315 research outputs found

    Heterogeneity-aware scheduling and data partitioning for system performance acceleration

    Get PDF
    Over the past decade, heterogeneous processors and accelerators have become increasingly prevalent in modern computing systems. Compared with previous homogeneous parallel machines, the hardware heterogeneity in modern systems provides new opportunities and challenges for performance acceleration. Classic operating systems optimisation problems such as task scheduling, and application-specific optimisation techniques such as the adaptive data partitioning of parallel algorithms, are both required to work together to address hardware heterogeneity. Significant effort has been invested in this problem, but either focuses on a specific type of heterogeneous systems or algorithm, or a high-level framework without insight into the difference in heterogeneity between different types of system. A general software framework is required, which can not only be adapted to multiple types of systems and workloads, but is also equipped with the techniques to address a variety of hardware heterogeneity. This thesis presents approaches to design general heterogeneity-aware software frameworks for system performance acceleration. It covers a wide variety of systems, including an OS scheduler targeting on-chip asymmetric multi-core processors (AMPs) on mobile devices, a hierarchical many-core supercomputer and multi-FPGA systems for high performance computing (HPC) centers. Considering heterogeneity from on-chip AMPs, such as thread criticality, core sensitivity, and relative fairness, it suggests a collaborative based approach to co-design the task selector and core allocator on OS scheduler. Considering the typical sources of heterogeneity in HPC systems, such as the memory hierarchy, bandwidth limitations and asymmetric physical connection, it proposes an application-specific automatic data partitioning method for a modern supercomputer, and a topological-ranking heuristic based schedule for a multi-FPGA based reconfigurable cluster. Experiments on both a full system simulator (GEM5) and real systems (Sunway Taihulight Supercomputer and Xilinx Multi-FPGA based clusters) demonstrate the significant advantages of the suggested approaches compared against the state-of-the-art on variety of workloads."This work is supported by St Leonards 7th Century Scholarship and Computer Science PhD funding from University of St Andrews; by UK EPSRC grant Discovery: Pattern Discovery and Program Shaping for Manycore Systems (EP/P020631/1)." -- Acknowledgement

    Effects of partitioning and scheduling sparse matrix factorization on communication and load balance

    Get PDF
    A block based, automatic partitioning and scheduling methodology is presented for sparse matrix factorization on distributed memory systems. Using experimental results, this technique is analyzed for communication and load imbalance overhead. To study the performance effects, these overheads were compared with those obtained from a straightforward 'wrap mapped' column assignment scheme. All experimental results were obtained using test sparse matrices from the Harwell-Boeing data set. The results show that there is a communication and load balance tradeoff. The block based method results in lower communication cost whereas the wrap mapped scheme gives better load balance

    An Efficient Execution Model for Reactive Stream Programs

    Get PDF
    Stream programming is a paradigm where a program is structured by a set of computational nodes connected by streams. Focusing on data moving between computational nodes via streams, this programming model fits well for applications that process long sequences of data. We call such applications reactive stream programs (RSPs) to distinguish them from stream programs with rather small and finite input data. In stream programming, concurrency is expressed implicitly via communication streams. This helps to reduce the complexity of parallel programming. For this reason, stream programming has gained popularity as a programming model for parallel platforms. However, it is also challenging to analyse and improve the performance without an understanding of the program's internal behaviour. This thesis targets an effi cient execution model for deploying RSPs on parallel platforms. This execution model includes a monitoring framework to understand the internal behaviour of RSPs, scheduling strategies for RSPs on uniform shared-memory platforms; and mapping techniques for deploying RSPs on heterogeneous distributed platforms. The foundation of the execution model is based on a study of the performance of RSPs in terms of throughput and latency. This study includes quantitative formulae for throughput and latency; and the identification of factors that influence these performance metrics. Based on the study of RSP performance, this thesis exploits characteristics of RSPs to derive effective scheduling strategies on uniform shared-memory platforms. Aiming to optimise both throughput and latency, these scheduling strategies are implemented in two heuristic-based schedulers. Both of them are designed to be centralised to provide load balancing for RSPs with dynamic behaviour as well as dynamic structures. The first one uses the notion of positive and negative data demands on each stream to determine the scheduling priorities. This scheduler is independent from the runtime system. The second one requires the runtime system to provide the position information for each computational node in the RSP; and uses that to decide the scheduling priorities. Our experiments show that both schedulers provides similar performance while being significantly better than a reference implementation without dynamic load balancing. Also based on the study of RSP performance, we present in this thesis two new heuristic partitioning algorithms which are used to map RSPs onto heterogeneous distributed platforms. These are Kernighan-Lin Adaptation (KLA) and Congestion Avoidance (CA), where the main objective is to optimise the throughput. This is a multi-parameter optimisation problem where existing graph partitioning algorithms are not applicable. Compared to the generic meta-heuristic Simulated Annealing algorithm, both proposed algorithms achieve equally good or better results. KLA is faster for small benchmarks while slower for large ones. In contrast, CA is always orders of magnitudes faster even for very large benchmarks

    QuPARA: Query-Driven Large-Scale Portfolio Aggregate Risk Analysis on MapReduce

    Full text link
    Stochastic simulation techniques are used for portfolio risk analysis. Risk portfolios may consist of thousands of reinsurance contracts covering millions of insured locations. To quantify risk each portfolio must be evaluated in up to a million simulation trials, each capturing a different possible sequence of catastrophic events over the course of a contractual year. In this paper, we explore the design of a flexible framework for portfolio risk analysis that facilitates answering a rich variety of catastrophic risk queries. Rather than aggregating simulation data in order to produce a small set of high-level risk metrics efficiently (as is often done in production risk management systems), the focus here is on allowing the user to pose queries on unaggregated or partially aggregated data. The goal is to provide a flexible framework that can be used by analysts to answer a wide variety of unanticipated but natural ad hoc queries. Such detailed queries can help actuaries or underwriters to better understand the multiple dimensions (e.g., spatial correlation, seasonality, peril features, construction features, and financial terms) that can impact portfolio risk. We implemented a prototype system, called QuPARA (Query-Driven Large-Scale Portfolio Aggregate Risk Analysis), using Hadoop, which is Apache's implementation of the MapReduce paradigm. This allows the user to take advantage of large parallel compute servers in order to answer ad hoc risk analysis queries efficiently even on very large data sets typically encountered in practice. We describe the design and implementation of QuPARA and present experimental results that demonstrate its feasibility. A full portfolio risk analysis run consisting of a 1,000,000 trial simulation, with 1,000 events per trial, and 3,200 risk transfer contracts can be completed on a 16-node Hadoop cluster in just over 20 minutes.Comment: 9 pages, IEEE International Conference on Big Data (BigData), Santa Clara, USA, 201

    Efficient Scheduling and High-Performance Graph Partitioning on Heterogeneous CPU-GPU Systems

    Get PDF
    Heterogeneous CPU-GPU systems have emerged as a power-efficient platform for high performance parallelization of the applications. However, effectively exploiting these architectures faces a number of challenges including differences in the programming models of the CPU (MIMD) and the GPU (SIMD), GPU memory constraints, and comparatively low communication bandwidth between the CPU and GPU. As a consequence, high performance execution of applications on these platforms requires designing new adaptive parallelizing methods. In this thesis, first we explore embarrassingly parallel applications where tasks have no inter-dependencies. Although the massive processing power of GPUs provides an attractive opportunity for high-performance execution of embarrassingly parallel tasks on CPU-GPU systems, minimized execution time can only be obtained by optimally distributing the tasks between the processors. In contemporary CPU-GPU systems, the scheduler cannot decide about the appropriate rate distribution. Hence it requires high programming effort to manually divide the tasks among the processors. Herein, we design and implement a new dynamic scheduling heuristic to minimize the execution time of embarrassingly parallel applications on a heterogeneous CPU-GPU system. The scheduler is integrated into a scheduling framework that provides pre-implemented automated scheduling modules, liberating the user from the complexities of scheduling details. The experimental results show that our scheduling approach achieves better to similar performance compared to some of the scheduling algorithms proposed for CPU-GPU systems. We then investigate task dependent applications, where the tasks have data dependencies. The computational tasks and their communication patterns are expressed by a task interaction graph. Scheduling of the task interaction graph on a cluster can be done by first partitioning the graph into a set of computationally balanced partitions in such a way that the communication cost among the partitions is minimized, and subsequently mapping the partitions onto physical processors. Aside from scheduling, graph partitioning is a common computation phase in many application domains, including social network analysis, data mining, and VLSI design. However, irregular and data-dependent graph partitioning sub-tasks pose multiple challenges for efficient GPU utilization, which favors regularity. We design and implement a multilevel graph partitioner on a heterogeneous CPU-GPU system that takes advantage of the high parallel processing power of GPUs by executing the computation-intensive parts of the partitioning sub-tasks on the GPU and assigning the parts with less parallelism to the CPU. Our partitioner aims to overcome some of the challenges arising due to the irregular nature of the algorithm, and memory constraints on GPUs. We present a lock-free scheme since fine-grained synchronization among thousands of GPU threads imposes too high a performance overhead. Experimental results demonstrate that our partitioner outperforms serial and parallel MPI-based partitioners. It performs similar to shared-memory CPU-based parallel graph partitioner. To optimize the graph partitioner performance, we describe an effective and methodological approach to enable a GPU-based multi-level graph partitioning that is tailored specifically for the SIMD architecture. Our solution avoids thread divergence and balances the load over GPU threads by dynamically assigning an appropriate number of threads to process the graph vertices and irregular sized neighbors. Our optimized design is autonomous as all the steps are carried out by the GPU with minimal CPU interference. We show that this design outperforms CPU-based parallel graph partitioner. Finally, we apply some of our partitioning techniques to another graph processing algorithm, minimum spanning tree (MST), that exhibits load imbalance characteristics. We show that extending these techniques helps in achieving a high performance implementation of MST on the GPU

    Throughput-driven Partitioning of Stream Programs on Heterogeneous Distributed Systems

    Get PDF
    This is an Open Access article. © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Graph partitioning is an important problem in computer science and is of NP-hard complexity. In practice it is usually solved using heuristics. In this article we introduce the use of graph partitioning to partition the workload of stream programs to optimise the throughput on heterogeneous distributed platforms. Existing graph partitioning heuristics are not adequate for this problem domain. In this article we present two new heuristics to capture the problem space of graph partitioning for stream programs to optimise throughput. The first algorithm is an adaptation of the well-known Kernighan-Lin algorithm, called KL-Adapted (KLA), which is relatively slow. As a second algorithm we have developed the Congestion Avoidance (CA) partitioning algorithm, which performs reconfiguration moves optimised to our problem type. We compare both KLA and CA with the generic meta-heuristic Simulated Annealing (SA). All three methods achieve similar throughput results for most cases, but with significant differences in calculation time. For small graphs KLA is faster than SA, but KLA is slower for larger graphs. CA on the other hand is always orders of magnitudes faster than both KLA and SA, even for large graphs. This makes CA potentially useful for re-partitioning of systems during runtime.Peer reviewedFinal Published versio

    Application Driven MOdels for Resource Management in Cloud Environments

    Get PDF
    El despliegue y la ejecución de aplicaciones de gran escala en sistemas distribuidos con unos parametros de Calidad de Servicio adecuados necesita gestionar de manera eficiente los recursos computacionales. Para desacoplar los requirimientos funcionales y los no funcionales (u operacionales) de dichas aplicaciones, se puede distinguir dos niveles de abstracción: i) el nivel funcional, que contempla aquellos requerimientos relacionados con funcionalidades de la aplicación; y ii) el nivel operacional, que depende del sistema distribuido donde se despliegue y garantizará aquellos parámetros relacionados con la Calidad del Servicio, disponibilidad, tolerancia a fallos y coste económico, entre otros. De entre las diferentes alternativas del nivel operacional, en la presente tesis se contempla un entorno cloud basado en la virtualización de contenedores, como puede ofrecer Kubernetes.El uso de modelos para el diseño de aplicaciones en ambos niveles permite garantizar que dichos requerimientos sean satisfechos. Según la complejidad del modelo que describa la aplicación, o el conocimiento que el nivel operacional tenga de ella, se diferencian tres tipos de aplicaciones: i) aplicaciones dirigidas por el modelo, como es el caso de la simulación de eventos discretos, donde el propio modelo, por ejemplo Redes de Petri de Alto Nivel, describen la aplicación; ii) aplicaciones dirigidas por los datos, como es el caso de la ejecución de analíticas sobre Data Stream; y iii) aplicaciones dirigidas por el sistema, donde el nivel operacional rige el despliegue al considerarlas como una caja negra.En la presente tesis doctoral, se propone el uso de un scheduler específico para cada tipo de aplicación y modelo, con ejemplos concretos, de manera que el cliente de la infraestructura pueda utilizar información del modelo descriptivo y del modelo operacional. Esta solución permite rellenar el hueco conceptual entre ambos niveles. De esta manera, se proponen diferentes métodos y técnicas para desplegar diferentes aplicaciones: una simulación de un sistema de Vehículos Eléctricos descrita a través de Redes de Petri; procesado de algoritmos sobre un grafo que llega siguiendo el paradigma Data Stream; y el propio sistema operacional como sujeto de estudio.En este último caso de estudio, se ha analizado cómo determinados parámetros del nivel operacional (por ejemplo, la agrupación de contenedores, o la compartición de recursos entre contenedores alojados en una misma máquina) tienen un impacto en las prestaciones. Para analizar dicho impacto, se propone un modelo formal de una infrastructura operacional concreta (Kubernetes). Por último, se propone una metodología para construir índices de interferencia para caracterizar aplicaciones y estimar la degradación de prestaciones incurrida cuando dos contenedores son desplegados y ejecutados juntos. Estos índices modelan cómo los recursos del nivel operacional son usados por las applicaciones. Esto supone que el nivel operacional maneja información cercana a la aplicación y le permite tomar mejores decisiones de despliegue y distribución.<br /
    • …
    corecore