8 research outputs found

    Analysis of uncertainty in a middle-cost device for 3D measurements in BIM perspective

    Get PDF
    Medium-cost devices equipped with sensors are being developed to get 3D measurements. Some allow for generating geometric models and point clouds. Nevertheless, the accuracy of these measurements should be evaluated, taking into account the requirements of the Building Information Model (BIM). This paper analyzes the uncertainty in outdoor/indoor three-dimensional coordinate measures and point clouds (using Spherical Accuracy Standard (SAS) methods) for Eyes Map, a medium-cost tablet manufactured by e-Capture Research & Development Company, Mérida, Spain. To achieve it, in outdoor tests, by means of this device, the coordinates of targets were measured from 1 to 6 m and cloud points were obtained. Subsequently, these were compared to the coordinates of the same targets measured by a Total Station. The Euclidean average distance error was 0.005–0.027 m for measurements by Photogrammetry and 0.013–0.021 m for the point clouds. All of them satisfy the tolerance for point cloud acquisition (0.051 m) according to the BIM Guide for 3D Imaging (General Services Administration); similar results are obtained in the indoor tests, with values of 0.022 m. In this paper, we establish the optimal distances for the observations in both, Photogrammetry and 3D Photomodeling modes (outdoor) and point out some working conditions to avoid in indoor environments. Finally, the authors discuss some recommendations for improving the performance and working methods of the device.peerReviewe

    Bin-picking de precisão usando um sensor 3D e um sensor laser 1D

    Get PDF
    The technique that is being used by a robot to grab objects that are randomly placed inside a box or on a pallet is called bin-picking. This process is of great interest in an industrial environment as it provides enhanced automation, increased production and cost reduction. Bin-picking has evolved greatly over the years due to tremendous strides empowered by advanced vision technology, software, and gripping solutions which are in constant development. However, the creation of a versatile system, capable of collecting any type of object without deforming it, regardless of the disordered environment around it, remains a challenge. To this goal, the use of 3D perception is unavoidable. Still, the information acquired by some lower cost 3D sensors is not very precise; therefore, the combination of this information with the one of other devices is an approach already in study. The main goal of this work is to develop a solution for the execution of a precise bin-picking process capable of grasping small and fragile objects without breaking or deforming them. This may be done by combining the information provided by two sensors: one 3D sensor (Kinect) used to analyse the workspace and identify the object, and a 1D laser sensor to determine the exact distance to the object when approaching it. Additionally, the developed system may be placed at the end of a manipulator in order to become an active perception unit. Once the global system of sensors, their controllers and the robotic manipulator are integrated into a ROS (Robot Operating System) infrastructure, the data provided by the sensors can be analysed and combined to provide a bin-picking solution. Finally, the testing phase demonstrated the viability and the reliability of the developed bin-picking process.À tecnologia usada por um robô para agarrar objetos que estão dispostos de forma aleatória dentro de uma caixa ou sobre uma palete chama-se binpicking. Este processo é de grande interesse para a industria uma vez que oferece maior autonomia, aumento de produção e redução de custos. O binpicking tem evoluido de forma significativa ao longo dos anos graças aos avanços possibilitados pelo desenvolvimento tecnológico na área da visão, software e soluções de diferentes garras que estão em constante evolução. Contudo, a criação de um sistema versátil, capaz de agarrar qualquer tipo de objeto sem o deformar, independentemente do ambiente desordenado à sua volta, continua a ser o principal objetivo. Para esse fim, o recurso à perceção 3D é imprescindível. Ainda assim, a informação adquirida por sensores 3D não é muito precisa e, por isso, a combinação deste com a de outros dispositivos é uma abordagem ainda em estudo. O objetivo principal deste trabalho é então desenvolver uma solução para a execução de um processo de bin-picking capaz de agarrar objetos pequenos e frágeis sem os partir ou deformar. Isto poderá ser feito através da combinação entre a informação proveniente de dois sensores: um sensor 3D (Kinect) usado para analisar o espaço de trabalho e identificar o objeto, e um sensor laser 1D usado para determinar a sua distância exata e assim se poder aproximar. Adicionalmente, o sistema desenvolvido pode ser acoplado a um manipulador de forma a criar uma unidade de perceção ativa. Uma vez tendo um sistema global de sensores, os seus controladores e o manipulador robótico integrados numa infraestrutura ROS (Robot Operating System), os dados fornecidos pelos sensores podem ser analisados e combinados, e uma solução de bin-picking pode ser desenvolvida. Por último, a fase de testes demonstrou, depois de alguns ajustes nas medidas do sensor laser, a viabilidade e fiabilidade do processo de bin-picking desenvolvido.Mestrado em Engenharia Mecânic

    3D forensic crime scene reconstruction involving immersive technology: A systematic literature review

    Get PDF
    Recreation of 3D crime scenes is critical for law enforcement in the investigation of serious crimes for criminal justice responses. This work presents a premier systematic literature review (SLR) that offers a structured, methodical, and rigorous approach to understanding the trend of research in 3D crime scene reconstruction as well as tools, technologies, methods, and techniques employed thereof in the last 17 years. Major credible scholarly database sources, Scopus, and Google Scholar, which index journals and conferences that are promoted by entities such as IEEE, ACM, Elsevier, and SpringerLink were explored as data sources. Of the initial 17, 912 papers that resulted from the first search string, 258 were found to be relevant to our research questions after implementing the inclusion and exclusion criteria

    Potentiale von Laserscannern zur Phänotypisierung von Pflanzen für den Einsatz im Hochdurchsatz-Screening

    Get PDF
    Die Züchtung hochertragreicher Pflanzen ist von essentieller Wichtigkeit für die Ernährung der Weltbevölkerung. Diese Züchtung geht einher mit einer genauen Analyse der Interaktion zwischen pflanzlichem Genom und Umwelteinflüssen, die gemeinsam den Phänotyp der Pflanze bilden. Phänotypisierung beschreibt den Vorgang der Vermessung, um die Größe von Pflanzen, Wachstum, Leistungsfähigkeit, Architektur und Zusammensetzung mit einer bestimmten Genauigkeit in verschiedenen Skalen mit verschiedenen Sensoren, vom Organ bis hin zum Bestand zu bestimmen. Ein neuer Sensor in diesem Feld ist der Laserscanner. Durch Laserscanning lässt sich die dreidimensionale Geometrie der Pflanzenoberfläche vermessen. Das Ergebnis ist eine punktweise Beschreibung der 3D-Koordinaten auf der Oberfläche. Im Rahmen dieser Arbeit wurde die Genauigkeit der Lasermessungen mit konventionellen Methoden zur Vermessung von Pflanzen verglichen. In verschiedenen Experimenten wurde die Anwendbarkeit des Sensors für die Verfolgung von Wachstum auf Pflanzen und Organebene gezeigt. Die Messung von Wachstum bedarf wiederholter Messungen in kurzen zeitlichen Abständen. Diese Messungen mit hohem Durchsatz erzeugen sehr große Datenmengen. Dabei ist die manuelle Auswertung zeit- und kostenintensiv. Durch Entwicklung einer Auswertemethode auf Grundlage von punktweisen Oberflächenmerkmalen und Support Vector Machines konnte die Segmentierung und Parametrisierung der Organe automatisiert werden. Dabei wurden verschiedene Auflösungen der Punktwolke getestet um eine sensorunabhängige Anwendbarkeit des Algorithmus zu gewährleisten. Das benutzte Lasertriangulations-verfahren beruht auf der Emittierung einer Laserlinie und der Aufnahme der Reflektion durch eine Kamera. Dies ermöglicht die Ableitung dreidimensionaler Informationen. Die Genauigkeit dieser Messung hängt unter anderem von der Interaktion des Laserstrahls mit dem pflanzlichen Gewebe ab. In verschiedenen Experimenten wurde die Interaktion mit Chlorophyll, das Eindringverhalten in die Epidermis, der Einfluss des physiologischen Stadiums, sowie die Interaktion mit Pflanzenkrankheiten (Mehltau) erörtert und quantifiziert. Das im Rahmen dieser Arbeit benutzte Lasermesssystem setzt sehr hohe Investitionskosten voraus. Daher wurden zwei alternative Low-Cost 3D-Messsysteme evaluiert. Diese Evaluierung erfolgte durch die Vermessung hochpräziser Testobjekte, sowie durch die Messung und Ableitung von phänotypischen Parametern an Getreide- und Rübenpflanzen. Es wurde deutlich, dass sich das investitionsintensive Messsystem je nach fokussiertem Parameter durch ein Low-Cost Systems ersetzen lässt. Diese Arbeit und die begleitenden Publikationen führen das Laserscanning als hochgenaues Werkzeug zur Ableitung phänotypischer Parameter bei Pflanzen ein. Die Anwendbarkeit als Ersatz zu konventionellen Messmethoden wurde gezeigt. Weiterhin wurden Methoden zur automatisierten Ableitung phänotypisch wichtiger Parameter entwickelt und evaluiert. Die Interaktion zwischen Laserstrahl und pflanzlicher Oberfläche wurde untersucht und quantifiziert. Abschließend wurden Low-Cost Systeme als Ersatz für das benutzte investitionsintensive Industriemesssystem untersucht. Laserscanning stellt ein effizientes, genaues und evaluiertes Messsystem dar, welches die Anforderungen zur Phänotypisierung von Pflanzen erfüllt und zur Bearbeitung phänotypischer Aufgaben benutzt werden kann.Potential of laserscanners for plant phenotyping for use in high-throughput screening Breeding of plants with high yield is essential for feeding future world population. Thus, breeding comes together with a detailed analysis of the interaction between plant genotype and environmental influences, which creates the plant phenotype. Phenotyping describes the act of measuring the plant to derive a measurement for size, growth, fitness, architecture and composition according to a specific accuracy at different scales with different sensors from the organ to the plot. A new sensor, the laserscanner, has been introduced in the field of plant phenotyping. Using laserscanning the three dimensional geometry of the plant surface can be measured. The result is a pointwise description of the 3D-coordinate of the surface. One part of this work is the comparison of the accuracy of the laserscanner with conventional measuring techniques. Applicability has been shown for tracking of growth on plant and organ level. Measuring of growth requires repeated measurements at short time intervals. This high throughput measuring generates huge amounts of data. Manual analysis is time intensive and costly. By developing an analysis method using pointwise surface features and support vector machines the process of segmentation and parameterization of plant organs could be automated. Different scan resolutions have been tested to proof a sensor independent usability. The technique of laser triangulation uses an emitted laser line and the recording of its reflection by a camera. This enables the derivation of three dimensional information (laser triangulation). The accuracy of this measurement is affected by the interaction between laser ray and plant tissue. Different experiments show and quantify the interaction with chlorophyll, the penetration of the laser into the epidermis layer, the influence of the physiological state of the plant as well as the interaction with plant diseases (mildew). The used laserscanning system requires high invocation cost. Therefore alternative low-cost methods have been evaluated. This evaluation was performed by measuring highly accurate test specimen, as well as measuring and derivation of phenotypic parameters from cereal and sugar beet plants. It was shown that an expensive measuring system could be replaced, depending on the focused parameter, by a low-cost system. This work and accompanying publications introduce the laserscanner as a highly accurate tool for the derivation of phenotypic parameters from plants. The applicability as a replacement for conventional measuring systems has been shown. Furthermore, methods for the automated derivation of phenotypic parameters have been developed and evaluated. The interaction between laser ray and plant tissue has been evaluated and quantified. Finally low-cost sensors have been analyzed as an alternative for the expensive industrial measuring system. Thus, laserscanning depicts an efficient, accurate and evaluated measuring system that meets the requirements of plant phenotyping to solve phenotypic tasks

    Potentiale von Laserscannern zur Phänotypisierung von Pflanzen für den Einsatz im Hochdurchsatz-Screening

    Get PDF
    Die Züchtung hochertragreicher Pflanzen ist von essentieller Wichtigkeit für die Ernährung der Weltbevölkerung. Diese Züchtung geht einher mit einer genauen Analyse der Interaktion zwischen pflanzlichem Genom und Umwelteinflüssen, die gemeinsam den Phänotyp der Pflanze bilden. Phänotypisierung beschreibt den Vorgang der Vermessung, um die Größe von Pflanzen, Wachstum, Leistungsfähigkeit, Architektur und Zusammensetzung mit einer bestimmten Genauigkeit in verschiedenen Skalen mit verschiedenen Sensoren, vom Organ bis hin zum Bestand zu bestimmen. Ein neuer Sensor in diesem Feld ist der Laserscanner. Durch Laserscanning lässt sich die dreidimensionale Geometrie der Pflanzenoberfläche vermessen. Das Ergebnis ist eine punktweise Beschreibung der 3D-Koordinaten auf der Oberfläche. Im Rahmen dieser Arbeit wurde die Genauigkeit der Lasermessungen mit konventionellen Methoden zur Vermessung von Pflanzen verglichen. In verschiedenen Experimenten wurde die Anwendbarkeit des Sensors für die Verfolgung von Wachstum auf Pflanzen und Organebene gezeigt. Die Messung von Wachstum bedarf wiederholter Messungen in kurzen zeitlichen Abständen. Diese Messungen mit hohem Durchsatz erzeugen sehr große Datenmengen. Dabei ist die manuelle Auswertung zeit- und kostenintensiv. Durch Entwicklung einer Auswertemethode auf Grundlage von punktweisen Oberflächenmerkmalen und Support Vector Machines konnte die Segmentierung und Parametrisierung der Organe automatisiert werden. Dabei wurden verschiedene Auflösungen der Punktwolke getestet um eine sensorunabhängige Anwendbarkeit des Algorithmus zu gewährleisten. Das benutzte Lasertriangulations-verfahren beruht auf der Emittierung einer Laserlinie und der Aufnahme der Reflektion durch eine Kamera. Dies ermöglicht die Ableitung dreidimensionaler Informationen. Die Genauigkeit dieser Messung hängt unter anderem von der Interaktion des Laserstrahls mit dem pflanzlichen Gewebe ab. In verschiedenen Experimenten wurde die Interaktion mit Chlorophyll, das Eindringverhalten in die Epidermis, der Einfluss des physiologischen Stadiums, sowie die Interaktion mit Pflanzenkrankheiten (Mehltau) erörtert und quantifiziert. Das im Rahmen dieser Arbeit benutzte Lasermesssystem setzt sehr hohe Investitionskosten voraus. Daher wurden zwei alternative Low-Cost 3D-Messsysteme evaluiert. Diese Evaluierung erfolgte durch die Vermessung hochpräziser Testobjekte, sowie durch die Messung und Ableitung von phänotypischen Parametern an Getreide- und Rübenpflanzen. Es wurde deutlich, dass sich das investitionsintensive Messsystem je nach fokussiertem Parameter durch ein Low-Cost Systems ersetzen lässt. Diese Arbeit und die begleitenden Publikationen führen das Laserscanning als hochgenaues Werkzeug zur Ableitung phänotypischer Parameter bei Pflanzen ein. Die Anwendbarkeit als Ersatz zu konventionellen Messmethoden wurde gezeigt. Weiterhin wurden Methoden zur automatisierten Ableitung phänotypisch wichtiger Parameter entwickelt und evaluiert. Die Interaktion zwischen Laserstrahl und pflanzlicher Oberfläche wurde untersucht und quantifiziert. Abschließend wurden Low-Cost Systeme als Ersatz für das benutzte investitionsintensive Industriemesssystem untersucht. Laserscanning stellt ein effizientes, genaues und evaluiertes Messsystem dar, welches die Anforderungen zur Phänotypisierung von Pflanzen erfüllt und zur Bearbeitung phänotypischer Aufgaben benutzt werden kann.Potential of laserscanners for plant phenotyping for use in high-throughput screening Breeding of plants with high yield is essential for feeding future world population. Thus, breeding comes together with a detailed analysis of the interaction between plant genotype and environmental influences, which creates the plant phenotype. Phenotyping describes the act of measuring the plant to derive a measurement for size, growth, fitness, architecture and composition according to a specific accuracy at different scales with different sensors from the organ to the plot. A new sensor, the laserscanner, has been introduced in the field of plant phenotyping. Using laserscanning the three dimensional geometry of the plant surface can be measured. The result is a pointwise description of the 3D-coordinate of the surface. One part of this work is the comparison of the accuracy of the laserscanner with conventional measuring techniques. Applicability has been shown for tracking of growth on plant and organ level. Measuring of growth requires repeated measurements at short time intervals. This high throughput measuring generates huge amounts of data. Manual analysis is time intensive and costly. By developing an analysis method using pointwise surface features and support vector machines the process of segmentation and parameterization of plant organs could be automated. Different scan resolutions have been tested to proof a sensor independent usability. The technique of laser triangulation uses an emitted laser line and the recording of its reflection by a camera. This enables the derivation of three dimensional information (laser triangulation). The accuracy of this measurement is affected by the interaction between laser ray and plant tissue. Different experiments show and quantify the interaction with chlorophyll, the penetration of the laser into the epidermis layer, the influence of the physiological state of the plant as well as the interaction with plant diseases (mildew). The used laserscanning system requires high invocation cost. Therefore alternative low-cost methods have been evaluated. This evaluation was performed by measuring highly accurate test specimen, as well as measuring and derivation of phenotypic parameters from cereal and sugar beet plants. It was shown that an expensive measuring system could be replaced, depending on the focused parameter, by a low-cost system. This work and accompanying publications introduce the laserscanner as a highly accurate tool for the derivation of phenotypic parameters from plants. The applicability as a replacement for conventional measuring systems has been shown. Furthermore, methods for the automated derivation of phenotypic parameters have been developed and evaluated. The interaction between laser ray and plant tissue has been evaluated and quantified. Finally low-cost sensors have been analyzed as an alternative for the expensive industrial measuring system. Thus, laserscanning depicts an efficient, accurate and evaluated measuring system that meets the requirements of plant phenotyping to solve phenotypic tasks
    corecore