
NPS-EC-92-009

NAVAL POSTGRADUATE SCHOOL

Monterey, California

GROUP MEMBERSHIP IN ASYNCHRONOUS
DISTRIBUTED ENVIRONMENTS USING

LOGICALLY ORDERED VIEWS

Shridhar B.,Shukla

Devalla Raghuram

16 September 1992

FedDocs
D 208.14/2
NPS-EC-92-009

Approved for Public Release; Distribution Unlimited

Prepared for: Naval Postgraduate School

Monterey, California

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36721564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MPS
QC

<

Naval Postgraduate School

Monterey, California

Rear Admiral R. W. West, Jr. H gnu ii

Superintendent provost

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

rY CLASSIFICATIOB OF THIS PAGE
DUDLEY KNOX LIBRARY
uawai p^eTftP&ni IATP SCHOOL

REPORT DOCUMENTATION PAGE M0NTEREY CA 93943"5101

IEP0RT SECURITY CLASSIFICATIOB

Qclassified

lb. RESTRICTIVE MARKIBGS

5ECURITY CLASSIFICATIOI AUTHORITY

)ECLASSIFICATIOB/DOWBGRADIBG SCHEDULE

3. DISTRIBUTIOB/AVAILABILITY OF REPORT

Approved for public release;

distribution is unlimited.

iRFORMIBG ORGABIZATIOB REPORT BUMBER(S)

PS-EC-92-009

HOBITORIBG ORGABIZATIOB REPORT BUMBER(S)

IAHE OF PERFORMIBG ORGABIZATIOB

2pt. of Elect. & Comp. Eng.

aval Postgraduate School

6b. OFFICE SYMBOL
(if Applicable)

EC/Sh
'

7a. BAME OF HOBITORIBG ORGABIZATIOB

NPS
IDDRESS (City, State, and ZIP Code)

onterey, CA 93943-5004

7b . ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

[AME OF FUBDIBG/SPOBSORIBG
GABIZATIOB

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMEBT IBSTRUMEBT IDEBTIFICATIOB BUMBER

iDDRESS (City, State, and ZIP Code) 10. SOURCE OF FUBDIBG BUMBERS

PROGRAM
ELEMEBT BO.

PROJECT
BO.

TASK
BO.

WORK UBIT
ACCESSIOB BO.

'ITLE (Include Security Classification)

Group Membership In Asynchronous Distributed Environments Using Logically Ordered Views

'ERSOBAL AUTHOR(S)

Shridhar B. Shukla and Devalla Raghuram
TYPE OF REPORT

Technical Report
13b. TIME COVERED

from 10/1/91 to 9/30/92.

14. DATE OF REPORT (Year, Month, Day)

16 September 1992

15. PAGE C0UBT
99

1UPPLEMEBTARY B0TATI0B
The views expressed in this report are those of the author and do not reflect the

al policy or position of the Department of Defense or the United States Government.

COSATI CODES

LD GROUP SUB—GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Agreement, Asynchronous, Commit, Distributed, Failure, Group Mem-
bership, Logical Ring, Reliable Multicast, Token

iBSTRACT (Continue on reverse if necessary and identify by block number)

group membership protocol ensures agreement and consistent commit actions among group members to maintain a sequence

ntical group views in spite of continuous changes, either voluntary or otherwise, in processors' membership status. In

ironous distributed environments, such consistency among group views must be guaranteed using messages over a network

does not bound message delivery times. Assuming a network that provides a reliable, FIFO channel between any pair

cessors, one approach to designing such a protocol is to centralize the responsibility to detect changes, ensure agreement,

)mmit them consistently in a single manager process. This approach is complicated by the fact that a protocol to elect a

lanager with a consistent membership proposal must be executed when the manager itself fails. In this report, we present a

ership protocol based on ordering of group members in a logical ring that eliminates the need for such centralized responsibility,

nent and commit actions are token-based and the protocol ensures that no tokens are lost or duplicated due to changes in

ership. The cost of committing a change is 2n point-to-point messages over FIFO channels where n is the group size. The
ol correctness has been proven formally.

ISTRIBUTIOB/AVAILABILITY OF ABSTRACT

CLASSIFIED/UBLIMITED |_J SAME AS RPT. LJ DTIC USERS

1AME OF RESPOBSIBLE IBDIVIDUAL

Shridhar B. Shukla

21. ABSTRACT SECURITY CLASSIFICATIOB

Unclassified
22b. TELEPHOBE (Include Area Code)

(408) 646-2764

1473, JUB 86 Previous editions are obsolete.

22c. OFFICE SYMBOL

EC/Sh
SECURITY CLASSIFICATIOB OF THIS PAGE

Group Membership In Asynchronous Distributed Environments

Using Logically Ordered Views 1

by

Shridhar Shukla2 and Devalla Raghuram 3

Code EC/Sh, Dept. of Elect. &r Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5004

Tel: (408) 646-2764 Fax: (408) 646-2760

E-mail: shukla'Sece.nps.navy.mil

1 This research has been supported in part by the Naval Postgraduate School, Monterey, CA

93943

2 Responsible for all communication

3 Currently on deputation from the Defense Research Development Organization, India, to

pursue an MS at the Naval Postgraduate School under the IMET program

Abstract

A group membership protocol ensures agreement and consistent commit actions among group

members to maintain a sequence of identical group views in spite of continuous changes,

either voluntary or otherwise, in processors' membership status. In asynchronous distributed

environments, such consistency among group views must be guaranteed using messages over

a network which does not bound message delivery times. Assuming a network that provides

a reliable, FIFO channel between any pair of processors, one approach to designing such a

protocol is to centralize the responsibility to detect changes, ensure agreement, and commit

them consistently in a single manager process. This approach is complicated by the fact that

a protocol to elect a new manager with a consistent membership proposal must be executed

when the manager itself fails. In this report, we present a membership protocol based on

ordering of group members in a logical ring that eliminates the need for such centralized

responsibility. Agreement and commit actions are token-based and the protocol ensures

that no tokens are lost or duplicated due to changes in membership. The cost of committing

a change is 2n point-to-point messages over FIFO channels where n is the group size. The

protocol correctness has been proven formally.

1 Introduction

Consistent views of the membership of a group of entities that cooperate to perform a task is

basic to construction of distributed applications using the process group approach [BSS91].

The group of entities may correspond to a set of processes that must behave consistently

to provide a service or a set of processors that must determine their function based on

which other processors are operational. Changes to the membership occur when members

fail or leave the group and when they recover or join the group. Some form of consensus

on group membership is necessary, for without it, a server that respects its specification

may nonetheless behave inconsistently with respect to another server since they see different

group members. The group membership problem refers to achieving such consensus. Its

solution refers to a group membership protocol (GMP). Absence of shared memory in a

distributed system requires a GMP to rely on message passing alone.

Typically, availability of a GMP supports construction of reliable communication primitives

which in turn simplify construction of distributed applications. For example, guarantees

about multicast communication in the presence of failures require an underlying GMP [B + 90,

CM84]. Aside from the basic requirements of safety and liveness, a GMP can be evaluated

in terms of how well it supports the required communication primitives. Prompt response

to membership changes and ability to support changes continuously (i.e., without stalling

the application) are two of the desirable performance features of a GMP.

The design and complexity of a GMP depend critically on whether it operates in a syn-

chronous or asynchronous distributed system. In the former, a GMP exploits tight syn-

chronization among the clocks of the interacting processes and/or known upperbounds on

message delivery times. It is possible for all application messages to wait till changes to

membership are complete and for all membership changes to wait till all pending messages

are sent. Examples of such GMPs are [Cri88, EdL90, KGR89].

In asynchronous systems, there is no relationship among clocks of the interacting processes

and message delivery times are unbounded. Therefore, crashes are indistinguishable from

communication delays or slow members. It is only possible to perceive failures. It is necessary

that members perceived to have failed be removed from the group since it is impossible to

reach consensus on a failure [FLP85]. In this report, we deal with GMPs for asynchronous

systems only. The basic function of a GMP in an asynchronous system is to ensure that

all operational members commit perceived changes to their local views consistently. The

consistent commit entails agreement about the change perceived.

Several GMPs have been proposed for asynchronous systems. In [Bru85], failure/recovery

detection and notification are achieved using successive message rounds. Maintaining con-

sistent views is the responsibility of higher level software. The number of messages required

scales nonlinearly with the number of members and the recovery protocol requires a priori

knowledge of the potential members. Several GMPs are proposed in [LSA91] based on total

ordering of messages. Such ordering has a high overhead cost and assumes a fault-tolerant,

reliable broadcast communication protocol. In [CM84], reliable broadcasts are supported

by rotating a membership list (token-list) among operational members. When a member

holding the token list fails, a reformation phase is entered which guarantees that a single

new token-list is generated and committed to by all members. During this phase, normal

message traffic is suspended and handling of changes needs an extension to the protocol.

In [BJ87], a two-phase site-view management protocol is proposed to support higher level

fault-tolerant communication primitives. Its drawback of blocking during continuous failures

and recoveries is removed in the formal solution proposed in [RB91]. Assuming a completely

connected network of reliable FIFO channels and fail-stop behavior of member processes,

this GMP uses a two-phase algorithm for the basic membership update and a three-phase

algorithm when the reconfiguration manager itself fails. Election of a new manager with a

consistent membership proposal must avoid invisible commits.

In this report, we describe a GMP for asynchronous systems to support reliable communi-

cation primitives required for virtually synchronous process group approach of [BSS91]. All

application level communication between members of a group is assumed to carry a view

number. It is required that each increment of the view number be associated with successive

views that differ in only one member. Using a fully connected network of reliable FIFO

channels, the proposed GMP guarantees that a given view number is associated with the

same membership at any operational member.

The proposed GMP eliminates the need for centralizing the responsibility of ensuring con-

sistency of view changes as in [RB91] by maintaining the group view ordered as a logical

ring at each member. Each member perceives the departure of a neighboring member and

joining members enter on one side of a virtual marker whose position is maintained by all

the members. Agreement and commit actions are achieved using tokens circulated along

the logical ring. The protocol is able to regenerate lost tokens and ignore duplicate ones

generated during its operation.

This report is organized as follows. In section 2, the terminology used in the description of

the protocol is established and our assumptions are listed. In section 3, the algorithms used

in this GMP are described. In section 4, the correctness proof is presented. The report ends

with concluding remarks in section 5.

2 GMP Overview

2.1 Assumptions

The proposed GMP makes the following assumptions. A reliable FIFO communication

channel between any two members that are operational is assumed. In other words, it is

assumed that the network is never partitioned. All failures are assumed to be crash or

fail-stop [Cri88]. This implies that a message sent will not be delivered only because of

the receiver's failure. However, it may be arbitrarily delayed. Continuous changes to the

membership are allowed; however, the changes are committed one at a time. A member gets

added when a join request is processed and gets deleted when a departure is perceived. A

group name is assumed to be public to those processes that may wish to join the group. A

mechanism, whereby a process wishing to join a group can locate a site already running a

member of the group it wants to join, is assumed to be available.

2.2 Overview

The proposed GMP guarantees that view changes and their sequence at each operational

member are identical. Using a view number in all group-related communication guarantees

status query

P
host

\ /
logical fp)
marker A ^ J

status
'

response [VI

direction

of token

circulation

X P"> VV

a join ing member ^Tvfc^
enters the logical

ring here

Pj monitors p , but P2 monitors p. , and soon. Also, the

position where a new member enters is shown Tor the example

of p host = P5 -

Figure 1: A Logical ring

that reliable communication primitives can be built. The principle feature of this GMP is

that there is no central element either to detect a change in membership status or to guarantee

consistency of a commit action on the view of group membership. Both are achieved in a

distributed manner using a logical ring which is simply a conceptual circular ordering of the

members.

A logical ring has no relation with the physical locations of the members. Given such a ring

and a direction of traversing it (arbitrarily, clockwise is selected), each member periodically

queries its counter-clockwise neighbor for its status. The neighbor then responds with a

status message when it receives this query. It, in its turn, sends a status query to its

counter-clockwise neighbor. Thus, every member monitors one other member and is itself

monitored by a third member. For example, if there are 6 members po to ps, a logical ring

can be configured in which po is an counter-clockwise neighbor of px and clockwise neighbor

°f Ps, Pi is an counter-clockwise neighbor of p2 and clockwise neighbor of p , and so on. p x

sends a status query to po and po responds with a status message to p\. The status message

from po is monitored by p\. This is illustrated in Fig. 1.

Initially, the ring configuration is known to all the members. As members change status,

the ring configuration changes. The MP treats the cases of a member leaving the group in

the same manner as a member joining the group. l The protocol maintains appropriate

information at operational members to determine whom each member must monitor. When a

member departs voluntarily, it simply stops responding to the status query from its monitor.

If a failure occurs, it is unable to respond to its monitor. In either case, if a monitor does not

receive a status message within a certain time interval after sending a query, the monitored

member is perceived to have left the group. A sequence of actions to ensure that all the

operational members consistently commit to this change is then invoked. When a member

recovers or wishes to join anew, it sends a join request to the first group member it can

locate. This member registers the request and invokes a sequence of actions, similar to that

of departure processing, to ensure that consistent integration of the incoming member takes

place.

2.2.1 Processing of Individual Changes

There are two phases in the protocol to process a join or a departure, viz., the agreement

phase and the commit phase. These phases are token-based and guarantee that each token

is processed exactly once by each member and is never lost. Processing of individual view

changes is described below. More detailed description of the actions taken in each phase is

given in the next section.

Departure Processing:

Once a member perceives the departure of its monitored member because it does not receive

a status message in response to its query for a predetermined time interval, it initiates

the agreement phase by sending an agreement token to its clockwise neighbor. It also

starts monitoring the counter-clockwise neighbor of the member perceived to have departed.

The agreement token is passed around the ring in the clockwise direction by each member

passing it on to its clockwise neighbor. When this token circulates back to the agreement

initiator, it has gone completely around the ring once and all the operational members have

information indicating that the group has reached an agreement on the departure perceived.

1 Failures amount to a member leaving involuntarily and recoveries amount to a member joining as a new
one.

The agreement initiator then starts the commit phase by generating a commit token which is

circulated around the ring in the same manner as in the agreement phase. All the members

receiving this token commit the change by removing the departed member from their group

view and updating the view number.

Join Processing:

The protocol maintains a logical marker in the ring as the position between some pair of

adjacent operational members at initialization. The clockwise member of this pair is desig-

nated as the host of the logical ring and is known to all members initially. As shown in Fig.

1 , a new member always enters the group as the counter-clockwise neighbor of the host who

has the responsibility of carrying out the agreement and commit phases for the new member.

A member that receives a join request from a potential member registers the request and

sends it clockwise along the ring. When it reaches the host, it takes on the responsibility

of carrying out the agreement and join phases of the join in a manner similar to the depar-

ture processing. It makes the incoming member its monitored neighbor and delivers local

membership view, view number, and other related information to it.

Both, departure and join processing must deal with the possibility of changes to membership

during the agreement and commit phases. These are explained using the following definitions.

2.3 Definitions

Each member maintains a set containing all the operational members corresponding to its

current group view. In addition, each member maintains a status table which stores the

perceived state of all the members that are in the process of departing or joining. This table

is used by a member to reject any duplicate tokens generated due to the departure of a

member in the ring in the middle of any phase. There is a pool of all the tokens received

by a member wherein all the tokens transferred to the neighbor are stored until removed

by the update policy described later. This pool is maintained in the order of receipt and

is managed so that no token is lost upon the failure of a member. Using the current group

view and the status table, each member determines the member it must monitor.

Group Membership Problem: Every member, p;, associates an integer, vn, with its cur-

rent group view, denoted by the set GVvn (pi), and increments it by one for every view

change committed. Solution of the group membership problem requires that

Vpj e GVm (pi) and V n <vn, GVn (pj) - GVn (pi)

A GMP is safe if it guarantees the above. In the following, unless necessitated by the

context, the view number will be dropped as a subscript.

Logical Ring: Assume a set of members, GV = {p ,pi,p2,

.

. .
,

p

n_i}. A circular sequence

of these members regardless of their physical interconnection is called a logical ring.

Members along the ring can be visited by traversing it either clockwise or counter-

clockwise. Given such a ring, a direction of traversing it, and a member, say p,-, a

relation between members gets defined by visiting each remaining member once along

the ring, in order, and returning to pi from the last member visited.

Ring Relation (RR): Given two members, Pj,pk £ GV, pj -4 pk (read as pj is followed

by pk with respect to pi) if pk is visited after pj when starting from p{.

Clearly, given a ring and a direction of traversal, such a relation can be defined with

respect to every member in GV . On the other hand, given the above ring relation for

any pi, the logical ring has a ring property.

Ring Property:

Vpi,Pj*Pk € GV if pj A pk ,
then pk ^ Pi and p{

^> pi

Every member orders its own group view as a logical ring with the above property. For

a logical ring, a hypothetical marker fixed along the ring is defined.

Logical Marker: A logical marker is an fixed imaginary position between some pair of

members along a logical ring.

Its adjacent members may change due to departures and joins.

Ring Host: phost is the first operational member clockwise from the logical marker.

Every member pi keeps track of the position of the logical marker by ordering GV(pi)

as a logical ring with respect to phost-

Rank: rankPi (pj), of any pj 6 GV(pi) is defined as the number of members between Phost

and itself with rankp^phogt) defined to be 0.

Monitoring Member: Every pi maintains pmon (i) as the last member to query it for its

health.

2.3.1 Tokens

The proposed GMP is based on circulation of three types of tokens to achieve agreement and

consistent commit among members. The agreement token initiated at pi for pj perceived to

have departed or joined is denoted as agree
Pi (pj). Similarly, the commit token initiated at pi

for pj perceived to have departed or joined is denoted as commitPi (pj). Every token carries

information about whether it is for a departure or join.

When a join request is received by a member other than the host, the member creates a

join request token, joinreq
Pi {pj), and passes it on to its clockwise neighbor. When the host

receives it, it generates and circulates the agreement and commit tokens for the join. If the

host is the first member to receive the join request, it generates the agreement token directly.

It should be noted that the initiators of the agreement and commit tokens for a given change

need not be identical and also need not be the same as the members that perceived the

changes in the first place. It is possible that pi might perceive the failure of its neighbor p\

and, before initiating the agreement phase, might itself fail. Then its neighbor pz would first

initiate agreement processing for the pi and then initiate agreement for p\. If p^ fails before

the agreement phase is complete then its neighbor p4 would commit the failure of pi, p2 and

Every member pi maintains a local status table, denoted as ST
Pi

. A member has an entry

in this table at pi only if it has been perceived to have departed but not yet committed

out of GV(pi) or if it is perceived to have joined but is not yet committed into GV(pi).

This property is crucial to the safety of the protocol. The five possible values of STPi (pj)

are: DepartureAgreed, JoinAgreed, DeparturePending, JoinRequested, and JoinPending. The

pending status is used to delay the committing of a change at a particular member so that

8

Table 1: Interpretation of STPi (pj)

DepartureAgreed Agreement token for departure of pj received,

but it is not committed, pj £ GVPi is true

JoinAgreed same as above, for a join, pj GVPi is true

DeparturePending Commit token for departure of pj received,

but it is not processed, pj £ GVPi is true

JoinPending Commit token for join of pj received,

but it is not processed, pj ^ GVPi is true

JoinRequesied Pi has seen the join request from pj on

its way to the host

the order of changes at all the operational members is identical. The rank of a member is

used to determine if this status should be assigned to a member at the time the commit

token for it has been received. Their interpretation is summarized in Table 1.

Every member pi maintains a pool of all the tokens it receives, denoted as TknPool(pi), in

the order they are received. Tokens from this pool are deleted carefully because the receiver

of a token may depart before receiving it or immediately after receiving it and the token is

likely to get lost. To prevent such loss, the principle followed in token deletion is to retain

a token at a member until it is guaranteed that its use is complete. The token pool update

policy is described in the next section.

2.3.2 Neighbor and Host Computation

The following rules determine PhostiPi)-, the clockwise neighbor cwnbr(pi), and the counter-

clockwise neighbor acwnbr[pi) using the ring relation on GV(pi) and the status table STPi .

Rule to determine a new phoit' At />;, phott — Pj £ GV(pi) such that V Pk{^ Pj) G
Void

GV(pi), pj A pk where p id is the old host.

This rule assigns the operational clockwise neighbor of p id as the new p^^ and is

invoked to compute the new host every time a member commits the departure of its

Phoat- It should be noted that selection of the new host is determined only by the

current GV(pi) and not along with STPi . Since all the group views are consistent, this

ensures that all the members arrive at the same phott- This rule is applied whenever

there is a removal of a member committed.

Rule to determine cwnbr(pi): The clockwise neighbor is always the member from whom

the status query is received i.e., cwnbr(pi) = pmon .

This rule is is applied whenever status query comes from a member other than the

current cwnbr.

Rule to determine acwnbr(pi): acwnbr(pi) = pj G GV(pi) such that Vpfc(^ pj) E GV(pi)

Pk ^ Pj and Pj & STPi .

This rule is applied whenever a timeout on the arrival of status report from the current

acwnbr occurs and when there is a departure or join being committed.

Exception: If pj = Phott and 3 a pj such that STPi (pj) changes from JoinAgreed to

JoinPending or gets committed, acumbr(pi) — pj. Upon a join, this ensures that phost

determines the correct member to monitor.

3 The Group Membership Protocol

In Fig. 2, the interaction of the GMP with the application and the network is shown.

The network is abstracted as a set of reliable FIFO channels. The application generates the

requests to join a particular group or requests the current view of a group it is a member

of. In case a group already exists, the GMP has the ability to obtain the address of the

nearest site with a member of the requested group running. If no site with the group is

found running, it starts a new group.

Generation of a join request results in an instance of the GMP being started on the appli-

cation site. This instance acquires the membership of the desired group and maintains the

view information until the member departs from the group. The status change detection,

agreement phase, and commit phase are described below.

10

Application

group join and

view requests

membership and

view number

Group Membership

Protocol

i

'

to and from

network sites
1

Network

(reliable FIFO channels)

Figure 2: GMP interaction with the external world

3.1 Status Change Detection

Figure 3 shows the algorithm each member executes to monitor its anticlockwise neighbor

and initiate an agreement token if a departure is detected. The Monitor process is triggered

by the local clock. The clockwise and anticlockwise neighbors are computed according to the

rules given earlier in every iteration of the while loop. If a status message is not received,

it shuts off communication with the member perceived to have departed (to prevent receipt

of an excessively delayed response), updates the local status table, generates and adds an

agreement token to the local pool of tokens, and sends it to the clockwise neighbor.

If this member turns out to have already departed, the status reporting instrument shown in

Fig. 4 ensures that the token will get sent to the next clockwise operational member. When

a change in the querying member is detected, the token pool gets sent to the new querying

member in addition to the status response. It recognizes a change in the querying member

by inspecting pmon to send its token pool. ReportStatus does not compute the clockwise

neighbor, but simply responds to the sender of the query.

11

Monitor process at pi

1 while (true)

2

3

send status query to acwnbr(pi);

wait for T^; /*local timeout interval*/

4 if (status message not received)

5 shut off communication with acwnbr(pi);

6

7

8

9

10

STPi (acwnbr[pi)) <— DepartureAgreed;

generate agree
Pi (acwnbr(pi));

add agree
Pi (pj) to TknPool[pi)\

send agree
Pi (acwnbi\pi)) to cwnbr(pi):

else

11

12

Wait IOr 1 query period-

end if:

13 end while;

end Monitor.

Figure 3: Protocol for Monitoring and Agreement Initiation

ReportStatus process at pi

1 if (querying member ^ pmon)

2 send TknPool(pi) to the querying member;

3 Pmon = querying member;

4 end if;

5 send status to pmon ;

end ReportStatus.

Figure 4: Protocol for Reporting the Status

12

InitiateJoin for a request message/token for pnew at pi

1 while (true)

2 receive join request message or joinreq token for pneuJ

2.1 until (p^ £ STPi);

3 if (pw = Pi)

4 generate a#reep . (/?„«.„,);

5 STPi (pnew)
<— JoinAgreed;

6 add agreep^pneu,) to TknPool(pi);

7 send agreep^pneu,) to cwnbr(pi);

8 else

9 STPi (pneW)
<— JoinRequested;

10 add joinreq
Pi (pnew) to TknPool(pi);

11 if (join request) l*Pnew contacts p^ first*/

12 generate joinreq
Pi (pnew) token;

13 send joinreq token to cwnbr;

14 end if;

15 end while;

end InitiateJoin.

Figure 5: Algorithm to initiate a join

When the application generates a request to join a group, an instance of the GMP gets

spawned. It obtains the address of the nearest site running a member and sends a join

request message to it and waits for an intimation of the request approval for a preset interval

before resending the request. Before the request is resent, the nearest site address running a

member is searched again. The receiving member pi runs an algorithm as specified in Fig. 5.

A non-host member, receiving a request message for the first time generates joinreq
Pi (pnew

token and adds it to the local token pool. It enters status JoinRequested for pnew in its status

table and sends the token to its cwnbr. A duplicate join request is rejected on the basis of

an entry for Pnew in the local status table. If the member receiving the request message or

token is the ring host, it generates the agreement token, updates the local status table and

token pool, and sends it to its cwnbr.

13

3.2 The Agreement Phase

The algorithm used to process an agreement token is shown in Fig. 6. If the member that

receives an agreement token for the first time is not its initiator, it must simply pass it on to

its clockwise neighbor after adding it to its token pool and updating the local status table

(lines 15-19 of Fig. 6). However, if it is the initiator of the token, it must generate a commit

token when the token has circulated back to it. Receiver of an agree token must also generate

a commit token if the initiator had departed after generating the agreement token, and as

a result, a duplicate agreement token is received at a member. In this case, the member

generating the commit token will have an entry in its local status table for the initiator of

the token (line 1, Fig. 6).

Any member commits a change to its view when it processes a commit token for the change.

Thus, the initiator of a commit token commits the corresponding change locally and sends it

to the clockwise neighbor. There are two aspects to committing a change in the group view

in this protocol. Firstly, since the ring configuration may lead to the arrival orders of two

commit tokens to be opposite at two different members along the ring, the changes must be

committed in a consistent order at all the members. Secondly, when a change is committed,

it must be ensured that all the protocol-related entities are correctly updated.

The correct ordering of all changes is based on the rank of the member whose status change

is being processed. The ordering is imposed at the initiator of the commit token as follows:

if the rank of the member with the changed status is the lowest among all the members for

which there is an agreement token in the token pool, a commit token is generated. Otherwise,

commit token generation is kept pending until all changes for members with a higher rank

have been committed (lines 5-13, Fig. 6).

Update of all the protocol-related quantities upon committing a change are encapsulated

as CommitChange, whose steps are shown in Fig. 7. Aside from passing the token on to

the clockwise neighbor, the local membership, view number, status table, and token pool

must be updated. Line 5 determines the token pool update policy that garbage-collects old

commit tokens. The principle followed in this update is that a token should be deleted from

the TknPool only when the member is certain that its use is over. A member keeps its token

pool ordered according to their arrival times, inspects all the tokens in it, and deletes all the

14

ProcessAgreementTkn for agree
Pj (pk) at pi

/*A commit must be generated either when I am the

agreement initiator or when a duplicate token is received

due to departure of the agreement initiator pj*/

1 if {(pi - Pj) || {{pj ^ Pi) kk (duplicate token) && (pj G STPi)))

9 if (no unprocessed agreement token in TknPool)

3 generate commit
pi {pk);

4 CommitChange;

5 else

6 compute rank \/pi £ ST
Pi

with Agreed status;

7 if (rank(pfc) is smallest)

8 generate commit
Pi (pk);

9 CommitChange;

10 else

/^depending upon whether for join or departure of pk* /

11 ST
Pi (pk)

<— DeparturePending or Join Pending;

12 end if;

13 end if;

14 else

15 if (((Pi 7^ P«) ^^ (
n°t a duplicate agree

P] (pk)

16 add agree
Pj (pk) to TknPool;

17 ST
Pi (pk)

*— DepartureAgreed or JoinAgreed;

18 send agree
Pj (pk) to cwnbr(pi);

19 end if;

20 end if;

end ProcessAgreementTkn.

Figure 6: Protocol for Agreement Tokens

15

CommitChange for commitPj {pk) at pi

/^Depending on whether a, join or departure*/

1 add or delete pk from GV(pi);

2 delete pk entry from STPi ;

3 vn(pi) <— vn(pi) + 1;

4 send commitPj (pk) to cwnbr[pi)\

5 delete all commit tokens received before

agree
Pj (pk) from TknPool(pi);

6 if join committed delete jo inreqPj {pk);

7 delete agreePj {pk)\

8 add commitPj (pk) to TknPool(pi);

9 determine new p^t:
10 if {{join committed) &&: (p/„„t = Pi))

11 update acwnbi\pi)\

12 send 5TPi , TknPool{pi)< and GV(pj) to acwnbr{pi)\

13 end if;

end CommitChange.

Figure 7: Protocol for Committing a Change

commit tokens received before the agreement token for the change committed. The commit

token just processed is not deleted in case the member it is sent to departs before receiving

it.

If the member committing a join is the host, it updates the anticlockwise neighbor to be the

new member and sends the local state to it (lines 11-12, Fig. 7). It also determines a new

host (line 9), Pho»t for the ring according to the rule given at the end of section 2.

3.3 The Commit Phase

The processing of a commit token as it circulates around the ring is shown in Fig. 8. If a

member is the commit initiator {i.e., the token has circulated back) or if the commit token

is received again, it simply exits. This indicates completion of the processing required at

all members for that particular change. If it is received for the first time at a member,

appropriate commit action must take place (line 4, Fig. 8). After committing the change

16

ProcessCommitTkn for commit
Pj (pk) at pi

1 if ((pi = pj) ||
(duplicate))

2 exit;

3 else

4 CommitChange;

5 while (3 pi G ST
Pi

with a higher rank h pending status

received before agree
Pj (pk))

6 CommitChange;

7 end while;

8 end if;

end ProcessCommitTkn.

Figure 8: Protocol to process a commit token

specified in this token, it is likely that a change for which a commit token generation was

kept pending locally, can now be committed and propagated because it now has the lowest

rank. All such pending changes can now be processed (lines 5-7, Fig. 8).

3.4 Ensuring an Identical Sequence of Commits

As members perceive departures/joins around the ring, they initiate agreement phases inde-

pendently. Therefore, in this protocol, it is possible for multiple agreement phases to proceed

simultaneously around the ring resulting in multiple commit tokens that circulate around

the ring at the same time. The two changes divide the ring in two pieces. Clearly, the order

in which these commits reach the members in these two pieces will be opposite. An identical

order is maintained in this situation, as specified by lines (2 - 12) of Fig. 6.

When a commit token is to be generated, it is first checked to see if there are any unprocessed

agreement tokens in the token pool. If there are, commits resulting from these are ordered

identically around the ring; otherwise, a commit token is generated and change committed

(lines 3-4). If there are unprocessed agreement tokens in the token pool, the commit

initiator determines if the member for which a commit is to be initiated has the smallest

rank among all the members for which there are unprocessed agreement tokens (lines 6-9).

Agreement tokens for joins in the pool do not matter because members always join with the

17

highest rank.

It should be remembered that the rank of a member is its distance from phott in the clockwise

direction. If the rank is not the smallest, the local status is marked as pending (line 11)

and the change is committed and propagated at a later time. Thus, use of the rank ensures

that all the members commit in the same order around the ring. It should be noted that the

pending status for a change gets marked only in the commit initiator.

4 Proof of Correctness

Proposition 1: No tokens are lost if a member updates its TknPool using CommitChange.

Proof: If pi receives comrnitPj (pk), it is guaranteed to have received agree
Pj (pk) some

time previously because the agreement phase is followed by the commit phase. Obviously,

agree
Pj (pk) has circulated completely around the ring. Suppose 3 a commit

Pl (pm) received

at pi before agree
Pj (pk). Thus, in between the arrivals of commit

Pl (pm) and comrnitp (pk)

at pi, 3 a token, viz. agree
Pj (pk), that has circulated around the ring completely. This

implies that, due to the FIFO property of channels, commit
Pl (pm) has circulated around

the ring completely also, regardless of the locations of Pi,Pj, and pi around the ring. Thus,

commit
Pl (pm) has served its purpose and can be deleted from the TknPool at pi. Therefore,

both, agreePj (pk) and commit
pi (pm) have completed their use and can be deleted. By adding

com?nitp .(pk) to the TknPool at p;, its update is complete. Since this token pool is sent to

the cwnbr(pi) according to ReportStatus, tokens are never lost.

Proposition 2: Exactly one p,- determines itself to be phost-

Proof: CommtChange determines a host only when it commits a departure for the current

Phost- According to the rule for determining the new host, only the local group view is

inspected and the clockwise neighbor of the departed host is determined to be new phost-

According to Proposition 1, no tokens are lost. Therefore, the commit token for the departure

of the old host is processed by every member. Since the host had rank 0, which is always

the lowest, every member determines the same member as the new phost-

Proposition 3: An agreement phase is always started.

18

Proof: In case of a departure perceived by a member, say pi, it may itself depart before

initiating the agreement token or after sending it. In the latter case, the commit phase is

carried out by cwnbr[pi). In the former case, cwnbr[pi) perceives the departure of pi and

initiates an agreement phase. It attempts to monitor acwnbr[pi) whose agreement pi could

not initiate. cwnbr(pi) perceives acwnbr[pi) as departed also and initiates an agreement

phase for it. This sequence of events is extended if there is a string of departures. Therefore,

the agreement phase for a departure is always started.

In case of a join, if pi is the host and fails before initiating the agreement phase for a join,

cwnbr(pi) determines itself to be the new host and receives the joinreq token as part of the

TknPool to initiate the agreement phase. Since tokens are never lost, once a join request has

been received by an operational member, an agreement phase for its join is always started.

Proposition 4: The joining member and phoat behave consistently after the agreement ini-

tiation.

Proof: phoat sends its GV, ST, TknPool, and vn to the joining member pnew . The exception

to the rule to compute the acwnbr ensures that the logical ring is correctly configured with

Pnew as the highest rank member. When the acwnbr{phoat) before the join notices that the

querying member is different from its pman , it becomes aware of the new member in the ring

and sends its TknPool to it. Therefore, all tokens that are passed to Phoat while the state

transfer to pnew is taking place are sent to Pnew This ensures that pnew behaves consistently

withpw.

Theorem 1: The proposed protocol correctly solves the GMP stated as

Vpi £ GVvn {pj)andVn<vn,GVn (Pj)
= GVn (Pi)

given that all members start with the same initial group view (GV).

Proof: We provide a proof by induction.

Base Case: Vp.^Pj E GVo(pk), GVo(pi) = GV (pj) at system initialization.

Induction Hypothesis: Assume that 3k > 1 E TV such that Vpi,Pj E GVk(pj) GVk{pi]

GVkiPi).

19

We now prove that the next change committed by any two members is identical. Consider

any pi,Pj E GVk+i(pj)- Without loss of generality, let com.mitPk (pi) be the next change to

be committed by pj. There are two cases.

Case 1 - pj -A p^. It is clear from the change detection instruments that pj —» pi and pi —> p/.

Therefore, if a change involving pi is view change (k + 1) committed at pj, either the only

agreement token pk has at the time of initiating commitPk (pi) is for pi or pi has the smallest

rank among all agreement tokens in the TknPool at pk - Now, a commit token initiated for

pm such that pm -4 pi cannot result in view change (Ar + 1) at pi because this implies that

pm has a lower rank at pi than pi whose agreement token will be part of the TknPool at /v

Therefore, agreement token for pm would also be part of the TknPool at pk and would have

the smallest rank at the time of initiation of commitPk (pi) . This contradicts the fact that pi

had the smallest rank at pk or was the only agreement token at pj. Therefore, view change

(k -f- 1) committed at pi is due to commitPk (pi).

Case 2'- pi —> pj: In this case, commitPk (pi) that results in view change (k + 1) at pj must

first pass through pi since p; -A pj and tokens circulate in the clockwise direction. This

implies that view change (k + 1) at p; is also due to commitPk (pi).

Thus, given the induction hypothesis for view change k, we prove that

Mpi.Pj G GVk+i{pj) GVk+1 {pi) = GVk+i{pj)

This completes the proof by induction.

5 Concluding Remarks

In this report, a group membership protocol for maintaining membership information re-

quired by virtually synchronous process group based computation is described. It tolerates

continuous changes to the membership by ordering the members of a group using the con-

cept of a logical ring. In this protocol, identical processing is required to process joins as

well as departures. The change detection responsibility is evenly distributed among all the

members. This enables elimination of any need for centralized responsibility. By ordering

all commits according to the rank of a member as defined by its position in the logical ring,

the protocol correctness has been proven.

This protocol does not make any majority-based decisions. Any number of departures can

20

occur and yet the protocol is able to function. Joins and departures can be interleaved since

they are processed identically. Since there is no centralized responsibility, the overhead for

committing a change is constant at 2n, where n is the number of point-to-point messages.

No special facilities such as broadcast messages, ordered access, synchronized actions are

required. The protocol simply exploits the reliable FIFO nature of the channels among

members. The message overhead is superior to [RB91] which is the only other group mem-

bership protocol that uses a fully connected network of FIFO channels that the authors are

aware of.

Currently, this protocol is being implemented on a local area network (Ethernet) of SUN

workstations using the transport layer interface of SunOS (a Unix variant). Objectives of the

current work are to characterize the performance of this protocol in terms of the latency of a

committing a change, the number of changes supported per second, and a comparative eval-

uation of the impact of this protocol on application level multicasts. Complete connectivity

among members implies that the network is never partitioned. If the distributed compu-

tation built over this protocol spans a wide area communication network, this assumption

must be relaxed. While a correctness proof has been provided here, the current work is also

aimed at providing a rigorous mathematical proof.

References

[B+ 90] Kenneth P. Birman et al. ISIS - A Distributed Programming Environment (Pro-

grammer's Manual). Department of Computer Science, Cornell University, August

1990. Rev. 2.1.

[BJ87] K. P. Birman and T.A. Joseph. Reliable communication in the presence of failures.

ACM Transactions on Computer Systems, pages 47-76, 1987.

[Bru85] S. A. Bruso. A failure detection and notification protocol for distributed computing

systems. In Proseedings IEEE conference on Distributed Computing Systems, pages

116-123, 1985.

[BSS91] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and

atomic group multicast. ACM Transactions on Computer Systems, pages 272-

314, 1991.

21

[CM84] J.-M. Chang and N. F. Maxemchuk. Reliable broadcast protocol. ACM Transac-

tions on Computer Systems, pages 251-273, 1984.

[Cri88] F. Cristian. Agreeing on who is present and who is absent in a synchronous

distributed system. In Proceedings of the 18th International Conference on Fault

Tolerant Computing, Tokyo, Japan, pages 206-211, 1988.

[EdL90] Paul D. Ezhilselvan and Rogerio de Lemos. A robust group membership algorithm

for distributed real-time systems. In Proceedings Real-Time Systems Symposium,

pages 173-179, 1990.

[FLP85] M. J. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed con-

sensus with one faulty process, pages 374-382, 1985.

[KGR89] H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in

a synchronous distrinuted real-time system. In Proceedings of the International

Working Conference on Dependable Computing for Critical Applications, Santa

Barbara, CA, pages 167-174, 1989.

[LSA91] L.E.Moser, P.M.Melliar Smith, and V. Agrawala. Membership algorithm for asyn-

chronous distributed systems. In Proceedings of the Eleventh International Sym-

posium on Distributed Computing Systems, 1991.

[RB91] A. Ricciardi and K. Birman. Using process groups to implement failure detection

in asynchronous environments. In ACM Symposium on Principles of Distributed

Computing, Montreal, Quebec, Canada, pages 341-353, August 1991. Also avail-

able as TR91-1188, Dept. of Computer Science, Cornell Univ.

22

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

Dudley Knox Library

Code 52, Naval Postgraduate School

Monterey, CA 93943-5002

Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5004

Prof. Shridhar B. Shukla

Code EC/Sh, Naval Postgraduate School

Monterey, CA 93943-5004

Mr. Devalla Raghuram

Scientist C, Defense Electronics Research Laboratory

Chandrayangutta Lines, Chandrayangutta

Hyderabad, INDIA 500005

Director, Directorate of Training and Sponsored Research

Defense Research and Development Organization

Ministry of Defense

227 'B
1

Block . Sena Bhavan

New Delhi, INDIA 110011

Scientific Adviser to Raksha Mantri

Director General, Defense Research and Development Organization

Ministry of Defense

South Block

New Delhi, INDIA 110011

Director

Defense Electronics Research Laboratory

Chandrayangutta Lines, Chandrayangutta

Hyderabad, INDIA 500005

DUDLEY KNOX LIBRARY

3 2768 00343071 1

