741 research outputs found

    Wireless Cyber-Physical Simulator and Case Studies on Structural Control

    Get PDF
    Abstract: Wireless Structural Control (WSC) systems can play a crucial role in protecting civil infrastructure in the event of earthquakes and other natural disasters. Such systems represent an exemplary class of cyber-physical systems that perform close-loop control using wireless sensor networks. Existing WSC research usually employs wireless sensors installed on small lab structures, which cannot capture realistic delays and data loss in wireless sensor networks deployed on large civil structures. The lack of realistic tools that capture both the cyber (wireless) and physical (structural) aspects of WSC systems has been a hurdle for cyber-physical systems research for civil infrastructure. This advances the state of the art through the following contributions. First, we developed the Wireless Cyber-Physical Simulator (WCPS), an integrated environment that combines realistic simulations of both wireless sensor networks and structures. WCPS integrates Simulink and TOSSIM, a state-of-the-art sensor network simulator featuring a realistic wireless model seeded by signal traces. Second, we performed two realistic case studies each combining a structural model with wireless traces collected from real-world environments. The building study combines a benchmark building model and wireless traces collected from a multi-story building. The bridge study combines the structural model of the Cape Girardea

    Wireless sensors networks

    Get PDF
    After studying in depth look at wireless sensor networks are quite clear improvement compared to traditional wireless networks due to several factors as are the durability of the lifetime of the batteries, allowing greater portability of sensor nodes and that can record more events to power stay longer in some places, the routing protocols networks sensors allow gain than in durability also gain in efficiency the avoidance of collisions between packets, which also ensures a lower number of unnecessary network traffic. Because of the great features of such networks are currently using sensor networks in many projects related to different fields such as: environment, health, military, construction and structures, automotive, home automation, agriculture, etc. This type of network currently is leading a technological revolution similar to that had appearance of internet, because the applications appear to be infinite, also speaks global surveillance network on the planet capable of recording and tracking people specific goods and research projects have generated great interest for application in practice

    Cyber-Physical Co-Design of Wireless Control Systems

    Get PDF
    Wireless sensor-actuator network (WSAN) technology is gaining rapid adoption in process industries because of its advantages in lowering deployment and maintenance cost in challenging environments. While early success of industrial WSANs has been recognized, significant potential remains in exploring WSANs as unified networks for industrial plants. This thesis research explores a cyber-physical co-design approach to design wireless control systems. To enable holistic studies of wireless control systems, we have developed the Wireless Cyber-Physical Simulator (WCPS), an integrated co-simulation environment that integrates Simulink and our implementation of WSANs based on the industrial WirelessHART standard. We further develop novel WSAN protocols tailored for advanced control designs for networked control systems. WCPS now works as the first simulator that features both linear and nonlinear physical plant models, state-of-art WirelessHART protocol stack, and realistic wireless network characteristics. A realistic wireless structural control study sheds light on the challenges of WSC and the limitations of a traditional structural control approach under realistic wireless conditions. Systematic emergency control results demonstrate that our real-time emergency communication approach enables timely emergency handling, while allowing regular feedback control loops to effectively share resources in WSANs during normal operations. A co-joint study of wireless routing and control highlights the importance of the co-design approach of wireless networks and control

    Optimization of Energy Efficient Advance Leach Protocol

    Get PDF
    In WSNs, the only source to save life for the node is the battery consumption. During communication with other area nodes or sensing activities consumes a lot of power energy in processing the data and transmitting the collected/selected data to the sink. In wireless sensor networks, energy conservation is directly to the network lifetime and energy plays an important role in the cluster head selection. A new threshold has been formulated for cluster head selection, which is based on remaining energy of the sensor node and the distance from the base station. Proposed approach selects the cluster head nearer to base station having maximum remaining energy than any other sensor node in multi-hop communication. The multi hop approach minimizing the inter cluster communication without effecting the data reliability

    Data reduction strategies.

    Get PDF
    Based on the variety of methods available for gathering data for the aircraft health status, the challenge is to reduce the overall amount of data in a trackable and safe manner to ensure that the remaining data are characteristic of the current aircraft status. This chapter will cover available data reduction strategies for this task and discuss the data intensity of the SHM methods of Chaps. 5 to 8 and established approaches to deal with the acquired data. This includes aspects of algorithms and legal issues arising in this context

    Decentralized identification and multimetric monitoring of civil infrastructure using smart sensors

    Get PDF
    Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventionally, wired sensors and central data acquisition systems have been used to characterize the state of the structure, which is quite challenging due to difficulties in cabling, long setup time, and high equipment and maintenance costs. WSSNs offer a unique opportunity to overcome such difficulties. Recent advances in sensor technology have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing are common practice, WSSNs require decentralized algorithms due to the limitation associated with wireless communication; to date such algorithms are limited. This research develops new decentralized algorithms for structural identification and monitoring of civil infrastructure. To increase performance, flexibility, and versatility of the WSSN, the following issues are considered specifically: (1) decentralized modal analysis, (2) efficient decentralized system identification in the WSSN, and (3) multimetric sensing. Numerical simulation and laboratory testing are conducted to verify the efficacy of the proposed approaches. The performance of the decentralized approaches and their software implementations are validated through full-scale applications at the Irwin Indoor Practice Field in the University of Illinois at Urbana-Champaign and the Jindo Bridge, a 484 meter-long cable-stayed bridge located in South Korea. This research provides a strong foundation on which to further develop long-term monitoring employing a dense array of smart sensors. The software developed in this research is opensource and is available at: http://shm.cs.uiuc.edu/.NSF Grant No. CMS-060043NSF Grant No. CMMI-0724172NSF Grant No. CMMI-0928886NSF Grant No. CNS-1035573Ope

    Monitoring of Wireless Sensor Networks

    Get PDF
    • …
    corecore