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On Consistency and Network Latency in Distributed Interactive Applications: 

A Survey – Part I 

Declan Delaney, Tomas Ward, Seamus McLoone 

Abstract - This paper is the first part of a two-part paper that documents a detailed survey 

of the research carried out on consistency and latency in distributed interactive applications 

(DIAs) in recent decades.  Part I reviews the terminology associated with DIAs and offers 

definitions for consistency and latency.  Related issues such as jitter and fidelity are also 

discussed.  Furthermore, the various consistency maintenance mechanisms that researchers 

have used to improve consistency and reduce latency effects are considered.  These 

mechanisms are grouped into one of three categories, namely time management, 

Information management and system architectural management.  This paper presents the 

techniques associated with the time management category. Examples of such mechanisms 

include time warp, lock step synchronisation and predictive time management.  The 

remaining two categories are presented in part two of the survey. 

 

I. INTRODUCTION 

Human interaction with computers has evolved from centralized batch processing using Hollerith 

cards to virtual reality systems in which users can be fully immersed.  The origins of virtual 

reality technology can be traced back to vehicle simulation research in the 1920s (Ellis 1994) and 

since then, virtual environments have spread to areas such as military simulations, cooperative 

whiteboards and architectural design. 
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The first distributed software virtual environment was SIMNET, a United States research 

program initiated in 1983 to train soldiers in battlefield tactics (Calvin, Dickens, Gaines, Metzger, 

Miller et al. 1993) and which culminated in the development of the DIS protocol standard in 1993 

(IEEE 1993).  Since then numerous academic, military and commercial distributed applications 

have been developed and documented (Joslin, Di Giacomo and magnenat-Thalmann 2004).  The 

diverse  applications that exploit distributed virtual technology have been referred to using 

various terms.  In this paper they will be referred to as Distributed Interactive Applications or 

DIAs. 

DIAs are subject to many problems.  However, the authors believe that the key common 

objective running through most of the research in the area of DIAs is related to the issue of 

consistency and  the maintenance of adequate consistency among all participants of the DIA in 

spite of demands on system resources.  In addition they believe that the single greatest 

contributing factor to spatial and temporal inconsistencies experienced by end users in the virtual 

world is network latency or lag. 

The issue of consistency has been the subject of much research in the field of distributed 

systems for the past few decades.  However, no single detailed survey of these techniques has 

been produced, although some publications summarize a number of the issues and approaches 

taken: (Snowdon, Greenhalgh, Benford, Bullock and Brown 1996; Macedonia and Zyda 1997; 

Singhal and Zyda 1999; Joslin et al. 2004; Roberts 2004).  This paper aims to bridge this gap and 

provide a concise summary of the issues and the approaches taken to tackle the problem of 

maintaining consistency in the presence of network latency.  It also reviews the terminology 

associated with the domain of distributed interactive applications and proposes definitions for the 

terms consistency and latency.  This survey is not intended to be comprehensive in bibliographic 

terms; instead references are selected to best illustrate, in our opinion, the different concepts. 
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The next section looks at some basic terminology.  This is provided for ease of reference.  

Section III investigates what is meant by the term distributed interactive application.  Sections IV 

and V define and review the inherent problems of consistency and network latency in such 

applications.  In section VI we provide a classification for various mechanisms that have been 

employed to mask network latency and improve consistency in DIAs.  The first of these 

classifications, time management techniques, is then presented.  The remaining two 

classifications are presented in part II of the survey. 

II. TERMINOLOGY 

To facilitate discussion of DIAs, the following terms derived from the world of modeling and 

simulation are listed (Zeigler, Praehofer and Kim 2000).  The terms listed here are used 

extensively in referring to DIAs, but are rarely defined.  Other terms will be defined as they are 

encountered. 

State: a complete description of a virtual entity at a single moment in time (Churchill, Snowdon 

and Munro 2001).  In a DIA information pertaining to state variations in the virtual environment 

should be shared among all participants.  This information is often referred to as Dynamic Shared 

State (Singhal et al. 1999; Qin 2002). 

Entity or Object: an element of the synthetic environment that is created and controlled by a 

simulation application through the exchange of information (IEEE 1993).  We consider entity and 

object as synonymous, and we adopt the term entity throughout this paper.  Entities may be 

passive or active (Singhal et al. 1999).  A passive entity is one that is either entirely stationary or 

moves deterministically.  The behavior of an active entity is non-deterministic, although it may 

be predictable in the sense that its motion is a function of the constraints imposed by the 

environment, the objectives/abilities of the participant and the initial conditions.  A similar 



 

 - 4 - 

classification describes entities as either static (passive) or dynamic (active) (Lui 2001).  The 

state of a static entity never changes with time whereas the state of a dynamic entity can. 

Environment: the information needed to render an application’s time-constant state (Mauve, 

Hilt, Kuhmunch and Effelsberg 2001). 

Event: The state of a DIA may change for two reasons, as a result of the passage of time or the 

occurrence of events. An event causes a state change that is not a fully deterministic function of 

time (Mauve 2000).  Between successive events the state of the medium is a fully deterministic 

function of time.  Events can be separated into external events and internal events.  External 

events are caused by (user) interactions with the medium, whereas Internal events are non-

deterministic internal changes in the state of the application.   Events may also be viewed as 

deterministic or non-deterministic (Roberts and Sharkey 1997; Sharkey, Ryan and Roberts 1998).  

Deterministic events can be fully predicted whereas non-deterministic events cannot be reliably 

predicted because they result from real-time interaction between the DIA and human participants. 

Node: A node refers to a computing device connected to the communications network.  A node 

can be a source or destination machine, a router or any other device that processes data. 

Dead Reckoning: Dead reckoning exploits information about current user dynamics to make a 

short-term prediction of user movement based on extrapolation techniques. It is formally defined 

in the DIS protocol (IEEE 1993).  It was first implemented as the Players and Ghosts paradigm in 

the VERN (Virtual Environment Realtime Network) test bed, developed by Blau et al. (1992). 

III. DISTRIBUTED INTERACTIVE APPLICATION 

A Distributed Interactive Application (DIA) is best defined by considering the three terms that 

comprise its title: 
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1. A system is distributed if there is a message transmission delay between parts of the 

system that is not negligible compared to the time between events in a single process 

(Lamport 1978); 

2. Interactive refers to an input-output process involving input from a user through a 

human-computer-interface with an appropriate output response from the system (Broll 

1997; Natrajan and Reynolds Jr 1999; Manninen 2000; Zhou, Cai, Lee and Turner 

2001).  Interaction is also defined as truly concurrent object manipulation (Margery, 

Arnaldi and Plouzeau 1999), as distinct from the cooperative sequential object 

manipulation defined in (Broll 1997). 

3. The application is a software system built for a specific purpose. It is usually a virtual 

environment that, in some way, reflects the physical world and interfaces to the 

physical world. 

 

Distributed Interactive Simulation (DIS)  

Networked Virtual Environment (NetVE) (Singhal et al. 1999) 

Distributed Virtual Environment (DVE) (Stytz 1996) 

Distributed Interactive Media (DIM) (Mauve et al. 2001) 

Networked Interactive Entertainment (NIE) (Capps, McDowell and Zyda 2001) 

Collaborative Virtual Environment (CVE) (Park and Kenyon 1999; Vaghi, Greenhalgh 

and Benford 1999) 

Distributed Synthetic Environments (DSE) (Worthington and Roberts 2000) 

Shared Virtual Environment (SVE) (Waters and Barrus 1997) 

Computer Supported Cooperative Work (CSCW) (Greif 1988) 

Groupware Systems (Ellis and Gibbs 1989) 

Table 1: DIAs are referred to using various terms and acronyms 
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What this paper refers to as DIAs have been referred to using many different terms, as 

summarized in Table 1.  These reflect the diverse applications of this paradigm and the different 

research emphasis of each research group: shared workspaces, networked games, distributed 

whiteboards, group editors, distributed architectural design, education, telemedicine and 

simulations (Bhola, Banavar and Ahamad 1998; Sun, Jia, Zhang, Yang and Chen 1998; Bouras, 

Hornig, Triantafillou and Tsiatsos 2001; Fujimoto 2001; Riva and Gamberini 2001; Tawfik and 

Fernando 2001; McCoy, Delaney and Ward 2003; Frecon 2004).  Several research teams have 

developed experimental distributed virtual environment platforms; some examples include RING 

(Funkhouser 1995), NPSNET (Macedonia, Zyda, Pratt, Barham and Zeswitz 1994; Capps, 

McGregor, Brutzman and Zyda 2000), MASSIVE (Greenhalgh and Benford 1995; Greenhalgh, 

Purbick and Snowdon 2000), PaRADE (Roberts, Sharkey and Sandoz 1995; Roberts and Sharkey 

1997; Roberts et al. 1997), SPLINE (Barrus, Waters and Anderson 1996), CAVERNSoft (Leigh, 

Yu, Schonfeld, Ansari, He et al. 2001), VELVET (de Oliveira and Georganas 2002), PARADISE 

(Holbrook, Singhal and Cheriton 1995; Singhal 1996), DIVE (Frécon and Stenius 1998; Frécon 

2003; Frécon 2004), QUICK (Capps 2000), VPark (Joslin, Molet, Thalmann, Esmerado, 

Thalmann et al. 2001), MOVE (Garcia, Montala, Pairot, Rallo and Skarmeta 2002), ATLAS 

(Lee, Lim and Han 2002), EQUATOR (MacColl, Millard, C. and Steed 2002) and PING (Roberts 

2004). 

For the purposes of this paper we adopt the term Distributed Interactive Application (Kelly 

1997; Diot and Gautier 1999; Lee, Yang, Yoon, Yu and Hyun 2000; Zhou et al. 2001; Qin 2002; 

Vogel, Mauve, Hilt and Effelsberg. 2003) as we consider it to be a generic term that encapsulates 

all aspects of networked applications that involve interaction, collaboration, cooperation and 

communication .  We define a DIA to be: 
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a networked software system that seeks to maintain global consistency when 

responding to multiple simultaneous non-deterministic inputs. 
(1)

 

A key aspect of a DIA is the participation of humans-in-the-loop (Ellis et al. 1989).  People 

interact with the system in real-time and they expect the system to respond in real-time to the 

actions they make.  In addition they assume that other users of the system, particularly those with 

whom they are interacting, share the same view of the system state. In other words, users demand 

consistency.  The next section addresses this issue in detail. 

IV. CONSISTENCY 

The input from users of a DIA generates events that then modify an underlying database that is 

shared in some way by all users across a communications network.  An essential requirement of 

the DIA is that users are informed of changes to this common database in real time if the changes 

affect them or if they are interested in receiving the changes.  Users of DIAs expect both 

temporal and spatial consistency so that their experience of the virtual world can be the same as 

the users with whom they are interacting. 

Consistency is one of the key factors in providing a truly interactive experience to users of 

DIAs (Vaghi et al. 1999; Bowman, Johnson and Hodges 2001; Gutwin 2001; Henderson 2003).  

So, what exactly is consistency?  For Gautier et al. (1999) it implies that at any point in time, all 

players should ideally see the same information at the same time independent of the network.  

This is referred to as absolute consistency and it has been defined mathematically by Qin (2002) 

and Zhou (2001).  Absolute consistency in distributed applications is impossible to attain because 

of the existence of network latency and the fact that the delay in transmitting information across 

the application cannot be ignored when compared to the time between events. 
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Consistency refers to a number of aspects in DIAs (Shneiderman 1984; Dourish 1995; 

Blakowski and Steinmetz 1996; Roberts 2004):  

1. Synchronisation: the maintenance of (a) temporal relations between events so that the 

time of each event relative to other events across the DIA is the same for all participants 

and (b) spatial relations so that entity positions are the same across the DIA; 

2. Causality or Ordering: events cause the state of the system to change to a new state.  The 

order in which events are received is thus important to maintain a natural cause-effect 

order; 

3. Concurrency: the simultaneous execution of events by different users on the same entity 

within the application.  Entity ownership conflicts have to be resolved. 

 

Linked to all of these aspects are the issues of responsiveness and fidelity.  Responsiveness is 

the time taken for the system to register and respond to a user event.  Fidelity is defined in the 

DIS standard as the degree to which the representation within a simulation is similar to a real-

world object, feature or condition in a measurable or perceivable manner (IEEE 1995).  Similarly 

the Fidelity Definition and Metrics Implementation Study Group (DM-ISG) defines fidelity as 

the degree to which a model or simulation reproduces the state and behaviour of a real-world 

object or perception of a real-world object, feature, condition or standard in a measurable or 

perceivable manner.”  The DM-ISG identifies six components to fidelity: resolution, error, 

accuracy, sensitivity, precision and capacity (Roza, Voogd, Jense and van Gool 1999).  Stytz 

(1996) explores fidelity in DIAs and lists a number of types of fidelity, such as physics fidelity, 

time fidelity and sensory fidelity.  Capps (2000) discusses the link between visual accuracy and 
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fidelity and believes that visual accuracy is only a ‘passing first-order approximation for fidelity.’  

Fidelity is also referred to as level-of-detail or resolution (Radhakrishnan and Wilsey 1999). 

Poor consistency can lead to fidelity problems and fidelity is often sacrificed to maintain 

consistency and responsiveness.  In an ideal DIA absolute consistency could be obtained: all user 

clocks would be synchronized, all events would be executed in the order they occurred, conflicts 

over shared entities and the system response time would satisfy normal user expectations, and 

fidelity would be guaranteed.  .  However, this ideal cannot be achieved and the inconsistencies 

that result manifest themselves in many different ways, resulting in three noted phenomena 

(Schwarz and Mattern 1994; Dourish 1995; Sun et al. 1998; Vaghi et al. 1999; Zhou et al. 2001; 

Zhou, Cai, Lee and Turner 2003): 

1. Divergence: this refers to the final temporal-spatial state of the environment being 

different for different participants.  Users will thus be unwittingly be interacting with an 

inconsistent environment so that their behaviour will also be inconsistent, possibly 

causing the states to diverge even further; 

2. Causality violation: events may be received, executed and rendered out of their natural 

cause-effect order, so that users notice the effect before the cause; 

3. Intention / expectation violation: the actual effect of an action may differ from the 

intended effect because events may be generated concurrently.  This refers to something 

that is expected to happen based on real-world experience, but doesn’t happen in the 

virtual world. 

 

Consistency therefore needs to be controlled within the DIA.  This is achieved by using 

consistency maintenance mechanisms.  In this paper these are defined as: 
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any element employed to ensure a sufficient, uniform dynamic shared 

state for all participants in a DIA. 
(2)

 

While absolute consistency is impossible to achieve in practical DIAs because of their 

dynamic nature, a hypothetical DIA in which the environment remains totally static and 

unchanging would achieve absolute consistency.  At one extreme therefore is the dynamic DIA 

with continuous state changes that requires a high throughput of update packets and that never 

achieves absolute consistency; at the other is the totally static DIA where no update packets are 

required and so absolute consistency can be achieved.  This is known as the Consistency-

Throughput Trade-off (Singhal et al. 1999).  There is also a conflict between system 

responsiveness and consistency.  High responsiveness can be achieved locally, but with the risk 

that the global state of the DIA becomes inconsistent because of network latency (Cheshire 

1996).  This conflict has been documented as the consistency-responsiveness trade-off (Zhou et 

al. 2001; Mauve, Vogel, Hilt and Effelsberg 2002; Qin 2002). 

The principal cause of inconsistencies is ironically linked to the network that actually 

facilitates DIAs.  Therefore the relationship that exists between the physical network and 

consistency needs to be explored.  In particular we focus on the most important aspect of the 

physical network affecting consistency: latency.  The next section describes this phenomenon. 

V. LATENCY 

A review of the research literature reveals that a commonly agreed definition of latency does 

not exist.  Latency has sometimes been defined as the amount of time required to transfer a bit of 

data from one point to another (Singhal et al. 1999).  This definition leaves the word point open 

to several possible interpretations.  Latency is also defined in (Smed, Kaukoranta and Hakonen 
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2001) as the length of time (or delay) that a message incurs during transmission from one 

designated node to another.  Again, the definition is open to different interpretations of the word 

node.  A similar problem exists in the following definition: the time taken by data to travel from 

the source to the destination (Dutta-Roy 2000).  Meehan et al. incorporate the delay associated 

with graphics rendering in their definition (Meehan, Razzaque, Whitton and Brooks 2003).  Tse-

Au and Morreale interpret latency as the time required for one bit to propagate round-trip 

between two nodes, similar to a ping time (Tse-Au and Morreale 2000).  Pullen and Wood define 

it as the time delay that occurs between the output of a data packet at the application level of one 

simulator and the input of that data packet at the application level of another simulator (Pullen 

and Wood 1995).  We have taken this definition as a basis to propose the following definition for 

network latency based on the ISO OSI reference model:  

 

Network Latency is the time taken from the start of exchange of an 

application protocol data unit (APDU) at the application layer of one 

participating node to the end of the exchange of the same APDU with 

the application layer of a second participating node. 

(3)

 

This definition is similar to that put forward by de Oliveira et al. (1999) and excludes latency 

due to any other source, for example, computations in the application, graphics rendering or user 

reaction time.  These other sources are also included in local latency, which is the latency 

involved in representing a user’s actions back to that user (Roberts et al. 1995).  For the rest of 

the paper the term latency will refer to network latency. 

Latency is particularly problematic in interactive applications where the network delays are 

comparable to the interaction time or speed (Sharkey et al. 1998).  Typical latency values to 
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maintain real-time interaction fluctuate between 40 and 300ms (Diot et al. 1999).  Cheshire 

(1996) suggests that the round-trip latency of 100ms should be the maximum delay, whereas both 

Wloka (1995) and Diot and Gautier (1999) aim for a one-way delay of 100ms.  Conscious 

awareness of latency by users of a DIA depends on the application.  For voice interaction a 

maximum latency of 100ms is sufficient (Cheshire 1996) and Mauve et al. report values of 

120ms for visual data (Mauve et al. 2002).  In teleoperation control loops, instability occurs when 

total system latency exceeds 100ms.  For motor-driven tasks human reaction time is in the order 

of 200ms (Krumm-Heller and Taylor 2000). 

 

Components of Latency 

To assist in the understanding of latency, it is convenient to analyse the factors that comprise 

it.  The main contributors to latency are (Martin, McGregor and Cleary 2000): 

1. Queuing and processing at routers, bridges and gateways within the network and at source 

and destination nodes.  Packet loss and timeouts may be considered to introduce infinite 

latency; 

2. Transcoding delays associated with encryption / decryption of information and 

compression / decompression of data; 

3. Propagation and transmission delays due to the finite speed of light and the speed of the 

communications link. 

 

This paper decomposes latency into three types according to the source of the delay: 

1. Packet processing delay; 

2. Bit propagation delay; 
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3. Packet propagation delay. 

 

Figure [1] here 

 

 

 

 

 

 

 

 

The latency τtotal associated with a single packet can therefore be expressed as the sum of these 

three components.  This is illustrated in Figure 1 and is represented by the following equation: 
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The packet processing delay refers to the time taken to manage and process the data as it 

migrates through the network hardware and to process and parse the data at both source and 

destination nodes.  This includes compressing, decompressing, encrypting, decrypting and any 

processing performed by the operating system or network hardware at the end-point computers.  

It also includes the time delay associated with flow control and congestion control, buffering and 

packet queuing. 

The bit propagation delay refers to the delay associated with the physical speed of 

transmission (about 5µs per km). 

The packet propagation delay refers to the time required for all bits in a packet to be 

transmitted across the network from source to destination node considering only the inter-node 

bandwidth. 

From this division of latency the following may be noted: 

1. The bit propagation delay cannot be eliminated and it has a lower theoretical limit 

imposed by the speed of light in a vacuum; 

2. The packet processing delay can be reduced in a number of ways: by reducing the 

quantity of data on the network, by increasing the processing power at routers and 

source/destination nodes and by using more efficient processing algorithms; 

3. The packet propagation delay can be reduced by increasing the available network 

bandwidth and by reducing the amount of data that must be transmitted between nodes. 

 

Points (2) and (3) explain why most of the techniques and approaches that have been explored 

to combat the effects of network latency focus on reducing the quantity of network traffic and 
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improving software architectures to reduce both the packet processing delay and the packet 

propagation delay. 

The division of latency given here facilitates a more accurate understanding of latency and the 

impact of latency reducing techniques and is similar to that espoused by Jehaes et al. (2003).  

Other divisions of latency have been presented elsewhere.  Tse-Au and Morreale (2000) view 

latency as being tunable or un-tunable.  Un-tunable latency refers to the sum of the signal 

propagation delay and the equipment processing delay in transmitting one bit across the network.  

Tunable latency is the time taken for one bit of data to propagate through all the queuing delays 

between the two communicating nodes.  In (Hecker and Simpson 2001) latency is split between 

path latency and queuing latency.  Path latency is the time taken for a message to get from one 

place to another.  Queuing latency is the resultant delay when the data sent exceeds the 

bandwidth.  Two kinds of latency are also described by Mauve et al. (2004): observation lag and 

influence lag.  Observation lag is the delay between an event’s occurrence and its display, 

whereas influence lag is the delay between our attempt to influence the world and the time taken 

for the influence to actually occur. 

Network latency varies with prevailing network conditions.  This variation in latency results in 

a phenomenon called jitter, which is described in the following paragraph. 

Jitter 

All information transmitted across the network is carried in the form of data packets.  Each 

packet may follow a different route through the network and the order of arrival of packets at the 

destination node is not guaranteed by the network layer.  The network is heterogeneous in nature 

with continuous variations in router queue lengths, buffering times, and routing paths for packets.  

Packet sizes also vary greatly and similarly the time to process packets as they migrate through 
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the network and reorder packets to rebuild complete packets at destination also vary significantly 

(Dutta-Roy 2000).  Depending on network conditions, this may result in a different latency for 

each transmitted packet and gives rise to a phenomenon known as jitter (Blow 1998; Smed et al. 

2001).    For the purposes of this paper the following definition will be used: 

Jitter refers to the unpredictable variation in latency with time.  (5) 

 

The effects of network latency and jitter on end-users were examined in an interesting suite of 

qualitative experiments performed by Vaghi et al.(1999).  They examined the effects of gradually 

increasing network delays for one of the two participants in a networked virtual ball game to 

establish how delays affect the performance of the players, how performance breakdowns 

manifest themselves and how players adopt to delays.  Park and Kenyon (1999) assessed the 

effects of latency and jitter on executing a cooperative task and found that from a psycho-

perceptual viewpoint, jitter has the greatest impact when latency is high and the collaborative task 

is difficult.  Jitter has a much greater impact than latency on performance.  Gutwin (2001) 

investigated the effects of latency and jitter on two types of user interaction: prediction of 

movement and moving a shared object.  He found that both performance and user strategy were 

affected.  Other work has been carried out by Henderson (2003), who investigated how users 

adapt to latency in distributed games, Bowman et al. (2001), who analysed interaction in virtual 

environments and Mauve (2000), who examined the effects on interaction in a 3D tele-

cooperation application when local lag is introduced to offset the effects of jitter. 

 

Latency prevents the possibility of achieving an absolute consistent dynamic shared state 

across a DIA.  As the quantity of data to be managed by the DIA increases (an issue called 

scalability (Macedonia 1995) and due, for example, to an increase in the number of active entities 
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and participants or the spatial extent of the DIA or the complexity of the tasks involved), 

maintaining consistency across the DIA becomes even more difficult.  The following section 

examines the various methods, mechanisms and approaches for controlling consistency in DIAs 

in the face of this inherent network latency. 

 

VI. CONSISTENCY MAINTENANCE MECHANISMS 

A DIA can be viewed as a distributed database with multiple simultaneous users modifying it in 

real-time.  The key problem then becomes that of ensuring that the database is consistent for all 

users, so that they are interacting with an up-to-date source of information.  Consistency 

maintenance mechanisms refer to any element employed to ensure a sufficient, uniform dynamic 

shared state for all participants in a DIA.  Consistency maintenance mechanisms are also referred 

to as latency hiding techniques (Cheshire 1996), consistency control algorithms (Roberts et al. 

1997), distributed synchronization mechanisms (Diot et al. 1999) and object synchronization (Lui 

2001).  Of the many existing mechanisms, most of them are bandwidth-saving mechanisms and 

combat latency by reducing the number of packets being sent across the network as explained 

previously.  Each consistency maintenance mechanism falls into one of two general categories 

(Jefferson 1990; Blanchard and Lake 1997; Fujimoto 2001; Cronin, Filstrup, Kurc and Jamin 

2002): 

1. Optimistic/Aggressive: this is a mechanism that takes risks by performing 

speculative computation, which, if subsequently determined to be correct, saves time, 

but if incorrect must be rolled back and corrected; 
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2. Pessimistic/Conservative: this is a mechanism that never indulges in speculative 

computation and hence never has to roll back.  These algorithms perform poorly in 

fast-paced interactive applications where a constant rate of simulation is important. 

 

Systems can employ a hybrid approach, applying optimistic and conservative mechanisms at 

different points in the DIA, depending on the type of DIA.  The various mechanisms may be 

further classified into three general classes: 

1. Time Management Techniques – These all manipulate time to mask the effects of 

latency.  Examples include synchronisation, time warp and local perception filtering; 

2. Information Management Techniques – These all reduce the amount of data that has to 

be managed by the network.  Examples include Relevance Filtering and Compression; 

3. System Architecture Techniques – These all aim to improve the efficiency of 

processing and disseminating data.  Examples include protocols and network 

architectures. 

 

This rest of this paper will focus on the first of these three categories and the other two categories 

will be discussed in part II of the survey.  It should be noted that the techniques are not mutually 

exclusive and the DIA designer can mix techniques across categories to suit each particular 

application. 
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Time Management Techniques 

Time is a fundamental attribute of all Distributed Interactive Applications, although the exact 

meaning of time may vary from one application to another.  There are two dominant concepts of 

time for distributed applications: 

1. Absolute time or Wall Clock Time: the time is based on the concept of a periodic 

clock, which is synchronized to Coordinated Universal Time (UTC) across the DIA.  

For example in the Internet this time is maintained by a network of servers that can 

communicate precise UTC time using the Network Time Protocol (NTP) (Mills 1991; 

Cox, Luiijf, van Kampen  and Ripley 1996); 

2. Virtual time or Causal Time: the time in this case is based on a logical, loosely 

synchronized clock.  Time is seen as a sequence of ordered events and stands still if 

no new events occur (Lamport 1978). 

 

The link between time and consistency in DIAs is important.  In a perfectly consistent DIA all 

participants would be rendered the same global state at the same absolute time.  Network latency 

ensures that this cannot be achieved and inconsistencies therefore occur. 

The concept of time within a DIA depends on whether the DIA is continuous or discrete 

(Roberts et al. 1997; Mauve et al. 2001; Zhou et al. 2001) and the events that are driving the state 

changes of the DIA.  Events may be deterministic (e.g. a bouncing ball) or non-deterministic (e.g. 

an action by a user or network jitter).  This categorisation of events allows more efficient use of 

bandwidth by transmitting non-deterministic events to other users and allowing deterministic 

events to be computed locally (Roberts et al. 1995).  In a discrete DIA the state changes in 

response to non-deterministic user events.  The correct order of events is therefore important but 

the exact time of each event is not.  In this case an asynchronous model of time such as the 
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logical clock is sufficient.  In a continuous DIA the state changes as a result of non-deterministic 

events caused by a user or by the passing of time, and so wall clock synchronization is important.  

In this case a correct order of all events must be maintained and the resulting state of the system 

must be the same as if all the events had been executed in the correct order at the time identified 

by their timestamps. 

The foundations of time within DIAs were laid by Lamport (1978) who examined global time 

and the ordering of events in distributed systems.  The underlying assumption is that events are 

related, that local events can be ordered sequentially and that the future cannot influence the past.  

This is referred to as the causality relation (before-after relation) and formed the basis for the 

concept of a logical clock.  In such a clock the notion of time is based on the order in which local 

events occur.  Time is therefore asynchronous among all participating nodes in the DIA.  Virtual 

time differs from real time in that it doesn’t flow and it stands still if no events occur. 

Lamport’s concept of scalar time as a totally ordered sequence of causal events is not always 

correct.  With scalar time, all processes share the same global logical clock.  This means that two 

or more events generated by different processes can have an identical timestamp, with the 

possible loss of causal dependency information (Raynal and Singhal 1996).  For example, if a 

process generates an event based on a set of events it has received, but that new event is received 

at another node that hasn’t received the same set of prior events, then a causality violation occurs.  

To solve this problem, a concept of time based on vector timestamps was developed 

independently by Mattern (1988) and Fidge (1988).  With vector clocks, the time domain is 

represented by a set of vectors, one for the causal time of each process.  This set of vectors 

represents the global time and each node maintains a vector clock for all processes.  In a DIA the 

problem is then to disseminate the local vector clock to all other nodes.  Various algorithms exist 

to do this.  For example, the vector can get piggybacked on data packets. 
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For continuous DIAs, there is an additional constraint – it must appear as if the events have 

been executed at the correct point in time.  In this case absolute time is needed and events are 

defined as a function of a wall clock, independently of the rendering frame rate.  Various 

mechanisms exist for managing the clocks in the participating nodes.  All clocks may be 

completely synchronized by using the Network Time Protocol (Mills 1991) or GPS (Cox et al. 

1996).  Lui (2001) derived an optimal synchronization interval based on subgraph 

communication algorithms so that every participating node has a consistent view of the virtual 

world. 

Roberts and Sharkey (1997) combined the concepts of absolute and virtual time into a 

sufficiently causal time stamp.  In doing so they modified the causality (before-after) relation, 

allowing the application to decide when to apply the causality relation to events.  Some events 

may thus be ignored if a later event is absolute and the transitory state of no consequence.  The 

ordering of events is termed sufficient causal ordering or partial causal ordering (Roberts et al. 

1997). 

The following sections describe the approaches that have been taken to maintain consistency 

in DIAs using both logical and wall clocks. 

Lockstep Synchronization 

This is the most basic way to ensure consistency and, being a conservative algorithm, avoids 

roll-back at the expense of system response (Funkhouser 1995).  It operates by preventing the 

generation of out-of-order events and achieves this by preventing any participating node from 

advancing its simulation clock until all other nodes have acknowledged that they have completed 

their computation.  This scheme guarantees consistency but does not guarantee real-time 
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consistency, as network latency results in acknowledgement delays and the DIA clock interval is 

not constant. 

Imposed Global Consistency 

Techniques that impose delays rely on delaying the execution or rendering of both local and 

remote events until an upper latency bound is reached.  In this way the state information 

generated at remote nodes has sufficient time to be incorporated into the local computation of the 

global DIA state.  The objective is to maintain synchronized global consistency at the expense of 

reduced responsiveness.  This technique is a form of buffering and includes bucket 

synchronisation and local lag.   

In bucket synchronisation, time is assumed to be synchronized and is divided into intervals or 

buckets of length T.  The bucket frequency is thus 1/T.  All events are assigned to a bucket.  The 

local view of the global state is then calculated using all the events generated locally and by 

remote nodes during the time interval [i-D, i-D+T], where i is the current time interval and D is 

an added delay to compensate for network latency (Gautier et al. 1999).  Events are therefore 

delayed for a length of time that should prevent any misorderings and hence avoid any rollbacks.  

The bucket synchronization algorithm, as applied to the distributed multiplayer game MiMaze, 

has been shown to provide acceptable consistency even in high latency situations (Gautier and 

Diot. 1998; Diot et al. 1999). 

The concept of local lag is related to the work of Cristian (1985).  Events initiated by the local 

user are not executed immediately but are delayed for a length of time dependent on network 

latency, thus reducing the responsiveness of the system.  Each event is time stamped at a time 

later than the time the event actually occurred.  An upper bound on the network delay is assumed 

so that events can be guaranteed to occur after a certain time.  An event prologue can be added 
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between the actual local event and its local occurrence, which appears natural to the local user.  

The trade-off between short-term global inconsistencies and responsiveness when using local lag 

in replicated continuous applications was examined in (Mauve 2000).  A minimal value for local 

lag was based on the maximum of the average network delay between two users, whereas the 

highest acceptable response time was based on human perception and application type, ranging 

from 100ms for drag operations to 400ms for click operations.  The determination of an optimum 

local lag value was left to future work. 

Delayed Global Consistency 

In contrast to imposed global consistency, here the objective is to maintain asynchronous 

global consistency.  Users will perceive the same consistent world but at different times. 

Work by Qin on distributed whiteboards (Qin 2002) is based on the fact that it is not necessary 

that users have the same state at exactly the same time.  Different nodes can share the same view 

of the objects but at a time shift.  Each event is therefore time stamped so that the global state can 

be reconstructed locally, albeit at a later time.  This shift is specified at the design stage of the 

DIA.  Qin refers to this as delayed consistency. 

A similar idea was proposed by Sharkey et al. (1998).  They employed the concepts of 

relativity to DIAs to warp time and limit the maximum speed of objects within the virtual world.  

Each user is at the origin of a temporal-spatial framework and all other users are at a relative 

temporal-spatial position.  This allows causal surfaces and volumes to be defined and associated 

critical velocities for virtual objects to be determined.  The causal volumes define the regions in 

which past events can affect present events and present events can affect future events.  The 

critical velocity determines the maximum speed of information transmission between two users 

of the DIA, hence delimiting the causal boundaries to produce causal surfaces.  Based on these 
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causal surfaces, a 31/2D perception filter is proposed to introduce a continuously differentiable 

delay contour over the virtual environment.  Each local user perceives other (remote) users 

interacting smoothly and dynamically with their local environment in real-time, but delayed by 

the particular latency between them and the local user.  As users get closer and begin to interact, 

the delays between them are interpolated to zero.  The causal volumes and the perception filter 

may potentially cause distortions in virtual time-space, leading to objects having apparent 

stiffness.  Sharkey refers to this as distributed stiffness.  In effect, a new set of consistent physics 

is established where users can understand delays and inconsistencies within the context of a 

relativistic physics paradigm, leading to constraints on time and space within the virtual world 

and as a result a new form of virtual physics fidelity. 

Time Warp 

The Time Warp mechanism, first proposed by Jefferson (1985; Jefferson 1989), is an 

optimistic synchronization mechanism that relies on general lookahead-rollback to maintain 

consistency in the DIA (Fujimoto 1990).  It operates by executing each message as soon as it 

arrives.  When a message arrives that has a time stamp earlier than a message already executed, it 

undoes all the events back to that message (rollback) and starts execution again from that 

message.  It must also send messages to undo any incorrect output messages that were 

communicated to other nodes while it was in an incorrect state, a process known as rollback 

propagation (Lin and Lazowska 1991). To assist in rollback a snapshot of each state is taken after 

execution of each message.  Jefferson extended the Time Warp mechanism to include optimal 

memory management and introduced the cancelback and the fossil collection protocols to 

facilitate this (Jefferson 1990).  Jefferson’s Time Warp mechanism was described using a formal 

model by Leivent and Watro (1993). 
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The Breathing Time Warp algorithm is a variation of the Time Warp algorithm.  This limits 

the amount of execution that can be done optimistically by restricting the rollback time to events 

that occur within an event horizon (Steinman 1993). 

Another optimistic variation on the Time Warp algorithm called Trailing State 

Synchronization was proposed in (Cronin et al. 2002) for distributed first-person shooter games.  

This requires less memory and processor time compared to time warp.  A complete time-delayed 

copy of the game state is maintained in parallel with the main game.  This copy has more time to 

reorder events and is a more accurate version of the game state, although delayed in time.  This 

trailing state is used to detect inconsistencies.  When an inconsistency is detected in the actual 

game, the correct state can then be directly copied from the trailing state. 

Predictive Time Management 

In predictive time management future events are pre-empted and both the event and its 

expected time of occurrence are transmitted before they actually occur.  This is an optimistic 

technique for maintaining DIA consistency.  The concept of predictive time management in DIAs 

was first proposed by Roberts et al. (1995) as part of the PaRADE system.  A key motivation of 

their work was the issue of maintaining consistency among collaborating participants in the face 

of inherent network latency.  Their prediction depends on knowledge of delays.  They describe a 

study of Round Trip Time (RTT) values to estimate delays (Roberts et al. 1995).  In PaRADE 

they use a sample set of message RTTs together with a robust line fitting algorithm to compute 

network latency between nodes.  This technique relies on messages being time stamped, and thus 

a global wall clock is required.  The prediction of events is limited to collision prediction 

(Sandoz, Sharkey and Roberts 1996) or predictions based on heuristics such as knowledge of 

intent, interest group or spatial proximity (Roberts et al. 1997).  This is because sudden non-
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deterministic events cannot be predicted and deterministic events are computed locally as the 

effects of the event can be described mathematically.  Although the occurrence of non-

deterministic events, initiated by humans-in-the-loop, are unpredictable certain long-term 

behaviours and strategies can be anticipated, and the user can be locked into a course of action in 

these cases (Delaney, Ward and Mc Loone 2003). 

Events that are predicted locally are time-stamped and may be sent to other nodes where they 

are executed at the appropriate time.  When using prediction it must be possible to predict further 

ahead than the network delay, so that messages sent to other participants arrive before the event 

occurs locally.  The execution of local events can also be delayed so that the same event will be 

executed at the same time across the entire DIA.  In this case additional filler events, known as 

event prologues, can be added between the initiation and the occurrence of local events to 

compensate for the local reduced responsiveness (Worthington et al. 2000).  If the prediction is 

incorrect, roll back strategies are needed to return the DIA to a consistent state.  To minimise the 

use of state roll back in PaRADE events are sent just-in-time by using knowledge of network 

delays. 

Concurrency 

The existence of latency means that if high performance interaction is required within the 

DIA, then the application state will probably be replicated at each participating node (Greenberg 

and Marwood 1994; Snowdon et al. 1996; Sun and Chen 2002).  However, the replication of 

states increases the possibility of inconsistencies and this is further exacerbated by network 

latency due to geographical separation.  These inconsistencies can generally be corrected by 

using an appropriate synchronisation algorithm such as time warp.  However, when 

inconsistencies result from conflicts over ownership of objects, specific concurrency control 
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mechanisms are required.  Such mechanisms may be optimistic (continue until a conflict is found 

then roll back) or pessimistic (check for conflict before allowing event).  Concurrency is an 

important aspect of consistency and it is highly susceptible to network latency, especially when 

closely-coupled interaction is involved.  Margery et al. (1999) define interaction as truly 

concurrent object manipulation, such as two or more users manipulating a shared object.  

Interaction may also be sequential, with different users interacting with the same, shared object 

but at different times.  In DIAs, the issue of two or more users trying to access the same object in 

the DIA at the same time, either to perform some joint task or to obtain sole possession, must 

therefore be addressed. 

Traditional concurrency control mechanisms used in databases such as locking and 

serialization are not suited to applications that require a fast response (Barghouti and Kaiser 

1991).  In groupware systems, a concurrency control mechanism known as Operational 

Transform is used (Ellis et al. 1989; Sun and Ellis 1998).  This is an optimistic mechanism that 

replicates documents at each node and allows local operations to be performed immediately.  

Concurrent remote operations are transformed before execution so that both local and remote 

editing results are preserved.  To resolve conflicting events in a replicated DIA while minimizing 

latency and maximising response time, Roberts et al. (1995) proposed a prediction-based 

concurrency control scheme.  For one object to interact with another object in a DIA, the object 

initialising the interaction must possess a key (or token) to obtain ownership of the other object.  

In a DIA there is therefore a delay in requesting and receiving this key as it must be sent across 

the network, which makes it difficult to interact with the object on the first attempt.  To combat 

this delay, Roberts et al. used predictive time management to request the key before the 

interaction actually takes place (Roberts et al. 1997).  In their scheme the key unlocks a hierarchy 
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of related objects rather than just a single object.  They also propose a number of techniques to 

avoid unnecessary passing of keys due to poor predictions. 

In the prediction-based concurrency control scheme, ownership requests for the key are 

multicast to all potential owners of the object (Roberts et al. 1997).  The process associated with 

the entity gathers all requests and predicts who the next owner will be.  Lee et al. (2000) extended 

this concurrency control scheme by employing entity-based multicast and AOI.  The AOI defines 

a spatial distance around the entity that currently possesses the key.  All other entities in the AOI 

are potential future owners of the key.  As entities enter/leave this AOI they join/leave the 

multicast group associated with the entity.  The next owner of the key is then predicted from 

among all entities in the multicast group based on direction and predicted collision time. 

 

VII. CONCLUDING REMARKS 

This paper is part I of a two-part paper that examines the issues of latency and consistency in 

the context of Distributed Interactive Applications.  Furthermore it describes various techniques 

and mechanisms that researchers have used to improve consistency and reduce latency effects.  A 

classification for these mechanisms was proposed, based on three distinct categories – time 

management, information management and system architecture.  Part I of this paper explored the 

category of time management and the various forms that this has taken in much of the research 

over recent decades.  The choice of technique depends on the application area and, in particular, 

on the type of interaction required by participants.  Each technique has its advantages and 

disadvantages.  Delaying the execution of events, rolling back events or warping the physical 

environment all impact the experience of users participating in the DIA.  It is therefore in the 

interest of the designers of such applications to balance consistency, responsiveness and fidelity 
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in the face of network latency.  Part II of this paper continues with an examination of the two 

remaining categories of consistency maintenance mechanisms. 
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Figure 1: Illustration of network nodes.  B refers to bandwidth, τ refers to processing time and ∆τ 

refers to propagation delay. 
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