. Furthermore, no new nodes can be introduced

into the network after power-up. This results in a fixed number of continuously

circulating frames, which in turn resemble a shared resource used by all nodes within

a ring.

CarRing IV has two modes of operation, isochronous and anisochronous. The

operation mode can not be altered during network operation, i.e. it is set prior to

power-up. In isochronous mode, a node can send user data using only its own frames.

In other words, the node must wait for one of its own frames to circulate back to it

and use that frame to send user data. On the other hand, the anisochronous mode

allows a node to use frames owned by other nodes to send user data. This mode

defines conditions and scenarios in which such frame-reuse is permitted.

In essence, the access method is quite similar to the reservation method within

the category of controlled-access protocols. Rather than requiring each node to make

a reservation before sending user data, a fixed number of reservations are made au-

tomatically at the beginning of network operation. Thus, deterministic behavior is

100

achieved due to the fixed number of circulating frames and having a fixed size frame.

This allows CarRing IV to have a hard upper limit on latency.

With respect to timing behavior, both modes are classified as hard real-time. As

described in section 3.1, isochronous real-time maintains a more strict timing behavior

than abiding by a hard upper limit. While being more deterministic, this negatively

impacts performance.

Within the context of CarRing IV, the isochronous mode offers higher precision,

while anisochronous offers higher performance. The term precision refers to lower

variance in latency. Since the anisochronous mode enables frame-reuse, the corre-

sponding performance metrics are impacted by the level of activity of other nodes

within the ring. In other words, the fewer overlapping/simultaneous user send re-

quests, the higher frame-reuse and consequently performance is achieved. In case

of the highest possible per-node user send requests, the difference between the two

operation modes is greatly diminished. Within the context of performance metrics,

the anisochronous mode’s lower limit is that of the isochronous one.

Last but not least, CarRing IV’s access method does not require network-wide

clock synchronization. Nevertheless, as described in chapter 6, such a synchronization

is introduced and implemented with the main purpose being the extension of CarRing

IV’s support for time-triggered communication.

5.2.4 Addressing and frame format

Two types of addresses are supported by the protocol, unicast and multicast addresses.

The latter is covered in chapter 7. As described previously, broadcast addresses are

considered a special use-case of multicast addresses and are therefore excluded.

The data-link address, also referred to as MAC address, is unique within the ring.

It is 4-bits in size and presented as a decimal digit, i.e. 0 to 15. Therefore, a ring can

have up to 16 nodes. It is assigned automatically by the primary node during ring

initialization. Starting with 0 for the primary node, MAC addresses are assigned with

(+1) increments for the secondaries throughout the ring. In other words, the MAC

address is based on the node’s position within the ring and whether the underlying

101

Figure 5-4: Generic Frame format

unidirectional wired connections reflect a clockwise or counter-clockwise flow of data.

The data-link layer uses frames of fixed size. The format of such a frame is

depicted in figure 5-4. Since frame errors are handled in the physical layer, no trailer

is required. Trailers are typically used for some form of checksum or CRC. As for the

header, in what follows, a brief description of each field is provided.

∙ Type. It is a 4-bit field that defines the type of data that the frame is carrying.

Some frame types can be used to carry user data, while others are used internally

by the protocol.

– Reset. Only the primary can use this frame type. It is used during ring

initialization i.e. at the beginning of network operation. It is for protocol

internal use only.

– Transport. After ring initialization, this is the default type, when no user

data is being transmitted. It is for protocol internal use only.

– Ethernet Service. In case of unacknowledged data transmission, the user

can set this type.

– Acknowledged Point To Point. It is set by the user to indicate that an

acknowledge is required to confirm data reception.

– Request. Similar to the type above, it can be set by the user and requires

an acknowledge. Additionally, it indicates that a response is required from

the receiver.

– Response. This is the counterpart of the Request type above. It also

requires an acknowledge.

102

– Positive Acknowledge. It is only used internally by the protocol in asso-

ciation with the Acknowledged Point To Point, Request and Response

types.

– Negative Acknowledge. It is the counterpart of the positive acknowledge

type. Both types can not be set by the user.

– Multicast. It is used for multicast transmission, which is covered in chap-

ter 7.

∙ Owner MAC (OMAC). Each node creates and introduces its own frames into

the ring. This 4-bit field holds the MAC address of the owner node. After ring

initialization, its value is fixed i.e. it is read-only.

∙ Frame identifier (ID). Since each node creates three frames, this 2-bit field

is used to distinguish those frames from one another. Its value is also fixed i.e.

read-only.

∙ Public Access (PA). It is a 1-bit field that is used as part of the public access

feature. In short, the feature allows other nodes to also the use frame when the

owner node has no user data to transmit.

∙ Source MAC (SMAC). Since frames can also be used by other nodes, this

4-bit field also holds MAC address of the source node that is sending the user

data.

∙ Destination MAC (DMAC). It is a 4-bit field that holds the destination MAC

address for the user data being transmitted.

∙ Retry. Although not ideal, the protocol allows for acknowledged data trans-

mission to be retried using this 1-bit field.

∙ Embedded Acknowledge (EACK). This 2-bits field is used as part of the

i-to-j feature.

103

Figure 5-5: Typical sub-layers of data-link vs of CarRing IV

∙ Skip Acknowledge (SACK). During an acknowledged data transmission, this

1-bit field is used to explicitly indicate to the data-link layer of the receiver that

no positive or negative acknowledges are required.

Although figure 5-4 reflects the payload size, the size changed based on which

prototype was used. However, the protocol timing was not affected despite those

changes. In short, the frame in its entirety required a fixed 16 clocks to be pushed

to Aurora using its LL interface. The changes as well as the corresponding reasoning

behind them are covered in chapter 9.

Last but not least, frames have a fixed size, but a variable internal header struc-

ture. Figure 5-4 depicts a generic frame header structure which applies to most of the

frame types i.e. Transport, Ethernet Service, Acknowledged Point To Point,

Request, Response, Positive Acknowledge and Negative Acknowledge. As for

Reset and Multicast, those are covered in section 5.2.6 and chapter 7, respectively.

5.2.5 Sub-layers

Typically, the data-link layer is divided into two sub-layers, Data Link Control (DLC)

and MAC. The upper sub-layer, DLC, can have either a connectionless or connection-

oriented protocol. It provides services such as framing, flow and error control. While

the lower sub-layer, MAC, controls and coordinates the access to the link, i.e. under-

lying physical layer and transmission medium.

As show in figure 5-5, the data-link layer of CarRing IV is also divided into two

sub-layers. However, the purpose and functionality of those sub-layer differ from the

typical approach. A brief description of each sub-layer is provided below.

104

ASA

The protocol supports acknowledged data transmission, where the receiver node sends

back a positive or negative acknowledge to the sender node. The Acknowledgment

and SendAt (ASA) sub-layer is responsible for tracking and handling those acknowl-

edgments as well as retrying the transmission if either a negative or no acknowledge

is received within a certain time limit. The latter is attempted only if its explicitly

requested by the user. Moreover, it is also responsible for retransmission in case of

multicast, which is covered in chapter 7.

In addition to acknowledgment, this sub-layer also includes the SendAt feature. In

short, this feature enables CarRing IV to support time-triggered systems by providing

periodical and delayed data transmission capabilities.

ACF

The Access Control and Framing (ACF) sub-layer is more or less the equivalent of

both the DLC and MAC sub-layers described previously. In addition to providing the

framing service and controlling access to the underlying link, it is also responsible for

node initialization. And in the case of the ring’s primary node, it is also responsible

for ring initialization. In short, initialization includes acquiring a node’s address and

other metrics crucial for the network’s operation.

5.2.6 Functional description

This section is structured based on network operations encountered during run-time.

Other than ring initialization and data transmission, this section also covers the

SendAt, public access and i-to-j features.

Ring Initialization

As the name implies, this is the very first network operation which takes place imme-

diately after power-up. During ring initialization, only the primary can send frames,

while secondaries passively wait. Within the data-link layer, initialization is han-

105

Figure 5-6: Reset Frame format

dled by the ACF sub-layer. It is unaffected by which operation mode is used, i.e.

isochronous or anisochronous.

Ring initialization is a multi-step process that is divided into three phases. Those

phases are accomplished sequentially, i.e. one phase must be finished before the

next one can start. Therefore, the primary uses only one frame of type Reset to

initialize the ring. In what follows, this frame is referred to as the Reset frame.

As described previously, while maintaining an overall fixed header size, the internal

header structure depends on the frame’s type. Figure 5-6 depicts the header structure

of a reset frame. Prior to describing each phase within the ring initialization process,

a brief description of each new header field is provided below.

∙ Phase. This 2-bits field indicates which phase of the ring initialization process

is engaged, i.e. bits reflects a value of 0 for Assign address, 1 for Circulation

period or 2 for Clock synchronization.

∙ State. It is 2-bits that is used as part of the network-wide clock synchronization,

which is covered in chapter 6.

∙ MAC. Similar to OMAC, it is a 4-bits field that is used to set the MAC addresses

of secondaries.

∙ Ring Address (RA). It is an 8-bits field that is used to set the network layer

addresses of secondaries.

Phase One - Assign Address. Two tasks are accomplished during this phase,

assigning addresses to secondaries as well as calculating the circulation period. The

106

primary starts by creating a reset frame. In addition to setting the type field to

Reset, the phase field is set to Assign address and MAC address field is set to 0.

As for the ring address field, it is set based on the configuration data within the

prototype. In short, unlike MAC addresses, ring addresses are configured statically by

the user in the primary node. Thus, the assign address phase not only sets a node’s

MAC address, but also its ring address i.e. network layer address.

As soon as the reset frame is sent, an internal counter is started within the primary.

Once the reset frame circles back to the primary, the counter is stopped and its value

is used as the circulation period. In other words, the circulation period reflects how

many clocks are required to traverse the ring. This value is used by each secondary

when creating their own frames as well as for network-wide clock synchronization.

When a secondary receives the reset frame, it reads the MAC header field and

increments its value by one. In addition to the node’s MAC address, the resulting

value is also used to update the MAC field before sending the reset frame to the next

node in the ring. As for the ring address field, it is copied and used as the node’s

ring address. The combination of both addresses constitute the node’s network-wide

unique address.

Phase Two - Circulation Period. In this phase, the primary distributes the

circulation period calculated in the previous phase. When the reset frame reaches

the primary, its phase field is update to Circulation period. And the circulation

period is set using the frame’s payload. The secondaries simply copy the circulation

period in the payload and send the reset frame to the next node in the ring.

Phase Three - Clock Synchronization. The last phase is part of the network-

wide clock synchronization. The state header field is used in this phase, which is

covered in chapter 6.

As soon as the last phase is finished, the primary deletes the reset frame. There-

after, the primary as well as each secondary is allowed to create and introduce their

own frames into the ring. In order to avoid burst-like behavior, when transmitting

user data, a node does not create and introduce its three frames into ring one after the

other, i.e. consecutively. Rather, an artificial gap is used between frames. Its value

107

is equal to the circulation period divided by three. In other words, each node waits

(CirculationPeriod/3) clocks before creating and introducing the next frame into the

ring.

Furthermore, this artificial gap also accounts for the scenario, where the user might

not be fast enough to use all node’s frames consecutively. In what follows, the ability

to use a frame to send user data is referred to as a sending opportunity. Since the

anisochronous mode allows nodes to use frames owned by others, it has more sending

opportunities than the isochronous mode.

Last but not least, the newly created frames use the Transport type. It is the

default type, when there is no user data being transmitted. In other words, once a

user data transmission is concluded, the corresponding frame’s type is always updated

to Transport. In what follows, such a frame is referred to as Transport frame.

Unacknowledged data transmission

This type of data transmission is reserved for scenarios where confirmation is not

required upon data reception. For that purpose, the Ethernet Service frame type

is used. Once the frame’s payload is copied into the receiver’s memory, the receiver

can immediately update the frame type to Transport and send the frame back into

the ring.

Within the data-link layer, it is handled by the ACF sub-layer. This includes

acceptance criteria and frame processing.

Acknowledged data transmission

Unlike the previous type of data transmission, this one requires a confirmation from

the receiver node. It is intended for scenarios, where increased reliability is required.

Furthermore, it also includes a limited support for retransmission, which in turn

is triggered by either receiving a negative acknowledge or no acknowledge within a

certain time limit, i.e. timed-out. This time limit is based on the circulation period

described above. Since retransmission negatively impacts latency, it is not performed

automatically, rather it must be explicitly requested by the user, i.e. part of the user’s

108

send request.

In order to maintain a hard upper limit on latency, acknowledgments are only

supported within the sender’s ring, i.e. they do not traverse rings. In other words,

beyond sender’s own ring, the data transmission is treated as an unacknowledged one.

In such a scenario, the first intermediate router, i.e. within the sender’s ring, still

sends an acknowledge back to the sender. However, all other intermediate routers as

well as the receiver do not send back an acknowledge to the sender or any intermediate

router along the path.

Within the data-link layer, the acceptance criteria remains in the ACF sub-layer,

while frame processing is split between both sub-layers. ACF handles the frame trans-

mission. And the ASA sub-layer is responsible for handling the acknowledgments and

retransmission. If retransmission is required, ASA reissues the send request that was

originally made by the user. From the ACF perspective, it looks like another user

send request.

Positive and negative acknowledges are not issued directly by the user. Rather,

they are issued internally by the protocol. They are based on whether the user on the

receiver end is able to read the frame’s payload from memory in time. Since nodes also

function as a repeater where they are constantly transmitting other frames, a slow

or malfunctioning user application might otherwise block data transmission, which in

turn negatively impacts the network’s timing.

Unlike typical approaches, acknowledges in CarRing IV are immediate. The same

frame that is carrying user data is used to carry the returning acknowledge. In other

words, no delayed acknowledges are allowed, where a separate frame is required to

send an acknowledge. This is referred to as an Immediate Acknowledge. And it

eliminates the need for Sequence Numbers, which is typically required for handling

acknowledgments. In case where retransmission is explicitly requested, acknowledges

are tracked and processed using a frame’s OMAC and ID, which remain constant i.e.

read-only header fields. The combination of those two values uniquely identifies

frames circulating within the ring.

Last but not least, five frame types are used in acknowledged data transmis-

109

sion. Returning acknowledges use either the Positive Acknowledge or Negative

Acknowledge frame types. While Acknowledged Point To Point, Request and

Response are used to carry user data, i.e. set by the user when initiating its send

request.

Public access feature

This is one of two features that are exclusive to the anisochronous mode. It is handled

by the ACF sub-layer and uses the public access field within the frame’s header to

signal that the corresponding frame can be used by other nodes within the ring. The

basic premise is that a node might not be operating at full capacity at all times. In

other words, not all the node’s three frames are continuously used for data transmis-

sion.

Two conditions must be satisfied before a frame can be reused, the frame’s type

is Transport and its public access field is set to 1. Thereafter, it can be used for

both acknowledged and unacknowledged data transmission. In order to maintain

ownership of the frame, certain header fields are treated as read-only by other nodes.

Those fields are OMAC, Frame identifier (ID) and Public Access (PA).

As soon as user activity resumes within the owner node, i.e. a new user send

request is issued, the corresponding node automatically reclaims its frame(s). If

the frame is not being used by another node, i.e. its type is Transport, then it is

immediately reclaimed once it circles back to the owner. On the other hand, the

owner updates the frame’s public access field to 0, which signals that the frame can

no longer be reused by other nodes. Once the corresponding data transmission is

concluded, the frame can be reclaimed and used by its owner.

This feature significantly increases the network’s performance at the expense of

increasing the latency for some nodes within the ring. Nevertheless, the hard upper

limit on latency is still maintained.

110

Figure 5-7: i-To-j feature illustration

i-To-j feature

This is the second exclusive feature of the anisochronous mode. Similar to public

access, it is also handled by the ACF sub-layer. Unlike the previous feature, it neither

requires the explicit permission of the frame’s owner node, nor does it require a period

of inactivity to reuse a frame. As illustrated in figure 5-7, a node i can reuse a frame

to transmit data to node j, if the following conditions are satisfied.

∙ The frame’s owner is not located between node i and j. Or if node j is also the

owner of the frame. Using the frame’s OMAC field, node i is able to deduce the

owner’s position, because MAC addresses are assigned incrementally within the

ring.

∙ The frame’s type is either Transport, Positive or Negative Acknowledge.

– Two scenarios can result in a circulating transport frame. Either due to

user inactivity within the owner node. Or due to a concluded unacknowl-

edged data transmission, where the corresponding receiver node has up-

dated the type field from Ethernet Service to Transport before sending

the frame back into the ring.

– As for the other two frame types, they resemble a returning acknowledge

that is sent from the corresponding receiver back to the sender.

111

In case of a returning acknowledge, frame reuse is made possible due to the way

acknowledges are tracked and processed within the ASA sub-layer. The only relevant

information within a returning acknowledge is the frame’s OMAC, ID and whether it is

a positive or negative acknowledge. The rest of the header fields and payload can be

modified including packet header.

Since both OMAC and ID are read-only fields, the EACK 2-bits field is used to embed

the aforementioned positive or negative acknowledge. Thus, allowing frame reuse

for a returning acknowledge. The first bit of the field indicates whether there is an

embedded acknowledge within the header. And the second bit indicates whether the

embedded acknowledge is positive or negative.

Due to the position-based condition, the frame reuse enabled by this feature is

limited to unacknowledged data transmission. This can either be a user send request

with Ethernet Service type. Or a Acknowledged Point To Point, Request and

Response types with SACK set to 1 i.e. transmission of a routed packet. As described

previously, such an acknowledged data transmission is treated as unacknowledged

one beyond the sender’s ring. More specifically, the i-to-j feature is disabled for a

sender targeting a receiver within another ring. However, it is enabled for the router

within the receiver’s ring. Since acknowledges are skipped, such a router is able to

use the feature not only for Ethernet Service, but also for Acknowledged Point

To Point, Request and Response.

The aim of this feature is to keep the frame reuse transparent to the owner. Due

to the aforementioned conditions and limitation, the performance increase due to this

feature is less than public access. On the other hand, it does not increase the latency

for any node within the ring and the hard upper limit on latency is intact.

Last but not least, frame reuse can be compounded because the two features can

be engaged simultaneously. In other words, the i-to-j feature can be applied to an

ongoing data transmission that was enabled due to the public access feature. In figure

5-7, consider that node p is using the frame due to the public access feature. Given

that the above conditions are satisfied, node i can reuse the same frame, due to the

i-to-j feature, to send data to node j. In such a scenario, SMAC is used instead of OMAC

112

to check for the frame’s i-to-j feature eligibility.

SendAt feature

The main purpose of this feature is to extend CarRing IV support to time-triggered

systems, i.e. not just event-triggered ones. It is handled by the ASA sub-layer and

it can be used in both operation modes, isochronous and anisochronous. Typically,

sending user data is done as soon as possible, i.e. with the next sending opportunity.

In other words, as soon as the node’s own frame circulates back and reaches the node’s

physical layer, then it is used to transmit user data. In case of the anisochronous

mode, this also includes frames owned by other nodes.

This feature adds two time-specific data transmission options. The first option is

to transmit user data at a future point in time. While the second option is to transmit

the same user data periodically. In both options, the time value is provided by the

user as part of the send request. Creating and initiating a send request as well as the

user interface is covered in chapter 8. In short, the user send request must include

three values.

∙ SendAt. It is a 2-bits value that indicates whether the corresponding user

data must be sent immediately(value of 0), at a future point in time(1) or

periodically(2).

∙ Time interval. This 40-bits value is used in combination with SendAt values

1 and 2.

∙ State. Using this 1-bit value, the user can either initiate(0) or abort(1) a data

transmission.

As soon as the send request is received via the user interface, an internal counter

is started using the time interval value, given that the State value is 0 and SendAt

value is either 1 or 2. There are two internal counters, one associated with SendAt(1)

and another with SendAt(2). Once the time interval elapses, then the send request

is pushed by ASA to the ACF sub-layer for transmission. Thereafter, in case of a

113

delayed transmission (SendAt=1), the internal counter is reset. On the other hand,

the internal counter is restarted in case of periodical transmission (SendAt=2).

The user is also able to abort a previously issued send request given that it was

either a delayed or periodical one. This is accomplished by issuing another send-at

request with the same SendAt value but a State value of 1. As long as the correspond-

ing time interval has not elapsed, then the transmission is aborted. Otherwise, only

the periodical transmission would be aborted. Note that the aforementioned send-at

request does not require user data, i.e. a payload pushed with it.

In order to support delayed and periodical transmission, two additional memory

allocations are used to store user data. Therefore, if multiple consecutive send-at

requests were made prior to the time interval elapsing, then they would overwrite the

previous send-at requests. As a result, the internal counters will be set based on the

latest time interval and the corresponding user data in memory will be overwritten

as well.

Recreating transport frames

The ACF sub-layer uses the artificial gap described above as part of a timeout-based

method to recreate dropped frames by the physical layer. Since frames can be dropped

by any node within the ring, the ACF sub-layer uses a continuously running internal

counter that is based on the artificial gap. Once a frame is not received within the

time limit, it is recreated and reintroduced similarly to the one used during ring

initialization. In other words, the dropped frame is recreated and reintroduced based

on the artificial gap and the frame’s identifier. Therefore, the original frame succession

within the ring and consequently the network’s timing behavior is maintained.

5.2.7 Router vs Node design

Similar to the physical layer, the router design has two data-link layers. While the

ASA sub-layers are an exact duplicate of the node design, the ACF sub-layers differ

when processing a frame that contains a packet being routed. While the protocol

114

timing is maintained, there are additional scenarios considered within the sub-layer.

Within the receiver side of the ACF sub-layer, the frame is processed similar to a

one destined for the router. In case of unacknowledged transmission, the frame’s type

is updated to Transport before being pushed back into the ring. However, in case

of acknowledged transmission, then two scenarios are distinguished depending on the

header field, SACK.

If the field is not set (i.e. 0), then a positive acknowledge is sent back by the

router to the sender node. Since the corresponding packet is being routed and not

received by the router, then ACF generates the positive acknowledge instead of ASA.

As for negative acknowledges, they are only generated by ASA, if the packet is being

received and SACK is unset.

On the other hand, if SACK is set(1), then it is treated similar to an unacknowledged

transmission, i.e. converted to a Transport frame. In both unacknowledged and

acknowledged transmissions, the frame is forwarded without any modifications, if the

router is unable to route the packet.

As for the sender side of the ACF sub-layer, it includes an additional scenario that

is part of network-wide clock synchronization. This is covered in detail in chapter 6.

5.3 Network layer

5.3.1 Overview

The data-link’s sub-layers, features and addressing mechanism provides for data trans-

mission within the same ring, i.e. local destinations. Not dissimilar to the OSI model

[21], the main purpose of the network layer is to provide features and addressing

mechanism that allows for across ring data transmission. It extends a CarRing IV

network from a size of one ring with 16 nodes to 256 rings interconnected by routers.

It supports both unicast and multicast routing. The latter is covered in chapter 7.

The network layer includes measures taken to maintain a deterministic behavior and

consequently a hard upper limit on latency. This includes the case of acknowledged

115

transmission and routed packets described previously.

In addition to the measures covered in sections below, the ability to prioritize

user data is removed. More specifically, no priority header fields or priority queues

are used. Other than the negative impact on latency, prioritization is considered as

a patch or counter measure to possibly failing to match the real-time requirements

of a system. In practice, there are systems where certain nodes have less demanding

user applications than other nodes. In other words, a mix of user applications that

have hard, firm and soft real-time requirements. The latter tolerates the occasional

delayed transmission. However, the priority fix is rendered irrelevant as soon as all

user applications have hard real-time requirements.

5.3.2 Services provided to application layer

Similar to the data-link layer, the network layer also operates in a connectionless-mode

and it provides the following services:

∙ Packetizing. Same as a frame, packet has a fixed size and include a header,

but no trailer. The encapsulation/decapsulation task is also delegated to the

physical layer.

∙ Network address which essentially distinguishes rings from one another, i.e. a

ring addresses.

∙ Unicast and multicast routing. The latter reuses the data-link multicast address

and is covered in chapter 7.

∙ The network layer elevates some the functionality of data-link and makes it

accessible to the application layer.

– Acknowledged and unacknowledged data transmission.

– Acknowledgment and destination found notifications. Note that such no-

tifications do not apply for routed packets.

– SendAt feature

116

5.3.3 Addressing and packet format

The network layer address is used to uniquely identify rings. It is 8-bits long and

referred to as ring address. Unlike the OSI model [21], the addressing of this layer is

not independent of the data-link addressing and does not uniquely identify a node.

Rather, the combination of ring and MAC addresses form the node’s address, which

in turn uniquely identifies a node within a CarRing IV network. Therefore, there is

no need for an auxiliary protocol that maps addresses between the two layers i.e. no

Address Resolution Protocol (ARP)-like functionality is required.

The combined address is 12-bits in size and is represented using a dotted-decimal

notation i.e (Ring address).(MAC address). The resulting address space is 212 or 4096.

Unlike the node’s MAC, the ring address is not dynamically generated during ring

initialization, rather it is statically set as part of the primary node’s configuration

data. As described previously, it is assigned to nodes during initialization. Within

the same ring, all nodes have the same ring address.

Figure 5-8 depicts the packet format. Since no fragmentation or segmentation is

allowed, the network layer uses packets of fixed size, i.e. similar to data-link. A trailer

is also not required because errors are handled by the physical layer. Unlike frames,

a packet has a reduced header which includes only the following fields:

∙ Source Ring Address (SRA). It is an 8-bits field that holds the ring address

of the source node that is sending the user data.

∙ Destination Ring Address (DRA). This 8-bits field is the counterpart of

SRA and holds the destination ring address for the user data being transmitted.

There are no explicit type and retry header fields. Rather, they are handled

internally by the network layer. The layer converts them into their respective frame

header fields counterparts upon sending and vice versa upon receiving user data.

While the retry field conversion is straightforward, not all frame types are available

as packet types. More specifically, only the following packet types are available:

∙ Ethernet Service

117

Figure 5-8: Packet format

∙ Acknowledged Point To Point

∙ Request

∙ Response

∙ Multicast

This internal conversion is transparent to the application layer. From the per-

spective of the application layer, all fields must be set and used when transmitting

data, i.e. SRA, DRA as well as packet type and retry fields. Limiting the availability

of certain frame types, effectively limits the user application control over the internal

protocol processes. Otherwise, an unexpected Reset or Acknowledge would disrupt

the internal data flow within the layers. Moreover, a smaller packet header reduces

overhead and consequently improves the protocol’s performance.

5.3.4 Local vs non-local destination

With the introduction of ring addresses, we identify two types of target nodes or

destinations. When processing a user send request, these types are distinguished

based on the sender’s ring address and DRA field of the packet header. If they have

the same value, which is the case when the sender and receiver nodes belong to the

same ring, then the destination is said to be local, otherwise it is non-local.

The operation modes, described previously in the data-link layer, do not directly

affect the behavior of the network layer. Rather, it is indirectly affected by whether

118

the destination is local or non-local. This distinction has implications in terms of the

number of sending opportunities available for a packet. More specifically, one of the

anisochronous mode features is disabled for non-local destinations.

The i-to-j feature is implemented for local destinations, since it only takes into

account MAC addresses to enable frame reuse between nodes. Therefore, it can result

in a false-positive, if used for a non-local destination. This is due to MAC addresses

being unique only within the same ring, i.e. they constitute only a part of a node’s

address.

5.3.5 Static topology and routing protocol

Within a hard real-time system, the number of nodes remains constant. Any change

to the system’s internal components is performed offline. Thus, the number of ap-

plications, communication requirements and QoS constraints do not change during

run-time. Furthermore, the senders, within the communication system, have a fixed

number of destinations.

This static topology allows for the use of static routing. Due to the static nature

of the network, the routing protocol does not require any exchange of information

between nodes. Therefore, facilitating this exchange is not one of the roles of this

routing protocol, neither is the maintenance of the router’s convergence state. As a

result, network traffic is entirely dedicated to user applications.

The information needed to route a packet is handled only by the router. This

information is represented by a routing table that is calculated prior to network

operation. Due to routers being able to connect only two rings, no explicit forwarding

table is required, i.e. it is implicit. Furthermore, the possible destinations of each

node in the network can be identified before deployment. Thus, routing paths do

not change during run-time and consequently, computing paths is not done during

run-time.

Since there is no exchange of information between routers and the network topol-

ogy is static, the routing process functions are not part of the router functions. In

other words, no auxiliary protocols required that update the routing table based on

119

changes in the underlying network topology. Thus, the router functions are simplified

to include only forwarding functions. Those functions are limited to route look-up and

packet forwarding. This effectively lowers the processing overhead within a router.

When a node sends data to a non-local destination, it does not need to know

the address or number of routers within the ring. Rather, the router checks each

circulating packet against the acceptance criteria as well as the routing table. Based

on the outcome of the routing decision, packet forwarding is performed. The ability

to examine each packet within the ring, stems from the way frames are handled on

the data-link layer. In other words, as continuously circulating frames reach a router,

their corresponding packets are examined.

5.3.6 Route computation algorithm and routing table

The protocol provides real-time guarantees for bandwidth, delay and jitter, which we

define as our QoS. Prior to deployment, those QoS constraints are examined for each

user application to check whether the network is capable of meeting them.

Within the same ring, user application requirements are checked against the ring’s

QoS attributes. Those vary based on the operation mode and size of the ring. However,

for those user applications who have non-local destinations, a route must be selected.

The route selection is based on a computation algorithm that takes into account the

QoS constraints of the user application. Therefore, link costs are calculated in terms

of QoS constraints.

In order to adapt to the multiple attributes of the QoS, two algorithms are consid-

ered depending on the dominant factor with respect to the user application. If delay

and jitter are more dominant than bandwidth, then Constrained Shortest Path

First is used. In other words, for delay and jitter the additive property is used to

calculate the link cost between two nodes to determine the shortest path. As for the

term Constrained, it refers to the initial step of the algorithm where the delay of each

link that does not have adequate bandwidth for the user application is temporarily

set as infinite, i.e. marked as unavailable. Therefore, it is a bandwidth constraint.

The second algorithm is used if bandwidth is more dominant than delay and jitter.

120

It is the Constrained Widest Path First, where the non-additive concave property

is used to calculate link cost. Similarly, in the initial step, the respective residual

bandwidth of links with inadequate delay is temporarily set to zero, i.e. marked as

unavailable. Therefore, it is a delay constraint.

Regardless of the dominant factor, the least hop count variation of the corre-

sponding compute algorithm is used. As for the shortest path first algorithm, the

centralized approach [27] of Dijkstra is used, because there is no change in link cost

over time.

As for routing tables, they are stored only in routers. A routing table is a fixed

size look-up table of 256 entries, where each entry has a size of one bit, i.e. no need

for Content-Addressable Memory (CAM). This fixed size is due to the ring address

size, which is 8-bits. As for the one-bit entry size, it is due to router being able to

connect only two rings, i.e. no port/interface specific information is required as part

of the routing table or as part of a separate forwarding table.

A one-to-one mapping is established between all possible ring addresses and the

routing table entries. Therefore, each entry corresponds to a ring address and the

bit value stored within the entry resembles the routing decision. The bit value is

interpreted as follows:

∙ 0: Return packet to the same ring

∙ 1: Route packet to the other ring

The bit value of each entry is set based on the result of the routing computation

algorithm. And the default value is ’0’.

5.3.7 Functional description

Unlike previous layers, the network layer functionality differs drastically between node

and router. Therefore, this sub-section is split into two parts.

121

Node

In CarRing IV, a node does not store, pull or push any routing information. Therefore,

the network layer functions are simplified.

Internally within the sender-side of the layer, processing send request is halted

until the data-link layer signals that ring initialization is done. However, such a halt

is not required in the receiver-side.

Once normal operation is started, the sender-side is responsible for creating the

packet header as well as converting the type and retry header fields into their re-

spective frame header fields. Similar to the data-link layer, the encapsulation and

decapsulation is delegated to the physical layer.

On the other hand, the acceptance criteria is handled by receiver-side. After

normal operation starts, there are frame types used when transmitting user data that

do not have packet type counterparts. More specifically, Positive and Negative

acknowledges. When receiving such frame types, the acceptance criteria of the

network layer is ignored, i.e. they are handled entirely by the data-link layer.

As for local and non-local destinations, the only distinction is that the latter

requires the sender-side to signal to the data-link layer that the i-to-j feature must be

disabled for the corresponding send request. This is required to maintain separation

of layers, i.e. ring addresses are outside the scope of the data-link layer.

Router

As described previously, the number of ports within the prototype is limited to two.

As a result, a router routes and maintains packets between two rings. Therefore, it

has two node addresses, each is associated with a router port.

As for the layer structure, each router port has its own network layer. However,

those layers are not duplicates of the node’s layer with relatively minor differences.

Rather, only the sender-side of each network layer is a duplicate of the node’s coun-

terpart. In addition to router functions, the router’s network layer also includes ad-

ditional memory allocations that are separate and apart from those associated with

122

each port. Therefore, the router’s network layer is considered as an own layer when

compared to the node’s layer, as previously depicted in figure 4-3.

As stated previously, a router has the same functionality as a node. This includes

the ability to act as a primary within each ring it connects to via its router ports.

Since a router has two addresses, it can be targeted simultaneously on both of its

ports. In other words, a router is able to send and receive double the amount of user

data of a node.

Since the basic sending and receiving procedures are the same as that of a node,

the acceptance criteria within each port is limited to the address associated with that

port. Within the same ring, if a sender targets a router using the address associated

with its other port, then such a packet will not be received immediately upon reaching

the router. Rather, it is routed to the other ring where it is sent and thereafter received

again by the router itself. This is deliberate, because accepting a payload requires

both data-link and network layers. In such a scenario, the performance is negatively

impacted and the corresponding user application’s QoS requirements might not be

met. This scenario is attributed to an in-optimally configured user application.

Each router port has effectively two sources of user data or payloads, the ap-

plication layer and routed packets. They are processed based on arrival time, i.e.

first-come first-served. Theoretically, two payloads may arrive from the two sources

at the same exact clock tick, thus competing for the same sending opportunity. In

such a case, the selection method used maintains fairness. In the very first encounter

of such an event, the routed payload is selected. However, the selection is memorized

and used for the next encounter where the application layer payload will be selected.

Essentially, alternating between the two sources, i.e. no priority.

As for routing functionality, it is part of the receiver-side of each network layer. As

previously described, it has its own dedicated memory allocations, which is equal in

size to the application layer’s allocations. In other words, the two sources of payloads

described above can issue the same number of send/route requests within each port.

Within the context of queuing, the request queue associated with each source has the

same length.

123

Each router port has its own routing table, i.e. a router has a total of two routing

tables. Moreover, a router is implicitly capable of routing packets across rings that

are directly connected to its ports. This is possible, because certain routing table

entries are uninfluenced by the precomputed routes. In each router port, the routing

table entry corresponding to the port’s ring address is set to ’0’, while the entry

corresponding to the ring address of the other port is set to ’1’.

Unlike typical approaches, a sender does not send packets with non-local desti-

nations to a specific router within the ring. In other words, a sender does not use,

store or keep track of router addresses for non-local destinations, i.e. no gateway-like

functionality. Rather, the packet is simply pushed into the ring. The first router en-

countered with an adequate routing table, routes the packet. However, if such a router

is unable to route due to full queue, then the packet is pushed back into ring with-

out any changes. While circulating and before reaching the sender, the next router

with an adequate routing table and non-full queue, routes the packet. Otherwise,

the packet circulates back to the sender, where a destination-not-found notification

is issued to the corresponding user application.

This approach can be considered as a version of first-come first-served in a ring

with multiple routers. Consequently, load balancing can be done by simply introduc-

ing another router in the ring without the need to update or modify the configuration

data of any existing nodes or routers. Only the physical location of the new router

within the ring must be considered, i.e. simple and very effective.

Within each port, routing is effectively disabled during ring initialization. Further-

more, each port monitors the initialization status of the other port within a router.

In case of a router connecting two different sized rings, routing is disabled if the other

ring has not yet finished its initialization. In such a case, packets with non-local

destinations are processed similar to the case of full queue described above.

When routing a packet, the receiver-side of the port’s network layer uses the data-

link interface of the other port to issue a route request. From the perspective of the

data-link layer, such a request is similar to that originating from the user application.

Thus, no new frames are created for routed packets. As a result, they are not sent

124

immediately, rather they wait for a sending opportunity. This is crucial for the

deterministic behavior and hard upper limit on latency, which would be otherwise

affected by the increased number of circulating frames within the ring.

When creating a route request, the receiver-side of the network layer copies the

packet’s payload as well as part of the headers’ information into its memory. While

the DRA, DMAC and SRA fields are preserved, the SMAC field is overwritten by the

corresponding port’s MAC address. This is due to the routed packet being transmitted

using frames circulating within the other ring. It is also done to enable MAC-based

data-link features. Although sources and destinations are well-defined in a hard real-

time system, if SMAC is still required then it is left to the user application to include

it as part of the payload.

Last but not least, the aforementioned SRA field is additionally used as part of a

limited counter measure to malformed routing tables. While a packet is traversing

rings to reach its destination, intermediate routers additionally check the SRA field

against the ring address of the other port. If they are equal, then the packet is not

routed. To a certain extent, this measure can also stop a continuously routed/circu-

lating packet within the network. Note that such a check is performed after routing

table entry and queue status checks.

5.4 Application layer

5.4.1 Overview

Similar to other protocols, the application layer provides the means with which user

applications can transmit data via a CarRing IV network. Unlike typical approaches,

user applications within CarRing IV are not purely software-level applications. Fur-

thermore, the application layer does not provide a software-style interface, i.e. API.

Rather, it supports user RTL-level hardware designs and provides a hardware-level

interface which consists of input and output ports as well as a timing diagram.

As described previously, the CarRing IV prototype includes additional transceivers

125

and interfaces. Those are separate and apart from the transceiver used to transmit

protocol data. They have their own protocols, transmission mediums and networks.

And they were introduced into the prototype for the application layer.

In addition to being available for user applications, the layer also has access to

and makes use of those additional interfaces as part of its transparent mode. The

latter is an application developed on top of the protocol. In short, it allows a CarRing

IV network to transparently transfer data between user devices that are connected

to those interfaces. Furthermore, it also allows CarRing IV to act as a backbone for

other networks.

5.4.2 Services provided to user

The application layer operates in a connectionless-mode and provides the following

services:

∙ Mechanism that handles and provides an interface for user request and feedback.

∙ Interface for receiving payloads.

∙ Access to the internally synced clock via a dedicated interface.

∙ Status and debug interface.

∙ Transparent mode which allows CarRing IV to act as a backbone for other

networks as well as transparently transfer data between user devices.

5.4.3 Functional description

Rather than an API, the application layer provides four interfaces, each consists of

multiple input and output ports. The implementation details, such as data-widths

and timing diagrams, are covered in chapter 8. In short, the user abides by a timing

diagram, which is provided alongside each interface. Such a diagram explains when

and how to send and receive data using the interface.

126

This section covers the layer’s functionality, however limited to send, receive and

status interfaces. Whereas, the synced clock interface is covered in chapter 6. As for

the layer’s transparent mode, it is covered over multiple sections below.

When sending user data, a request must be created and pushed along with the

corresponding payload through the request interface. Thereafter, the application layer

follows-up with one or more responses via the feedback interface. Before delving into

the various responses, the layer’s sending behavior is covered.

Once a send request is received by the layer’s sender-side, the user application can

not interrupt or pause pushing the corresponding payload data. While such a feature

can be supported, it is deliberately excluded because it would disrupt the internal

timing of the protocol, which consequently affects the deterministic behavior as well

as the hard upper limit on latency. Nevertheless, in case of interrupted payload data

transfer, the missed or badly timed data are automatically replaced internally by

zero-valued bits, i.e. the layer proceeds with the send request and the corresponding

packet/frame is transmitted.

After the send request is received by the layer, the user receives either an address

-valid or -invalid response via the feedback interface. The response contains an

address validation result, the destination address as well as the corresponding frame’s

ID and OMAC associated with the request. Those values must be stored internally by

the user application, while data transmission is not yet concluded.

With respect to the address validation result, the layer includes a limited destina-

tion address check, in-which the destination MAC address is checked in case of local

destinations. This is possible because the ring size, i.e. node count is distributed

during ring initialization. In such a scenario, the send request with an invalid desti-

nation address is still not interrupted, rather it is not processed further internally, i.e.

no data transmission occurs. On the other hand, if the destination address is valid,

then the address status response also indicates that the corresponding packet/frame

is being transmitted. This limited address check is another measure to limit the effect

of a malfunctioning user application within the network.

Depending on whether its an acknowledged or unacknowledged transmission, there

127

are one or more subsequent responses that range from payload-routed to negative

-acknowledge. Those subsequent responses take place after the corresponding frame

circulates back to the sender. In other words, they are not immediate like the address

status response.

In case of unacknowledged transmission and a non-local destination, one subse-

quent payload status response is pushed to the user application. This is possible due

to the way frames and packets are processed. If the corresponding frame circulates

back to the sender unmodified, i.e. the same destination address and frame type,

then the response is payload-not-routed. Otherwise, the counterpart response is

pushed back to the user application via the feedback interface.

Similar to the address status response, the payload status response also includes

the corresponding frame’s ID and OMAC. Since send requests are processed in-order

and based on arrival time, the user application can match the address and payload

status responses using the ID and OMAC values.

As for acknowledged transmission, a retried transmission results in two payload

status responses. Regardless whether the Retry bit is set, either a positive or

negative-acknowledge response is pushed via the feedback interface. If negative

acknowledge is received and the Retry bit is set, then another payload status response

is pushed due to retransmission.

Regarding data reception, the user application receives a payload destined for

its node by continuously monitoring the receive interface of the layer. The headers’

fields are pushed followed by the payload data. Similar to the sending behavior,

data reception can not be paused or interrupted. In acknowledged transmission,

an interrupted reception does not affect the corresponding positive acknowledge. In

other words, once headers’ fields are being received by the user application, a positive

acknowledge is simultaneously issued. Therefore, if the reception is interrupted there

is neither a mechanism to change the already issued positive acknowledge to a negative

one, nor is there a new negative acknowledge issued. Rather, this is considered as a

malfunctioning user application.

Furthermore, the user application is given three clock ticks to detect and start

128

receiving the headers’ fields and payload data. Otherwise, the application layer signals

to lower layers that data reception is not possible. Thus, freeing the internal memory

and the allocated resources of the processed frame/packet. This also results in a

negative acknowledge in case of acknowledged transmission.

In other words, the payload might be partially or completely lost, but the network

operation is not impacted by a user application failing to receive its payload. This

loss of user data is attributed to a malfunctioning user application. Otherwise, the

network operation is impacted, because processing of new incoming frames is blocked

within the node or router.

Other than send and receive, the application layer also provides information about

the current state of its node as well as the corresponding local ring i.e. not the entire

network. This information is collected passively, i.e. it neither consumes nor requires

additional processing time. Furthermore, the information is not fixed, i.e. it is not

simply reflecting a fixed value from an internal memory allocation within the layer.

Rather, it reflects the current values used by the protocol. Therefore, this information

is also used for debugging purposes.

The status and debug interface is a read-only interface that provides the following

outputs:

∙ Ring state. It is a 4-bits signal that reflects the current phase of ring initial-

ization, namely Assigning addresses, Distributing circulation period,

Clock synchronization and Normal operation.

∙ Ring size. This 4-bits signal is derived from the highest MAC address assigned

during ring initialization.

∙ Node address. This 12-bits signal reflects the node’s ring and MAC address.

∙ Circulation period. This 40-bits signal reflect the circulation period calcu-

lated during ring initialization.

∙ Send count. It is a 13-bits signal that reflects an internal send counter within

129

Figure 5-9: Typical components involved in software-level user application

the application layer. The counter is incremented only if the payload is trans-

mitted i.e. failed send requests due to invalid addresses are not counted.

∙ Receive count. This is the counterpart to the above signal, and it is also

13-bits.

∙ LayerX Activity. This is a collection of 1-bit signals that reflect the activity

of the sender and receiver side of each layer and sub-layer. A 1-bit signal is

set, i.e. bit value is 1, when the corresponding layer or sub-layer has started to

process a new frame/packet. And it is unset when processing is finished.

5.4.4 User applications

Typically, a user application is a software application developed using a programming

language. It consists of one or more application processes that in turn use multiple

other software components to transmit data. The main component is API, which is

contained within the underlying OS.

The multiple components involved in such a software application are depicted in

figure 5-9. Note the illustration in the figure is simplified, e.g. the distinction between

filter and function drivers as well as user and kernel modes within the OS are beyond

the scope of this thesis.

Typical network programming is done using a programming language like C or

130

Figure 5-10: Second approach to creating a user application

Java. While this is also possible in CarRing IV, it is not the primary method with

which a user creates applications for and interacts with the application layer of the

protocol. As previously described in section 4.2, the usage of CarRing IV is broadly

categorized into direct and indirect. In what follows, three approaches are covered,

one is hardware-level only i.e. direct, while the other two are a mix of software and

hardware-level user applications i.e. indirect.

Since all layers, including application, are implemented in hardware, the primary

method is to create a custom RTL hardware design using an HDL. Such a custom user

design consists of multiple hardware-level processes that in turn use the application

layer interface to send and receive data.

The aforementioned approach of creating user applications is specific to RTL-level

hardware designs. Software-level applications are also supported. Rather than listing

all possibilities, two main ones are covered in this section.

As shown in figure 5-10, the second approach consists of a software application

and a minimal wrapper-like custom user design. The latter is used as an intermedi-

ary between the application layer interface and the user’s software application. More

specifically, one of the supported physical interfaces within the prototype, e.g. Eth-

ernet, is used for data exchange. When compared to hardware-only implementation,

this approach requires minimal effort. The additional functionality required is lim-

ited to managing and creating pattern recognized by both the software application

and minimal custom design. However, the performance might be limited by the used

physical interface.

131

As for the third approach, the user simply re-purpose the transparent mode. In

short, the transparent mode is a hardware-level application that allows CarRing IV

to act as a backbone for other networks using the physical interfaces included in the

prototype. It is covered in sub-section 5.4.6. Rather than a backbone incorporating

multiple physical interfaces, the transparent mode is used for one interface by both

the sender and receiver nodes. A wrapper-like minimal custom design is not required,

since such a design is already part of the transparent mode design components. When

compared to the second approach, this approach has one additional limitation. The

software application is not able to dynamically set destination addresses. This is due

to transparent mode original purpose, which is backbone-like functionality, i.e. other

networks and interfaces do not dynamically change during run-time.

Note that in both software-level approaches, no new drivers, APIs, libraries or

frameworks must be developed. Furthermore, no new patches or functionality is

required or developed within the underlying OS.

5.4.5 Router vs Node design

Due to the router’s two ports, data can be transmitted simultaneously on both ports.

Therefore, the application layer includes duplicate request, feedback, receive, status

and debug interfaces. However, it includes only one synced clock interface and has

one transparent mode. The latter is directly affected by the number of supported

physical interfaces within the prototype which remains fixed, i.e. the same prototype

is used for node and router designs.

As described earlier, each router port has two sources of payload, routed packets

and application layer. The resulting possible impact on performance is mitigated by

the user’s ability to transmit data simultaneously on both ports. Depending on the

underlying network configuration, i.e. positioning of senders and receivers within the

rings, this can effectively double the bandwidth available for the user application.

132

5.4.6 Transparent mode

This feature changes the application layer’s normal mode of operation into what is

referred to as the transparent mode. It eliminates the need for a software-level as

well as hardware-level user applications. The user simply physically connects to one

of the supported interfaces within the prototype board and begins transferring data

via the CarRing IV network. Any data pushed from the user’s end is automatically

captured on the node end and transmitted to its destination. Thus, data is transferred

transparently.

As for send requests, effectively the same request is continuously issued as new

data is captured. The same headers’ fields are used for every send request. Those are

statically configured once within the node/router before run-time. In case of multiple

destinations, multicast transmission is used.

Moreover, transparent mode is also capable of simultaneously transferring data

between multiple supported interfaces. In other words, it is not limited to one sup-

ported interface per node/router. Thus, the combination of the transparent mode

and multicast transmission allows a CarRing IV network to act as a backbone for

other networks.

Despite having a physical connection to the prototype, the connection realized

via the transparent mode is a logical one. Due to the protocol QoS and hard real-

time guarantees, data from multiple supported interfaces can be transmitted without

interference.

Transparent data transfer and backbone-like functionality allows CarRing IV to

be easily integrated into existing systems. It can also be used to help transition an

existing system’s network into CarRing IV network.

In essence, transparent mode is a hardware-level user application developed on top

of the application layer. As depicted in figure 5-11, the transparent mode consists

of multiple design components most of which are external to the application layer.

Only components that are responsible for issuing send requests as well as receiving

incoming payload are encapsulated within the layer. A new send request is issued if

133

Figure 5-11: Illustration of the components that comprise the transparent mode

either the payload capacity is reached, or if there was a pause while retrieving new

data from FIFO. As described previously, in the latter case, the payload is padded

before transmission.

In what follows each set of components is described in a dedicated section.

5.4.7 Device controller

The main purpose of the device controller is to multiplex data from different inter-

faces. Unlike typical multiplexing approaches, the payload is not divided amongst

the supported interfaces, where each interface has a dedicated portion of the payload.

Rather, the payload is divided into fixed small portions. Those portions could all be

carrying data from one interface or from multiple interfaces. This approach maximizes

usage of sending opportunities, which simultaneously improves performance.

In order to identify which portion belongs to which interface, device controller

frames are used. The corresponding frame format is depicted in figure 5-12. In what

follows, a brief description of each header field is provided.

∙ Interface identifier (ID). This 3-bits field is used to distinguish between the

various supported interfaces.

∙ Start Of Frame (SOF). Each interface has its own protocol and consequently,

its own frame. The use of delimiters is crucial to handling different frame sizes

134

Figure 5-12: Device controller frame format

from different interfaces. This 1-bit field is used as a delimiter to identify the

start of an interface frame.

∙ End Of Frame (EOF). This 1-bit field is the counterpart of SOF.

Data exchange between the device controller and the application is split over two

FIFOs, a device-to-application and an application-to-device FIFO. Similarly, two FIFOs

are used to exchange data between the device controller and each interface.

When fetching interface data, the device controller continuously monitors all

interface-to-device FIFOs. It then fetches data in a round-robin fashion from each

interface. However, only one device controller frame worth of interface data per

round-robin iteration is fetched. Otherwise, interfaces with relatively large frame

sizes impose an unfair delay on other interfaces. To a certain extent, this approach is

comparable to cell networking. In short, relatively small fixed-size data units, called

cells, are used to multiplex different-sized frames.

5.4.8 IP Cores and auxiliary protocols

Each supported interface represents a separate network with its own protocols and

layers. More specifically, each interface consists of chip(s) and a physical connector.

In some interfaces, the chip is essentially a transceiver, i.e. only physical layer func-

tionality. While in other interfaces, it additionally includes transceiver control logic

or framing service. In other words, it includes a limited implementation of the first

sub-layer of the data-link layer, i.e. MAC.

135

The transceiver of each interface is able to operate at different line rates or trans-

mission speeds. Therefore, those transceivers must be properly configured before data

can be transmitted via the interface.

In order to transmit data via an interface, an additional design component(s) is

required. Such component(s) include control logic that utilizes the chip’s internal

registers to send or receive data. In short, the component includes a specific sequence

of actions and register manipulations that must take place in order to operate the

transceiver. A description of those sequence of actions as well as the chip’s register

map are provided by the manufacturer. Thus, each interface goes through a configu-

ration phase, before data can be transferred.

For example, when using the CAN interface, one of the configuration steps is set-

ting the proper bus speed. In order to achieve this, the chip’s mode of operation must

first be switched to the configuration mode. Thereafter, the proper bus speed is set

by modifying the correct registers using the chip’s register map. Once accomplished,

the chip’s mode of operation must be switched back to normal in order to transmit

CAN messages.

As depicted in figure 5-11, each interface has its own custom controller as well

as one or more IP cores. The interface-specific controller implements the control,

configuration and transmission logic described above. As for the IP cores, they im-

plement auxiliary protocols that are required to communicate with the chip. In other

words, the chip has its own interface through which it can be accessed and controlled.

Continuing the earlier example, SPI is used to configure the chip as well as push CAN

messages for transmission.

Another very important consideration is the reference clocks used within the sup-

ported physical interfaces. Such reference clocks are used to drive the transceivers

associated with each supported interface. Furthermore, each chip has its own inter-

face, which in turn uses its own clock. This effectively transforms the transparent

mode design from a single clock domain into multiple clock domain design.

In multiple clock domain designs, data or signals crosses from one clock domain to

another. Such a clock domain crossing, introduces its own issues, which are but not

136

limited to meta-stability and re-synchronization. This is the main reason for using

independent clock FIFOs between the device controller and the interface controller, as

shown in figure 5-11.

5.4.9 Supported interfaces

As described previously, two prototypes were developed throughout the project’s life-

time, Virtex5- and Kintex7-based prototype. Although they include different physical

interfaces, the same device controller frame format was used for both of them. As

described previously, each interface has a custom controller and one or more IP cores.

A functionality common to all interface controllers in both prototypes, is handling

data-exchange via FIFOs between the interface controller and the device controller.

In what follows, the supported physical interfaces as well as their respective in-

terface controller and IP cores are described.

Virtex5-prototype

Five physical interfaces are supported within this prototype. Three of which are

transceiver-only interfaces, namely IIC, RS232 and Parallel port. While Ethernet and

CAN, include the aforementioned limited MAC sub-layer of data-link.

In case of IIC, the interface controller is also responsible for encapsulation/decap-

sulation of FIFO data into IIC messages which are then used to transmit data using

the underlying IP core. The IP core is a custom IIC core that operates as a master

node and implements the IIC protocol. The implementation uses the 7-bit address

space as opposed to the 10-bit extension. Furthermore, the core’s frequency can be

modified to operate in different speeds. Within the context of device controller frame,

IIC interface ID is 3.

As for the IIC message, it is a 25-bits word used internally between the interface

controller and IIC core. It consists of the following fields:

∙ Identifier (ID). The IIC interface is considered as intermediary interface that is

used to access and control another board. Two boards were developed alongside

137

the Virtex5-prototype. One controls the car headlight, while the other is for

the car gas pedal. This 7-bits field is used to distinguish between such boards.

∙ Access mode. This 1-bit field identify whether the core should read from or

write to the attached IIC device.

∙ Device address. This 7-bits field resembles the IIC device address.

∙ Register address. It is an 8-bits field resembles the register address within

the IIC device.

∙ Data. This is the data byte associated with IIC transaction.

The parallel port is an 8-bits General-Purpose Input/Output (GPIO) internally

connected to an 8-bits bidirectional voltage-level translator with auto-direction sens-

ing. Therefore, only the custom controller is developed for this interface. Within the

context of device controller frame, parallel port’s ID is 5.

As for RS232, the interface controller also interacts with an Xilinx IP core which

in turn implements UART. However, the IP core or XPS UART Lite is intended

to be used as part of an embedded system. Therefore, it uses the Processor Local

Bus (PLB) interface. Thus, the interface controller additionally implements the PLB

interface and operates as a PLB master. Within the context of device controller frame,

RS232 interface ID is 4.

Unlike RS232, the CAN interface chip does not use a PLB interface, rather it uses

SPI. Thus, the interface controller also interacts with an Xilinx IP core that imple-

ments SPI. Similar to RS232, the IP core or XPS SPI is also intended for embedded

systems. Thus, the interface controller also implements PLB and operates as a PLB

master. However, the implementation is more complex than RS232. It implements

two sets of action sequences and register manipulation. The first controls SPI, which

in turn controls interface’s chip. Within the context of device controller frame, CAN

interface ID is 1.

With respect to Ethernet, the interface controller neither interacts with an Xilinx

nor custom IP cores that implement the protocol. Rather, it interacts with an Xilinx

138

Ethernet MAC Wrapper which in turn uses the LL interface, i.e. similar to Xilinx

Aurora. Thus, the interface controller additionally implements the LL interface.

The used Virtex-5 FPGA already includes an embedded Tri-Mode Ethernet MAC,

which can operate at 10 Mbps, 100 Mbps and 1 Gbps. Thus, the Ethernet interface

must be properly configured with the adequate mode/speed before data transmission.

The corresponding chip uses SMI. Therefore, an additional custom IP core is devel-

oped which implements SMI. Within the context of device controller frame, Ethernet

interface ID is 2.

Kintex7-prototype

Unlike the previous prototype, the Kintex7-prototype does not directly include phys-

ical interfaces. Rather, it includes intermediary interfaces that connect to readily

available third-party boards. In turn, those boards include the physical interfaces.

Three intermediary interfaces are included within the prototype, namely Raspber-

ryPi, MikroBUS and Pmod. Therefore, the interface identifier field size within the

device controller frame is still adequate for this prototype.

Each intermediary interface includes multiple auxiliary interfaces/protocols. In

case of RaspberryPi interface, it includes two SPI, one UART and one IIC interface.

As for the MikroBUS interface, it includes one SPI, one UART and one IIC interface.

On the other hand, the Pmod interface does not include explicit auxiliary in-

terfaces. Rather, it has multiple I/O assignments for its interface pins. Each I/O

assignment includes one auxiliary interface/protocol. The Pmod interface version

used in the Kintex7-prototype consists of 12 pins as opposed to 6. Thus, the interface

supports GPIO, SPI, UART and IIC as well as their respective expanded version. In

short, the expanded version uses all 12 pins instead of 6, where most of the additional

pins are used as GPIO.

Similar to the approach used in the previous prototype, Xilinx IP cores are used

that implement the protocols associated with each auxiliary interface. Likewise, those

cores are intended for use within embedded systems. However, instead of PLB, the

cores use Advanced eXtensible Interface (AXI), which is part of Advanced Microcon-

139

troller Bus Architecture (AMBA). More specifically, they use AXI4-Lite.

140

Chapter 6

Clock Synchronization

This chapter explains the network-wide clock synchronization approach used in Car-

Ring IV. While synchronization takes place during ring initialization, the design com-

ponent(s) involved are used by and exist outside of protocol layers. Therefore, the

approach requires its own dedicated chapter, which is introduced in the first section.

Then, the timer module and its operation is described. Thereafter, synchronization

within a single ring as well as across multiple rings is covered.

6.1 Introduction

Within a real-time system, communications can be considered as either event-triggered

or time-triggered. In addition to event-triggered, CarRing IV also includes support

for time-triggered communication via its SendAt feature. In short, it allows for peri-

odical data transmission as well as at a future point in time. The corresponding time

values are based on the node’s local clock/counter. As described in chapter 2, clocks

here refer to hardware-level signals as oppose to software-level clocks or clocks within

the context of embedded systems, i.e. actual time in hours-minutes-seconds.

The main purpose of clock synchronization is to further extend CarRing IV’s sup-

port for time-triggered communications. More specifically, it synchronizes all nodes

within the entire network to one reference node. Since synchronization takes place

during ring initialization, only a primary node can be used as a reference node.

141

Unlike typical ping-pong style, the approach used does not require exchange of

messages between each node within the network and the reference node. Furthermore,

there are no dedicated packets that traverse the entire network to achieve synchro-

nization, i.e. no routing required. Rather, nodes are synchronized either if they are

in the same ring as the reference node or if one of the routers within the same ring

is synchronized. In other words, the reference node need not be aware of all nodes

within the entire network, rather only those within its own ring. Thus, the approach

is scalable.

The end result of this synchronization is syncing an internal design component that

exists within each node and router, called timer module. It is used by all layers for any

timer- or time-out related functionality, e.g. acknowledge time-out, reliable multicast

time-out, transport frame recreation, SendAt periodical and delayed transmission,

calculating circulation period as well as distributing it to all layers.

6.2 Timer module

Similar to real-time embedded systems or more broadly software-level solutions, timers

are an essential part of managing time-sensitive events, e.g. timers are used in schedul-

ing events or managing time-outs. Such timers can be classified [23] as software-level

i.e soft timers, or physical timer chips i.e. hard timers. Although CarRing IV in-

cludes a hard timer, it is based on clock cycles or ticks rather than time-stamps or

hours-minutes-seconds clocks. Nevertheless, the time values used in the protocol can

also be expressed in seconds by simply multiplying the number of clock cycles elapsed

by the period of the clock that drives the protocol design, e.g. 100 cycles x 6.4 ns =

640 ns.

CarRing IV timer is a separate design component that exists outside the protocol

layers. In essence, it is based on a free running counter that increments (+1) with

each clock cycle. Consequently, the protocol’s time resolution is equal to the design-

clock’s period. Thus, all time values provided by the user to or retrieved from the

protocol are expressed in number of clocks rather than seconds.

142

The timer consists of multiple clocked processes and inter-process communication

channels. Those processes handle the circulation period, synchronizing the main

counter within the timer and synchronization-related operations. The latter includes

calculating the processing time per link/node as well as handling the corresponding

unsigned integer "division" operations. Those operations include non-multiple of two

divisions which are based on shift-right and add operations.

As described in sub-section 5.2.6, a ring must be initialized before data trans-

mission can take place. During the first phase of the initialization, the circulation

period is calculated. It represents the amount of time that the Reset frame requires

to circulate a ring. Within a ring, only the primary node calculates and distributes

the circulation period to other nodes, i.e. secondaries. Thus, the circulation period

requires its own clocked process within the timer.

In order to manage the start and stop conditions for the circulation period counter,

this clocked process interacts with the ACF sub-layer of the data-link layer. The

counter for the circulation period starts as soon as the ACF sub-layer signals that the

Reset frame transmission has started. On the other hand, the counter stops as soon

as the ACF sub-layer signals that the Reset frame is being received.

The process also handles the possibility of a dropped Reset frame. This might

occur within the physical layer of the primary node or any other secondary within the

ring. Therefore, a time-out based approach is used to detect such a dropped frame.

The time-out value is statically configured within each node and router before run-

time. The value is based on an estimate that is calculated using a simulated version

of the ring. Thus, each ring size has its own time-out value. The simulation also takes

into account the timing behavior of the physical layer. Once a dropped Reset frame

is detected, the timer signals a time-out to the ACF sub-layer, which in turn creates

and sends another Reset frame.

In order to sync the timers within each node, the main counter within each timer

must be adjusted to match the reference node’s main counter. This adjustment is

based in part on calculating the processing time per link/node. Within each node,

such calculation is performed during the second phase of the ring initialization, i.e. as

143

soon as the circulation period and ring size values are received. As shown below, the

calculation performed within each node involves the ring size, circulation period as

well as the Reset frame processing time within a node. The latter is fixed value that

is derived from the protocol design. While having a fixed value, data transmission

time depends on the underlying Aurora core configuration and customization. In

other words, it depends on the physical layer’s properties.

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 = (𝑅𝑖𝑛𝑔𝑆𝑖𝑧𝑒− 1)×𝑅𝑒𝑠𝑒𝑡𝐹𝑟𝑎𝑚𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 (6.1)

𝑃𝑒𝑟𝐿𝑖𝑛𝑘𝑇 𝑖𝑚𝑒 =
𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑− 𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒

𝑅𝑖𝑛𝑔𝑆𝑖𝑧𝑒
(6.2)

The division used in equation 6.2 is based on shift-right and add operations.

And it is delegated to multiple other clocked processes. Each process is responsible

for one of the ring-size possible values. Only non-multiple of two values have their

dedicated processes. Thus, equations 6.1 and 6.2 have their own process which in

turn communicates with a division-process based on the corresponding ring size.

So far, all the processes described do not handle the timer’s main counter. Rather,

the counter has its own dedicated clocked process. In addition to the +1 increments,

the process also covers two possible scenarios that can take place during the clock

synchronization phase of ring initialization. An additional frame header field, called

State, is introduced and used to keep track of and handle those scenarios across all

nodes within the ring. As previously described in sub-section 5.2.6, this field only

exists within the context of a Reset frame, i.e. if the frame type is Reset. It is a

2-bits field that is used in conjunction with the Phase field of the Reset frame header.

As for the two scenarios and the State field values, they are described below in two

dedicated sections.

144

6.3 Synchronization within one ring

Synchronization within one ring accounts for one of the scenarios mentioned above.

In this scenario, the ring being synchronized contains the reference node. As the

circulation period phase is concluded, the primary node updates the Phase and State

fields of the Reset frame header to start the third and final phase of ring initialization

i.e. clock synchronization. Since in this case the primary is also the reference node,

it sets the State field value to 2. Furthermore, the primary includes the value of its

main counter within the frame’s payload. This value is referred to as Sync value.

A State value of 2 indicates to all secondaries that they must sync their main

counters using the sync value included in the frame’s payload. Within a secondary’s

timer module, the clocked process that handles the main counter interacts directly

with the physical layer to retrieve the aforementioned value from the payload. The

sync value can not be used directly to sync a secondary’s main counter. As shown

below, two offsets must be included in order to accurately sync the main counter.

𝑇𝑟𝑎𝑛𝑠𝑂𝑓𝑓𝑠𝑒𝑡 = (𝑂𝑀𝐴𝐶 − 1)×𝑅𝑒𝑠𝑒𝑡𝐹𝑟𝑎𝑚𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒

+𝑂𝑀𝐴𝐶 × 𝑃𝑒𝑟𝐿𝑖𝑛𝑘𝑇 𝑖𝑚𝑒
(6.3)

𝑀𝑎𝑖𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑆𝑦𝑛𝑐𝑉 𝑎𝑙𝑢𝑒+ 𝑇𝑟𝑎𝑛𝑠𝑂𝑓𝑓𝑠𝑒𝑡+ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (6.4)

The transmission offset or TransOffset calculates the amount of time elapsed before

the Reset frame reached the corresponding secondary node. Since MAC addresses

are assigned incrementally within the ring, the offset can be calculated using the

secondary’s own MAC, which also acts as an indicator of a node’s position within

the ring. Thus, the transmission offset is the summation of accumulated processing

time within predecessor nodes, i.e. (OMAC - 1) nodes, and the accumulated time

within links traversed, i.e. OMAC links. As for the internal offset, it accounts for the

additional time consumed within the main counter’s process, i.e. internal processing

time which includes interacting with the physical layer.

145

6.4 Synchronization across rings

The second scenario involves synchronizing rings that do not contain the reference

node. In this case, the corresponding primary node must first search for a secondary

with a synced timer module and retrieve the corresponding sync value from that

secondary. Thereafter, it must use the retrieved sync value to synchronize itself and

all other nodes within the ring. Due to the router’s two ports, a router’s timer module

could be synced due to a completed ring initialization in one of its two rings. Thus,

the aforementioned synced secondary can only be a router.

Similar to the previous scenario, the primary node updates the Phase and State

fields and starts the final phase of ring initialization. However, it sets the State

value to 0 which indicates that the primary is looking for a synced secondary. The

ring remains in the clock synchronization phase of the initialization until at least one

of the secondaries/routers is synced. As soon as the Reset frame reaches a synced

secondary, the router updates the State value to 1 and sets the header’s SMAC to

its own MAC address. The router also includes the value of its main counter in the

frame’s payload. In case of multiple synced secondaries, the aforementioned header

fields and sync value are overwritten by the most recent router encountered.

Once the Reset frame reaches the primary node, the header’s SMAC as well as the

corresponding sync value are used to sync the primary’s main counter. As shown

below, the primary’s timer module uses similar equations to those described in the

previous section.

𝑇𝑟𝑎𝑛𝑠𝑂𝑓𝑓𝑠𝑒𝑡 = (𝑅𝑖𝑛𝑔𝑆𝑖𝑧𝑒− 𝑆𝑀𝐴𝐶 − 1)×𝑅𝑒𝑠𝑒𝑡𝐹𝑟𝑎𝑚𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒

+(𝑅𝑖𝑛𝑔𝑆𝑖𝑧𝑒− 𝑆𝑀𝐴𝐶)× 𝑃𝑒𝑟𝐿𝑖𝑛𝑘𝑇 𝑖𝑚𝑒
(6.5)

𝑀𝑎𝑖𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑆𝑦𝑛𝑐𝑉 𝑎𝑙𝑢𝑒+ 𝑇𝑟𝑎𝑛𝑠𝑂𝑓𝑓𝑠𝑒𝑡+ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (6.6)

After the primary node is synced, it updates the corresponding Reset frame and

proceeds to sync all other nodes within its ring. This synchronization is done in the

146

same manner as described in the previous section.

The approach used to synchronize all rings within the network does not require

routing, i.e. no need for dedicated packet that traverses rings to achieve synchroniza-

tion. Furthermore, the reference node does not need to be aware of all nodes within

all rings, rather it is only responsible for synchronizing nodes within its own ring.

Thus, the approach is scalable.

The approach is made possible due to the way transceivers are configured in the

router’s physical layers. While the transceiver-related implementation specifics are

beyond the scope of this thesis, in what follows a brief description is provided.

Each router port has its own physical layer, i.e. its own Xilinx Aurora core. An

Aurora core relies in-part on a reference clock, which is a differential clock signal.

The aforementioned design-clock is an output of the Aurora core. In a router design,

the two Aurora cores associated with the two ports are driven by the same reference

aurora-clock. And consequently, the same design-clock drives both ports of the router.

As a result, both router ports are in same clock domain which means that there is

no need for crossing clock domains. Within the context of the protocol, this implies

that one timer module is sufficient for both router ports, i.e. if one port is synced

then the other port is also considered synced.

Furthermore, the Aurora cores within both node and router designs are configured

using the same basic parameters. In other words, the design-clock signals that drive

router and node designs have the same frequency. Thus, the sync values included

within a frame’s payload can be directly used, since they represent the same value in

seconds.

Last but not least, the size of a ring directly affects the amount of time required

to finish its initialization. Therefore, in a multi-ring network, some rings might finish

initialization before others. In such a scenario, data transmission is not halted in the

entire network, rather only in those rings that are still being initialized. Moreover,

packets can not be routed through to such rings regardless of the corresponding

routing table entries. Such a routing decision affects both unicast and multicast

transmission.

147

148

Chapter 7

Reliable Multicast

This chapter covers CarRing IV reliable multicast as well as multicast routing. Since

the service spans multiple layers within the protocol, it requires its own dedicated

chapter. The first section introduces the service and its background. Then, the

service’s description and functionality is divided into two sections based on the layers

involved, i.e. data-link and network layers.

7.1 Introduction

Typically, multicast service is used for applications such as streaming media, telecon-

ferencing or distributed databases. While infotainment systems are part of in-vehicle

communication, i.e. one of CarRing IV application areas, the service is introduced

and implemented for two main reasons, emulation of field buses and extending trans-

parent mode functionality.

A primary example is CAN bus. Using multicast and one of the prototype phys-

ical interfaces, CarRing IV is able to support bus communication between multiple

nodes/routers. As for transparent mode, it is no longer limited to one-to-one commu-

nication provided by unicasting. Using multicast, it can also provide a backbone-like

functionality in-which a CarRing IV network can additionally support field buses via

the prototype’s physical interfaces.

The multicast service implements the one-to-many model, i.e. no support for

149

many-to-many or many-to-one. Furthermore, its implementation reflects genuine mul-

ticast as opposed to multiple unicasting, which negatively impacts latency. It uses a

tree-based hierarchy, which bounds the sender’s processing time by the number of its

immediate receivers within the same ring.

Additionally, the service also implements reliability that is neither strictly sender-

initiated nor receiver-initiated and it does not suffer from acknowledgment implosion.

Since reliable multicast implicitly involves retransmission of packets, such retrans-

mission might not be desired by certain applications, e.g. the payload contains a

command that must be executed within a certain time limit, or a greater importance

is placed on receiving a continuous stream of data rather than receiving every pay-

load. Thus, reliability is introduced as an optional feature that can be enabled or

disabled with every multicast transmission.

Last but not least, broadcast is not implemented by the protocol. It constitutes

a special case of multicast where all network nodes are members of the same group.

This design decision also avoids performance issues that are caused by misuse of a

broadcast delivery service.

7.2 Data link layer

Multicast is implemented at the data-link layer, which allows for near wire-speed and

reduced latency as well as reduced protocol complexity, when the underlying network

is a single ring.

With respect to the data-link sub-layers, ACF handles the acceptance criteria as

well as data transmission. Whereas, reliability and retransmission are handled by

the ASA sub-layer. In order to support retransmission, ASA also has two additional

memory allocations, i.e. a maximum of two concurrent multicast transmissions where

reliability is explicitly enabled.

As for data-link operation modes, the i-to-j feature is disabled for multicast trans-

mission. In essence, the feature enables frame reuse if the re-usage can be concluded

before the frame reaches its owner node or original destination. By definition, a

150

multicast frame must circulate the entire ring.

Only the anisochronous mode’s other feature, i.e. public access, can be used for

multicast. This is possible because public access temporarily hands over the control

over the frame from its owner node to other nodes. Furthermore, if the frame is still

being reused, the owner node must wait for it to circulate the ring at least once before

it can be reclaimed.

7.2.1 Addressing and frame format

Unlike typical approaches, the multicast service has its own addresses that are sep-

arate and apart from data-link and network layer addresses. Furthermore, there is

no data-link and network layer variations of the multicast address as is the case for

the TCP/IP protocol suite. Rather, one type of multicast address that is used and

processed by both layers.

The multicast address is 8-bits in size and presented as a decimal digit. As a

result, up to 256 multicast groups can be created. It is unique network-wide. Thus,

it can also be used by the network layer.

Due to the reliability feature, multicast extends the frame’s header beyond other

frame types, from 24-bits to 40-bits, while keeping the overall frame size fixed. This

is made possible due to the dynamic interpretation of the headers’ structure. As

previously described, the internal structure of headers differs based on the frame’s

type which is the very first field processed in an incoming frame.

In order to accommodate this extension, the packet header is completely removed.

However, this does not affect the network layer functionality with respect to multicast

transmission. Figure 7-1 depicts the format of a multicast frame. As for the frame

header, certain fields are preserved while others are removed and replaced by new

ones.

The Type, OMAC, ID and SMAC fields are crucial for basic functionality and are

therefore preserved. Since the public access feature can be used for multicast trans-

mission, the PA field is also preserved. Below, a brief description of each newly

introduced header field is provided.

151

Figure 7-1: Multicast Frame format

∙ Multicast Address (MA). It is an 8-bits field that holds the multicast address,

which is used by both the sender and receiver nodes.

∙ Reliable. When set, this 1-bit field indicates that a retransmission must be

attempted, if not all multicast group members have received the payload within

the ring.

∙ Receiver Check List (RCL). This 16-bits field is used as part of the reliability

feature, which is covered in a dedicated section below. In short, as the multicast

frame circulates, each multicast group member updates one bit in the field upon

receiving the corresponding payload. Based on bit order and MAC address, each

bit corresponds to a node within the ring.

7.2.2 Group membership

CarRing IV protocol targets hard real-time systems which are well-defined. Therefore,

group membership is managed statically, which eliminates the overhead associated

with monitoring the group, processing join/leave requests as well as sending group

status updates. As a result, network resources are dedicated to transmitting user

data.

Each node is equipped with a multicast group membership table. The membership

table can be considered as a two-dimensional look-up table. There are a fixed number

of rows, which is based on the multicast address size, i.e. 256 rows. However, the

number of columns depends on the ring size. Each cell is 1-bit in size and represents

152

one of the nodes within the ring. Thus, the overall size of the table depends on the

ring size, i.e. up to 16 columns max which reflects the max ring size of 16 nodes.

A node’s group membership is indicated by the bit-value of the corresponding cell,

i.e. ’1’ for member and ’0’ is not a member. All cells have a default bit-value of ’0’.

For example, in order to check a node’s membership of a group, the corresponding

multicast address is used to select the row. Thereafter, the node’s MAC address is

used to select the column. And the membership is indicated by the bit-value of that

cell.

Last but not least, the membership table is not specific to a single node. In other

words, it also includes the memberships of all nodes within the ring. Thus, the same

table is statically configured within all the nodes, regardless whether the node is a

member of any group.

7.2.3 Reliability

Typically, reliability in multicast is achieved using acknowledgments. Since the com-

munication model is one-to-many, acknowledgments introduce a major problem re-

ferred to as acknowledgment implosion. In short, the problem stems from the require-

ment that each successful reception is followed by a unicast acknowledge sent from the

receiver to the sender, i.e. the bigger the multicast group, the more acknowledges the

sender must process. Negative Acknowledgments (NAKs) were introduced to combat

this issue. It is sent by the receiver only if an error or a missing multicast packet

is detected. Such an acknowledge is sent either as a unicast to the sender or as a

multicast to the group.

According to [22], approaches to reliable multicast can be classified as either

sender-initiated, receiver-initiated, receiver-initiated with NAK-Avoidance, tree-based

or ring-based. Depending on the approach used to implement multicast reliability,

acknowledgments or negative-acknowledgments might impact network performance.

Reliability in CarRing IV multicast does not require explicit acknowledgments or

negative acknowledgments. Therefore, it does not suffer from the problems associated

with them. As a result, schemes like NAK-avoidance are not required, which in turn

153

reduces the protocol’s complexity.

As the multicast frame circulates the ring back to sender, each group member

updates the value of only one bit within the RCL header field. Within the field, bits’

positions correspond to nodes’ MAC addresses. Thus, using the node’s MAC address,

the corresponding bit is set to ’1’ for payload received and ’0’ if it was not received.

With each transmission of a new multicast frame, all bits within the field are set to

’0’.

Unlike the protocol’s acknowledged transmissions, acknowledges are embedded

into the multicast frame. And consequently, one frame is sufficient to multicast and

confirm the successful reception of a multicast payload. Thus, CarRing IV protocol

uses the sender-initiated approach within a single ring.

7.2.4 Functional description

Since the header contains fewer fields, the corresponding multicast send request also

requires fewer fields, namely MA and Reliable. If the Reliable field is unset(0),

then the corresponding internal memory and allocated resources associated with the

send request are freed as soon as the frame is sent. Otherwise, they are kept until

the transmission is concluded, i.e. successful reception or retransmission has already

been attempted.

In case of retransmission, the sender uses the OMAC, ID and MA fields to correctly

identify which multicast payload must be retransmitted. When the multicast frame

returns to the sender, the RCL field is compared against the corresponding member-

ship table entry. Rather than selecting cells, all columns of the corresponding row

are used as a single field and compared against a trimmed version of the RCL field.

Trimming is required, because the number of columns is based on ring size i.e. not

a fixed 16. RCL field is trimmed using the ring size value, which is distributed dur-

ing ring initialization. With the exception of the senders own bit within both fields,

retransmission is required, if they are not equal. Also the RCL field of the returning

frame is reused again without modifications during retransmission.

Similar to acknowledged transmission, retransmission can also be triggered due to

154

a time-out. If the multicast frame does not return to the sender within a certain time

limit, then retransmission is required. The time limit is also based on the circulation

period.

Unlike acknowledged transmission, retransmission of a multicast frame is immedi-

ate, i.e. using the same original frame that returned to the sender. In other words, it

does not require creating another send request and consequently waiting for another

send opportunity. This is due to i-to-j feature being disabled for multicast. During

transmission, a multicast frame is not converted into another frame type by a receiver,

which in turn might be reused via the i-to-j feature.

Furthermore, acknowledgments are embedded in case of multicast. Consequently,

there is no explicit acknowledge-frame that can be reused via i-to-j. In other words,

CarRing IV’s reliable multicast is not an extension of its acknowledged transmission.

This is why there is an explicit distinction between the Retry and Reliable fields

both in protocol design and implementation.

Unlike unicast transmission, accepting a multicast payload is not a combined

decision of data-link and network layers. Rather, it is done in data-link based on the

MA field and membership table. Thus, the membership table is used while receiving

a multicast frame as well as retransmission. Within the same ring, SMAC is used to

identify the sender node. As for the network layer, it is only concerned with routing.

Due to retransmission, a group member might receive the same payload twice. In

order to prevent such a scenario, an additional check is performed before the payload

is pushed all the way to the application layer. A receiver node simply checks the

value of the bit that represents its own MAC address within the RCL field. If the bit

value is ’1’, then the corresponding payload was already received and is therefore, not

pushed to the application layer. Otherwise, the bit value is updated to ’1’ and the

application layer gets the payload.

In addition to the feedback associated with sending and receiving a multicast

frame, the data-link layer of a receiver also includes the RCL field as part of its feedback

to higher layers. Thus, each group member can also provide the reception status of

other members as well. Due to the physical ring topology, it is only limited to members

155

that precede the node itself within the ring.

7.3 Network layer

The network layer is only concerned with multicast routing. Therefore, the layer’s

implementation of multicast can be considered as an extension, which allows multicast

traffic to be routed across rings.

This extension does not require address translation or mapping between network

and data-link layer addresses, e.g. address translation from class D IP addresses

to Ethernet MAC addresses, where the resulting translated address is not unique.

Instead, the network layer directly uses the same multicast address introduced within

data-link.

Unlike acknowledged transmission, retransmission is also supported for routed

multicast packets, i.e. in other rings beyond the sender’s own ring. However, re-

transmission is not performed by the original sender for the entire network nor is

it performed by a core or designated router, i.e. unlike typical approaches. The

design decision to supported retransmission is due to the impact of the multicast

transmission, i.e. it involves multiple receivers rather than one.

7.3.1 Packet format

As previously described, the packet header is completely removed in order to imple-

ment the reliability feature. This is possible, because a multicast address is unique

network-wide. Furthermore, ring addresses are not required for multicast routing.

Nevertheless, the header is still used internally within the protocol layers. A mul-

ticast packet header consists of packet type, MA and Reliable fields. Similar to

unicasting, the fields are converted internally into their respective frame header fields

counterparts.

156

7.3.2 Reliability

As described previously, the sender-initiated approach is used within a single ring.

However, across multiple rings, the approach can be best described as tree-based. In

essence, the tree-based approach divides the multicast group into smaller groups each

with their own group leader that is responsible for retransmission.

With respect to CarRing IV multicast, each ring within the network is treated as

a sub-group. The sender node is the group leader within its own ring. As for other

rings, the router that is responsible for routing the multicast packet is the respective

group leader for the destination ring.

Whether be it the original sender or a router, each group leader is only aware of the

immediate receivers within its ring and not all the receivers across the entire network.

Consequently, ensuring a reliable transmission for a sub-group is the responsibility of

the group leader and not the original sender. Therefore, this approach is scalable and

can be seen as a mix of sender-initiated and tree-based.

7.3.3 Multicast routing

CarRing IV multicast routing can be considered as the multicast extension of its

unicast routing. It also uses static routing and it does not require any exchange of

information between nodes or routers. Similarly, the network traffic is also dedicated

to user applications.

Multicast routing uses the source-based tree approach. This approach is efficient

for the protocol since the number of possible multicast groups is limited to 256, i.e.

it is not in the thousands. As opposed to group-shared tree approach which is used,

if there is a large number of multicast groups. Due to the use of a core router, the

group-shared approach suffers from a single point of failure.

Similar to unicast routing, the route computation algorithms are also run offline to

build a separate tree for each source. The resulting multicast routing table is statically

configured within each router before run-time. With respect to the algorithms, the

multicast extensions of those previously described in unicast routing are used.

157

As for multicast routing tables, they have the same structure and size as the

unicast routing tables. However, the 256 entries are based on the multicast address,

which is also 8-bits. The bit value of each entry is interpreted similarly, i.e. ’1’ for

routing and ’0’ for returning the packet to the same ring. The default value is ’0’.

7.3.4 Functional description

Since the network layer is only concerned with multicast routing, its functionality

within a node is limited. It handles multicast send requests coming from the ap-

plication layer in which it converts packet header fields into their respective frame

counterparts. Much like Positive and Negative acknowledges, the acceptance cri-

teria is entirely handled by the data-link layer.

Multicast routing is done in the same manner as unicast routing. In addition to

having its own membership table, each router port has its own multicast routing table

that is used to make the routing decision based on the multicast address. However,

there are two additional considerations, handling the RCL field and post-processing of

a multicast packet.

To better understand the implications of the router’s dual functionality on the

RCL field, consider the case of a router that is routing a multicast packet, while

simultaneously being a member of the corresponding multicast group. The router

port’s bit within the RCL field can convey only one piece of information. Thus, it can

not be used to avoid both duplicate reception and routing in case of retransmission.

Rather, those are monitored internally within each router port.

Within the RCL field, the router port’s bit is set if the multicast packet can be

received and routed, otherwise it is unset. In the latter case, if the Reliable field

is set, then the corresponding OMAC and ID are stored internally. They are valid for

limited amount of time, which is based on the circulation period. Along with those

fields, two additional 1-bit status fields are stored, i.e. reception and routing, as well

as a time-stamp field and its valid 1-bit field. Up to 3x16 of such 6-fields entries are

stored and managed internally, i.e. based on the maximum number of circulating

frames within a ring. While processing an incoming frame/packet, those 6-fields

158

entries are only used if the corresponding Reliable field is set. In other words, they

are used if retransmission is a possibility.

When such a frame reaches the router port and the port’s RCL bit is unset, it is

then checked against the stored and still valid 6-fields entries. If there is a match,

then it is considered a retransmission and routing/reception is done based on the

corresponding status fields within its entry. Thereafter, the port’s bit within the RCL

field is updated accordingly. On the other hand, if either there is no match or the

matched entry is invalid, i.e. time limit exceeded, then an entry is allocated based

on the frame’s OMAC and ID fields. And the respective reception and routing status

fields as well as the RCL bit are set accordingly.

In case of a router being a member but not responsible for routing the multicast

packet, then the routing decision is ignored in setting the port’s bit within the RCL

field, i.e. routing status always has a bit value of one. Similarly, if the router is not

a member but responsible for routing the multicast packet, then reception decision is

ignored.

As for identifying the sender of a routed multicast packet, it is left to the user

application to include the sender’s address as part of the payload, i.e. similar to

routed unicast packets. However, the number of bits used can be adapted to the

actual network size. In other words, if the network is composed of less than 27 rings

and the biggest ring within the network has less than 23 nodes, then not all 12-bits

are required to store the sender’s address within the payload.

After routing, the router does not convert the multicast frame into a transport

frame as is the case in unicast routing. Thus, the same multicast packet can be routed

multiple times if the routers within a ring have overlapping multicast routing table

entries. Therefore, an additional frame type is introduced and used specifically to

account for such a scenario, it is called Multicast Transport. It is the 9th frame

type, i.e. does not extend the Type field size. Furthermore, it does not affect or

alter any data-link layer functionality. Indeed, it is processed in exactly the same

way as Multicast. It is only used to signal to the router’s network layer that the

corresponding multicast packet has already been routed. With this method, the load

159

balancing approach explained in chapter 5 is not impacted.

160

Chapter 8

RTL Hardware Design and

Implementation

This chapter provides a detailed description of the node and router designs mentioned

in previous chapters as well as their implementation in hardware. The first section

provides an overview of those designs and their components. Then, the design con-

cepts, patterns and methods used within those designs are covered over two sections.

Thereafter, the used memories are described. Finally, a detailed description of the

hardware implementation of CarRing IV layers is provided.

8.1 Overview of the designs

8.1.1 Structure and main components

As mentioned in previous chapters, there are two designs that implement the protocol

in hardware, node and router. In essence, those designs consist of four main parts

that in turn contain the designs’ main components. As shown in figure 8-1, the four

parts are timer, protocol (sub-)layers, frame/packet arbiters and memory.

As described in chapter 6, the timer is used for time-sensitive operations and con-

sists of one design component. Unlike the timer, only the functionality of the protocol

(sub-)layers is covered in previous chapters. In what follows, a brief description of

161

Figure 8-1: General structure of both node and router designs

the (sub-)layers’ internal structure is provided.

Internally, each (sub-)layer is split into two sides, receiver and sender. Each side

has its own design components. This split also applies to and affects the remaining two

parts, frame/packet arbiters and memory. Regardless whether it is receiver or sender,

each (sub-)layer-side consists of two main design components. The first component is

named after the (sub-)layer-side itself and it contains the protocol’s logic. As for the

second one, it is an auxiliary design component that handles the frame/packet arbiter

and memory interactions, which resulted from applying the protocol’s logic. In other

words, one component handles operations while the other commits their results.

As for frame/packet arbiters, they are responsible for frame acquisition and arbi-

tration between operations within (sub-)layers design components. Each frame being

processed is associated with a dedicated frame/packet arbiter and memory alloca-

tions. Before any frame processing can start, a frame/packet arbiter must be acquired

and locked to the corresponding frame. In essence, a frame/packet arbiter maintains

execution order with respect to protocol logic. It manages dependencies between op-

erations within (sub-)layers, thus allowing operations with no inter-dependencies to

run in parallel. Furthermore, it also manages access to the corresponding memory

allocations.

Last but not least, memory is an essential part of both designs. It consists of one

design component that divides the memory into sender and receiver side. In turn,

each side is further divided into headers and payloads. Furthermore, it also includes

162

Figure 8-2: General structure of node design

read and write interfaces that are specific to each of the aforementioned allocations.

8.1.2 Node design

As shown in figure 8-2, not all (sub-)layers have an explicit secondary design com-

ponent, i.e. an auxiliary, within the node design. On the other hand, some have

additional design component(s) as well as an auxiliary. In what follows, a brief de-

scription of the aforementioned cases as well as the multi-layer auxiliary, i.e. L7 and

L1 arbiter acquisition, is provided.

As described in the previous section, auxiliaries handle frame/packet arbiter and

memory related operations. In certain (sub-)layer-sides, more clock cycles are con-

sumed by the communication channels between the (sub-)layer-side main design com-

ponent and the auxiliary, than saved due to the introduction of an explicit auxiliary

design component. This is due to either the protocol logic within the (sub-)layer

does not require multiple clock cycles, or there are too frequent interactions required

with the corresponding frame/packet arbiter in order to apply the protocol’s logic.

In the latter case, the (sub-)layer’s main component must frequently communicate

163

with the auxiliary to get feedback from the frame/packet arbiter before concluding

any protocol logic operation.

Within the sender-side of the data-link layer, additional design components are

introduced. In case of the ACF sub-layer, the SendState design component is used

to handle and maintain the order of send requests received from higher layers. As

for the ASA sub-layer, four SendState design components are introduced. They are

used to manage and track the progress of acknowledged transmissions as well as

reliable multicast transmission. However, they are only used if the corresponding

Retry or Reliable bits are set, i.e. if retransmission is a possibility. Similarly,

two SendAtState design components are introduced to manage and track periodical

transmissions as well as at a future point in time, i.e. delayed transmissions.

As for the L7 and L1 arbiter acquisition auxiliary, it is a separate design component

that is dedicated to acquiring arbiter frames on behalf of both, the sender-side of the

application layer as well as the receiver-side of the physical layer. This is due to those

two layers being the source of new incoming send requests and frames, respectively.

The acquisition is performed automatically, i.e. without the need for an explicit

request from the aforementioned layers. Otherwise, additional processing delay would

be introduced. A new acquisition is triggered if the corresponding layer uses the

current acquired frame/packet arbiter.

8.1.3 Router design

As described in chapter 5, a router includes two ports each with its own layers. In

figure 8-3, the dotted lines indicates where direct duplication of the layers within

the node design ends. Despite having two network layers, those layers are not direct

duplicates of their node design counterparts. Within each network layer, the receiver-

side directly interacts with the sender-side of the ACF sub-layer within the other port.

Such interaction is part of the network layer routing functionality, i.e. issuing route

requests. In short, a route request is essentially a send request issued by the other

port’s network layer instead of the application layer.

Furthermore, each memory design component includes additional interfaces for the

164

Figure 8-3: General structure of router design

router’s other port. More specifically, it includes read interfaces for the receiver-side

as well as the sender-side of the other port’s network and physical layers, respectively.

As for the application layer, it includes twice the number of user interfaces that of its

node design counterpart.

8.2 Design concepts and patterns

8.2.1 Frame and packet processing

In order to benefit from the hardware’s inherit parallelism, protocol layers are designed

as PEs. Each PE only handles the protocol logic operations associated with one (sub-

)layer. More specifically, there is one PE per receiver- or sender-side of a (sub-)layer.

Those PEs do not store or track any frame or packet state information. Furthermore,

they also do not include any memory operations. As described in section 8.1.1,

such operations are encapsulated, along with frame/packet arbiter interactions, in an

additional auxiliary design component.

As for the frame and packet state information, they are managed by frame/packet

arbiters, which are described in the sub-section below. Moreover, there are other

165

state information that must be stored and managed long after the corresponding

frame/packet has been processed and sent into the ring. This is required in case of

acknowledged and reliable multicast transmission as well as the SendAt feature. Such

state information is managed by dedicated SendState and SendAtState components.

While processing, a PE does not temporarily store the corresponding frame or

packet. In other words, a frame/packet is not transferred through all layers until

it reaches the application layer during reception or vice versa during transmission.

Rather, only a multi-byte word along with a memory address-like value, called frame

index, is exchanged between (sub-)layers. The frame index is covered in sub-section

below. This multi-byte word contains only the part of the processing outcome that

is relevant for the next (sub-)layer. Thus, no payload is transferred, i.e. only a

control interface is required between (sub-)layers. The size and internal structure of

the aforementioned word depends on the corresponding (sub-)layers.

As described previously, the physical layer handles the encapsulation and decap-

sulation for all higher layers. This effectively separates the communication channels

used to transfer control/processing data and frame/packet data, i.e. user data. In

other words, PEs have their own communication channels that are not used to transfer

payloads. Thus, avoiding unnecessary processing delays.

As for the control interface, it is essentially a small-sized FIFO equipped with

two point-to-point interfaces for the respective PEs, i.e. TLM-FIFO interfaces. The

interface data-width is equal to the combined size of the aforementioned frame index

and multi-byte word. As for the FIFO’s capacity, it depends on the corresponding (sub-

)layers, where the largest one holds at most four. Using a TLM-FIFO rather than direct

point-to-point interface, decouples and disentangles the corresponding PEs. Thus, the

respective (sub-)layers can process incoming frames/packets asynchronously, i.e. as

fast as possible. This frame/packet processing approach allows for horizontal scaling,

where more PEs can be added per (sub-)layer. The approach falls within the category

of protocol multi-processing.

166

8.2.2 Arbiters

Within both, node and router designs, (sub-)layers are essentially PEs that do not

store or track state information while processing a frame or packet. Handling such

information is delegated to a dedicated design component, called arbiter. In addi-

tion to state information, those arbiters also handle processing inter-dependencies

between (sub-)layers. Thus, they manage the execution order with respect to the

protocol logic within PEs. And consequently, access to memory. In other words,

they synchronize operations carried-out in parallel by different PEs. This effectively

removes the sequential processing that results from a direct implementation of a lay-

ered architecture.

There are multiple arbiters within the node and router designs. The number of

arbiters is directly related to the number of partitions within the designs’ memory.

In short, memory is partitioned based on frames and their respective packets. Each

frame/packet memory allocation is associated with a dedicated arbiter. Thus, in

order to use an allocation for a new frame/packet, its arbiter must first be engaged.

Correlating allocations with their respective arbiters is achieved by using a memory

address-like value, called frame index. This index value is used by (sub-)layers to

select an arbiter’s interface as well as calculate the corresponding memory addresses.

In other words, it is used to distinguish between arbiter and memory allocation pairs.

As depicted in figure 8-2, an arbiter consists of multiple sub-components that not

only interact with their respective (sub-)layers but also internally with one another.

Since a new frame/packet originates either from the physical layer’s receiver-side or

the application layer’s sender-side, arbiter acquisition must be managed between those

two layers. Therefore, the arbiter also includes a sub-component that is dedicated to

handling acquisition requests in addition to having a sub-component for each (sub-

)layer. Such requests take place during the network’s normal operation. However,

that is not the case during ring initialization. More specifically, the creation and

handling of a Reset frame constitutes a special case, which is covered in section 8.4.

Depending on the origin of the frame/packet, its processing is concluded, if its

167

either sent into the ring or the respective payload is received by the user application.

Once processing is concluded, the corresponding arbiter is released, i.e. the memory

allocation along with its arbiter can be used to process another frame/packet. How-

ever, those two must be preserved if retransmission is a possibility. More specifically,

if Retry or Reliable fields are set in case of acknowledged transmission or reliable

multicast. Therefore, the arbiter acquisition sub-component additionally includes a

locking feature. This feature allows locking the memory allocation and its arbiter

long after the corresponding frame/packet is sent into ring. And thereby preserving

the payload in case of retransmission.

8.2.3 Transaction-level modeling

From the early phases and throughout the development life cycle, both node and

router designs relied in no small part on the transaction-level modeling approach. As

described in chapter 2, it elevates the communication details between design com-

ponents to a higher level of abstraction, thereby separating communication from

computation. Design components exchange data in the form of transactions through

an abstract communication channel.

Within the context of CarRing IV, the majority of inter-process communication

as well as interactions between design components use TLM interfaces. This partially

reduces the complexity of the hardware implementation of both designs. While this

preexisting modeling approach is not specific to one HDL, the aforementioned inter-

faces were mainly realized within SystemC, which is one of the main three HDLs used

in CarRing IV. In what follows, the interfaces used in both designs are covered.

With the exception of memory interfaces, the majority of TLM interfaces internally

use the standard ready/valid protocol. Figure 8-4 depicts the signals as well as the

corresponding timing diagram of the handshake process. The valid and data signals

are driven by the sender-side, while the ready signal is driven by receiver-side of

the communication channel. Within the context of CtoS-TLM, the communication

channel used in both the node and router designs, is called put/get channel. It

internally uses the ready/valid protocol and is part of the Cadence Flex Channels

168

Figure 8-4: Timing diagram of valid/ready protocol

Library[15].

Despite sharing the same timing diagram at the signal level, there is a variety of

interfaces used in both designs. They are differentiated based on their behavior[15].

In what follows, a transaction-level description of the interfaces and their behaviors

is provided.

∙ blocking put. This interface always consumes at least one clock cycle before

attempting to push new data into the communication channel. After one clock

cycle, if the channel is not ready, then the interface continues to wait, i.e.

consumes clock cycles until it is ready. Within the context of the designs, no

operation can take place until the interface has pushed the corresponding data

into the channel, i.e. operations are blocked once the interface is engaged.

∙ non-blocking put. Unlike the previous one, this interface does not consume

any clock cycles nor does it ensure a successful data exchange across the com-

munication. Rather, it delegates the responsibility to the design component, i.e.

the process that is using the interface. The corresponding process is responsi-

ble for checking the channel before attempting to push data via the interface.

Within the context of the designs, this interface is used when additional oper-

ations can be carried-out while waiting for the channel to be ready.

∙ blocking get. This interface is the counterpart of blocking put. It exhibits

the same behavior, however on the receiver-side of the communication channel.

∙ non-blocking get. Similarly, this interface is the counterpart of non-blocking

169

put.

∙ non-blocking get-peek. In addition to the non-blocking behavior, this inter-

face also allows a process to essentially read the channel data without completing

the handshake process of the ready/valid protocol. Thus, a process is able to

peek at the channel data before fetching it from the channel and thereby freeing

the channel to accept new data. Within the context of the designs, this interface

is used to check for and select an outcome from multiple different processes.

Last but not least, memory interfaces created within the designs are based on TLM

constructs, i.e. sc_port, sc_export and sc_interface, which are described in chapter

2. At the signal level, they are essentially represented by standard memory write

interfaces as well as synchronous and asynchronous memory read interfaces.

8.2.4 Token-based data-flow

So far, the structure, internal design components and communication channels of

both node and router designs as well as the frame and packet processing approach

are covered. This section covers the approach with which arbiters handle and process

frame and packet state information. This includes the interactions of the arbiter

sub-components with one another as well as with their respective (sub-)layers.

The approach can be best described as token-based data-flow. The execution

of protocol logic operations is driven by the frame and packet data, i.e. headers’

fields. Two types of tokens are used, state and flow tokens. While both types have

fixed sizes, they do not have a fixed internal structure, i.e. the values carried by the

tokens depend on the respective arbiter sub-component as well as the corresponding

(sub-)layer. Both types are implemented using the put/get channel described in the

previous sub-section. With respect to the TLM interfaces used, the majority are

blocking put/get interfaces and to a lesser extent non-blocking put/get interfaces.

For a better grasp of the necessity and context of the two types of tokens, consider

the following example. In case of multicast transmission, the incoming frame must

be simultaneously received by the user and pushed back into the ring. Thus, the

170

corresponding flow of this incoming frame is accept and forward. However, its current

state depends on the processing progress, i.e. still being received by user or being

pushed back into ring.

The state tokens are exchanged internally between arbiter sub-components. They

are mainly 1-bit in size with few consisting of 3-bits. Their main purpose is to

exchange and update state information within each arbiter sub-component. The

updates are invoked by the processing outcomes of the corresponding (sub-)layer.

As for the flow tokens, they are exchanged between arbiter sub-components and

their respective (sub-)layers. They are 9-bits in size and consist of the processing

outcome of the respective (sub-)layer as well as the flow information. Such information

is represented by a flow type data structure. Due to the fixed number of possible

headers’ variations, 31 flow types are identified and implemented.

Flow types: Default, Forward, Ring init, Acknowledge, Reuse, Forward

Accept, Forward Not Accept, Release Transport Frame, Send Request, No

Send Request, Send Request Accepted, Send Request Rejected, Process

Send Request, Positive Acknowledge, Negative Acknowledge, Receive,

Release Arbiter, Acknowledged, Circulation Period, Process Payload,

Immediate, Create Transport Frame, Create Transport Frame And Send,

Send, Retry, Receive Acknowledged Frame Type, SendAt, Time-out, Route,

Clock sync, Forward Accept Multicast.

In both node and router designs, the internal flows are directly affected by frame

and packet header fields. While the payloads are dynamically set by the user, the

data input that drives the internal flows within the designs is not dynamic, i.e. fixed

and limited number of possible combinations of header fields’ values. Therefore, it is

not required to monitor and resolve deadlocks or livelocks during run-time. Rather,

they are detected and resolved before synthesis, i.e. before deployment.

Access to shared memory is indirectly managed via both token types. In other

words, managing the execution order of the protocol logic operations also takes into

account access to shared memory. Thus, there are no explicit tokens or design com-

ponents that directly manages access to shared memory. This moves the problem of

171

shared memory access management from a central design component, which is the

classical or typical approach, to distributed components that manage the execution

of protocol logic operations.

8.3 Memory management

There are two types of memory used within node and router designs, Flash mem-

ory and BlockRAM. The former is a separate and dedicated component within the

prototype, while the latter is the FPGA’s internal memory. Within the Kintex7-

prototype, this dedicated component is the S25FL256SAGBHI20 chip. As for the

Virtex5-prototype, the PC28F256P30T85 chip is used.

A node or router configuration data are manually set within the prototype’s Flash

memory before run-time. After power-up, the configuration data is immediately

fetched from flash memory and used internally within the designs, i.e. before ring

initialization. The use of flash memory to set configuration data is optional. In other

words, the configuration interface in both designs can be used and adapted to custom

user designs. As such, the use of flash memory is regarded as more of a convenience

rather than a necessity.

On the other hand, BlockRAM is used internally by both designs for processing

frames and packets. When compared to general purpose processors, it is the equiva-

lent of an L1-cache. It operates at the same clock frequency as the designs. Thus, no

unnecessary delays are encountered, when interacting with the memory component

within both designs. Using a standard memory solution, e.g. DDR-X, would require

a differential clock signal to drive the memory component. This standard approach

introduces another clock domain into the designs. Consequently, each memory in-

teraction includes additional overhead due to clock domain crossing. Thus, it is

considered sub-optimal for both designs.

Within both node and router designs, memory is partitioned based on frames and

packets, i.e. divided into headers and payloads. As show in figure 8-5, the memory is

further divided to match the (sub-)layers’ general structure, i.e. sender- and receiver-

172

Figure 8-5: Internal structure of main memory

side. As for memory interfaces, the corresponding TLM interfaces used by (sub-)layers

mask the internal memory structure. In other words, (sub-)layers use one read and

one write TLM interface to interact with the memory component. This is achieved

in-part by using the aforementioned frame index.

As described previously, the frame index is used to correlate arbiters and their

corresponding memory allocations. This correlation is not dynamic, i.e. each arbiter

has its own fixed memory allocation in-which the corresponding frame and packet

resides. Therefore, the total number of frame indexes reflects the total number of

frames and packets that can be stored and processed within the node and router

designs. Thus, increasing a design’s capacity to process more frames and packets

implies additional arbiter/memory-allocations pairs.

In order to both mask the internal memory structure and accommodate the sender-

and receiver-sides of (sub-)layers, the frame indexes are split into two sets or ranges.

The sender-side attempts to acquire arbiters using frame indexes belonging to its

range and the receiver-side is similarly restricted to its range. More specifically,

arbiter acquisition attempts are done by the application layer on the sender-side,

and the physical layer on the receiver-side. The splitting of frame indexes is specific

to arbiter acquisition and memory resources. In other words, an arbiter includes

sub-components for both sides of all (sub-)layers. Thus, PEs from both sides can be

involved in processing using the same arbiter and memory resources.

173

While the frame index is used by (sub-)layers’ auxiliary component to select an

arbiter’s interface, it is also used to calculate memory addresses. Since the arbiter

interface selection method is straight forward, in what follows, the use of frame indexes

within the context of memory addresses is described.

The memory read and write TLM interfaces are associated with a data structure,

called memory request. It consists of the three fields, Frame index, Address offset

and Data. The frame index is used to check for the origin of the memory request,

thereby which side of the memory is engaged next. As for the address offset, it is used

to navigate through the headers or payloads memory partitions. As shown below, the

memory address is calculated using both the frame index and address offset fields

within the request.

𝐻𝑒𝑎𝑑𝑒𝑟𝑂𝑟𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝐹𝑟𝑎𝑚𝑒𝐼𝑛𝑑𝑒𝑥×𝐻𝑒𝑎𝑑𝑒𝑟𝑂𝑟𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒

+𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑂𝑓𝑓𝑠𝑒𝑡
(8.1)

Last but not least, the Data field is used within the context of a memory write.

With respect to payloads, the size of both this Data field and the returned data in

case of a memory read is equivalent to the data-width of Aurora’s LL interface. As

for headers, the size is set to 64-bits.

8.4 Hardware implementation

In this section, the descriptions provided are specific to implementation. They are

considered as complementary to the functionality sub-sections in chapter 5. This

section covers the implementation, internal workings and behavioral specifics of the

node and router designs. To avoid bloating this section with a line-by-line listings of

the used HDLs, i.e. design codes, in what follows, the descriptions are provided using

flow diagrams and layouts figures and depictions.

In order to avoid cluttering the figures used below with legends and additional

descriptions, the used symbols and elements are briefly described. As shown in figure

174

Figure 8-6: Illustration of layout symbols and flow diagram elements

8-6, there are two interface representations used. The external interface corresponds

to input and output ports that are external to the node and router designs. For exam-

ple, configuration ports that originate from pins corresponding to a physical button

or switch within the prototype. Another example is Aurora’s LL interface. Thus, they

exclusively represent input and output ports as opposed to internal interfaces. Such

interfaces originate from and connect design components within the node and router

designs.

As for flow diagrams, the start, stop and decision elements are self-explanatory.

On the other hand, the action elements correspond to logic operations performed

within arbiter sub-components. Such actions are considered internal if they originate

from interactions that are internal to the arbiter, i.e. using TLM interfaces between

arbiter sub-components. And they are external if the corresponding interactions are

with other design components external to the arbiter.

Last but not least, TLM interfaces are effectively implemented using signals i.e.

regular I/O ports. However, within the design their transaction level implementa-

tion is referenced. Several shortcuts are used in-text and figures to reference TLM

interfaces. Those are:

∙ nb_put, b_put: non-blocking and blocking put interface

∙ nb_get, b_get, nb_get_peek: non-blocking, blocking and non-blocking peek

get interface

175

8.4.1 Node

Reset logic and configuration data

As described in chapter 2, reset logic is an important part of any design. Within the

node design, synchronous active high reset is used. The reset logic is based on three

signals. The first is the output signal derived from debounce logic associated with

a typical reset button. As for the second signal, it is the output signal of a VHDL

process that monitors the channel-up output signal of Aurora. Such a signal is set

once Aurora has finished initializing. And the monitoring is performed for a limited

number of clocks, after-which the Aurora channel is considered stable and ready for

use. Last but not least, the third signal is a configuration done signal, which indicates

that the node configuration data has been properly set.

A side effect of this reset logic is that the node design starts in a reset state

for multiple clock cycles before transitioning into operational state. Thus, giving the

node design enough time to initialize internally used resources, e.g. interfaces, signals.

This is crucial to ensuring a functional node design.

As for configuration data, a separate and independent SC_MODULE, called

NodeConfig, is used to provide and set the node configuration data. It fetches the

data from flash memory. And using the node’s configuration interface, it sets appro-

priate input ports. The aforementioned configuration done signal is only set after all

data has been retrieved and set. The configuration data includes:

∙ Primary enable input. As name implies, it resembles whether the node is a

primary node, i.e. whether it is responsible for ring initialization.

∙ Reference clock enable input. It is only relevant if the node is a primary. As part

of the clock synchronization, it indicates whether the corresponding primary

node is also the reference node for the network.

∙ Node’s ring and MAC addresses. Those are used only if the node is a primary

node.

176

∙ Ring initialization time-out. Similarly, this value is only used if the node is a

primary.

∙ Mode of operation. This input indicates whether the isochronous or anisochronous

mode is used.

∙ Multicast membership table.

Physical layer

Regardless whether it is the node or router design, the design-clock is a single-ended

clock signal that is generated by Aurora. In other words, both designs operate at

the same frequency and in the same clock domain as Aurora’s user interface, i.e. LL

interface. As a result, the frequency of such a clock must be adequate for the design.

As described in chapter 2, the clock period of the used clock signal must not be smaller

than the design’s lower limit. Otherwise, the design’s timing constraints can not be

met, i.e. negative slack. Therefore, Aurora’s configuration must accommodate both

designs. On the other hand, the physical layer and the frame size is in-part based on

Aurora’s frame transmission behavior.

Since Aurora’s internal workings and specifics are outside the scope of this thesis,

in what follows, only the parts that directly affects the designs are briefly described.

In short, Aurora’s configuration is based on number of lanes, bytes per lane, line rate

and the reference differential clock (aurora-clock). Based on the configured values,

the clock period of the aforementioned design-clock is calculated. To a certain extent,

the configuration is in-part covered in sub-section 5.1.4, i.e. number of lanes, bytes

per lane and additionally the design-clock.

As for line rate and aurora-clock, those are based on the used network cables

and prototype’s clock generator chip, respectively. In case of Virtex5-prototype, this

translates to one lane per port with 3.125 Gbps and a 250 MHz aurora-clock, whereas

it is four lanes per port with 6.25 Gbps and a 125 MHz aurora-clock for Kintex7-

prototype.

In essence, Aurora is another design component with its own timing constraints

177

and sub-components. As such, there is latency associated with frame transmission

within Aurora. It stems from Aurora’s protocol engine as well as the underlying GTX

transceiver. This results in a pipeline effect. Thus, the designs must continuously

transmit, i.e. fill the link to achieve the highest throughput possible.

At the early stages of the project i.e. Virtex5-prototype, hardware level loop-back

tests were conducted to determine the number of aurora-words required to fill the link,

thereby determining an adequate frame size. Those loop-back tests were external to

the transceiver, i.e. the data was transmitted onto the network cable and captured

back again on the receiver interface using Xilinx Integrated Logic Analyzer (ILA) IP

core. As for aurora-word, it is the number of bits per one clock cycle pushed through

the LL interface, i.e. LL’s data-width, which in turn is based on the number of bytes

per lane and number of lanes. The end result is that the frame size is set to 16

aurora-words, where the link can hold up to 2 frames.

Note that while it is also possible to fill the link using fewer but larger frames,

the increased number of frames results in more sending opportunities, thereby a more

responsive system.

In case of Virtex5-prototype, an aurora-word is 32-bits in size which translates to

a 512 bits frame. Due to the increased number of lanes within Kintex7-prototype,

an aurora-word is 128-bits in size which results in 2048 bits frame. Within CarRing

IV, the main focus is on the timing behavior of the protocol rather than the number

of bits in a frame. In other words, the number of clocks consumed to push a frame

via Aurora’s LL interface, rather than the frame’s size. As such, the 16 clocks per is

preserved as the project transitioned from the old prototype to the current one.

As depicted in figure 8-7, not all layers require explicit auxiliary design compo-

nents. Due to the layer’s functionality, the PE and auxiliary component are merged.

This results in one design component per sender- and receiver-side. In case of the

sender-side, one SC_CTHREAD is sufficient to push frames to Aurora via the LL

interface. It gets the frame index from the upper layer, i.e. the ACF sub-layer. And

it uses the frame index to fetch data from memory as well as interact with the cor-

responding arbiter using the appropriate b_put/b_get interface pair. Note that NoF

178

Figure 8-7: Physical layer sender- and receivers-side designs

stands for number of frames which represents the design’s capacity in terms of frame

and packet processing, i.e. number of arbiter/memory allocation pairs.

On the other hand, the receiver-side requires multiple SC_CTHREAD. Although

it is possible to pause data reception via the LL interface, this is explicitly avoided

in order to achieve the highest throughput possible. Therefore, as an additional

measure three more SC_CTHREAD are introduced to avoid the possibility of a

temporary pause. As the frame is being received, the headers are pushed to the

corresponding (sub-)layers via dedicated b_put interface and SC_CTHREAD. As

for the frame index, it is acquired from the L7 L1 arbiter acquisition auxiliary prior

to data reception. Similar to the sender-side, the frame index is also used to select

and interact with the corresponding arbiter and memory allocation.

As described previously, the frame and packet state information are handled by

arbiters. As shown in figure 8-2, each arbiter sub-component corresponds to a (sub-

)layer, e.g. the sender-side of the physical layer has a dedicated sub-component, called

Arbiter-L1-S. The general structure of a sub-component is the same across all (sub-

)layers. In short, there is one SC_CTHREAD that receives flow tokens from the cor-

responding (sub-)layer and exchange state tokens with other arbiter sub-components,

i.e. other (sub-)layer specific arbiters. Such interactions are performed using b_put,

nb_get and b_get interfaces. Thus, rather than including design depictions that are

mostly similar, flow diagrams are used to explain the internal workings of arbiters.

This applies for all (sub-)layers, including the router design sub-section.

179

Figure 8-8: Flow diagram of physical layer receiver-side arbiter

Figure 8-8 depicts the flow diagram of Arbiter-L1-R. On the receiver-side of the

design, frames are first encountered in the physical layer. Therefore, it is responsible

for acquiring arbiter and memory allocation pairs on behalf of all layers within the

receiver-side of the node design. As depicted in the diagram, the first action is to wait

for arbiter acquisition sub-component to confirm acquisition, i.e. enable and start.

Thereafter, the corresponding frame index is pushed to and used by (sub-)layers of

both sides of the design. During decapsulation, the frame index is pushed to higher

layers. Thus, Arbiter-L1-R is required to only inform higher layers that the frame is

fully received, i.e. payload is received.

In order to reduce arbiter sub-component interactions, each sub-component in-

teracts with its immediate neighbors, i.e. with sub-components belonging to the

(sub-)layer directly above or below. Therefore, waiting for ACF receiver sub-layer,

depicted in figure 8-8, is affected by the processing outcome of higher layers. Thus,

the wait can be based on waiting for user to fully receive the payload, and/or waiting

for the sender-side to push the frame back into the ring.

Unlike the receiver-side, arbiter acquisition is performed by the application layer

within the sender-side. As depicted in figure 8-9, the starting point for Arbiter-L1-S

is waiting for the higher layer, i.e. ACF sub-layer to finish processing the header. Note

that one of the paths in the flow diagram leads an immediate arbiter release shortly

after starting. This is possible within the context of processing a user send request. In

such a scenario, there are two arbiter/memory allocation pairs, one for the incoming

180

Figure 8-9: Flow diagram of physical layer sender-side arbiter

frame and another for the send request. Rather than copying data internally between

memory allocations, only the header of the incoming frame is reused, while the rest

is released. Thus, only one arbiter/memory allocation pair remains active, i.e. one

associated with send request. Consequently, only one frame is sent.

Last but not least, the protocol operation modes, i.e. isochronous and anisochronous,

are not explicitly accounted for within the arbiter sub-components. There are no in-

put/output ports or interfaces used to exchange or check for which operation mode is

active. Rather, operation modes implicitly affect arbiter’s external interactions with

(sub-)layers as well as internal interactions between sub-components.

ACF sub-layer

Unlike the previous sub-layer, the ACF requires a separate auxiliary design component

in addition to its PE. As depicted in figure 8-10, there are two sources for frame

indices, the receiver-side of either the ACF or ASA sub-layer. Depending on the frame

type, the corresponding sub-layer is responsible for providing the frame index, i.e. ACF

in case of unacknowledged and ASA for acknowledged. As for the SC_CTHREADs,

they are based on the sub-layer’s functionality.

181

Figure 8-10: PE and Auxiliary designs of the ACF sub-layer sender-side

During ring initialization, the initial creation and transmission of Reset as well

as a node’s own Transport frames is considered as a special case. In such a case,

an arbiter/memory allocation pair is not required, i.e. no arbiter acquisition is per-

formed. Consequently, the usual interactions with an arbiter as well as a memory

allocation is bypassed during transmission. The frame header is created internally by

the sender-side of the ACF sub-layer. And the payload is essentially padded during

transmission, i.e. one aurora-word repeated until the full frame size is reached. As

for the packet header, it is also padded with default values.

Unlike typical approaches, user send requests do not result in the creation of

a frame, which is then pushed into the network. Rather, they wait for a sending

opportunity, i.e. for the node’s own frame to circulate back or reuse a frame of another

node. This maintains the fixed number of frames that circulate the ring, i.e. network.

As such, another separate design component is introduced to maintain the order of

user send requests internally within the node. It is called L2-ACF-SendState and is

depicted in figure 8-11. This internal ordering is based on time of request arrival.

It also covers retransmissions in case of acknowledged transmission which includes

multicast. Note that NoS stands for number of send requests which represents the

number of consecutive send requests received from the user.

As shown in figure 8-12, there is two possible starting points within Arbiter-L2-

ACF-S. Either a state token from the receiver-side of the ACF sub-layer or the sender-

182

Figure 8-11: SendState design of the ACF sub-layer sender-side

Figure 8-12: Flow diagram of ACF sub-layer sender-side arbiter

side of the ASA sub-layer. The former corresponds to an incoming frame that must be

forwarded. And the latter corresponds to a user send request being transmitted, an

acknowledge or a retransmission. As for the possible release flow token received from

ACF, it corresponds to the user send request and incoming frame scenario described

earlier, where only one the two arbiter/memory allocations pairs remains active and

the other is released.

Figure 8-13 depicts the merged design of the ACF sub-layer’s receiver-side. Unlike

the physical layer, the corresponding PE and auxiliary are merged due to frequent

interactions required to achieve the sub-layer’s functionality. Thus, in order to reduce

the overhead resulting from the frequent interactions, a merged design is used. As

183

Figure 8-13: ACF sub-layer receivers-side design

for the frame index, it is received from the physical layer receiver-side. Based on

the processing outcome, it is either pushed to ASA receiver-side or ACF sender-side.

The former corresponds to an acknowledged frame type, where the corresponding

payload is being received. As for the latter, either an unacknowledged frame is being

simultaneously received and forwarded or simply forwarded.

Among the responsibilities of the receiver-side of the ACF sub-layer is handling

the acceptance criteria. Therefore, the starting point for Arbiter-L2-ACF-R is waiting

for the state token of the network layer’s receiver-side, as depicted in figure 8-14. It

contains the result of the ring address comparison, which is then used by ACF.

ASA sub-layer

In order to reduce processing complexity, two interfaces are used to receive frame

indices from the network layer sender-side, as depicted in figure 8-15. The split is

based on whether the frame index corresponds to an acknowledged or unacknowledged

transmission. Since there is no retransmission in unacknowledged, the corresponding

arbiter/memory allocation pair is released immediately after the frame is pushed into

the ring. On the other hand, the headers and payload must be preserved in case

of unacknowledged transmission. However, this is only the case if retransmission is

explicitly enabled by the user, i.e. Retry field is set, or Reliable in case of multicast.

Otherwise, the acknowledged transmission is treated as an unacknowledged one.

184

Figure 8-14: Flow diagram of ACF sub-layer receiver-side arbiter

Figure 8-15: PE and Auxiliary designs of the ASA sub-layer sender-side

185

Figure 8-16: SendState and SendAtState designs of the ASA sub-layer sender-side

Additionally, there are two design components that encapsulate part of the sub-

layer’s functionality. The L2-ASA-SendState and L2-ASA-SendAtState are depicted

in figure 8-16. As the name implies, L2-ASA-SendAtState handles the protocol logic

operations pertaining to the SendAt feature. This one design component keeps track

of and manages both periodical and delayed transmission.

On the other hand, the L2-ASA-SendState handles retries, time-out and incom-

ing acknowledges for one user send request. Therefore, multiple duplicates of the

component are used, where the total number is based on NoS, i.e. the number of

send requests. As stated earlier, an acknowledged transmission is treated as an un-

acknowledged one if retransmission is not explicitly enabled. While this applies to

the arbiter/memory allocation pair, it is not the case for the usage of an L2-ASA-

SendState. Such a transmission still occupies an L2-ASA-SendState in order to keep

track of time-out. However, a time-out trigger does not result in a transmission,

rather it results in a notification pushed to the application layer.

Within ASA sender, the majority of the protocol logic operations correspond to

retries, time-outs and acknowledges. And those have been delegated to specialized sec-

ondary design components, i.e. L2-ASA-SendState and L2-ASA-SendAtState. There-

fore, the state information contained within Arbiter-L2-ASA-S is minimal, as shown

in figure 8-17. It is mainly concerned with enabling ACF sender based on the flow

token produced by ASA’s PE.

Unlike the sender-side, the ASA receiver-side does not require additional design

186

Figure 8-17: Flow diagram of ASA sub-layer sender-side arbiter

Figure 8-18: PE and Auxiliary designs of the ASA sub-layer receiver-side

components beyond PE and Auxiliary, as shown in figure 8-18. As a result, the state

information is entirely contained within its respective arbiter.

The flow diagram of Arbiter-L2-ASA-R is depicted in figure 8-19. It also covers the

case if application layer, i.e. the user is unable to read the payload in time. Depending

on the frame/packet being received, this can result in a negative acknowledge in case

of acknowledged transmission, or the RCL field not being updated in case of multicast.

Network layer

Similar to the physical layer, the layer’s functionality is also relatively limited, when

compared with other layers or with the network layer within the router design. As

described in chapter 5, the functionality of a node’s network layer is simplified, since

it does not store, pull or push any routing information. In short, it is responsible for

ring address, conversion of header fields from packet to frame as well as elevating some

the data-link layer functionality and making it accessible to the application layer. It

also handles the distinction between local and non-local destinations with respect to

the i-to-j feature of the data-link layer.

Consequently, a merged design is used for both the sender- and receiver-sides of

187

Figure 8-19: Flow diagram of ASA sub-layer receiver-side arbiter

188

Figure 8-20: Network layer sender- and receivers-side designs

Figure 8-21: Flow diagrams of network layer sender- and receiver-side arbiter

the network layer. The designs are depicted in figure 8-20. The sender-side uses

two interfaces to push frame indices to the ASA sub-layer. Those interfaces are the

counterparts of the two ASA sender-side interfaces described above.

The reduced complexity and simplified network layer functionality is also reflected

in the layer’s Arbiters. The respective flow diagrams are shown in figure 8-21. On the

sender-side, it revolves around determining the transmission type associated with a

user send request. And on the receiver-side, it corresponds to the acceptance criteria

within the network layer.

189

Figure 8-22: Application layer sender-side design

Application layer

Similar to both the network and physical layers, a merged design is also used for the

sender-side of the application layer. However, unlike the other two layers, no arbiter

interfaces are included in the merged design. As shown in figure 8-22, only the memory

interface remains part of the design. Furthermore, no layer-specific arbiter is required

for the sender-side of the application layer.

The sender-side is mainly responsible for handling interactions with user applica-

tions. In other words, no header manipulation is performed, thereby no Arbiter-L1-S

is required. Nevertheless, the application layer’s sender-side still receives a frame

index from L7 L1 arbiter acquisition auxiliary. This is due to this layer being the

source of new frames/packets within the sender-side of the node design. Therefore,

it is responsible for acquiring arbiter/memory allocation pairs on behalf of all layers

within the node design’s sender-side.

As described previously, user send requests are not immediately transmitted.

Rather, they wait for a sending opportunity, i.e. for an incoming frame that could

in turn be used to transmit the corresponding payload. The eligibility of the incom-

ing frame for transmission depends on multiple factors among which is the operation

mode used, i.e. anisochronous or isochronous. However, the processing of the incom-

ing frames is not interrupted, if a new send request is issued simultaneously.

More specifically, if the request is still being processed and has not yet reached

the ACF sub-layer. Regardless of the transmission eligibility, the processing of the

190

incoming frame is not interrupted or paused to wait for the request. This design

decision was made to maintain time predictability with respect to the arrival of frames,

i.e. maintain deterministic behavior.

Standard FIFO read and write interfaces are used for interactions with user appli-

cations. In other words, a FIFO is used to transfer data between the application layer

and the user application. Such an approach is used, because it offers a good balance

between compatibility and flexibility. In other words, FIFO interface implementations

are ubiquitous and an independent-clock FIFO can be used to cross clock-domains.

A data-width of 128 bits is used for the send request FIFO read interface. It is

based on the data-width of an aurora-word, i.e. it is equal to data-width of Aurora’s

LL interface. As for the structure of the input data, 68 MSBs of the first input are re-

served for the send request fields while the rest is used for the payload, i.e. 2008-bits.

The request fields consist of: Packet type (3-bits), destination MAC address (4-

bits), destination ring address (8-bits), destination multicast address (8-

bits), Retry (1-bit), Reliable (1-bit), SendAt index (2-bits), SendAt time interval

(40-bits) and SendAt state (1-bit).

With respect to the feedback interface, it has a data-width of 26 bits. And the

feedback fields consist of: Address status (1-bit), Payload status (3-bits), Frame

index, RCL (16-bits), Frame ID (2-bits) and Frame Owner MAC address (4-bits). The

frame index field is required due to the increased number of sending opportunities

within the anisochronous mode. Due to acknowledgments, unacknowledged send re-

quests have more sending opportunities than acknowledged ones within this operation

mode. As a result, an unacknowledged send request might be transmitted before an

acknowledged one despite its time of arrival from the application layer. In such a sce-

nario, the time of issuing a send request is no longer sufficient to match the feedback

received with the request issued within the user application.

With respect to the status fields, the responses along with their respective integer

values are:

∙ Address status (1-bit): Invalid (0) and Valid (1).

191

Figure 8-23: PE and Auxiliary designs of the application layer receiver-side

∙ Payload status (3-bits): Received (0), Not received (1), Positive

acknowledge (2), Negative acknowledge (3), Routed (4) and Not routed (5).

As described in sub-section 5.4.3, the feedback includes a limited destination ad-

dress check. However, there are no internal checks on the time interval supplied within

the context of send-at request. More specifically, if a small interval is provided by the

user application, then it is no longer a periodical or delayed transmission, rather it is

sending as soon as possible, i.e. immediate with the next sending opportunity.

On the other hand, the receiver-side of the application layer consists of both a

PE and an auxiliary design component, as depicted in figure 8-23. Unlike all other

(sub-)layers, the frame index is received by the auxiliary design component instead

of PE. This is due to no header manipulation being performed in the receiver-side

of the layer. Thus, the frame index is used only to retrieve data from memory and

update state information within the arbiter based on user application interactions.

Similar to the sender-side, the receive payload interface is also a FIFO write inter-

face, where the data-width is 128 bits, i.e. the same as LL interface data-width. As

for the structure of the output data, 42 MSBs of the first output are reserved for the

reception fields, while the rest is used for the payload, i.e. 2008-bits. The fields

consist of: source MAC address (4-bits), source ring address (8-bits), source

multicast address (8-bits), RCL (16-bits), Frame ID (2-bits) and Frame Owner MAC

address (4-bits).

With respect to the receiver-side’s arbiter, i.e. Arbiter-L7-R, its flow diagram is

192

Figure 8-24: Flow diagram of application layer receiver-side arbiter

depicted in figure 8-24. The state information managed within the arbiter, revolve

around the reception status of the payload rather than header related states.

L7 L1 arbiter acquisition

Throughout the descriptions provided above, one crucial value is used by and ex-

changed between all (sub-)layers and their respective sub-components, i.e. frame

index. Two layers are responsible for acquiring the frame index within the node

design, the receiver-side of the physical layer and the sender-side of the application

layer. More specifically, they interact with a dedicated auxiliary that in turn acquires

frame indices on their behalf. It is called L7 L1 arbiter acquisition.

The L7 L1 arbiter acquisition auxiliary acts as intermediary between the two layers

and all the arbiters within the node design. Within the auxiliary, the acquisition is

accomplished by interacting with all arbiters via their dedicated request and response

interfaces, i.e. b_put/b_get pairs. Once an arbiter is acquired, the auxiliary pushes

the corresponding frame index to the layers via their respective interfaces, which are

depicted in figure 8-25.

Unlike the application layer, the physical layer does not make an explicit arbiter

request to the auxiliary. As a result, the auxiliary includes only a b_put interface for

the physical layer. This is due to the continuous influx of frames in the physical layer,

which is in turn is due to the operational nature of the network, i.e. continuously

193

Figure 8-25: L7 L1 arbiter acquisition design

Figure 8-26: Flow diagram of arbiter acquisition sub-component

circulating frames.

On the other end of the auxiliary/arbiters interaction, each arbiter includes a

dedicated sub-component that manages and handles the acquisition attempts as well

as the aforementioned request and response interfaces. Although this acquisition

sub-component does not contain frame/packet state information, it does include ac-

quisition state information. The corresponding flow diagram is depicted in figure

8-26.

194

8.4.2 Router

Before delving into the router design specifics, in what follows, the reasoning be-

hind implementing and maintaining two separate designs, i.e. node and router, is

provided. The main guiding principle is reduced FPGA resource consumption, which

in-part leads to reduced power consumption. In other words, more FPGA resources

are used only if routing functionality is required. Otherwise, a unified design can be

implemented, where it is partially disabled in case of a node. Although maintaining

one design is relatively easier, this results in an inefficient use of FPGA resources in

case of nodes, which constitute the majority of a network.

This sub-section follows the same structure as the node sub-section above. How-

ever, rather than reiterating through mostly similar descriptions as the ones provided

above, only noteworthy differences are covered in this sub-section.

As described previously, a router uses both ports included in the prototype board.

Within the router design, each port has its own layers, arbiters and memory. Thus,

the router design consists of two router port designs. Each router port design has its

configuration interface. Therefore, the RouterConfig SC_MODULE supplies config-

uration data that covers both ports of the router. In other words, it includes twice

the number of configuration I/Os and reads twice the amount of data from Flash

memory. In addition, the configuration data described in the node sub-section above,

RouterConfig also retrieves unicast and multicast routing tables.

With respect to the physical layer of a router port design, the sender-side in-

cludes an additional memory interface used in the context of routing. Thus, rather

than copying data internally, a dedicated interface is used to access the other port’s

memory.

Within the context of the data-link layer, the ACF sub-layer differs from the node

implementation above. Both the sender- and receiver-sides also monitor the clock

synchronization status of the other port, thereby achieving across ring synchronization

as described in chapter 6. As for L2 ACF SendState, it also takes into account route

requests, which are essentially send requests initiated by the receiver-side of the other

195

Figure 8-27: Network layer receiver-side design

port’s network layer.

While having the same sender-side, the receiver-side of the network layer differs

drastically between the node and router designs, as depicted in figure 8-27. Due to

the routing functionality, the additional interfaces and I/O ports required, within a

router port design, also include some belonging to the other port. More specifically,

they include ring initialization status and ring address ports. As for the corresponding

arbiter, i.e. Arbiter-L3-R, it has mostly the same flow diagram depicted in figure 8-

21. However, the state information pushed to Arbiter-L2-ACF-R also includes route

state information.

196

Chapter 9

Results and Measurements

This chapter presents the results and measurements performed throughout the project

lifetime. They are gathered using both Virtex5- and Kintex7-based prototypes. Prior

to presenting the results, the first section explains the metrics and scenarios used.

Thereafter, the collected measurements are presented based on the prototype used,

i.e. in two sections. Finally, the last section covers a lab demonstration in which

third-party devices are attached and incorporated into the network.

9.1 Introduction

In order to keep the focus on the results and their interpretations within the subse-

quent sections, the preliminary descriptions of the results are moved into this section.

It provides descriptions pertaining to the metrics and scenarios used below. In other

words, this section serves as an introductory as well as a reference for the subsequent

sections. Beside metrics and scenarios, this section also describes the pipeline-like

effect, which takes place during and has an effect on transmission within the network.

9.1.1 Metrics

Since the protocol is designed and implemented in an FPGA, the time values are

expressed in terms of number of clocks, i.e. clock cycles. This more accurately

197

reflects the protocol behavior. In other words, clock count is independent of the clock

period of the available clock signal within the prototype. As described in chapter 2,

a design can be switched to a faster clock as long as no negative slack is encountered.

Nevertheless, a time value is provided in parentheses next to each clock count.

In what follows, a brief description of each metric used is provided.

Bandwidth

The size(bits) of user data transmitted divided by the transmission time(seconds). In

other words, how fast actual user data can be transmitted, i.e. accounts for protocol

and transceiver encoding overhead. In relation to Aurora’s line rate, this can be

considered as the throughput or effective bandwidth.

Delay

The time(seconds) it takes for a frame or packet to completely arrive at the destina-

tion, starting from the first bit sent until the last bit received. It is based on times-

tamps collected from both the sender and receiver, i.e. time(received) - time(sent).

Thus, it requires network-wide clock synchronization.

Jitter

It is delay fluctuation or variation measured over a relatively large number of trans-

missions, i.e. large sample size. The corresponding transmissions have the same

source, destination and type. Within the context of CarRing IV, they represent the

same user send request.

Jitter can be expressed as a distribution or maximum/minimum bounds. In the

case of test scenarios used below, it is the difference between max and min delays mea-

sured. Thus, it corresponds to the worst case jitter as opposed to a statistical average

or variance of the statistical distribution associated with the delay measurements. As

for the number of transmissions, it is 1000.

In CarRing IV, in-order delivery is maintained due to multiple factors: frame/-

packet processing approach within node/router designs, shared transmission medium,

198

i.e. physical ring topology as well as static routes for non-local destinations. There-

fore, jitter is not caused by out-of-order delivery within CarRing IV, rather it’s due to

the minor differences between, when a send request is issued and when an adequate

sending opportunity is available.

Elapsed time

It is defined similarly to the delay metric. However, unlike the delay metric, the

measurement is entirely contained within either the sender or the receiver depending

on the test scenario. In other words, it is not based on timestamps within both sender

and receiver. Furthermore, it additionally accounts for returning acknowledges in case

of acknowledged transmission.

The measurement is done using a clock counter within the test application, i.e. on

top of the application layer. The measurement is collected after 1000 transmissions

are completed. The counter’s start and stop conditions depend on the test scenario

as well as the transmission type, i.e. acknowledged or unacknowledged. Therefore,

those conditions are explained alongside the test scenarios below.

This metric is introduced and used in the early phase of the project, i.e. prior to

network-wide clock synchronization. It gives insight into the network timing behavior

without requiring clock synchronization.

9.1.2 Test scenarios

Before describing each test scenario, in what follows, descriptions that are common

to all scenarios are provided.

In all scenarios, the measurements are collected for both operation modes, anisochronous

and isochronous. Another common aspect is the number of transmissions conducted.

Within each test scenario, the corresponding user send request is repeatedly issued

1000 times.

Two approaches are used to issuing those user send requests, continuous and

isolated transmissions. In the continuous approach, user send requests are issued

199

as fast as possible. The user interface within the application layer is saturated,

i.e. there’s always a user send request. Thus, the limiting factor is the number of

sending opportunities as well as the availability of the next sending opportunity. As

for the isolated approach, an artificial gap of one millisecond is introduced between

consecutive user send requests. In this case, the limiting factor is the artificially

introduced delay, rather than sending opportunities.

These two approaches are used due to the pipelining effect which is described

in a dedicated sub-section below. In case of continuous transmission, the pipelines

are filled which results in optimal performance. However, in the case of isolated

transmissions, the transmissions are interleaved. And consequently the pipelines are

not filled. As such, these two cases cover both ends of the spectrum with respect to

the pipelining effect.

Scenario 1

In this scenario, there is only one sender which transmits to one receiver. Both belong

to the same ring i.e. routing is not required. However, the ring size is varied, starting

with a single node where the sender targets itself. As the ring size increases, the

sender’s local destination changes based on its proximity to the sender. In other

words, the receiver is selected as the furthest node from the sender, i.e. it’s the

sender’s predecessor node within the ring.

Both continuous and isolated transmissions are conducted in this scenario. Two

frame types are used in those transmissions, Ethernet Service and Acknowledged

Point To Point. The former represents unacknowledged transmissions while the

latter represents acknowledged ones.

Since there is only one sender, this scenario exclusively tests the public access

frame reuse feature, when anisochronous mode is engaged. The i-to-j feature is not

utilized, because it enables frame reuse as the frame is circulating back to its owner

or sender, i.e. it involves at least two senders.

With respect to metrics, bandwidth and elapsed time are measured. In case

of acknowledged transmission, the clock counter used for elapsed time is contained

200

within the sender. The start condition is sending the first bit of the first frame. The

stop condition is receiving the last acknowledge for the last frame sent.

As for unacknowledged transmissions, the clock counter is contained within the

receiver since there are no returning acknowledges. The stop condition is receiving the

last bit of the last frame received. As for the starting condition, it is implemented as

receiving the first bit of the first frame. Note that there is a minor mismatch between

the start condition defined and the one implemented, i.e. sending the first bit versus

receiving the first bit. This slight difference is accounted for in the measurements

presented in the next section.

Scenario 2

Similar to the previous one, this scenario also uses a single ring with varying size.

However, unlike scenario 1, all nodes are simultaneously sending and receiving. Each

node transmits to its successor within the ring. Upon receiving a payload, each node

identifies the corresponding source MAC address and replies using that address. In

this context, replying means issuing a new user send request that targets the sender

of the received payload. To avoid infinite replies, custom identifiers are introduced

into payloads and used to distinguish between reply- and regular-payloads. The latter

triggers a reply.

This test scenario conducts both continuous and isolated transmissions using the

Ethernet Service frame type. Unlike the previous scenario, the starting ring size is

two nodes. This is due to replies being central to this test scenario, i.e. no self-send.

When continuous transmission and anisochronous mode are engaged, this scenario

exclusively tests the i-to-j frame reuse feature. In this case, public access is not

utilized, because there are no idle nodes.

Similar to scenario 1, the metrics measured are bandwidth and elapsed time. Since

all nodes are transmitting, a clock counter is included within each node. The starting

condition for the clock counter is sending the first bit of the first frame. The stop

condition is receiving the last bit of the last reply.

201

Scenario 3

Similar to scenario 2, all nodes are simultaneously sending and receiving. However,

no replies are issued upon receiving a payload. Furthermore, the ring size is kept

fixed, while the sender’s local destination is varied. The destination MAC address is

gradually incremented, where the first destination is the successor node. Due to the

ring topology and the way MAC addresses are assigned within the protocol, the last

destination increment results in the sender targeting itself.

This scenario conducts continuous transmissions using Ethernet Service and

Acknowledge Point To Point frame types. Similar to scenario 2, it also tests the

i-to-j frame reuse feature, when anisochronous mode is engaged. Moreover, the public

access feature is also not utilized due to lack of idle nodes. In contrast to the second

scenario, this one tests the interferences between medium distance transmissions as

opposed to short distance ones in scenario 2.

The measured metrics are bandwidth and elapsed time. Each node contains a

clock counter. The counter’s start condition is sending the first bit of the first frame.

In case of unacknowledged transmission, the stop condition is receiving the last bit

of the last frame received. With respect to acknowledged transmissions, the stop

condition is receiving the last acknowledge of the last frame sent.

Scenario 4

Unlike all previous scenarios, this scenario involves routing. There is only one sender

that transmits to one receiver. The varying parameter is the number of intermediate

routers that the packet traverses before reaching its destination. Starting with zero

intermediate routers, i.e. the sender transmits packets to a local destination. Adding

an intermediate router implies the addition of a new ring into the network. In order

to have only one varying parameter, each newly added ring has the same size as the

sender’s ring. Thus, all rings within the network have the same number of circulating

frames, i.e. the same number of sending opportunities.

This scenario conducts continuous transmissions in anisochronous mode. The

202

Ethernet Service and Acknowledge Point To Point packet types are used in those

transmissions. As for the frame reuse features within anisochronous mode, the pub-

lic access is exclusively used due to in-part having only one sender, i.e. there are

idle nodes/routers. However, more importantly, it is due to the i-to-j feature being

explicitly disabled for non-local destinations.

Both the sender and the intermediate routers can use all frames circulating within

their respective rings. Thus, this test represents the best case scenario for a sender

with non-local destination.

Three metrics are measured in this scenario, bandwidth, delay and jitter. As

described previously, sender and receiver timestamps are used for the delay metric.

Thus, no clock counters are required within the test application. Within the sender,

the timestamp is collected, when the first bit of a packet is sent. As for the receiver,

it is collected after receiving the last bit of a packet.

Scenario 5

This scenario can be considered as the counterpart to scenario 4. It represents the

worst case scenario for a sender with non-local destination. Unlike the previous

scenario, the receiver as well as all intermediate routers additionally send packets to

a local destination within their respective rings. Thus, there are no idle nodes/routers

within the network. Moreover, this scenario is also considered a stress test for the

routing functionality since each router is transmitting both, its own user send requests

as well as routed packets. Thus, all sending opportunities available to a router port

are used for both, own packets and routed ones.

Similar to scenario 4, the anisochronous mode is engaged, where continuous trans-

missions are conducted using Ethernet Service and Acknowledge Point To Point

packet types. With respect to frame reuse features, only i-to-j is used, however only

for local destinations. In other words, it is neither used by the sender, nor by inter-

mediate routers, when transmitting routed packets.

Last but not least, the same metrics are measured, i.e. bandwidth, delay and

jitter. Similarly, no clock counters are required. As for collected sender and receiver

203

timestamps, the same conditions, as those used in scenario 4, apply.

Scenario 6

This test scenario is essentially scenario 1. The main distinctions between the two sce-

narios are prototype and protocol features. Scenario 1 was carried out using Virtex5-

prototype and without network-wide clock synchronization and multicast. On the

other hand, this scenario uses Kintex7-prototype, where the node design implements

the aforementioned features. The additional features affect the internal processing

time within the node design, thereby affecting how fast the user is able issue send

requests, i.e. time interval between successive user send requests.

Due to extenuating circumstances, both within the research group and the project

itself, the tests within scenario 6 were limited to continuous transmissions using

Ethernet Service packet type where anisochronous mode is engaged. In other

words, the tests performed did not cover all those conducted in scenario 1. Therefore,

both scenarios are included in this chapter and their findings are complementary to

one another.

The findings of this test scenario additionally highlight the performance gains

achieved after migrating CarRing IV designs from Virtex5- to Kintex7-prototype.

9.1.3 Pipeline effect

This effect was briefly described in sub-section 5.1.4 and 8.4.1. This sub-section

elaborates more on the pipeline effect, especially how it affects the node transmission

behavior and consequently the network’s performance.

At the physical layer and between two consecutive nodes, a frame is pushed to Au-

rora’s design component followed by the underlying GTX transceiver. After traversing

the network cable, it goes through the GTX transceiver followed by the receiver’s Au-

rora. The latency associated with this frame path is due to the transceivers as well

as the data paths within Aurora’s design sub-components. As long as those internal

data paths are not blocked, i.e. the current frame is being successfully transmitted,

204

Figure 9-1: Illustration of the pipeline effect

Aurora’s user interface simultaneously accepts new frames for transmission.

In order to take advantage of Aurora’s behavior, inter-frame gap must be reduced

to zero, thereby filling the link between two consecutive nodes. This transmission

behavior compounded with the physical ring topology of the network, i.e. multiple

intermediate nodes(transceivers) and links, results in a pipeline-like effect, which is

illustrated in figure 9-1.

In the illustration, only one sender is transmitting within the ring, where node(i)

is targeting node(i+2). In anisochronous mode, node(i) can reuse all frames circu-

lating within ring via the public access feature. Consequently, as frame(j) is being

transmitted through intermediate links and nodes, node(i) is simultaneously sending

new payloads using its own frames as well as frames belonging to other nodes.

This effect directly impacts the network’s performance. More specifically, it affects

the maximum achievable bandwidth and the total transmission time of large amounts

of user data, i.e. data that requires multiple packets/frames to be transmitted. Thus,

bandwidth calculation is not purely dependent on the delay metric.

9.2 Virtex5-prototype

In what follows, the test-bench and conditions common to all test scenarios below are

described. Although those tests are conducted in the early phase of the project, they

give an important insight into the network and protocol behavior and are therefore

205

included.

Due to production limitations, only five Virtex5-prototypes are used in the tests

below. They are interconnected using one meter shielded twisted copper cables.

Within the prototype, each port has one lane and operates at a line rate of 3.125

Gbps. As previously described, the frame size is fixed to 16 aurora-words. With four

bytes per lane, this translates to 512-bits frame size. Last but not least, CRC is not

delegated to Aurora in the early phase of the project. As such, it consumes one out

of the 16 aurora-words used for the frame.

9.2.1 Scenario 1

This scenario is conducted using a test application that connects directly to the data-

link layer. In other words, it is a data-link layer test, where the application layer

resides directly above data-link. Thus, the frame’s 16 aurora-words or 512-bits are

allocated as follows: 32-bits for header, 448-bits for payload and 32-bits for CRC.

In all subsequent figures, measurements are depicted using four bars. Each bar

corresponds to a combination of an operation mode and a transmission approach.

The first two bars correspond to continuous transmission, where anisochronous and

isochronous modes are engaged, respectively. As for the remaining two bars, they

correspond to isolated transmission with anisochronous and isochronous modes, re-

spectively.

Within the context of unacknowledged transmission, figure 9-2 presents the mea-

sured bandwidth for all operation mode and transmission approach combinations. In

case of anisochronous mode and continuous transmission, the sender reaches a max-

imum bandwidth of 1.84 Gbps. Regardless of the ring size, the bandwidth does not

degrade.

As the ring size increases, each added node introduces its own three frames

into the ring. This results in an increased number of sending opportunities, when

anisochronous mode is engaged. Combined with public access frame reuse feature,

the sender is able to use all frames circulating within the ring. Consequently, the

maximum bandwidth of 1.84 Gbps is maintained regardless of the ring size. Despite

206

Figure 9-2: Scenario 1 bandwidth measurements for Ethernet Service

being limited to five prototypes/nodes, this observation can be extended to 16 nodes,

i.e. the maximum ring size. Within the context of the aforementioned combination,

block user data transfer is not affected by the ring size.

As for the other three combinations, the bandwidth degrades within isochronous

mode is engaged and/or isolated transmission is used. There are fewer sending op-

portunities in isochronous mode. Whereas, isolated transmission essentially removes

the pipeline effect described above.

The elapsed time measurements presented in 9-3 are complementary to the band-

width ones presented above. The single node ring test essentially represents a loop-

back test. And the corresponding measurements represents the average elapsed time

associated with sending and receiving a frame. It is 19 clocks (243.2 ns) for continuous

transmissions. Similar to the previous observation, the combination of anisochronous

mode and continuous transmission results in a constant elapsed time, i.e. unaffected

by the ring size.

On the other hand, the measured bandwidth and elapsed time for acknowledged

transmissions are presented in figures 9-4 and 9-5, respectively. As the ring size

207

Figure 9-3: Scenario 1 elapsed time measurements for Ethernet Service

increases, the performance degrades with lower bandwidth compared to unacknowl-

edged transmission counterparts. This is an expected behavior for the following three

combinations, isochronous/continuous transmissions and both of isolated transmis-

sion variants. It is due to acknowledgments, which offer higher reliability at the

expense of performance.

As for the fourth combination, i.e. anisochronous/continuous transmission, the

degraded performance is not caused by acknowledgments, rather limited FPGA re-

sources. Using the public access frame reuse feature, user send requests with ac-

knowledged frame types have access to the same number of sending opportunities as

unacknowledged ones. Combined with immediate acknowledges, i.e. using the same

frame for the returning acknowledge, the measured bandwidth 0.83 Gbps and elapsed

time 42 clocks (537.6 ns) for the fourth combination does not match the expected

result. Similar observations as well as comparable bandwidth to the unacknowledged

transmissions is expected.

This is caused by FPGA resource limitations, rather than protocol or design imple-

208

Figure 9-4: Scenario 1 bandwidth measurements for Acknowledged Point To Point

Figure 9-5: Scenario 1 elapsed time measurements for Acknowledged Point To

Point

209

mentation. Due to possible retransmissions and time-out events, acknowledged trans-

missions require additional resources to track them internally within the node/router

designs. In order to adapt to the available FPGA resources, the number of permitted

ongoing acknowledged transmissions is less than the number of sending opportunities

available within the ring. As a result, not all available sending opportunities are used.

9.2.2 Scenario 2

Similar to scenario 1, the same number of protocol layers and frame format are used.

Furthermore, the measurements presented in figures below are structured using the

same four-bars scheme, i.e. using the same number of operation mode and trans-

mission approach combinations. However, unlike scenario 1, only unacknowledged

transmissions are conducted.

Regardless of the combination, bandwidth is directly impacted by ring size, as

shown in figure 9-6. Even in the case of anisochronous mode and continuous trans-

mission, performance degrades as ring size increases. Despite lower bandwidth,

the combination of anisochronous and continuous transmission still outperforms the

isochronous counterpart. This is due to the increased number of sending opportunities

via the i-to-j frame reuse feature.

On the other hand, the combination of anisochronous and isolated transmission is

not impacted by ring size, where the bandwidth remains at 0.31 Gbps. This consistent

behavior is due to in-part the public access frame reuse feature. Whenever a node has

no pending user send requests, it enables frame reuse for its own Transport frame,

i.e. sets the Public access header field to 1. Thus, after one millisecond of no send

requests, all circulating frames can be used by any node within the ring, thereby a

sending opportunity is directly available.

As shown in figure 9-7, similar observations can be made for the elapsed time

measured. With respect to the combination of anisochronous and isolated transmis-

sion, the elapsed time measured remains at approximately 114 clocks (1452.9 ns), i.e.

unaffected by the ring size.

210

Figure 9-6: Scenario 2 bandwidth measurements for Ethernet Service

Figure 9-7: Scenario 2 elapsed time measurements for Ethernet Service

211

Figure 9-8: Scenario 3 bandwidth measurements for Ethernet Service

9.2.3 Scenario 3

This scenario uses the same number of protocol layers and frame format as those

described in scenarios 1 and 2. However, unlike the previous scenarios, only two op-

eration mode and transmission approach combinations are used. More specifically,

the continuous transmission is used and combined with both operation mode variants

. Therefore, only two bars are used in the figures, anisochronous/continuous followed

by isochronous/continuous. With respect to the test application, both Ethernet

Service and Acknowledge Point To Point frame types are used, thereby repre-

senting unacknowledged and acknowledged transmissions.

As shown in figure 9-8, anisochronous and continuous transmission remains the

highest performing combination, i.e. similar to the findings of the previous two sce-

narios. Furthermore, in case of unacknowledged transmission, the same bandwidth

of 1.84 Gbps is reached as in scenario 1. This is due to the i-to-j frame reuse feature.

As for the public access feature, it is essentially excluded, because there are no idle

nodes within the ring.

212

Figure 9-9: Scenario 3 elapsed time measurements for Ethernet Service

Nevertheless, the bandwidth degrades as the number of intermediate nodes or hops

between a sender and receiver increases. As described previously, the i-to-j feature

enables frame reuse based on the positions of the sender and it’s target relative to

the frame’s owner node. In short, a frame can be reused on its way back to its owner

node. Thus, the shorter the return path is the fewer possibilities for the frame to

be reused. This is reflected within the bandwidth and elapsed time measurements in

figures 9-8 and 9-9. The i-to-j feature is used only with hop count 1 and to a lesser

extent with hop count 2.

Due to lack of i-to-j feature, the combination of isochronous and continuous trans-

mission is unaffected by increased hop count between sender and receiver. As shown

in figures 9-8 and 9-9, it reaches a bandwidth of 0.36 Gbps with an elapsed time of

97 clocks (1241.6 ns).

On the other hand, the acknowledged transmission measurements are presented

in figures 9-10 and 9-11. In this case, the i-to-j feature is excluded in both operation

modes. Since only acknowledged frame types are used, senders can not utilize the

213

Figure 9-10: Scenario 3 bandwidth measurements for Acknowledged Point To

Point

i-to-j feature. This is due to immediate acknowledges, where the same frame carries

an acknowledge on its way back from the receiver to the original sender. In short,

i-to-j can be used with unacknowledged transmissions. This includes frames carrying

routed packets that in turn use an acknowledged type, i.e. acknowledges are issued

for local destinations only.

When the hop count reaches five, i.e. ring size, each sender targets itself. As

a result, a frame associated with an acknowledged transmission traverses the ring

twice. Once to deliver user data and then again for the corresponding acknowledge.

As shown in figures 9-10 and 9-11, bandwidth and elapsed time are unaffected by

the combination used, as long as the hop count is smaller than the ring size. Thus,

senders are not targeting themselves, i.e. the corresponding frame traverses the ring

once.

214

Figure 9-11: Scenario 3 elapsed time measurements for Acknowledged Point To

Point

9.2.4 Scenario 4

In this scenario, the application layer resides on top of the network layer. Therefore,

it is a complete test that includes all protocol layers. Thus, the frame/packet format

is as follows: 32-bits for the frame’s header, 16-bits for the packet’s header, 432-bits

for payload and 32-bits for CRC. Using the five Virtex5-prototypes, a total of four

rings are created, where each ring has a size of two nodes. This is possible due to

routers having two node addresses. Essentially, they operate as two nodes belonging

to two rings.

Since delay is used instead of the elapsed time metric, this scenario relies on

network-wide clock synchronization. The reference node is chosen based on its prox-

imity to all other nodes within the network, i.e. situated as close as possible to the

middle of the network. In case of one intermediate router, the router itself is chosen

to be the primary for both rings as well as the reference node. With two intermediate

routers, the first router is the reference node, where each port is a primary for the

215

Figure 9-12: Scenario 4 bandwidth measurements

corresponding ring. Finally, with three intermediate routers, the second router is the

reference node as well as primary for its rings.

This scenario also uses a two-bars scheme to present measurements within figures.

However, each bar stands for a packet type as opposed to a combination of operation

mode and transmission approach. The latter two are fixed to anisochronous mode

and continuous transmission. As for the packet types, the first bar depicts Ethernet

Service and the second bar depicts Acknowledge Point To Point measurements.

The packet types represent unacknowledged and acknowledged transmissions, respec-

tively.

As shown in figure 9-12, bandwidth is unaffected by the number of intermediate

routers between the sender and receiver. It remains at approximately 1.75 Gbps

for Ethernet Service and 0.4 Gbps for Acknowledge Point To Point. Similar to

scenario 1 observations, this consistent behavior is due to the public access feature as

well as the pipeline effect described in sub-section 9.1.3. Also, the performance gap

between unacknowledged and acknowledged transmissions is due to fewer number of

sending opportunities utilized. As described in scenario 1, this originates from an

FPGA resource limitation as opposed to protocol or implementation.

Since acknowledgments are only issued for local destinations, the delay metric is

measured using the acknowledge received timestamp for i=0, whereas the payload

received timestamp is used for i≥1. As expected, delay is directly affected by the

216

Figure 9-13: Scenario 4 delay measurements

Figure 9-14: Scenario 4 jitter measurements

number of intermediate routers. It ranges from 76 clocks (972.8 ns) to 261 clocks

(3340.8 ns) for Ethernet Service, and from 152 clocks (1945.6 ns) to 280 clocks

(3584 ns) for Acknowledged Point To Point. As shown in figure 9-13, the difference

between unacknowledged and acknowledged transmissions diminishes as the number

of intermediate routers increases.

When compared to scenario 1, the elapsed time for Ethernet Service is slightly

increased from 19 clocks (243.2 ns) to 20 clocks (256 ns). This is due to the added

functionality, i.e. the network layer. As for jitter, the measurements are presented in

figure 9-14. Similar to delay, it also linearly increases with the number of intermediate

217

Figure 9-15: Scenario 5 bandwidth measurements

routers. It starts with 22 clocks (281.6 ns) up to 43 clocks (550.4 ns) for Ethernet

Service and 25 clocks (320 ns) up to 51 clocks (652.8 ns) for Acknowledged Point

To Point. The jitter is very small which is ideal for real-time applications.

9.2.5 Scenario 5

As described previously, this scenario is considered both the counterpart of scenario 4

as well as a stress test for the routing functionality. As such, the number of protocol

layers and frame format are identical to those of scenario 4. Furthermore, the same

network topology is used with respect to the size of the rings and the location of the

reference node. As for the measurements presented in figures below, the same packet

types and two-bars scheme are used.

The receiver as well as all intermediate routers are processing user send requests

and transmitting user data as fast as possible to local destinations. As expected,

the bandwidth degrades due to reduced number of sending opportunities for both,

the sender as well as intermediate routers. When compared with scenario 4, the

bandwidth for unacknowledged transmissions drops from 1.75 Gbps to 0.87 Gbps for

i=[0,1] and to 0.29 Gbps for i=[2,3] as shown in figure 9-15.

As described previously, user send requests are issued as fast as possible within

intermediate routers. Despite this continuous input from the application layer, pack-

ets are simultaneously routed. In other words, bandwidth never drops to zero. This

218

is due to frame and packet processing approach within the router design, i.e. it is

based on time of arrival and no prioritization of any form is used.

In scenario 4, the sender transmits packets as fast as possible, which translates to

a packet every 20 clocks (256 ns) regardless of the number of intermediate routers.

In contrast, the scenario 5 sender transmits a packet every 39 clocks (499.2 ns) for

i=[0,1], every 115 clocks (1472 ns) for i=2 and every 117 clocks (1497.6) for i=3.

While a lower sending rate is expected, it is unaffected if the non-local destination is

in an adjacent ring. Meanwhile, it slowly degrades for i>1.

As for delay, it exhibits a nearly linear increase, ranging from 116 clocks (1484.8

ns) to 285 clocks (3648 ns) for Ethernet Service and from 149 clocks (1907.2 ns) to

325 clocks (4160 ns) for Acknowledged Point To Point. This is comparable to the

delays measured in scenario 4. Thus, network traffic within intermediate rings has

minimal impact on delay.

On the other hand, jitter is heavily impacted by increased traffic within interme-

diate rings. As shown in figure 9-16, in case of i=3, it reaches up to 117 clocks (1497.6

ns) for Ethernet Service and 137 clocks (1753.6 ns) for Acknowledged Point To

Point. It is approximately 2.7 times higher than scenario 4 jitter. Therefore, very

low jitter can not be guaranteed if the user does not consider and adequately manage

network resources. This is not considered a limitation, because tasks/events within

real-time systems are well-defined and managed.

9.3 Kintex7-prototype

Similar to section 9.2, in what follows, the testbench and conditions used in scenario

six below are described. As mentioned in sub-section 9.1.2, extenuating circumstances

limited the number of tests conducted using the Kintex7-prototype. Among those

circumstances, expired license to EDA tools and limited power supply equipment. As

a result, only one test scenario is conducted in which only ten Kintex7-prototypes are

used.

The prototypes are interconnected using one meter Twinaxial cables. Unlike the

219

Figure 9-16: Scenario 5 jitter measurements

previous prototype, Kintex7-prototype has a total of eight lanes. As such, each port

has four lanes and operates at a line rate of 6.25 Gbps. The latter is due to in-

part improved network cables. As for frame and packet formats, they are exactly as

described in chapter 5, i.e. 24-bits frame header followed by 16-bits packet header

and a 2008-bits payload. With four bytes per lane, the frame size remains at 16

aurora-words, i.e. 16 x 128-bits.

9.3.1 Scenario 6

All previous scenarios gave insight into the network and protocol behavior. This

scenario is aimed more at the performance of the network and protocol. As such, the

measured bandwidth and elapsed time represent CarRing IV capabilities.

In this scenario, all protocol layers are used, i.e. it’s a complete test. As described

previously, the test is conducted using only one combination, which is anisochronous

and continuous transmission. Therefore, the measurements are depicted using one

bar within figures below. Since only Ethernet Service packet type is used, the

measurements below represent unacknowledged transmissions.

As shown in figure 9-17, the sender reaches a bandwidth of approximately 13.61

Gbps. Similar to the observation in scenario 1, the bandwidth does not degrade as

ring size increases. The sender is able to transmit a packet every 23 clocks (147.2 ns)

220

Figure 9-17: Scenario 6 bandwidth measurements

compared to 19 clocks (243.2 ns) for scenario 1 and 20 clocks (256 ns) for scenario 4.

As described in the application layer portion of sub-section 8.4.1, there are no

internal checks on time intervals provided by a user application within the context

of send-at requests. The time interval of 23 clocks (147.2 ns) can be used as a lower

limit, when issuing send-at requests.

Similarly, elapsed time is unaffected by the ring size as shown in figure 9-18. The

protocol and its implementation underwent major changes, since the tests conducted

in scenario 1. These changes include added functionality and features. Furthermore,

migrating from Virtex5-prototype to Kintex7-prototype also resulted in implementa-

tion specific changes to accommodate the new clock domain, i.e. from 12.8 ns to a

6.4 ns clock domain. Despite those changes, scenario 1 findings still holds. Moreover,

the extrapolation, with respect to ring size effect, made in scenario 1 is confirmed by

the test results of this scenario.

221

Figure 9-18: Scenario 6 elapsed time measurements

9.4 Tech demo

As briefly described in section 4.3, a lab demonstration is carried out using the five

Virtex5-prototypes. This is part of the results achieved in the project and serves as a

proof of concept. In what follows, the demonstration as well as the attached devices

and their respective configurations are presented.

Similar to the test scenarios in section 9.2, the Virtex5-prototypes are intercon-

nected using one meter shielded twisted copper cables. And their respective ports

are configured to operate at a line rate of 3.125 Gbps. The network consists of two

rings with three nodes each. Those rings are interconnected by one router. Thus, one

prototype implements the router design, while the others implement the node design.

All protocol layers are used, i.e. it’s a complete test. As for the frame/packet format,

the 16 aurora-words are structured as follows: 32-bits frame header, 16-bits packet

header, 432-bits payload and a 32-bits CRC.

As shown in figure 9-19, the attached devices include:

∙ A Laptop streaming a video. It’s connected via the Ethernet interface to

222

node(2.0), i.e. node with ring address 2 and MAC address 0. In turn, node(2.0)

communicates with node(1.0), which connects to the Internet Service Provider

(ISP) via its Ethernet interface. Both Ethernet connections operate at 100

Mbps.

∙ IP camera connected to node(1.1) using the Ethernet interface. Its counterpart

is a Laptop that hosts the camera’s control software, which displays the live feed.

The Laptop is connected to node(2.1) via the Ethernet interface. Similarly, the

Ethernet connections operate at 100 Mbps.

∙ Two motors are introduced into the network. They are distinguished based on

the interface used to control them. Using the CAN interface, the CAN motor is

connected to node(1.0). Its control software is hosted by another Laptop, which

in turn is connected to node(2.0) via its CAN interface. Both CAN connection

operate at 125 kbps.

∙ The Laptop that hosts the control software and the corresponding RS232 motor

are connected via the RS232 interface to nodes (1.0) and (2.0), respectively.

Their connections operate at 9600 baud rate.

∙ Last but not least, the car headlight is connected to an intermediate custom

board that in turn connects to node(1.1) via the IIC interface. On the other

side of the network, the car headlight is controlled via the test application of

node(2.1). The IIC connection operates in standard mode at 100 kHz.

As described in sub-section 5.4.6, the application layer includes a feature called,

transparent mode. Within this demo, it is used to transparently transfer data between

multiple supported physical interfaces, i.e. interfaces that are part of the prototype.

The transparent mode is implemented as a multi-clock domain design that consists

of multiple design components aimed at configuring and controlling the used physical

interfaces. Figure 9-20 depicts the design components, clock domains and chips used

in the design.

223

Figure 9-19: Lab demonstration of CarRing IV

Figure 9-20: Device controller design used in lab demo

224

The purpose and function of the device controller as well as the interface specific

controllers are described in sub-sections 5.4.7 and 5.4.8. With respect to Ethernet,

the transceiver is configured to operate at 100 Mbps prior to data transmission. This

is due to performance and FPGA resource limitations. As such, additional design

components are created and introduced to communicate with the transceiver, i.e.

PHY config and SMI.

In the case of the CAN interface, the underlying transceiver uses SPI as the interface

through which the corresponding chip can be configured and used. Unlike Ethernet’s

SMI, a Xilinx SPI IP core is available however only for embedded systems. Therefore,

a Xilinx Embedded design is created, where no hard or soft processors are included.

Only the SPI IP core is included, where its I/O ports are exposed, i.e. configured as

external ports of the embedded design. Since it is meant for embedded systems, an

additional design component is created and introduced to communicate with the IP

core i.e. PLB interface.

Using the same approach, the RS232 interface controller uses the PLB interface to

control the XPS UART core, which in turn controls the underlying chip. As for IIC,

a custom design is created to communicate with the corresponding chip.

Despite having different speeds and PDU sizes, data is transmitted between the

two rings without any interference. The attached devices operated smoothly without

any interruptions in data transmission. Most importantly, no changes were made

within the attached devices.

225

226

Chapter 10

Summary

In this thesis, a hard real-time capable ring-based wired LAN, called CarRing IV, is

presented. The thesis broadly consisted of a theoretical part i.e. the new hard real-

time communication protocol, and an applied part i.e. the protocol’s implementation

in an FPGA using a new approach. This chapter provides conclusions drawn from

both parts of the thesis in its first section. Thereafter, a brief description of future

work and publications is provided.

10.1 Conclusions

As described in chapter 5, the protocol provides not only hard real-time, but also

isochronous real-time through its anisochronous and isochronous operation modes,

respectively. Due to the protocol’s access control method, those real-time guarantees

do not require network-wide clock synchronization. Moreover, the protocol does not

require nodes to communicate with a central node to maintain the aforementioned

timing guarantees or transmit user data. Such a central node is typically referred to

as a controller node and the corresponding approach is part of many actively used

industrial networks.

Within the context of communication paradigms, CarRing IV supports both event-

and time-triggered. Despite not requiring clock synchronization, such a feature is

nevertheless implemented so as to further extend the protocol’s preexisting support

227

for time-triggered communication, i.e. SendAt feature. This synchronization is based

on a new decentralized approach, where the main reference node is only responsible

for synchronizing the nodes within its own ring as opposed to the entire network. This

eliminates the need for data-exchange pertaining to network topology status updates

for the purpose of clock synchronization.

Furthermore, CarRing IV uses a reduced OSI model, which is both typical of

and preferable for its application areas, e.g. automation networks. This minimalist

approach also extends to its frame/packet format. Even though the protocol uses

fixed-size frames/packets, the internal headers have variable structures, which are

determined by the frame’s type. In other words, the overall size of all headers is fixed,

but the internal structure of the headers’ portion of the frame/packet is variable. Since

not all header fields are required by every frame/packet type, this approach maintains

an overall fixed-size frames/packets as well as lowers overhead with respect to unused

header bits per frame/packet type.

Another advantage of the protocol design is in the way frames are handled and

transmitted. Maintaining a fixed number of continuously circulating frames within a

ring is not only crucial for providing real-time guarantees, but also limits the impact

of misbehaving user applications. Since each node owns a fixed number of frames

within its local ring, denial-of-service attacks and noisy-neighbor problems are elimi-

nated. In other words, no new frames are introduced within each ring after network

initialization. Rather, each node transmits user data using its own frames, or another

node’s frames if the anisochronous mode is engaged. This also applies for routed

packets, wherein only the payload and certain header fields are copied from the frame

within the source ring to another preexisting frame within the destination ring.

CarRing IV’s use-cases are further expanded by its transparent mode feature.

In short, it transparently transfers data between user devices, which are connected

to the CarRing prototype’s interfaces, e.g. Ethernet, CAN. No modification to the

device or user interference is required, rather the device can be directly connected

and proceed to transmit data via the CarRing network using its existing interfaces.

Multiple devices can be connected per prototype. To a limited extent, this feature

228

is comparable to the concept within the PROFINET specification that allows for the

integration of existing field buses using proxy devices.

Combined with the protocol’s reliable multicast, the transparent mode feature ex-

tends CarRing IV’s capabilities to include field bus emulation, where CAN is regarded

as the primary use-case. Furthermore, this feature allows CarRing IV to act as a

backbone for other networks, which can also ease the transition of existing systems

into a CarRing-based solution.

Although using a physical ring topology has the main disadvantage of being sus-

ceptible to single link failures, such a problem is both well-defined and has multiple

established solutions, e.g. physical bypass for failed nodes, and hardware redundancy

through dual ring topology. As explained in chapter 3, existing and actively used

industrial networks use the approach of a central node to manage the network and

provide timing guarantees. As such, using other topologies, e.g. mesh, is not a suf-

ficient condition to counter single point of failures. On the contrary, the solution

presented in this thesis benefits from the many advantages of using a ring topology.

The physical ring’s individual node connections combined with static routing

greatly supports critical traffic, which is crucial for providing timing guarantees.

Furthermore, the use of a physical ring topology reducing the amount of wiring re-

quired, thereby reducing cabling complexity as well as installation and maintenance

costs. Those are critical points in automotive, i.e. for CarRing IV’s application ar-

eas. Whether be it through secondary ports or rings, the aforementioned hardware

redundancy allows CarRing IV to be also suitable for safety critical systems.

In addition to the protocol and its design, another equally important aspect of

CarRing IV is its FPGA-based hardware implementation and the approach used to

realize it. Implementing all layers in hardware allows CarRing IV to be as close as

possible to wire-speed, i.e. greatly improves performance while lowering overhead.

The latter point refers to the overhead that arises from device drivers and interme-

diary interfaces used by the wide-spread and arguably standard software-hardware

implementation approach. In short, lower layers (1-2) are typically implemented in

hardware, while software implementation is used for higher layers (3-7).

229

As shown in chapter 8, the used implementation approach does not include hard-

or soft-processors, i.e. no CPUs. Thus, it avoids the overhead associated with us-

ing instruction sets or OSs/kernels. In short, the approach structurally divides the

protocol’s core logic and supplementary operations over dedicated design components.

Each (sub-)layer’s core logic is encapsulated in a stateless PE, while frames/pack-

ets are represented by arbiter/memory allocation pairs. Since those PEs are loosely

coupled, this effectively removes the sequential processing that results from the direct

implementation of a layered architecture. In other words, different PEs can process

different frames/packets simultaneously.

Moreover, the approach is both vertically and horizontally scalable. Since the

used PEs are stateless, more can be added per (sub-)layer, or the entire stack can be

duplicated. The aforementioned arbiter not only manages access to the corresponding

memory allocation, but also manages the execution order between PEs. Additionally,

increased capacity can be easily achieved by increasing the number of arbiter/memory

allocation pairs, which can be applied separately from PEs.

By having granular control and compartmentalizing every aspect of a solution, the

approach lends itself to being used for implementing other software-level solutions in

hardware. A solution’s core logic, execution order, memory and time-sensitive oper-

ations are maintained and contained within separate dedicated design components.

Within this context, CarRing IV can also be used as an example implementation.

10.2 Future Work

Despite already achieving the intended goals for the project, there is always room

for further improvements. Along the work presented in this thesis, below is a list

of potential directions for future work. The list is structured as follows. Each item

starts with the context of the suggested update followed by a brief description.

∙ Implementation approach. In its current iteration, the approach uses ar-

biter/memory allocation pairs to handle processed data. Those memory alloca-

tions are static. As such, the approach can be generalized into flexible memory

230

allocations, wherein arbiters are further extended to handle a memory address

range rather than a fixed allocation. This update accommodates systems with

limited memory capacity as well as has the potential of reducing the overall

memory requirements of both CarRing IV and other projects using this ap-

proach.

∙ Protocol implementation. Move the SendAt feature from the data-link layer

to the application layer. This update reduces the complexity of the data-link

layer. Consequently, it reduces the overall FPGA resources required for the

design and by-extension the overall cost.

∙ Protocol implementation. Rather than having feedback interfaces per (sub-

)layer, feedback is moved-to and handled-by arbiters. This update can re-

duce the overhead associated with feedback management, i.e. inter-layer data-

exchange and matching the feedback against processed frames/packets.

∙ Frames per node. In practice, each network node’s user application could

have drastically level of activity and requirements. In other words, some nodes

might not require or use all of their frames during network operation. Currently,

this suboptimal usage of network resources is accounted-for by engaging the

anisochronous mode. However, this scenario persists in the isochronous mode.

As such, frames-per-node can be varied based on user application requirements,

while maintaining a fixed overall number of frames per ring. Consequently, the

timing behavior of the network remains unaffected. For example, one or two

frames can be permanently re-allocated from node(s) with low user application

requirements to other more active nodes. This update can be considered as an

extension to both operation modes, i.e. a more flexible version of the modes.

∙ Frame recovery. Currently, a dropped frame can only be recreated and rein-

troduced into the ring by its respective owner node. By learning the pattern

of incoming frames, each node is able to detect and recover dropped frames.

This update is possible due to the limited number of circulating frames as well

231

as rings having a max size of 16 nodes. In case of a frame being dropped due

to transmission errors, the corresponding node can simultaneously identify and

recreate the dropped frame. This can also account for unexpected incoming

frames.

∙ Frame header fields. The retransmission of acknowledged frame types is

only permitted within the sender’s own ring, i.e. not across rings. As such,

retransmission can be tracked locally within each node, thereby eliminating the

need for an explicit Retry field within the frame’s header. Note that this does

not apply to reliable multicast. Similarly, the SendAt header field can also be

removed, since those transmissions are tracked locally within each node.

∙ i-to-j feature. Currently, a returning acknowledge can be embedded into a

smaller header field, thereby allowing frame re-use via the i-to-j feature. This

potential for frame re-use does not include the sender node. As such, this

update allows the sender node to transmit new user data alongside the returning

acknowledge. This update also permits an exception to the i-to-j transmission

eligibility limitation, i.e. only EthernetService and routed packet types. In

other words, other acknowledged frame types are also eligible for transmission

via the i-to-j feature.

In addition to the above list, there are future work that are regarded more as

publications.

∙ CarRing IV’s TSN compliance and integration.

∙ Security aspect of the CarRing IV’s protocol. As a by-product of the

protocol’s design, there are already security measures included, e.g. protection

against denial-of-service attacks and isolated memory space, i.e. no direct access

into the node’s memory components is possible. The protocol is expanded

further to support hardware-level encryption.

∙ CarRing IV over Ethernet. In its current iteration, the protocol’s physical

layer is represented by the Xilinx Aurora IP Core. In order to further broaden

232

and increase CarRing IV’s compatibility with existing solutions, another phys-

ical layer option is added, i.e. using Ethernet PHY.

∙ CarRing IV’s network-wide clock synchronization.

∙ CarRing IV’s reliable multicast.

∙ Updated L2 and L3 performance measurements based on the K7-

prototype. In this work, two node variations are created, one aimed at local

transmissions and another at non-local transmissions. The former uses a node

design that includes a reduced version of the protocol, i.e. layers 1,2 and 7. As

for the latter, all protocol layers are included within the node design.

233

234

References

[1] IEC/IEEE Behavioural Languages - Part 4: Verilog Hardware Description Lan-
guage (Adoption of IEEE Std 1364-2001). IEC 61691-4 First edition 2004-10;
IEEE 1364, pages 0_1–860, 2004.

[2] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Re-
vision of IEEE Std 1076-2002), pages c1–626, Jan 2009.

[3] ISO 11898-2:2016. Road vehicles - Controller area network (CAN) - Part 2:
High-speed medium access unit. International Organization for Standardization,
Geneva, Switzerland, Dec 2016.

[4] ISO 11898:2015. Road vehicles - Controller area network (CAN). International
Organization for Standardization, Geneva, Switzerland, Dec 2015.

[5] IEEE 1394. IEEE Standard for a High-Performance Serial Bus. IEEE Standards
Association, New Jersey, United States, Jun 2008.

[6] ISO 17458:2013. Road vehicles - FlexRay communications system. International
Organization for Standardization, Geneva, Switzerland, Feb 2013.

[7] ISO 17987:2016. Road vehicles - Local Interconnect Network (LIN). International
Organization for Standardization, Geneva, Switzerland, Dec 2016.

[8] ISO 21806. Road vehicles - Media Oriented Systems Transport (MOST). Inter-
national Organization for Standardization, Geneva, Switzerland, 2020.

[9] IEC 61784-5-14:2013. Industrial communication networks - Profiles - Part 5-
14: Installation of fieldbuses - Installation profiles for CPF 14. International
Electrotechnical Commission, Geneva, Switzerland, Sep 2013.

[10] 802.3cg 2019. IEEE Standard for Ethernet - Amendment 5: Physical Layer Spec-
ifications and Management Parameters for 10 Mb/s Operation and Associated
Power Delivery over a Single Balanced Pair of Conductors. IEEE Standards
Association, New Jersey, United States, Nov 2019.

[11] AS6003. TTP Communication Protocol. SAE International, United States, Feb
2011.

[12] AS6802. Time-Triggered Ethernet. SAE International, United States, 2016.

235

[13] Bernat, G. and Burns, A. and Liamosi, A. Weakly hard real-time systems. IEEE
Transactions on Computers, 50(4):308–321, 2001.

[14] Black, David C. and Donovan, Jack and Bunton, Bill and Keist, Anna. Sys-
temC: From the Ground Up, Second Edition. Springer Publishing Company,
Incorporated, 2nd edition, 2009.

[15] Cadence Design Systems, Inc. Cadence C-to-Silicon Compiler, User Guide, Prod-
uct Version 14.20 s400, Jun 2016.

[16] Pong P. Chu. RTL Hardware Design Using VHDL: Coding for Efficiency, Porta-
bility, and Scalability. Wiley-IEEE Press, 2006.

[17] Ethernet POWERLINK Standardization Group. Ethernet POWERLINK Com-
munication Profile Specification, Nov 2018. version 1.4.0.

[18] Thomas Fuehrer, Bernd Mueller, Florian Hartwich, and Robert Hugel. Time
Triggered CAN (TTCAN). In SAE Technical Paper. SAE International, 03 2001.

[19] EtherCAT Technology Group. EtherCAT - the Ethernet Fieldbus. Available at
https://www.ethercat.org/en/technology.html (2020.06.20).

[20] H. Richter. Project Description and Specification of CarRing II V16. Feb 2013.

[21] ISO/IEC 7498. Information technology - Open Systems Interconnection - Ba-
sic Reference Model. International Organization for Standardization, Geneva,
Switzerland, 1994.

[22] Brian Neil Levine and J. J. Garcia-Luna-Aceves. A Comparison of Known Classes
of Reliable Multicast Protocols. In Proceedings of the 1996 International Con-
ference on Network Protocols (ICNP ’96), ICNP ’96, pages 112–, Washington,
DC, USA, 1996. IEEE Computer Society.

[23] Q. Li and C. Yao. Real-Time Concepts for Embedded Systems. CMP books.
Taylor & Francis, 2003.

[24] Kui Liu, Sixiao Wei, Zhijiang Chen, Bin Jia, Genshe Chen, Haibin Ling, Carolyn
Sheaff, and Erik Blasch. A Real-Time High Performance Computation Architec-
ture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery
via Cloud and Graphic Processing Units. Sensors (Basel), 17(2):356, Feb 2017.
sensors-17-00356[PII].

[25] Mall, Rajib. Real-Time Systems: Theory and Practice. Prentice Hall Press,
Upper Saddle River, NJ, USA, 1st edition, 2009.

[26] Clive Maxfield. The Design Warrior’s Guide to FPGAs: Devices, Tools and
Flows. Newnes, USA, 1st edition, 2004.

236

[27] D. Medhi and K. Ramasamy. Network Routing: Algorithms, Protocols, and
Architectures. The Morgan Kaufmann Series in Networking. Elsevier Science,
2007.

[28] Micrium Inc., Weston, FL 33326, USA. uC/OS-III The Real-Time Kernal User’s
Manual, 2016.

[29] MIL-STD-1553C. Interface Standard - Digital Time Division Command/Re-
sponse Multiplex Data Bus. Department of Defense, United States, Aug 2020.

[30] MilCAN Working Group. MilCAN A Specification, May 2009. revision 3.

[31] ODVA, Inc. The Common Industrial Protocol (CIP) and the Family of CIP
Networks, Feb 2016.

[32] ARINC 664 P7. ARINC Specification 664 - Part 7 - Avionics Full Duplex
Switched Ethernet Network. ARINC Industry Activities, Maryland, United
States, Sep 2009.

[33] PROFIBUS & PROFINET International. PROFINET System Description, Nov
2018. Order No. 4.132.

[34] Real Time Engineers Ltd. The FreeRTOS Reference Manual, 2016.

[35] Stock Flight Systems, Germany. Interface specification for airborne CAN appli-
cations, Jan 2006. revision 1.7.

[36] SystemC Language Working Group. Functional Specification for SystemC 2.0,
2002.

[37] SERCOS technical working groups. Technical Specifications. Available at https:
//wiki.sercos-service.org/latest/Main_Page (2020.06.20).

[38] Inc. Xilinx. What is an FPGA? Available at https://www.xilinx.com/

products/silicon-devices/fpga/what-is-an-fpga.html (2020.10.19).

[39] Xilinx, Inc. LocalLink Interface Specification, SP006 edition.

[40] Xilinx, Inc. Virtex-5 FPGA RocketIO GTX Transceiver, UG198 (v3.0) edition,
Oct 2009.

[41] Xilinx, Inc. Aurora 8B/10B Protocol Specification, SP002 (v2.3) edition, Oct
2014.

[42] Xilinx, Inc. 7 Series FPGAs GTX/GTH Transceivers, UG476 (v1.12.1) edition,
Aug 2018.

[43] Xilinx, Inc. Aurora 8B/10B v11.1 LogiCORE IP Product Guide, PG046 edition,
Apr 2018.

237

[44] J. Zhang, L. Chen, T. Wang, and X. Wang. Analysis of TSN for Industrial Au-
tomation based on Network Calculus. In 2019 24th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), pages 240–247,
2019.

238

