235 research outputs found

    Hybrid ACO and SVM algorithm for pattern classification

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to solve a variety of combinatorial optimization problems. A new direction for ACO is to optimize continuous and mixed (discrete and continuous) variables. Support Vector Machine (SVM) is a pattern classification approach originated from statistical approaches. However, SVM suffers two main problems which include feature subset selection and parameter tuning. Most approaches related to tuning SVM parameters discretize the continuous value of the parameters which will give a negative effect on the classification performance. This study presents four algorithms for tuning the SVM parameters and selecting feature subset which improved SVM classification accuracy with smaller size of feature subset. This is achieved by performing the SVM parameters’ tuning and feature subset selection processes simultaneously. Hybridization algorithms between ACO and SVM techniques were proposed. The first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM parameters and select the feature subset simultaneously. Ten benchmark datasets from University of California, Irvine, were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy and size of the feature subset. The average classification accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for ACO that can deal with continuous and mixed-variable ACO

    Cooperative Particle Swarm Optimization for Combinatorial Problems

    Get PDF
    A particularly successful line of research for numerical optimization is the well-known computational paradigm particle swarm optimization (PSO). In the PSO framework, candidate solutions are represented as particles that have a position and a velocity in a multidimensional search space. The direct representation of a candidate solution as a point that flies through hyperspace (i.e., Rn) seems to strongly predispose the PSO toward continuous optimization. However, while some attempts have been made towards developing PSO algorithms for combinatorial problems, these techniques usually encode candidate solutions as permutations instead of points in search space and rely on additional local search algorithms. In this dissertation, I present extensions to PSO that by, incorporating a cooperative strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that by allowing a set of particles, rather than one single particle, to represent a candidate solution, combinatorial problems can be solved by collectively constructing solutions. The cooperative strategy partitions the problem into components where each component is optimized by an individual particle. Particles move in continuous space and communicate through a feedback mechanism. This feedback mechanism guides them in the assessment of their individual contribution to the overall solution. Three new PSO-based algorithms are proposed. Shared-space CCPSO and multispace CCPSO provide two new cooperative strategies to split the combinatorial problem, and both models are tested on proven NP-hard problems. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sample the search space in problems with multiple global optima. Shared-space CCPSO was evaluated on an abductive problem-solving task: the construction of parsimonious set of independent hypothesis in diagnostic problems with direct causal links between disorders and manifestations. Multi-space CCPSO was used to solve a protein structure prediction subproblem, sidechain packing. Both models are evaluated against the provable optimal solutions and results show that both proposed PSO algorithms are able to find optimal or near-optimal solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both the quality and diversity of the solutions obtained in a protein sequence design problem, a highly multimodal problem. These results provide evidence that extended PSO algorithms are capable of dealing with combinatorial problems without having to hybridize the PSO with other local search techniques or sacrifice the concept of particles moving throughout a continuous search space

    A Unified Framework for Solving Multiagent Task Assignment Problems

    Get PDF
    Multiagent task assignment problem descriptors do not fully represent the complex interactions in a multiagent domain, and algorithmic solutions vary widely depending on how the domain is represented. This issue is compounded as related research fields contain descriptors that similarly describe multiagent task assignment problems, including complex domain interactions, but generally do not provide the mechanisms needed to solve the multiagent aspect of task assignment. This research presents a unified approach to representing and solving the multiagent task assignment problem for complex problem domains. Ideas central to multiagent task allocation, project scheduling, constraint satisfaction, and coalition formation are combined to form the basis of the constrained multiagent task scheduling (CMTS) problem. Basic analysis reveals the exponential size of the solution space for a CMTS problem, approximated by O(2n(m+n)) based on the number of agents and tasks involved in a problem. The shape of the solution space is shown to contain numerous discontinuous regions due to the complexities involved in relational constraints defined between agents and tasks. The CMTS descriptor represents a wide range of classical and modern problems, such as job shop scheduling, the traveling salesman problem, vehicle routing, and cooperative multi-object tracking. Problems using the CMTS representation are solvable by a suite of algorithms, with varying degrees of suitability. Solution generating methods range from simple random scheduling to state-of-the-art biologically inspired approaches. Techniques from classical task assignment solvers are extended to handle multiagent task problems where agents can also multitask. Additional ideas are incorporated from constraint satisfaction, project scheduling, evolutionary algorithms, dynamic coalition formation, auctioning, and behavior-based robotics to highlight how different solution generation strategies apply to the complex problem space

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Towards Thompson Sampling for Complex Bayesian Reasoning

    Get PDF
    Paper III, IV, and VI are not available as a part of the dissertation due to the copyright.Thompson Sampling (TS) is a state-of-art algorithm for bandit problems set in a Bayesian framework. Both the theoretical foundation and the empirical efficiency of TS is wellexplored for plain bandit problems. However, the Bayesian underpinning of TS means that TS could potentially be applied to other, more complex, problems as well, beyond the bandit problem, if suitable Bayesian structures can be found. The objective of this thesis is the development and analysis of TS-based schemes for more complex optimization problems, founded on Bayesian reasoning. We address several complex optimization problems where the previous state-of-art relies on a relatively myopic perspective on the problem. These includes stochastic searching on the line, the Goore game, the knapsack problem, travel time estimation, and equipartitioning. Instead of employing Bayesian reasoning to obtain a solution, they rely on carefully engineered rules. In all brevity, we recast each of these optimization problems in a Bayesian framework, introducing dedicated TS based solution schemes. For all of the addressed problems, the results show that besides being more effective, the TS based approaches we introduce are also capable of solving more adverse versions of the problems, such as dealing with stochastic liars.publishedVersio

    Co-evolutionary Hybrid Bi-level Optimization

    Get PDF
    Multi-level optimization stems from the need to tackle complex problems involving multiple decision makers. Two-level optimization, referred as ``Bi-level optimization'', occurs when two decision makers only control part of the decision variables but impact each other (e.g., objective value, feasibility). Bi-level problems are sequential by nature and can be represented as nested optimization problems in which one problem (the ``upper-level'') is constrained by another one (the ``lower-level''). The nested structure is a real obstacle that can be highly time consuming when the lower-level is NP−hard\mathcal{NP}-hard. Consequently, classical nested optimization should be avoided. Some surrogate-based approaches have been proposed to approximate the lower-level objective value function (or variables) to reduce the number of times the lower-level is globally optimized. Unfortunately, such a methodology is not applicable for large-scale and combinatorial bi-level problems. After a deep study of theoretical properties and a survey of the existing applications being bi-level by nature, problems which can benefit from a bi-level reformulation are investigated. A first contribution of this work has been to propose a novel bi-level clustering approach. Extending the well-know ``uncapacitated k-median problem'', it has been shown that clustering can be easily modeled as a two-level optimization problem using decomposition techniques. The resulting two-level problem is then turned into a bi-level problem offering the possibility to combine distance metrics in a hierarchical manner. The novel bi-level clustering problem has a very interesting property that enable us to tackle it with classical nested approaches. Indeed, its lower-level problem can be solved in polynomial time. In cooperation with the Luxembourg Centre for Systems Biomedicine (LCSB), this new clustering model has been applied on real datasets such as disease maps (e.g. Parkinson, Alzheimer). Using a novel hybrid and parallel genetic algorithm as optimization approach, the results obtained after a campaign of experiments have the ability to produce new knowledge compared to classical clustering techniques combining distance metrics in a classical manner. The previous bi-level clustering model has the advantage that the lower-level can be solved in polynomial time although the global problem is by definition NP\mathcal{NP}-hard. Therefore, next investigations have been undertaken to tackle more general bi-level problems in which the lower-level problem does not present any specific advantageous properties. Since the lower-level problem can be very expensive to solve, the focus has been turned to surrogate-based approaches and hyper-parameter optimization techniques with the aim of approximating the lower-level problem and reduce the number of global lower-level optimizations. Adapting the well-know bayesian optimization algorithm to solve general bi-level problems, the expensive lower-level optimizations have been dramatically reduced while obtaining very accurate solutions. The resulting solutions and the number of spared lower-level optimizations have been compared to the bi-level evolutionary algorithm based on quadratic approximations (BLEAQ) results after a campaign of experiments on official bi-level benchmarks. Although both approaches are very accurate, the bi-level bayesian version required less lower-level objective function calls. Surrogate-based approaches are restricted to small-scale and continuous bi-level problems although many real applications are combinatorial by nature. As for continuous problems, a study has been performed to apply some machine learning strategies. Instead of approximating the lower-level solution value, new approximation algorithms for the discrete/combinatorial case have been designed. Using the principle employed in GP hyper-heuristics, heuristics are trained in order to tackle efficiently the NP−hard\mathcal{NP}-hard lower-level of bi-level problems. This automatic generation of heuristics permits to break the nested structure into two separated phases: \emph{training lower-level heuristics} and \emph{solving the upper-level problem with the new heuristics}. At this occasion, a second modeling contribution has been introduced through a novel large-scale and mixed-integer bi-level problem dealing with pricing in the cloud, i.e., the Bi-level Cloud Pricing Optimization Problem (BCPOP). After a series of experiments that consisted in training heuristics on various lower-level instances of the BCPOP and using them to tackle the bi-level problem itself, the obtained results are compared to the ``cooperative coevolutionary algorithm for bi-level optimization'' (COBRA). Although training heuristics enables to \emph{break the nested structure}, a two phase optimization is still required. Therefore, the emphasis has been put on training heuristics while optimizing the upper-level problem using competitive co-evolution. Instead of adopting the classical decomposition scheme as done by COBRA which suffers from the strong epistatic links between lower-level and upper-level variables, co-evolving the solution and the mean to get to it can cope with these epistatic link issues. The ``CARBON'' algorithm developed in this thesis is a competitive and hybrid co-evolutionary algorithm designed for this purpose. In order to validate the potential of CARBON, numerical experiments have been designed and results have been compared to state-of-the-art algorithms. These results demonstrate that ``CARBON'' makes possible to address nested optimization efficiently

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    • 

    corecore