38 research outputs found

    Performance Analysis of a Cooperative Search Algorithm for Multiple Unmanned Aerial Vehicles under Limited Communication Conditions

    Get PDF
    This research investigates the impacts of realistic wireless communications upon a group of unmanned aerial vehicles (UAVs) utilizing a distributed search algorithm. The UAVs are used to survey an area for mobile targets and they require communication to cooperatively locate the targets. The mobile targets do not continually radiate energy, which exacerbates the search effort; a UAV could fly directly over a target and not detect it. A simulation of cooperative UAVs is implemented using the OPNET Modeler network simulation tool. The search performance of a group of UAVs is observed when communication range, data rate, and the number of UAVs are varied. The performance is evaluated based on the total time it takes for the UAVs to completely detect all the targets in a given search area, the number of times internal areas are scanned, the amount of communication throughput achieved, the network traffic generated, network latency, and number of network collisions. The results indicate that the number of UAVs was found to have the greatest impact on the group\u27s ability to search an area, implying that the data shared between the UAVs provides little benefit to the search algorithm. In addition, it was found that a network with a 100 Kbps or faster data rate should allow for minimal congestion and a large degree of scalability. The findings demonstrate that the proposed four-stage search algorithm should operate reasonably well under realistic conditions

    Evaluation of an OPNET Model for Unmanned Aerial Vehicle Networks

    Get PDF
    The concept of Unmanned Aerial Vehicles (UAVs) was first used as early as the American Civil War, when the North and the South unsuccessfully attempted to launch balloons with explosive devices. Since the American Civil War, the UAV concept has been used in all subsequent military operations. Over the last few years, there has been an explosion in the use of UAVs in military operations, as well as civilian and commercial applications. UAV Mobile Ad Hoc Networks (MANETs) are fast becoming essential to conducting Network-Centric Warfare (NCW). As of October 2006, coalition UAVs, exclusive of hand-launched systems, had flown almost 400,000 flight hours in support of Operations Enduring Freedom and Iraqi Freedom [1]. This study develops a verified network model that emulates UAV network behavior during flight, using a leading simulation tool. A flexible modeling and simulation environment is developed to test proposed technologies against realistic mission scenarios. The simulation model evaluation is performed and findings documented. These simulations are designed to understand the characteristics and essential performance parameters of the delivered model. A statistical analysis is performed to explain results obtained, and identify potential performance irregularities. A systemic approach is taken during the preparation and execution simulation phases to avoid producing misleading results

    Artificial intelligence and game theory controlled autonomous UAV swarms

    Full text link
    Autonomous unmanned aerial vehicles (UAVs) operating as a swarm can be deployed in austere environments, where cyber electromagnetic activities often require speedy and dynamic adjustments to swarm operations. Use of central controllers, UAV synchronization mechanisms or pre-planned set of actions to control a swarm in such deployments would hinder its ability to deliver expected services. We introduce artificial intelligence and game theory based flight control algorithms to be run by each autonomous UAV to determine its actions in near real-time, while relying only on local spatial, temporal and electromagnetic (EM) information. Each UAV using our flight control algorithms positions itself such that the swarm main-tains mobile ad-hoc network (MANET) connectivity and uniform asset distribution over an area of interest. Typical tasks for swarms using our algorithms include detection, localization and tracking of mobile EM transmitters. We present a formal analysis showing that our algorithms can guide a swarm to maintain a connected MANET, promote a uniform network spread-ing, while avoiding overcrowding with other swarm members. We also prove that they maintain MANET connectivity and, at the same time, they can lead a swarm of autonomous UAVs to follow or avoid an EM transmitter. Simulation experiments in OPNET modeler verify the results of formal analysis that our algorithms are capable of providing an adequate area coverage over a mobile EM source and maintain MANET connectivity. These algorithms are good candidates for civilian and military applications that require agile responses to the changes in dynamic environments for tasks such as detection, localization and tracking mobile EM transmitters

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    Utilization Of A Large-Scale Wireless Sensor Network For Intrusion Detection And Border Surveillance

    Get PDF
    To control the border more effectively, countries may deploy a detection system that enables real-time surveillance of border integrity. Events such as border crossings need to be monitored in real time so that any border entries can be noted by border security forces and destinations marked for apprehension. Wireless Sensor Networks (WSNs) are promising for border security surveillance because they enable enforcement teams to monitor events in the physical environment. In this work, probabilistic models have been presented to investigate senor development schemes while considering the environmental factors that affect the sensor performance. Simulation studies have been carried out using the OPNET to verify the theoretical analysis and to find an optimal node deployment scheme that is robust and efficient by incorporating geographical coordination in the design. Measures such as adding camera and range-extended antenna to each node have been investigated to improve the system performance. A prototype WSN based surveillance system has been developed to verify the proposed approach

    Network Visualization Design using Prefuse Visualization Framework

    Get PDF
    Visualization of network simulation events or network visualization is an effective and low cost method to evaluate the health and status of a network and analyze network designs, protocols, and network algorithms. This research designed and developed a network event visualization framework using an open source general visualization toolkit. This research achieved three major milestones during the development of this framework: A robust network simulator trace file parser, multiple network visualization layouts {including user-defined layouts, and precise visualization timing controls and integrated display of network statistics. The parser architecture is extensible to allow customization of simulator trace formats that are accepted by the visualization framework. This design makes the framework capable of accepting trace files from different network simulators and provides one common visualization testbed to study network scenarios run on different simulators. Multiple network visualization layouts are made possible using the prefuse visualization toolkit Layout class which provides many different visualization layouts and is easily extensible to create new Layout subclasses. Finally, precise timing controls give users better control for quicker navigation to specific network events at any time. The toolkit design is readily extensible allowing developers to easily expand the framework to meet research-specific visualization goals

    Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobil Ad Hoc Networks

    Get PDF
    This research effort examines the theory, application, and results for a Reputation-based Internet Protocol Security (RIPSec) framework that provides security for an ad-hoc network operating in a hostile environment. In RIPSec, protection from external threats is provided in the form of encrypted communication links and encryption-wrapped nodes while internal threats are mitigated by behavior grading that assigns reputations to nodes based on their demonstrated participation in the routing process. Network availability is provided by behavior grading and round-robin multipath routing. If a node behaves faithfully, it earns a positive reputation over time. If a node misbehaves (for any number of reasons, not necessarily intentional), it earns a negative reputation. Each member of the MANET has its own unique and subjective set of Reputation Indexes (RI) that enumerates the perceived reputation of the other MANET nodes. Nodes that desire to send data will eliminate relay nodes they perceive to have a negative reputation during the formulation of a route. A 50-node MANET is simulated with streaming multimedia and varying levels of misbehavior to determine the impact of the framework on network performance. Results of this research were very favorable. Analysis of the simulation data shows the number of routing errors sent in a MANET is reduced by an average of 52% when using RIPSec. The network load is also reduced, decreasing the overall traffic introduced into the MANET and permitting individual nodes to perform more work without overtaxing their limited resources. Finally, throughput is decreased due to larger packet sizes and longer round trips for packets to traverse the MANET, but is still sufficient to pass traffic with high bandwidth requirements (i.e., video and imagery) that is of interest in military networks

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    A New Exposed-terminal-free MAC Protocol for Multi-hop Wireless Networks

    Get PDF
    AbstractThis article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another common channel thus completely eliminating the exposed-terminal effects. Any adjacent communication pair can take full advantage of multiple traffic channels without collision and the spatial reuse of the same channel is extended to other communication pairs which are even within 2 hops from them. In addition, the hidden-terminal effect is also considerably reduced because most of possible packet collisions on a single channel are avoided due to traffic load balance on multichannels. Finally, a performance comparison is made between the proposed protocol and other typical MAC protocols. Simulation results evidence its obvious superiority to the MAC protocols associated with other channel selection schemes and traditional ACK transmission scheme as well as cooperative asynchronous multichannel MAC (CAM-MAC) protocol in terms of four performance indices: total channel utilization, average channel utilization, average packet delay, and packet dropping rate
    corecore