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Resumen vii

Resumen
El despliegue y la ejecución de aplicaciones de gran escala en sistemas distribuidos con unos
parametros de Calidad de Servicio adecuados necesita gestionar de manera eficiente los re-
cursos computacionales. Para desacoplar los requirimientos funcionales y los no funcionales
(u operacionales) de dichas aplicaciones, se puede distinguir dos niveles de abstracción:
i) el nivel funcional, que contempla aquellos requerimientos relacionados con funcionalida-
des de la aplicación; y ii) el nivel operacional, que depende del sistema distribuido donde
se despliegue y garantizará aquellos parametros relacionados con la Calidad del Servicio,
disponibilidad, tolerancia a fallos y coste económico, entre otros. De entre las diferentes
alternativas del nivel operacional, en la presente tesis se contempla un entorno cloud basado
en la virtualización de contenedores, como puede ofrecer Kubernetes.

El uso de modelos para el diseño de aplicaciones en ambos niveles permite garantizar
que dichos requerimientos sean satisfechos. Según la complejidad del modelo que describa la
aplicación, o el conocimiento que el nivel operacional tenga de ella, se diferencian tres tipos
de aplicaciones: i) aplicaciones dirigidas por el modelo, como es el caso de la simulación
de eventos discretos, donde el propio modelo, por ejemplo Redes de Petri de Alto Nivel,
describen la aplicación; ii) aplicaciones dirigidas por los datos, como es el caso de la ejecución
de anaĺıticas sobre Data Stream; y iii) aplicaciones dirigidas por el sistema, donde el nivel
operacional rige el despliegue al considerarlas como una caja negra.

En la presente tesis doctoral, se propone el uso de un scheduler espećıfico para cada tipo
de aplicación y modelo, con ejemplos concretos, de manera que el cliente de la infraestructura
pueda utilizar información del modelo descriptivo y del modelo operacional. Esta solucion
permite rellenar el hueco conceptual entre ambos niveles. De esta manera, se proponen
diferentes métodos y técnicas para desplegar diferentes aplicaciones: una simulación de un
sistema de Veh́ıculos Eléctricos descrita a traves de Redes de Petri; procesado de algoritmos
sobre un grafo que llega siguiendo el paradigma Data Stream; y el propio sistema operacional
como sujeto de estudio.

En este último caso de estudio, se ha analizado cómo determinados parámetros del nivel
operacional (por ejemplo, la agrupación de contenedores, o la compartición de recursos entre
contenedores alojados en una misma máquina) tienen un impacto en las prestaciones. Para
analizar dicho impacto, se propone un modelo formal de una infrastructura operacional
concreta (Kubernetes). Por último, se propone una metodoloǵıa para construir ı́ndices de
interferencia para caracterizar aplicaciones y estimar la degradación de prestaciones incu-
rrida cuando dos contenedores son desplegados y ejecutados juntos. Estos ı́ndices modelan
cómo los recursos del nivel operacional son usados por las applicaciones. Esto supone que
el nivel operacional maneja información cercana a la aplicación y le permite tomar mejores
decisiones de despliegue y distribución.
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Abstract

Deploying and executing large-scale applications in a distributed system, with a feasible
Quality of Service (QoS) parameters, requires an efficient resource management in such
platforms. In order to decouple the functional and the non-functional –or operational– re-
quirements of an application, we can distinguish two levels of abstraction: i) the functional
level, which considers those requirements related to the application functionalities; and ii)
the operational level, which is platform-dependant, and it guarantees those parameters re-
lated to QoS, availability, fault tolerance and economic cost, among others. Among the
available alternatives in the operational level, in this PhD thesis, we focus on a cloud envir-
onment based on container virtualisation. Kubernetes, which is studied thoroughly in our
work, is an example of such systems.

The usage of models to design applications or to describe systems in both levels guar-
antees that both types of requirements are fulfilled. Depending on the complexity of the
model and/or on the information about applications managed by the operational layer, we
distinguish three kinds of applications: i) model-driven applications, like Discrete Event
Simulations, in which the model, for instance, a High Level Petri Net, describes the applic-
ation; ii) data-driven applications, like the execution of analytics over data streams; and iii)
system-driven applications, where the operational level makes decisions on the deployment
and execution of those applications considering them as a black-box.

In the present PhD thesis, we propose the use of a specific scheduler for each kind
of application and model, given different use cases. This scheduler allows the client of
the infrastructure to use information about the functional model an about the specific
operational platform. This solution fills the gap between both levels without losing the
transparency of the cloud abstraction. In this regard, we propose several methodologies
and models to deploy different kind of applications: a simulation about an Electric Vehicle
system modelled with Petri Nets; analytics over a data stream graph; and the operational
platform as a subject of study in itself.

In this last use case, we have analysed how certain parameters which are related to the
operational level –for instance, grouping containers together, or sharing resources between
containers hosted en the same machine– have an impact on performance. To analyse this
impact, we propose a formal model to describe the operational infrastructure –in our case,
Kubernetes–. Finally, we propose a methodology to build interference indices to characterise
applications and to estimate the performance degradation produced when two containers are
scheduled together. These interference indices model how the operational resources are used
by deployed applications. This situation provides additional information to the operational
level to take better allocation decisions.
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Chapter 1

Introduction

Among intelligences, however, there are some
that contain more universal forms and others that

contain less universal forms. This is because the
forms that are in the second, lower universal

intelligences in the mode of particulars are in the
first intelligences in the mode of universals.

Saint Thomas Aquinas

Resource management in distributed systems enables the possibility of executing applica-
tions which describe complex systems with feasible performance and cost parameters. Com-
putational resources –i.e., CPU, RAM, I/O file system, network– are shared by all applica-
tions executed in the distributed platform and by all users/clients which deploy applications.
The manner in which the resources are shared and how each application uses them can have
an impact on the performance of the other ones. Thus, the competition between resources
should be regulated or controlled by using different techniques. These mechanisms ensure
certain Quality of Service (QoS) parameters to the client, which are defined in a Service Level
Agreement (SLA) between the platform operator and each tenant. Therefore, the platform
should guarantee the isolation between applications to hide how the resources are shared.
Overall, an increment in the isolation will produce a degradation in certain performance
metrics, so a trade-off between both criteria should be achieved. For instance, a reservation
mechanism gives a high isolation mechanism for the resource sharing problem. However,
from the point of view of the cloud operator, the resource occupation metric decreases.

The deployed application might describe a complex system. A complex system is a
system which can be described as many components which interact with each other. Each
of these components might describe in turn a whole and meaningful system with its own
subsystems or components. The concept of complex system is highly coupled with the
concept of large-scale systems. The scale problem arises due to the following reasons [1]: i)
the number of attributes or concepts necessary to describe the system; ii) the description of
the system behaviour laws; iii) the evolution in time of the system. These reasons not only
are applicable to each component, but also to the interactions between them. There are

1
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a lot of research domains which are suitable to be analysed as a complex system, namely:
capacity planning and resource management in cloud environments; Internet of Things (IoT)
and sensor systems [2,3]; smart grids [4–6] and Electric Vehicles (EV) systems [7]; and smart
cities and smart building applications [8], among others.

Modelling complex systems allows reasoning about their properties and estimating how
they evolve. The big scale of the entities and the complexity and intricacy of the relationships
entail the usage of very different models. These models need computational resources to
be simulated or executed in a platform, and due to their scale, the platform should be a
distributed one. At this point, we can distinguish the description of the system –with its
attributes and its behavioural laws–, called the functional level; and the distributed platform
–with the computational resources–, called the operational level [9]. The use of models on
the latter might help designing the system –for example, structural analysis, model checking
or simulations might be used for this purpose.

There are different approaches to the operational level. However, the cloud comput-
ing paradigm is being widespread and it has been generalised to a variety of heterogeneous
domains and applications. The nature of cloud computing abstraction, which involves trans-
parency, fault tolerance and scalability, makes the cloud a suitable environment to deploy
heterogeneous large-scale models.

The complexity in usage terms of cloud platforms, the absence of interface standardisa-
tion and the innate transparency of the cloud paradigm, prevent the development of a single
framework to deploy complex models or applications easily. The solution is to analyse the
properties of the given model and to exploit these properties to improve the deployment
parameters.

The usage of public cloud infrastructure (e.g. Amazon EC21, Google Compute Engine
(GCE)2), which are widely available, or even private solutions, attaches an intrinsic cost to
the execution of applications. This cost depends on the total resources used –with a pay per
use strategy– and it might be affected by how the application is deployed. For instance, if a
highly coupled model is split in a distributed environment among several machines, there will
be a high usage of the network infrastructure and the cost might increase. Exploiting certain
properties of the application models can help to choose suitable deployment parameters to
reduce the total cost or to improve the performance.

As we have said before, the cloud abstraction not only provides a platform to execute the
functional description –or functional requirements– of a model, but it also has to guarantee
certain QoS metrics to that application –non-functional requirements–. Moreover, those
non-functional requirements related to performance are accomplished through the flexibility
given by the infrastructure. The isolation between resources at this level is achieved through
virtualisation techniques. In this regard, container technology is substituting Virtual Ma-
chine (VM) technology in several domains, due to its flexibility in deployment. Its usage
allows the user to reduce the tarification period –for instance, GCE can be used for frac-
tions of a second– and it allows the deployment of a new stateless computing paradigm –as

1https://aws.amazon.com/es/ec2/
2https://cloud.google.com/compute/

https://aws.amazon.com/es/ec2/
https://cloud.google.com/compute/
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Figure 1.1: Methodology for executing complex applications in distributed environments.

Amazon Lambda3–. Due to the relative novelty of the container virtualisation, the field of
resource allocation using containers has not been addressed by researchers thoroughly [10].

The resource efficiency is not only motivated by the economic impact, but also by the
nature of the Big Data applications. The huge amount of information and the need to
process the information to get its value force us to develop systems and models that can
deal with it in short periods of time. This situation is nearly modelled by the Data Stream
paradigm. Data –or even applications or models– arrives to the computing infrastructure
with a variable rate –or a variable SLA– and they need to be analysed as soon as they arrive.

1.1 From the Functional Level to the Operational Level

From an abstract point of view, we can consider a distributed execution environment where
applications arrive to be executed under certain QoS and cost requirements (Figure 1.1).
The functionality requirements of the applications are modelled on the functional level
and the operational level represents the infrastructure where the functional instances are
mapped to be executed [9]. The manner in which these instances are mapped to instances

3https://aws.amazon.com/es/blogs/compute/container-reuse-in-lambda/

https://aws.amazon.com/es/blogs/compute/container-reuse-in-lambda/
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of the operational level might have a heavy impact on several performance and economic
variables of the entire system –for instance, the QoS given to certain applications, the overall
utilisation of the cloud and the size of the physical and virtual resources in the cloud, among
others.

Applications deployed and executed in such a system can be classified in three categories,
depending on their intrinsic characteristics and on the details given by the model:

� Model-driven applications. Applications arriving might be as complex as possible,
so it might be impossible to execute them in a single machine with feasible QoS para-
meters. This means that the application should be distributed into the computational
resources. On the whole, the partition decisions will be conditioned by the properties
of the model. Examples of this kind of applications are the simulations of complex
systems or agent applications. The application model is susceptible to be analysed and
the information that it provides can be as detailed as possible –we refer to this inform-
ation as micro-information or micro-parameters–. The complexity of the application
makes their execution almost impossible in a single operational instance with feas-
ible QoS guarantees. Therefore, the application –or the model– should be distributed
among different instances. This distribution can be made randomly, using statistical
information or exploiting certain properties inherent to the model. For example, a
microservice architecture might be considered as a whole application to be deployed
in a cloud. The relationships between services, either causal or non-causal, can be
modelled as a graph, and we can partition the graph attending to certain properties,
for example, minimising the cutting edges. For the simulation domain, High Level
Petri Nets model the parallel behaviour of the application, and this information can
be used to partition the model.

� Data-driven applications. Certain applications are high data consuming and, in
fact, the data model conditions the execution of the application. For instance, since
moving the data might have an important economic cost, some applications should be
executed where the data is located. Furthermore, the instances arriving to the cloud
might represent pre-processing or even raw data to be analysed by further applications.
Bringing the data as near as possible to the operational instances where the final
analysis will take place has a deep impact on the performance of those applications.
Overall, the Data Stream paradigm models this behaviour and it has to deal with a
nearly endless stream of data which: i) has a variable input rate; ii) arrives without
any control of its order from the point of view of the system; and iii) cannot be easily
retrieved [11]. Other architectural models include the Lambda architecture, where an
off-line and on-line process is made to achieve certain guarantees [12]. Graph analysis
over social media data is an example of this layer. The operational instance where
the application is deployed –the analytic application– is mostly given by the instance
where the data is located.

� System-driven applications. We consider that the instances arriving are mean-
ingful applications and the system cannot make any assumption about them. Each
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distributed application is considered as a black box and the operational system man-
ages how they are deployed. Therefore, how they are modelled or implemented is
abstracted in this level. Models used in this layer might use macro-information to
manage the instances –mainly, statistical information about execution times, deadline
information, etc.–. The use of models helps to analyse how applications arrive to
be processed and how the distributed processing might affect the macro-parameters.
This information can be used to take decisions about QoS parameters –e.g. deadlines
or throughput–, the size of the computational resources or scheduling and allocation
policies. In this level, statistical models have been widely used in the literature; spe-
cially, those which model the arrival of instances with an exponential distribution
function. The Petri Net abstraction might be useful to analyse the scheduling and the
resource allocation problem from an analytical and a simulation perspective.

For these kind of applications, not only the partition or distribution scheme has an im-
pact on the performance, but also the operational scheduler. Overall, we can see that there
is a gap between the functional and the operational level. The transparency of the cloud
abstraction hides operational information to the functional layer, and the fact that, in most
of the systems, the applications are seen as a black box, hide functional or structural inform-
ation to the operational layer. To keep the transparency property of the cloud abstraction,
this gap needs to be filled with specific algorithms and mechanisms, related to the proper-
ties of the model, instead of using a general purpose scheduling which, in practice, will take
inefficient allocation decisions. In this PhD thesis, we propose to fill this gap by bringing
the scheduling algorithm near the functional level –the client-side scheduler components in
the figure–. This allows the tenants of the system to use operational information.

1.2 Thesis Overview

In this PhD thesis, it is analysed the manner in which certain properties of the model,
which describes an application deployed in a cloud environment, can be used to increase
the performance of the execution time and/or minimise the total resource usage and the
total cost. Thus, we propose different approaches to fill the gap between the functional
and operational layers. Due to the heterogeneity of the models which might be used to
characterise these applications, we use those which are suitable for the specific objectives of
each use case. These use cases include: streamed graph partitioning for obtaining analytics,
Electrical Vehicle charge and discharge applications, and a general framework for processing
tasks in a multi-tenant cloud environment based on container virtualisation.

Each of these scenarios allows us to exemplify the importance of exploiting the model
to improve the performance in the layers presented in the previous section:

� Electrical Vehicle charge/discharge simulation (Chapter 3). In this chapter, a system
where a set of EV interacts between each other is analysed. The relationships between
the modelled entities –e.g. EVs and Charging Stations– are described by using a formal
model –Object Nets–. The properties of the model are used to deploy the simulation
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of the system among several machines. These kind of simulations can be used to make
optimal decisions about the dimension of real systems.

� Streamed Graphs and graph partitioning (Chapter 4). In this chapter, we analyse how
the graph partition –equivalently, the data distribution among different machines–
affects the performance of the execution of analytics over that machines. We focus
on how to use the streamed graph model to minimise the resource usage, namely, the
total network usage and the RAM. We propose the summary graph abstraction, which
compresses a graph to achieve certain resources guarantees.

� The cloud environment as a research domain. We can consider the entire system layer
–where black box applications arrive to be processed– in private clouds (Chapters 6,
5, 7). We focus on a container-based infrastructure, where different tasks arrive to
be executed. These tasks might be self-contained applications or they might belong
to a workflow or to a bigger model which has been partitioned in a previous step
–for instance, they can be pieces of a simulation (as we propose in Chapter 3) or
partitions of a big graph (as proposed in Chapter 4)–. We use statistical and Object
Nets models to minimise the performance degradation caused by scheduling decisions.
These decisions can be made by using structural or operational information:

– Structural information. This information is about design decisions taken by the
developer; for instance, which containers are highly coupled. These decisions are
close to the functional level. In Chapter 5, we propose an Object Nets model
to analyse how different design and deployment parameters impact on the per-
formance. The formal model is fed with data obtained from a real cluster, which
allows us to obtain several design rules.

– Operational information. This information deals with the manner in which the
operational resources –e.g. physical machines, containers– are shared in a cluster.
First, we propose an informal model to bring near the client or the applica-
tion developer the scheduling decisions (Chapter 6). To accomplish this, the
developer should know certain operational properties and give that information
to the scheduler. For instance, this information might be which hardware re-
sources are more intensively used in his application –i.e. CPU, Network, among
others–. The idea is to help the scheduler to split applications which use the same
kind of resource among different machines. In Chapter 7, we refine this informal
model by proposing a statistical model to characterise applications through timed
indices. These indices model thoroughly the hardware resource usage of the ap-
plication, and they are used to analyse how applications interfere between them
in a container cluster.

1.3 Motivation and Contributions

The process of the scientific method consists on formulating a research question, defining
a hypothesis from that question, and testing experimentally the acceptance or rejection of
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the hypothesis, to make further analysis. The accomplishment of this PhD thesis has been
contextualised inside this scheme, therefore, it is important to define the research questions
and the hypothesis which determine its further development.

The underlying research question is: Can application-driven models be used to improve
the resource efficiency of the execution of applications in a distributed environment?. The use
of models to describe applications or systems has been widely addressed by the literature
and there is no doubt in its utility. They can be used in the upper abstraction level –
the functional level– to help to design, implement and test applications. However, in this
PhD thesis, we propose to use those models to take decisions about how applications are
executed in a distributed infrastructure, namely, the cloud. Of course, this premise is
quite general, and we have focused on certain applications in different domains, which have
specific characteristics. As the considered applications and models are heterogeneous, it is
not possible to propose a general purpose analysis framework. The use of a certain model
rather than other one will be determined by the specific characteristics of the application
and by the expected property to be optimised; i.e., the minimisation of the overall execution
time, the maximisation of the infrastructure usage, etc. All contributions aim to fill the
gap between the functional and operational levels with several resource and performance
restrictions.

The specific research questions and contributions regarding each domain are the following
ones:

� Q1. Is there a conceptual gap between large-scale models and the cloud platform where
the simulation is executed?. The simulation of large scale models in cloud environments
can achieve non-functional requirements, for instance, those regarding elasticity and
fault tolerance. How these high-level models –e.g. Object or Colour Petri Nets– are
mapped to cloud resources is a research topic which has not been addressed thoroughly
in the literature. We propose to fill this gap with the “elaboration step”, where high-
level primitives are elaborated into low level elements –i.e. sequential state machines
with message passing– which can be used to partition the model easily.

� Q2. Is it possible to distribute data-driven applications by using performance and eco-
nomic criteria at the same time?. In the context of Big Data, data-driven applications
might involve the processing or the execution of analytics over a continuous flux of
information, described by the Data Stream paradigm. If the incoming data models the
relationship between different entities, it can be modelled as a streamed graph. At this
point the distribution of this data over the operational layer can be seen as the graph
partition problem. How graphs are partitioned to make further analysis has been stud-
ied previously, as we present in Section 2.3. Works focused on classical graphs and on
streamed graphs. However, the use of the proposed algorithms and techniques has an
impact on the performance –the partition process might have a computational cost–
and on the resource usage. Moreover, if the resource usage increases, the economic
cost will rise. The contributions on the streamed graph partition topic are:

– We define the concept of “Summary graph”, which enables us to determine the
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trade-off between the quality of the partition and the resource usage for the
streamed graph partitioning problem.

– We analyse the distributed architectures to process graph data and we set re-
source bounds for those architectures.

� Q3. Do design decisions of applications have an impact on the performance when they
are executed in a container-based environment?. Deploying and executing applica-
tions in a container-based virtualisation system requires to adjust several deployment
and configuration parameters. Moreover, new abstractions, such as Kubernetes’ pod
concept, arise. The impact of these parameters on the performance of containerised
applications is not banal, and several design decisions might affect the performance
and resource usage. In this regard, our contributions are:

– Proposing an Object Nets model which describes the behaviour of Kubernetes,
a container management system. The model is fed with data from a real cluster
to make further simulations or estimations.

– Analysing the degradation caused by the pod abstraction used in Kubernetes.

– Proposing several rules to structure the deployment of containerised applications
in Kubernetes to minimise the overhead caused by Kubernetes.

� Q4. Is it useful to bring near the cloud user/developer the scheduling algorithm to
improve the scheduling decisions?. When containerised applications are deployed in
multiple tenant container management systems such as Kubernetes –or alternatively,
Docker Swarm–, tenants and the scheduler are not aware of the resource usage of
their applications. We propose giving several primitives to clients to describe their
applications. Then, the scheduler can use this information to take better allocation
decisions to improve the overall performance of the cluster.

� Q5. Are the isolation mechanisms available in container-based environments, such
as Kubernetes, sufficient to share resources efficiently?. Kubernetes gives some basic
mechanisms which allow sharing resources in a cluster with certain guarantees. We
show that certain resources cannot be completely isolated. Furthermore, the CPU
reservation mechanism might lead to scenarios where a lot of resources remain unused
and the overall performance of the system is worsened.

� Q6. Is there a performance degradation when multiple containers are executed con-
currently in the same machine?. If so, Is it possible to analyse it and to isolate the
causative factors to minimise the degradation?. The interference experienced among
containers sharing hardware resources in the same machine, that causes a degradation
in their execution, is difficult to model and to analyse due to the low level resources
involved –e.g. memory hierarchy–. The state of the art proposals regard VM virtu-
alisation, and there are few works which address this issue in container systems. The
contributions of this PhD thesis in this field are:
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– Proposing a model to build time-evolving indices which describe low-level resource
usage.

– Proposing a methodology to characterise an application using four timed indices.
The granularity of these indices can be adjusted depending on further usage.
Moreover, these indices are based on statistical models and they are meaningful.

– Proposing a methodology to use these indices to estimate the overall interference
between containers in the same machine.
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Chapter 2

State of the Art

Not only is there an art in knowing a thing, but
also a certain art in teaching it.

Cicero

In this PhD thesis, we study how we can fill the gap between the functional and the oper-
ational level. To exemplify how the deployment of model-driven, data-driven and system-
driven applications can be improved by taking into account properties related to specific
models, we have focused on different use cases. We have analysed two applications: the
simulation of Distributed Event Systems and graph analytics over a streamed graph. The
related work presented in this chapter can be classified in two blocks: works related to
those application scenarios and work related to the operational level. The latter focuses on
container performance comparison, container scheduling and interference in those platforms.

2.1 Models to Describe or Characterise Distributed Applic-
ations

The intrinsic characteristics of distributed applications and the properties which are going
to be analysed determine the use of a certain model rather than another one. The Petri-
Net model [13] allows analysing and describing the concurrent and dynamic behaviour of
applications and components. The basic Petri-Net model –also called Place-Transition Nets–
can be enriched with the following additional semantic:

� Time information. The basic Petri-Net model considers that all transitions are fired
instantly, and it has no consideration regarding time. There are several models that
attach time to transitions, for instance, Timed PNs (TPNs) [14] attach a deterministic
time, and Stochastic PNs (SPNs) [15] attach a stochastic one. Both models give the
primitives needed to build a Discrete Event Simulation system.

� Token information. In the basic PN model, tokens represent the current marking
of the net and they determine the state of the system. In the Colored Petri-Net

11
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model [16], tokens have types, and they can model variables moving around the net.
Tokens might also be a Petri-Net, as it happens in the Net-within-Nets paradigm [17].
These models are suitable to describe high level behaviour of applications and have
been used to describe agent systems and complex systems.

Although High Level Petri-Nets enable the possibility of modelling implicitly the data
as tokens, it is difficult to use that kind of models to exploit properties related to the data
structure. For this purpose, graph models are more suitable. These models allow reasoning
about how a set of entities –called vertices– interact or are related between them –those
relationships are called edges–. Among other applications, the graph model has been used
widely to describe social interactions between users or the relationship between tasks in a
platform –e.g. to describe a scientific workflow–. The basic semantics of graphs can be
enriched with temporal or dynamic information –evolving graphs [18]– and with certain
availability restrictions –streamed graphs–. Depending on the application domain, other
high level models can be used to describe the interaction and/or the coordination between
entities. For example, the TOSCA model (Topology and Orchestration Specification for
Cloud Applications)1, enables the description of applications composed of cloud-based web
services and the relationships between them.

All of these models need detailed information about the application or about the data.
How this data is obtained and the high level of the analytics carried over these models
make them useless for certain application domains. In these situations, statistical or ana-
lytical models can be used to analyse certain properties of applications. Machine Learning
algorithms, which need a lot of data to capture certain behaviours, are an example of these
kind of models. They are useful to classify applications or to make certain estimations, but,
they are generally quite opaque and it is difficult to reason about those models –this reason-
ing might include questions about how the system has reached certain states or how certain
properties are achieved–. Other statistical models include the Exploratory Factor Analysis
techniques and the Confirmatory Factor Analysis, which is explained in detail in Chapter 7.
Therefore, analytical models can be used to feed high level models –e.g. transitions in
Petri-Nets–, to analyse the entire system.

2.2 Distributed Discrete Event simulation

The parallel execution of Discrete Event simulation has been addressed by [19]. This work
proposes splitting the sequential simulator into a set of Logical Processes (LPs) which inter-
act exchanging timed messages. Each LP can process internal events in order; however, due
to the fact that they are mapped in different processes or machines, errors resulting from
out-of-order event processing might arise. These errors are referred to as causality errors,
and this problem is called the synchronisation problem [20]. An overview of the extensive
literature about the synchronisation problem can be found in [21]. To avoid causality errors,
two approaches have been developed:

1https://www.oasis-open.org/committees/tosca/

https://www.oasis-open.org/committees/tosca/
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� Conservative simulation. The conservative approach assumes that messages arriv-
ing on each incoming link are stored in a FIFO queue with events in a time-stamp
order. The processing of local events is interleaved with the processing of messages
in incoming links. Because messages in each FIFO are sorted, the LP can guaran-
tee adherence to the local causality constraint by repeatedly processing the message
containing the smallest time-stamp. The problem arises if some input link queue is
empty, because the LP must wait, and a deadlock can appear if each LP is waiting on
the incoming link containing the smallest time-stamp. The solution to this problem is
the estimation of a lower bound on the time-stamp of messages the LP will send, and
sending a null message with a time-stamp called lookahead. The lookahead values are
closely related to the physical system.

� Optimistic simulation. The optimistic approach does not postpone simulation steps
that could yield causality errors, trying in this way to accelerate the simulation. When
causality errors are detected in a LP by the reception of an out-of-order straggler
message, the LP state is restored to a previous safe state, and sends antimessages to
cancel sent messages. The cost of this approach is in the memory to store safe states,
and in sending antimessages.

The improvement on the performance of the execution of simulations can be achieved
through: i) improving the simulation engine; and ii) improving how the entire model is
partitioned into LPs and how these LPs are distributed into processes or machines. The
majority of the literature has focused on the first approach, proposing different algorithms
and techniques which estimate the lookahead value –for conservative simulations– or min-
imise the amount of rollbacks –for optimistic simulations–. In this regard, in [22], authors
propose to ignore rollbacks. Their experiments show that the error was small –about 5%–
but the used model has only 3 LPs, which makes extending their results for large scale
simulations difficult. Another approach proposes to relax the event causality [23]. In [24],
it is proposed to use a global progress window to adjust the number of events which a LP is
allowed to execute, in order to minimise rollbacks. In [25], authors use a bulk-synchronous
strategy to synchronise the execution with supersteps, where the number of events executed
in a superstep is adjusted dynamically. In regard to conservative simulations, in [26], a
lower bound for the degree of lookahead exposed by each LP is inferred from the Petri-Net
structure and from timed firing transitions.

To the best of the author’s knowledge, the partition problem for simulation models has
been addressed by few works [26,27].

2.3 Streamed Graphs and Graph Partitioning

Graph algorithms have been widely treated in literature. Graph streaming model has been
described in [28]. It represents the sequential access to graph elements instead of random
access, due to the size of the graph. In this regard, several papers propose how to ad-
apt graph algorithms to the streaming paradigm [29, 30]. They take considerations about
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the complexity of different typical algorithms –triangle count [31], property checking, con-
nectivity, etc.– and they calculate the required space bound and the number of times an
element of a stream is processed. In several works, some data stream restrictions are relaxed
to obtain more flexible models: Semi-stream [28], W-Stream [32], Best-Order Stream [33],
Sort-Stream, etc.

Some theoretical works have analysed the relationship between the number of passes
over an off-line stream and the memory size needed for some specific algorithms and ap-
plications for graph processing (e.g. PageRank [34]). As we explain in Chapter 4, real time
considerations cannot be solved with these solutions.

Graph partitioning has been proposed in Metis [35] and Scotch [36]. However, they are
not suitable to partition real time streamed graphs because they need the whole graph and
their execution time is too slow for large graphs.

On the other hand, the graph partition problem in a streaming environment is a NP-
Complete problem [37]. To the best of our knowledge, there are a few works which focus
on this problem [38, 39]. In these works, they get approximated solutions by using some
heuristics with low processing time. In Fennel [39], the obtained partition is as good as
the Metis solution for some graphs. In their experiments, the worst case is for amazon0312
dataset and they get 6% more cutting edges. The problem of these heuristics is the O(n)
memory bound and the underlying architecture, which does not scale well for big graphs.

Finally, the summarisation of large scale graphs has been addressed by using different
data mining and sampling techniques [40–42]. The use of these techniques is not suitable for
a streamed environment with real time constraints, as it entails the identification of certain
graph structures –e.g. cliques– and/or the use of algorithms which need several passes over
the graph.

2.4 Container Scheduling

Container scheduling in cloud environments is an emergent research topic. Google has
developed and used several schedulers for large scale infrastructures over past years based
on a centralised architecture [43, 44]. They are oriented towards internal global use or
as a global service provider. Some works have been proposed to improve the algorithms
available as a standard in practical cloud infrastructures, such as Kubernetes2, Mesos3 [45]
and Docker Swarm4. However, in [46], the authors point out the lack of works about resource
management with containers, and they propose a scheduling framework that provides useful
management functions that can be used to apply customised scheduling policies, mainly, in
local environments. We can find a few more works such as [47]. In this work, authors propose
a generational scheduler to map containers to different generations of servers based on the
requirements and properties learned from running containers. It shows an improved energy
efficiency over Docker Swarm built-in scheduling policies. They assume that containers can

2https://kubernetes.io/
3http://mesos.apache.org/
4https://docs.docker.com/swarm/,https://github.com/docker/swarmkit

https://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/swarm/, https://github.com/docker/swarmkit
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be migrated, which may not be consistent in all container management platforms. The
work in [48] uses an ant colony meta-heuristic to improve application performance, also over
Docker Swarm base scheduling policies. Authors in [49] address the problem of scheduling
micro-services across multiple VM clouds to reduce overall turnaround time and total traffic
generated. Finally, in [50], the authors introduce a container management service which
offers an intelligent resource scheduling that increases deployment density, scalability and
resource efficiency. It considers an holistic view of all registered applications and available
resources in the cloud. The main difference from our approach is that we focus on the client
side requirements to optimise a subset of applications and resources. The work we propose
in Chapter 6 improves the performance of deployed containers based on the interference
made by other containers scheduled in the same machine. The idea is to use non-formal
information given by the developer –or the client– of that application.

Several approaches exist outside container technologies, however it is not straightforward
how they work inside a container management system. For instance, CASH [51] is a Context
Aware Scheduler for Hadoop. It takes into account the heterogeneity of the computational
resources of a Hadoop cluster as well as the job characteristics, whether they are CPU or
I/O intensive. In [52], the authors use k-means as a classification mechanism for Hadoop
workloads (jobs), so that jobs can be automatically classified based on their requirements.
They plan to improve the performance of their scheduler by separating data intensive and
computation intensive jobs when the classification is performed. On the other hand, job
interference was also studied in Hadoop, and acknowledged as one of the key performance
aspects. In [53], the authors analyse the high level of interference between interactive and
batch processing jobs and they propose a scheduler for the virtualisation layer, designed to
minimise interference, and a scheduler for the Hadoop framework. Similarly, the authors
in [54] analyse the interference occurring among Apache Spark jobs in virtualised environ-
ments. They develop an analytical model to estimate the interference effect, which could be
exploited to improve the Apache Spark Scheduler in the future.

2.5 Container Performance

We summarised the most important work in performance evaluation of cloud environments
in Table 2.1. Most of it focused on performance comparison of Virtual Machines rather
than on containers as the unit of computation. A set of workloads were developed to obtain
the usage of memory, CPU, networking and storage [61, 62, 67]. However, all these works
are based on experimental results that do not have an analytical model which supports
reasoning about performance decisions.

To the best of our knowledge, no work has tackled the container performance topic from
a rigorous analytical perspective. Even in more traditional cloud technologies, few works
are based on formal models [64]. An analytical model, based on Continuous Time Markov
Chains, is used in [65] to study the provisioning performance of microservices. This model
is validated with experiments deployed in a specific microservice platform, which is based
on the execution of Docker containers, with Docker Swarm providing cluster management
support and Amazon EC2 as the virtual machine backend. However, the proposed analytical
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Work Model
Virtualisation

infrastructure

Experimental

framework

[55] Experimental approach VMs
Hyper-V, KVM,

vSphere, Xen

[56] Experimental approach VMs KVM, Xen, vBox

[57,58] Experimental approach Containers and VMs
Docker, KVM,

Xen, LXC

[59] Experimental approach Containers and VMs
LXC, OpenVZ,

VServer, Xen

[60] Experimental approach Containers LXC

[61,62] Experimental approach Containers Docker, KVM

[63] Experimental approach Containers Docker, Weave

[64,65]
Continuous Markov Chains

(Exponential PDF)
Containers inside VMs

Docker Swarm

inside Amazon EC2

[66] Net-within-Nets (any PDF) VMs Simulations

Our work
Net-within-Nets (any PDF)

Experimental approach
Containers

Kubernetes

over bare metal

Table 2.1: Summary of the related work for container performance analysis. The table
includes the kind of model they proposed, the assumptions of the model, the virtualisation
infrastructure that they used and the experimental framework.

model assumes that the rate of workload generation follows a Poisson distribution –the time
between arrivals has an exponential probability density function (PDF)– which may yield
to non-realistic scenarios. In our work, we can link transitions on the Petri Net model with
any PDF or with functions obtained from real application benchmarking, so more realistic
scenarios can be modelled.

In [66], the researchers propose an iterative and step-wise refinement methodology that
begins with the modelling of functional requirements. Afterwards, they model control and
data flow together with the specification of the computational resources available. As a
result the performance of the distributed system can be formally analysed by considering
all the aspects that can affect performance.

All these models need temporal information to be fed. Previous works, mainly in the
context of execution of traditional VMs in Clouds, were focused on obtaining this kind
of information [55, 56]. Several works provide a performance comparison between virtual
machines and containers [57, 58, 62]. These works show a better performance and resource
usage in containers. Scalability performance in Kubernetes was studied in [68], where the
results show that containers perform 22 times faster than VMs for the provisioning action.

The container platform evaluation, as Docker and LXC in [59], shows performance is-
sues being improved and this approach being considered for High Performance Computing
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(HPC). The researchers conclude that the performance is near-native for both technologies.
In [60], the authors present several variables –e.g. Linux kernel version– which have an
impact on the performance of containers. However, both works focus on the execution time
as a performance metric and they do not consider other measures, which can be significant
–e.g. deployment time–. They also assume that the image is pre-loaded in the machines
and they do not provide a full methodology to use their results.

As we have described in our work, Kubernetes introduces a new abstraction, the pod.
To the best of our knowledge, the performance degradation of this abstraction has not been
studied by literature. Analysis of nested containers is the closest research field. In [61, 63],
network performance degradation was observed in some configurations due to a deployment
based on full nested containers. This degradation is caused by the usage of network vir-
tualisation technologies –Linux Bridge or OpenvSwicht– twice or by the usage of Software
Defined Networks and encryption. However, the Kubernetes pod abstraction gives a com-
mon space port to all containers –and therefore the same IP address to all services– so the
performance degradation may be different.

Finally, several performance metrics of Kubernetes5 were reported by the Kubernetes
team. In a cluster of 100 nodes, their results show a 99th percentile pod startup time
below three seconds. This value is consistent with our results. Their experiments show
how a Kubernetes cluster behaves when the scale of the deployment is increased for several
simple metrics –pod start time, end-to-end response time and response time of different
API operations–; however, how the deployment is structured and the impact of grouping
containers inside a pod is not analysed.

2.6 Interference in Container Platforms

The isolation in the performance aspects –not in the security ones– is a concept similar to
the interference. It has been studied in the context of cloud computing in [69]. However, this
work focuses on multi-tenant applications and it does not take into account the infrastructure
level –e.g. container virtualisation or VM virtualisation– and their results are obtained from
simulations. Prior works focus on the interference of VMs inside the same physical host or
multicore processors [70]; specially for cache memory and memory bandwidth resources
[71–73]. The majority of these works use the LLC counter to analyse the cache behaviour.
Other analysed resources are the I/O file system [74,75] and the network [76]. [77] analyses
the performance isolation of Virtual Machines on the same physical host and make some
estimations based on similarity between applications. In [78], a technique called Bubble-Up
is used to estimate the execution time under contingency in VM clusters. They model each
application as a sensitivity profile which is normalised to a single score, called bubble score.
Additionally, Hubbub-Scale [79] calculates an interference index based on the value of the
degradation to propose a elasticity controller which is aware of VM interference.

Although most of the previous work has analysed the contention problem for VM virtual-

5https://kubernetes.io/blog/2016/03/1000-nodes-and-beyond-updates-to-kubernetes-

performance-and-scalability-in-12/

https://kubernetes.io/blog/2016/03/1000-nodes-and-beyond-updates-to-kubernetes-performance-and-scalability-in-12/
https://kubernetes.io/blog/2016/03/1000-nodes-and-beyond-updates-to-kubernetes-performance-and-scalability-in-12/
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isation, there are several interesting works which analyse the interference between containers.
In Paragon [80], they use a collaborative filtering algorithm to determine the influence of
several Sources of Influence (SoIs) in applications. With this information, the scheduler
tries to choose the optimal machine to allocate the application. In contrast to our work,
they consider the interference of a container to be constant over the entire execution, which
might lead to non-optimal decisions for the scheduling algorithm. Additionally, they con-
sider that the host machines in the cluster are heterogeneous. However, they do not give any
meaningful metric like our interference profiles. Their machine learning model gives several
variables without a direct correspondence to physical variables, which makes analysing the
model and using it to reason about different situations difficult.

Furthermore, our interference indices or the estimated degradation might be used by the
scheduler to give some priorities –or penalties– for certain hosts. For instance, in ARQ [81],
they introduce the concept of Quality of a Resource needed by an application. Low values
of that metric correspond to insensitive influence applications. This metric is used as a
priority for the scheduler. Moreover, the interference in cloud environments not only has
performance consequences, but also security ones. In Bolt [82], they propose a methodology
to determine which application is co-scheduled with another one based on the interference
between them.



Chapter 3

Distributed Simulation of Complex
and Scalable Systems: from Models
to the Cloud

Uncertainty is worse than all.

Alexandre Dumas

In this chapter, we present an example of applications describing a complex system, which
has to be executed in a distributed system. The application is considered as a white box,
so we assume that there is a model which describes certain properties of the application
and we use certain properties of the model to guide the partition and distribution into
operational instances. Specifically, we consider the simulation of complex Discrete Event
Systems (DES) using High Level Petri Nets. The Petri Net model is an executable one, which
allows describing directly the simulation application. The simulation domain chosen in this
chapter is an Electric Vehicle charge and discharge system. The system is modelled as a set of
state machines –the EVs sequential activities– which use conservative and non-conservative
resources –e.g. the street capacity and the electric power, respectively–. The interaction
between EVs is defined by sharing those resources in the system and by exchanging messages.

Other complex applications that can be seen as a white box are the description of
computer systems using a micro-service architecture or business logic models which describe
the relationship between processing steps. In both cases, the most suitable model to describe
relationships is the graph model, and several partition techniques –with several performance
criteria such as cost or performance metrics– should be used to improve further executions
or analytics over the model. Nevertheless, the High Level Petri Net model presented in
this chapter not only describes the relationships between entities, but also their concurrent
execution and the communication protocol between them. This kind of model allows us to
describe richer scenarios where other parameters should be considered.

The chapter is structured as follows. Section 3.1 introduces the need of using models for
describing complex systems. Section 3.2 presents basic notions of distributed simulation of
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Timed Petri Nets. Section 3.3 describes the proposed approach for modelling complex sys-
tems. Then, the elaboration process to obtain a simulation model in the cloud is illustrated
in Section 3.4. Finally, concluding remarks are discussed in Section 3.5.

3.1 Models to Describe Complex-Systems

The IoT and Cyber-Physical Systems (CPS) allow tightly interconnected and coordinated
physical and computational processes to work together effectively. As environments become
more complex, it is not viable anymore to engineer individual self-contained systems. Thus,
the necessity of integrating large-scale Systems of Systems (SoS) involving several domains
arises –e.g. Smart Factories, Smart Cities, Smart Power Grid, Intelligent Transportation
Systems, etc. [83].

A fundamental challenge caused by the IoT, CPS and resulting large-scale SoS, is the
need of models to cope with the complexity of current techno-socio-economic systems. This
systems describe physical and computational interactions and integrate human behaviour
into the processes with sustainability and economical requirements. Separation of concepts
and lifting the level of abstraction have proven to be effective software engineering strategies
to afford complexity. However, the interrelationship of these separate models is part of the
essential complexity of the problem domain, and an early separation between different facets
of the system design makes it difficult to assess the impacts and trade-offs of alternatives
that affect all involved processes in complex domains [84].

In addition to the modelling of different facets and the interplay between them, a rigorous
model-based approach is required to use them for a formal verification of design, coding and
testing phases to detect defects in the requirements compliance. However, formal-model
based analysis tools are only useful under certain assumptions or are insufficient to afford
the study of even simple software systems. On the other hand, simulation may be useful to
discover some (un)desirable behaviours; but, generally speaking, proving the (in)existence
of some properties is not allowed. Therefore, the synergistic combination of simulation
and formal models for functional, performance and economical analysis is necessary for
an efficient and reliable design and/or optimisation. In our approach, we give a central
role to Petri Net models describing the behaviour of the system including timing and cost
information. The goal is to use these models in an intensive way for analysis and simulation
purposes.

Independently of the formal model, as systems become increasingly sophisticated, the
state space of the system becomes larger and the use of analysis and simulation techniques
becomes impossible by a single-processor machine. Distributed simulation and cloud com-
puting to scale to a huge amount of resources that can be rented (and disposed) in every
moment seems the natural way to afford this scalability problem [85]. The intention of a
cloud-based simulation service is to migrate the simulation software into the cloud, provid-
ing users with appropriate tools to hide low level details of this migration process from the
modeller considering cost and performance requirements.

The main challenges of deploying a simulation in the cloud come from the nature of the
SoS models. Each model view can represent a facet/subsystems describing, in a precise way,



3.2. Distributed Event Simulation of Complex Systems 21

some behaviour. However, models resulting from the composition of different subsystems
and facets tend to become an spaghetti-like specification. This characteristic is a serious
handicap because parallel abstractions are based on exploiting some regular structures and
declarative specifications that may be materialised on distributed systems [86]. Additionally
to the difficulty for finding the maximum concurrency to scale the model, the partitioning
of the model must preserve its original semantic taking into account low level details –e.g.
synchronisation and state-management– [20], and must be a trade-off between performance
and cost of resources.

3.2 Distributed Event Simulation of Complex Systems

Complex and scalable Discrete Event Systems (DES) require simulation and verification
techniques during the design process, to prevent bad behaviours, to ensure that certain
good properties hold, and to evaluate performance. Petri Nets (PNs) [13] have been pointed
out as a good modelling tool, since many properties may be easily analysed in a great
number of cases. Moreover, when formal analysis becomes impracticable, the model may be
simulated. As a simulation tool, PNs allow the formulation of models with realistic features
–as the competition for resources– absent in other paradigms, such as queueing networks.

Given a PN model of a DES, we simulate the system by playing the token game on that
PN, i.e. by firing transitions as a result of the available tokens. This is also referred to as
implementing the PN. The basic PN paradigm can be extended by attaching a deterministic
or stochastic time interpretation –Timed PNs (TPNs) [14] or Stochastic PNs (SPNs) [15],
respectively–. The implementation of the TPN or SPN yields a Discrete Event Simulation
system. In fact, SPNs have been proposed as the minimal discrete event notation, and
both TPNs and SPNs are in the scope of works on DESs and Parallel and Distributed DES
(PDES) simulation [26, 27]. Observe that tokens in places represent the state, transition
firings represent events, and timed transitions represent the duration of activities.

The construction of an application to simulate PNs requires: i) a representation of the net
structure and the marking –state of the system that will be updated during the simulation–;
and ii) the simulation engine, also called the Simulation Machine. The simulation engine
follows a repetitive cycle that involves three stages: i) to test the enabling of transitions;
ii) to fire some enabled transitions –which may include the simulation of some associated
activity–; and iii) to update the marking –the state– of the PN, taking tokens out of the
input places and putting new tokens in the output places of each fired transition. The first
stage –the enabling test of transitions– may be such a time-consuming operation that it is
worth being lightweighted. To reduce the costs of the enabling test, two main approaches
exist:

� Place-driven approaches. Only the output transitions of some representative marked
places are tested for firability. This gives a characterisation of the partial enabling of
transitions.

� Transition-driven approaches. A characterisation of the enabling of transitions is
supplied, and only enabled transitions are considered. The firing of a given transition
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modifies the enabling conditions of the transitions connected to its input and output
places. Overall, an explicit representation of the marking is not necessary.

A DES models or emulates the operation of a system that changes its state over time
at the occurrence of discrete events. Therefore, a simulation model must represent states,
state changes –events– and time. Between consecutive events, no change in the system is
assumed to occur; thus the simulation can directly jump in time from one event to the
next, accelerating in this way the emulation of the system. At this point, it is important
to distinguish three different notions of time that appear in model simulation: i) physical
time refers to time in the physical modelled system; ii) simulation time is the representation
of physical time in the model, and finally, iii) wallclock time refers to the time when the
execution of the simulation is executed [20].

Distributed simulations require to decompose a sequential simulation into a set of logical
processes (LPs) that interact by exchanging time-stamped messages. Each LP guarantees
that its internal events are processed in time-stamp order; however, errors resulting from
out-of-order event processing due to the LP distribution over machines can arise. They are
referred to as causality errors. As we have discussed in Section 2.2, two classical approaches
have been proposed to guarantee causal safety : conservative and optimistic approaches [21].

Distributed simulation of Petri Nets will be based on many identical simulation engines
–Simulation Machines– distributed over the execution platform, and each one devoted to the
simulation of a subnet of the original one. Each subnet is represented in the corresponding
simulation engine as a data structure and a set of variables for the local state. Therefore,
each simulation engine plays the role of a LP in the context of Discrete Event Simulation,
and the time-stamped messages will be the tokens generated by the firing of a transition
that must update its output places belonging to other simulation engines. This means that
the previous considerations about conservative/optimistic approaches must be taken into
account in the context of simulation of PNs.

The efficiency of the distributed simulation of a PN is strongly dependent on the parti-
tion of the original model into subnets, each of them assigned to identical simulation engines
which compose the distributed application. Partitioning requires, a priori, the identification
of the good subnets in which the original one is divided. In this regard, strategies based on
the identification of sequential state machines –computing for example p-semiflows [87] in
an incremental way– or minimising the number of tokens to be interchanged between sub-
nets are necessary to obtain efficient applications to simulate the PN. Nevertheless, during
the execution, it is possible to observe congestion in the message flow between simulation
engines; mutual exclusions in the execution of several simulation engines; or other kind of
phenomena against the efficiency because of the interchange of messages. In these cases,
thanks to a simulation based on identical simulation engines working on data structures and
variables representing PNs, it is possible to achieve a dynamic reconfiguration of the initial
partition: i) by fusion of the data structures of two simulation engines in only one; or ii) by
splitting the data structure of a simulation engine into two separated data structures over
two distinct simulation engines. This dynamic reconfiguration is not possible in simulation
contexts where the system to be simulated is not a data structure –e.g. the system is a
program that must be compiled.
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Furthermore, the use of ordinary Timed PNs in the modelling of large complex DESs
can lead to models of unmanageable size. This drawback has been reduced by using Object
PNs which provide more compact and manageable descriptions. Nevertheless, this high
level models introduce two additional characteristics to the simulation of Place/Transition
Nets: modularity and hierarchy. In order to obtain an efficient simulation, instead of the
direct emulation of the high level model, we propose to transform the original model to
be simulated into a flat model composed by sequential state machines, each one simulated
into a simulation engine, and interchanging tokens. This transformation process is called
elaboration of the simulation model. It will be illustrated with the elaboration of an Object
PN to the flat model of sequential state machines, but it can be developed from languages
as that presented in [88,89] with semantics based on Object PNs.

3.3 A Petri Net based Modelling Methodology for Complex
Systems. A Case Study

We propose an example in order to illustrate the kind of applications that can be modelled
with the methodology presented in [88,89]. The chapter will be focussed in the construction
of an Object PN. This methodology can be used with the component-oriented language
designed by [89]. This language supports modularity and hierarchy components and it is
designed to model large and complex systems.

Let us consider an Electric Vehicle (EV) hiring service to travel in a city without air
and noise pollution (like London, Paris or Madrid). Users of the service take a vehicle in a
so-called EV station, and they travel through the city until they leave the vehicle in other
EV station. This basic scheme can lead to an unbalanced number of available vehicles in the
EV stations which can reduce the quality of service to customers of EVs in certain service
stations or, worse, cause a denial of service. The parking of the EV station has a limited
capacity that cannot change. A control strategy which distributes the vehicles among the
parking is needed to solve the unbalance problem.

The aim of the simulation is to analyse the behaviour of this system of EV service and
the control policies to guarantee the quality of service for a given interval time –for example,
a day–. To do that, it is necessary to know a priori what the program of scheduled activities
of the customer who rents an EV for that interval is. For instance, the places and the arrival
time of those places the user wants to visit. This abstraction will be called agenda. The
nature of this program of activities is strictly sequential because there is only one user
following a sequence of activities, but the agenda can contain flexible adaptations. This
means that the user can program alternative behaviours that are taken depending on the
availability of resources, or simply, depending on internal decisions of the driver that are
taken with a certain probability.

The considered example throughout the chapter first requires the definition of the topo-
logy of the city, as shown in Figure 3.1. This definition is composed by a set of connected
streets represented in the figure where the arrows represent the traffic direction. For traffic
in each direction there is only one lane. If it is a one way street, then the traffic lane is
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C

Figure 3.1: Topology of the city represented as a set of streets and the traffic direction.

designated by the letter shown in the drawing. If it is a two way road, the traffic in one
direction will be designated with the letter that appears in the drawing and the incoming
traffic with the same letter with the prime notation. There are EV stations in streets A
and E that are identified with the name of the street. These two parkings have a limited
capacity, where customers can find parked EVs that can be rented for their displacement,
or leave the EV at the end of its ride whenever there is space in the parking station for it.
The number of available EVs depends on the behaviour of the users over time and on the
balance strategy between stations.

Note that the model to be constructed is hierarchical, meaning that we have a first level
where we have a set of EVs, each one represented by means of its agenda of activities; and
a second level corresponding to the urban space where the EVs move, interact, perform
activities and so on. Therefore, a good choice for the construction of the model is the
formalism of Object PN [90]. In this model, the Object Nets –the nets that are tokens inside
a global Petri Net of a higher level, named System Net– are the agendas corresponding to the
EVs moving in the urban space of streets and EVs stations. The System Net will represent
the set of connected streets and EV stations through which the EVs can move. The Object
Nets corresponding to agendas can be modelled directly by means of a state machine –
in essence an automata representing the sequential program of activities to be performed
by a user renting the EV–. The System Net will be constructed in a modular way from
elementary modules representing the streets of the urban space and modules representing
the EV stations.

The Petri Net module representing the street model is depicted in Figure 3.2. We begin
modelling a conservative resource –with a get and release transitions– and we use it to build
the street. These resources are acquired by processes and, when they are released, they can
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Figure 3.2: Petri Net module corresponding to a model of a street.

be used by other processes. The place street represents the state of a user –conceptually an
agenda a– going through the street by EV v. In other words, this place will contain a token
corresponding to the Object Net representing the agenda of the user of v when this vehicle
is traversing the street. The model of a street could be refined by including the parking
space in each street or additional parking, but for legibility and illustrative purposes, we
present the unrefined model.

Instantiation of this basic module for each street of the urban topology, and a further
connection of the instances according to the topology, enables to build the entire topology
net where the nets representing the agendas of the EVs move. Figure 3.3 shows, for example,
the composition of modules for street A. The getA′fromA transition represents to enter
in street A′ from street A. Each transition is synchronised with the agenda through an
interaction, in this case getA′A. The number of nodes of the connectivity graph is the
number of resources in the topology net, and the number of edges is the number of transitions
between streets. For illustrative purposes, we have not shown the interaction between the
EVs; however, with the proposed methodology it is straightforward. We would have to
include the battery consumption in each transition, and to synchronise them with the EV
model.

Figure 3.4 depicts the module corresponding to the model of the EV stations, with the
corresponding resources –parking space and available PNs– and the output street. When a
user takes an EV, the user releases a parking space and he takes an EV resource. The fusion
between transitions is shown in Figure 3.4. For simplicity, the figure only shows station
A. The enterA transition represents entering in the EV station and the leaveA transition
represents leaving the station. The enter and leave transitions are synchronised with the
user’s agenda through inscriptions in the transitions.

The previous rules allow constructing the System Net of the full model of the system.
The last part of the modelling task corresponds to the construction of the PN representing
the agendas. These PNs will be the Object Nets that will act as tokens inside the System
Net previously described in a succinct way. A user, throughout his agenda, appears in the
system in the station place and his aim is to travel from that place to other station. However,
during his route, the user may do some activities. A user’s agenda represents a sequential
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Figure 3.3: Petri Net model of the urban topology presented in Figure 3.1 connecting
instances of the module of Figure 3.2.

program of activities that a user of the service has planned to do and the route that he
follows. When a user begins his agenda, he takes an EV in a certain station and, when the
agenda is finished, he leaves the EV in the same or in another station. The correspondence
between the agenda and the EV is the token that is moving through the net –the < a, v >
token in Figures 3.2 and 3.4.

In Figure 3.5, we illustrate a user’s agenda. In the example, the user starts in EV station
A and he travels to street C to do an activity; then, he travels to EV station E and he leaves
the EV. As he leaves the EV, we are not interested in the activity that the user does in
that place or what he does next. The agenda nets are synchronised with the topology
that we have presented before, through the inscriptions in the transitions –e.g. with the
inscription enterD or getA–. More sophisticated routes and activities can be modelled with
this methodology.

With this approach, we have to model every agenda that is going to happen in the
simulation. If we suppose that users only travel between stations, the possible number of
agendas depends on the number of stations –in our example, three stations and six agendas–.
In this case, the token inside each agenda is the EV, and an agenda could be followed by
more than one user. In any case, when we deploy the entire model the total number of
agendas deployed is the same, because we have to represent every possible combination.
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Figure 3.4: Module corresponding to the model of the EV station in street A.

Figure 3.5: A user’s agenda with two routes and one activity.

The composition of routes and agendas could be done automatically.

Finally, we model the control scheme as it is presented in Figure 3.6. Conceptually, it has
three separate components: the controller, the set of controlled agendas and the resources.

The controller evaluates an assertion f . If the assertion is true, the controller will
produce a message to the outMsg place. The message is produced by a function g which
encapsulates the balance algorithm. The g function should return the pair < src, dst >,
where src is where an EV should be taken and dst is the station where the EV should be left.
The assertion might depend on external events or on the current state of the simulation,
among other factors. The way this information is obtained is implementation dependant;
for example, the state of the simulation could be in a shared memory or the communication
could be made through a dedicated point-to-point channel. The controller is continuously
iterating the previous steps. The set of controlled agendas represents the activity to travel
from an EV station to another. They are used to move vehicles between the stations.
Additionally, in our example, the resources in the control algorithm are the operators which
move the vehicles.
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Figure 3.6: Model of the controller to balance the EVs in stations.

The communication between the controller and agendas is made by message passing.
The controller puts in a place the pair < src, dst > and, if there are enough resources,
the place in the agenda which is waiting that pair will take the message and the agenda
starts. The scheme presented is very simple and general. Other complex solutions can be
implemented; for example, there could be some operators reserved to some plans to establish
a priority policy.

3.4 Elaboration Process of Modular and Hierarchical Petri
Net Models for Simulation in the Cloud

The result of the modelling process is an Object PN as in the example of the previous
section. This PN can be obtained directly or by deploying the component-based model that
has been described in a textual language as presented in [89]. The simulation of this model
will consist in playing the token game on that Object PN. Proceeding in this way gives rise
to several drawbacks that are related to the particular semantics of this kind of PNs. This
is because the necessary simulation engine is a very particular algorithm that requires to
be carefully analysed in order to be distributed in, for example, a cloud platform. This
task is not trivial because the simulation engine must cope with modularity and hierarchy
properties of the model that are not very well-adapted for distributed programming.

Instead of the direct emulation of the high level model, a transformation of the original
model is proposed to obtain a model well-adapted for distributed execution, by using only
primitive concepts that can be easily adapted to possible changes in the execution platform.
We consider as primitive concepts those of sequential processes that communicate/syn-
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Figure 3.7: Elaboration of the synchronisation of transition getA of the agenda in Figure
3.5 and transition getAfromA′ of the system net in Figure 3.2, through the label getAA′.

chronise by message passing. This transformation process will be called elaboration of the
simulation model, and the transformed model will be called elaborated model, composed
by sequential state machines and interchanging tokens by message passing mechanisms.
Therefore, the elaboration process will be performed by:

1. Transformation of each synchronisation transition between a Token Net and its System
Net into a subnet implementing a protocol for this synchronisation but based on
message passing mechanisms.

2. Algorithms that identify and extract sequential state machines from the original Object
Petri Net covering all transitions of this net, i.e. every transition of a Token Net or
System Net must belong to one and only one sequential state machine.

3. Algorithms for the identification of places such that its set of connected transitions
belongs to more than one sequential state machine previously identified, because the
flow of tokens throughout these places will be implemented by the message passing
mechanism –the messages will be the tokens– in the distributed platform of execution.

In the sequel, the elaboration process is briefly illustrated through the example presented
in the previous section. The first step is the elaboration of the synchronisation transitions
between the Token Nets and the System Net. Each synchronisation transition in a Token
Net has a label used to identify the transitions to be synchronised –i.e. a transition of
the System Net and a transition of the Object Net sharing the same label–. For example,
let us consider the transition getA of the agenda –a Token Net– depicted in Figure 3.5.
This transition is synchronised with transitions of the System Net sharing the label getAA′,
for example, the transition getAfromA′ of the System Net depicted in Figure 3.3. The
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elaboration of this synchronisation yields the transformations shown in Figure 3.7. In the
elaborated model, three new places associated to the label appear for this synchronisation:

� Place getAA′: a token in this place represents a request from transition getA of
the agenda to synchronise with a transition in the System Net with the label getAA′.
Initially, it is empty, and it has as output transitions all transitions of the System Net
sharing the same label and an special transition representing the denial of synchron-
isation.

� Places negACK getAA′ and ACK getAA′ represent the answer of some transition
of the System Net for denial or approval of the synchronisation through the label. The
next transformation –see Figure 3.7– is based on the substitution of transition getA
in the Token Net by a polling algorithm that sends synchronisation requests with some
transition of the System Net while receiving denials of synchronisation.

The timing of these new transitions is implementation dependent but the value must be
much lower than the time of the original transitions.

After the elaboration of the synchronisation transitions, the next step is the identification
of state machines in the Object Petri Net. The goal is to identify a set of state machines
covering all transitions of the Token Nets and System Net, in such a way that a transition
belongs to one and only one of the identified state machines. In the example depicted in
Figure 3.5, the reader can observe that the Token Nets are user agendas and therefore,
they are state machines. Therefore, the first set of state machines is composed of the nets
corresponding to the Token Nets, and so all transitions in the Token Nets are covered by
this set. State machines of this first set are not connected to each other by message passing.
However, there may be communication between these state machines and the System Net
because of the transitions synchronised by labels as in the example of Figure 3.7.

The same process of state machine identification must be applied to the System Net.
In this case, by observing the net in Figure 3.3, it is easy to see that this net is not a
state machine and then general methods for state machine decomposition must be applied.
For example, in [91] an algorithm based on OBDDs is used to decompose a general place
transition net into a set of state machines. It is also possible to use algorithms based on
linear algebra [92] that compute minimal marking linear invariants that in many cases are
associated to state machines. Many other methods to perform this identification operation
exist, and all of them exploit the structure of the net by using different strategies.

The last step to obtain the elaborated model is the identification of the messages that
must be interchanged by the different state machines distributed in the execution platform.
Messages are the tokens generated by the occurrence of a transition that must be added to
a place that does not belong to the state machine of the fired transition. This place will
be called communicating place. If the input and output transitions of a communicating
place belong to the same state machine, the messages will be internal; but if this place is
connected to at least two state machines, then two things happen: i) all state machines
containing at least one output transition of the communicating place will be grouped in
the same simulation engine in order to avoid the distribution of a conflict between the
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output transitions of the communicating place; and ii) the firing of an input transition of
a communicating place causes the sending of the produced tokens from the state machine
containing this transition to all the state machines where this communicating place has
an output transition. The communication process is performed by the message passing
mechanism of the platform.

The tokens to be sent as a message can be of two types:

� Black tokens, that only require to include in the message the name of the destination
place of the token and the identification of the state machine where the place must be
present.

� Coloured tokens, that require to include in the message, in addition to the inform-
ation included for black tokens, the identifier of the Token Nets to which refers the
transmitted token. This is because the coloured tokens only appear in the System
Net and they are references to Token Nets that have been deployed somewhere in the
distributed platform.

The heterarchy of processes resulting from the elaboration of our specification is the
starting point to provide a raw description for a cloudificable model. Partition schemes over
the flattened model pursue a trade-off between the performance and the resource cost for the
distributed execution of simulations in cloud environments. The TPN formalism imposes
some partitioning constrains. Arbitrary arc cutting can decrease performance due to the
overhead of involved messages in the required protocols between LPs with distributed conflict
resolutions, i.e., transitions sharing input places. This overhead of messages can ruin the
potential advantages of a distributed simulation. From now on, we will assume that a Virtual
Machine is assigned to each LP. A LP consists of: a TPN region; an interpreter engine that
simulates the token game of the region and preserves causality with events simulated in
other LPs; and an interface. Some solutions of Petri Net partition algorithms [26, 27] have
improved the arbitrary strategy of arc cutting, with methods and rules for minimum region
extraction, aggregation of suitable regions and automated mapping of regions to nodes.

The LP interface is defined by the arcs from LPk to LPi. Therefore, the input interface is
defined by means of places and the output interface by means of transitions of adjacent LPs.
The first idea to develop the partitioning is to minimise the number of tokens –messages–
to be exchanged between subnets. In this way, all tokens transferred from LPk to LPi
are sent over the same channel, and communication complexity is reduced considerably.
Additionally, we will use the idea of coupled conflict, which can be inferred from structure
of the TPN in order to define the minimal region assigned to a LP. Two transitions ti, tj
are in coupled conflict, tiCCtj ⇔ •t ∩ t• 6= ∅ or ∃tR such that tiCCtR ∧ tRCCtj . The
CC relationship is an equivalence relation that defines a partitioning in a set of distinct
equivalence classes called Coupled Conflict Class (CCC). The set of distinct CCC defines a
partition with the minimal possible regions.

Depending on the communications overhead, this partition on minimal regions may be
too fine grained. The size and elements included in regions shape execution and commu-
nication results. Too small regions entail too many nodes with high communication and
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short execution of LPs, that can hurt overall performance and economic cost. Big regions
need few nodes that can help to curve the economic cost, but also reduce performance. The
computation/communication threshold gives the upper bound for the maximum number
of computation nodes to maximise the speed up. The second idea to afford this trade-off
is to cover with sequential state machines the partition defined by transitions in conflict.
Therefore, the problem is a graph partition problem, where the set of logical processes –
LP = ∪iLPi– together with the directed communication channels –CH = ∪i,j(LPi, LPj)–
constitutes the graph of logical processes –GLP = (LP,CH)–. The coverture that defines
the partition is produced by taking into account the objective function to minimise, which
is the cost given a simulation time ts.

Formally, if P is a partition of GLP with N logical processes –LPi–, and R(LPi) is the
set of sequential processes included in LPi, we can estimate the economic cost associated to
partition P by using Equation 3.1, where T̂wc represents the estimated wallclock time.

Ĉ(P) = N · T̂wc (3.1)

T̂wc is defined by the maximum bottleneck estimated wallclock time of all LPi –denoted
by T̂wci–. To estimate this value, we need to associate an execution weight ei to each LPi
by the addition of all ej corresponding to the sequential processes included in LPi, which
represents the amount of computation time per simulation time unit, and a communication
weight wij between every pair of LPs. In [26], it is proposed to define ei as the number of
places and transitions in LPi, and to equal wij to the number of arcs crossing between LPs
i and j. In our case, we propose to estimate T̂wci in a similar way as a function of ei, wik,
specific cloud parameters γ, and the simulated time ts (Equation 3.2).

max1≤k≤N

T̂wci( ∑
j∈R(LPi)

(ej),
∑

j∈R(LPi),k /∈R(LPi)

wjk, γ, ts)

 (3.2)

Initially, T̂wci values can be approximated by simulations to get computing and commu-
nication values. These values can be grossly approximated through: i) a partition requiring
the minimum number of VMs to store the biggest admissible regions in memory of each
VM; or ii) the maximum number of VMs allowed with an initial budget for estimating these
values. The objective function is a minimisation of the cost considering initial constraints,
budget and quality of simulation.

Graph partitioning is a fundamental problem in many domains in computer science. Im-
portant applications of graph partitioning include scientific computing, partitioning various
stages of a VLSI design circuit and task scheduling in multi-processor systems. In Section
2.3, we have presented a review of the graph partition problem in streaming environments.
If we remove the streaming restrictions, there is a vast literature about graph partitioning
–see for a recent review [93]–. The most promising partitions divide the graph in equal
sets while minimising edges between the sets. In the case of TPN partitions, structural
information and time labels can also be exploited to define balanced lookahead values in all
Logical Processes. More information about the cloud infrastructure, such as the coefficient
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of variation of execution time and communication, can also be included in the objective
function to improve the estimated cost of a partition, namely, Ĉ(P).

3.5 Conclusions

Distributed simulations allow understanding and analysing complex and scalable systems.
We have proposed a PN-based modelling methodology for complex DESs and a way to
automatically translate the high level specification to an executable model suited to be
partitioned on the cloud. The high level model provides a specification language suited
for the designer of the system that enables a formal description of different facets of the
system, and a hierarchical and component decomposition. On the other hand, we use the
TPN formalism, as a low level model, to simulate the system. This low level model can be
automatically generated, distributed and executed in an efficient and cost effective way. An
elaboration process translates the high level specification in a flat TPN model. Finally, a
partitioning step is proposed to deal with the decomposition of the flat low level model in
regions to be distributed in cloud nodes. The obtained regions are evaluated in relation to
the economic cost of their execution to decide the effective distributed deployment on the
cloud.

The graph partition problem –which is similar to the partitioning step proposed in this
chapter– has been addressed in the following chapter. Although the streaming paradigm
induces heavy restrictions on the partition algorithm, several of its conclusions can be ex-
trapolated to this work, especially if we consider simulations which need a lot of data or
models that can be built as data arrives –e.g. Process Mining using Petri Nets [94].





Chapter 4

Resource Efficiency to Partition
Big Streamed Graphs

Science may be described as the art of systematic
over-simplification – the art of discerning what

we may with advantage omit.

Karl Popper

Describing systems –or complex applications– has focused on the relationship between entit-
ies and on their internal behaviour. One problem of this approach is that data is modelled
implicitly and it is difficult to use the model to exploit properties related to the data struc-
ture. Certain applications are heavily conditioned by data, in special those related to the Big
Data domain. What differentiates data-driven applications –see Section 1.1– is that several
characteristics of data –e.g. how data arrives, its size, where it is located– condition where
and even how the application is executed. In this chapter, we focus on the management of
data which arrives following the Data Stream paradigm. The incoming stream models an
entire big graph, for example, a social graph. How data is processed when it arrives or how
it is distributed has an impact on further analysis.

In contrast to the previous chapter, the partitioned model is not a high level abstraction
model; thus, it can be partitioned without the elaboration process. Moreover, as a Petri
Net can be seen as a graph with special semantics, the resulting PN from the elaboration
process can be partitioned with the use of these techniques. However, as we present in the
following sections, the fact that data arrives in a stream manner has a deep impact on the
resource usage of the distributed environment and on the partition algorithms that can be
used.

The chapter is structured in eight parts. We first introduce the problem of graph analyt-
ics –Section 4.1–. Section 4.2 includes a synopsis of the fundamental concepts addressed in
the chapter. In Section 4.3, we analyse current streaming architectures to process stream-
ing graphs; and, in Section 4.4, we present our model and the designed algorithm and we
analyse their resource needs. We show experimental results in Section 4.5 and we discuss

35
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the model and its results in Section 4.6. Finally, the conclusions and the future directions
of the research are presented in Section 4.7.

4.1 Graph Analytics in Streaming Environments

Real time streaming of big graphs is a relevant and challenging application in Cloud Com-
puting. In a distributed infrastructure, these applications deal with the sequential arrival of
large size graphs and the execution of processing tasks over them. Graph analytics in social
networks, web searching or bioinformatics are relevant domains with these requirements.

For example, in the web searching context, as information is discovered sequentially –e.g.
a crawler which follows links between pages–, the underlying graph can be modelled as a
stream. The graph is received sequentially and it is created in a distributed infrastructure,
in order to execute processing tasks –or analytics– over it.

In a distributed environment, computations over a stream have to make an efficient
usage of memory and network resources, due to the large scale of the information. In a
cloud scenario like Amazon EC2, these variables are easily translated into economical terms
following the classical pay per use model.

The large size of the graph obliges us to partition it along several machines. For example,
the Yahoo! Dataset [95] takes up 120 GB and a web network graph, like the one used by
Google in Pregel experimentation [96], needs 25 TB of free storage space. The information
stored represents page links collected by a crawler.

The graph partition problem is a well studied problem in graph theory [35,36]. However,
with the resource limitations introduced by a streaming environment, classical solutions are
not suitable. Proposed architectures address different heuristics which try to minimise the
number of edges between partitions. These heuristics are not feasible in a distributed and
realistic environment because they have only one streaming input and they manage global
information.

In our work, we analyse the architectural problem and we propose a solution. We reduce
the amount of needed memory and network traffic generated by using a novel concept called
summary graph. This model reduces the memory bound needed to store the streamed graph.
In our architecture, each parallel partitioner accesses its local memory, which is updated
periodically in a feedback scheme. In this way, incoming elements are processed as fast as
they are generated, processing time is decreased and, therefore, the number of processing
machines is significantly lower. In the experimental section, we compare our architecture to
those proposed in literature. We conclude that with our solution, the quality of the obtained
partition solution only depends on the chosen resources.

4.2 Preliminaries

In this section we present those preliminary concepts related to streamed graphs and graph
partitioning problem. The used notation for graphs in this chapter is presented in Table
A.1, in Appendix A.
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4.2.1 The Data Stream Model

We consider that the graph arrives in a Data Stream way. A Data Stream A [11] is an
ordered sequence of a1, a2, ..an elements. Its main characteristics are:

� The system has no control over how data arrives. Although in theory, the system
cannot make any assumptions about the arrival order, in practice, in several applica-
tion domains, how data is retrieved –e.g. using a web crawler– can affect the arrival
order. Our model does not take into account the arrival model of data; however, in
the experimental section, we show how several performance metrics are influenced by
it. One additional fact about this characteristic is that the arrival rate of data may
be variable and unknown by the system.

� Data Streams are potentially unbound in size. A Data Stream is potentially unbound
because it models a continuous flow of information. This means that the system
cannot make any assumption about when the data arrival will finish. The analytics
or applications running over the Data Stream should not wait to have all the data to
produce results. Moreover, the complexity of these algorithms should not belong to
O(n), due to the fact that n might be unknown and the algorithm might be blocked
while waiting for the entire data. Most algorithms address this issue by executing the
algorithm over a data window.

� Once an element has been processed it cannot be retrieved. The fact that the incoming
data is unbound makes storing each arrival element impossible. Algorithms can make
use of the incoming element and of a summary of the previous data. Additionally,
a system cannot store each arriving element; thus, developed algorithms cannot have
O(n) memory complexity.

The Data Stream paradigm is suitable to deal with Big Data problems when information
is consumed or processed at the time it is generated. In this regard, there are a lot of data
stream applications; for example, social network analysis or web links analysis.

4.2.2 Graphs in Data Stream Model

We model a graph as a Data Stream in the following way. We denote G = (V,E), an
undirected and unweighted graph with a vertex set V = {v1, v2, v3, ...vn} and an edge set
E = {e1, e2, e3, ..., em}. Note that n is the number of vertices, m the number of edges and
ei = (vj , vk), vj , vk ∈ V . We represent each vertex with its adjacency list. For instance,
web pages can be the vertices and links are the edges.

A vertex graph stream, T , is a sequence of t1, t2, ..., tn where ti = (vj , vj1 , vj2 , ..., vjd)
such as, for i = 0..d , (vj , vji) ∈ E, where d = deg(vj).

Consequently, the size of a tuple ti depends on the number of edges on a vertex, d.
Therefore, the processing time per tuple is variable because it depends on the number of
adjacent vertices. In addition, as we consider undirected graphs, each edge appears implicitly
twice. In storage terms, the graph size is bounded by Θ(n+ 4m).
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In the general Data Stream model, no consideration can be made about the order in
which elements arrive; however, some specific arriving models have been proposed for graph
problems [38]. In Breadth First Search arriving model (BFS), one vertex of the graph is
selected. A breadth first search strategy is performed from that vertex to generate the
subsequent ones. If a depth first search strategy is used, we define the DFS model. In graph
applications, these orders make full sense; for example, in the network context, the graph
could be generated by one crawler which follows links with one of these strategies. In our
model, elements arrive in a random manner because that is the worst case. However, in the
experimental section –Section 4.5–, we have tested the system with BFS graphs, to compare
the suitability of different summary functions depending on the order of arrival. In addition,
our work is focused on vertex graph streams, because of the fact that the information we
have per tuple is significantly bigger than in edge graph stream.

4.2.3 The Graph Partition Problem

In [39], the graph partition problem is modelled in the following way. Given a graph G =
(V,E), we define a k partition set P , where P = {S1, ..., Sk} such as Si ⊂ V,

⋃k
i=1 Si = V .

We define the graph partition problem as finding an optimal P ∗ such that for all possible
partitions P such that |P |= k, f(P ∗) ≥ f(P ), for a certain function f . Our objective is
to obtain a partition P which minimises the communication cost among partitions and the
processing time of an application algorithm.

Definition 1. Cutting edge. Given a graph G = (V,E) and a partition set P = {S1, .., Sk},
we say that an edge (vi, vj) ∈ E is a cutting edge if vi ∈ Sq ∧ vj ∈ Sr ∧ r 6= q, with
i, j ∈ {i...n}, and q, r ∈ {1...k}. The set of all cutting edges is denoted by Λ.

In order to measure the quality of the obtained partitions, we will use the λ and ρ values
–Equations 4.1 and 4.2.

λ =
number of cutting edges

total edges
=
|Λ|
m

(4.1)

ρ =
Max{|Si|, i = 1...k}

n
k

(4.2)

The λ metric gives the possible overhead of the communication between partitions when
graph processing tasks are executed. As the graph is unweighted, if the number of edges
between partitions decreases, the amount of communications also decreases. The ρ value is
the balanced factor of the solution partition P . In the processing phase, having too many
unbalanced partitions might increase the processing time –i.e. some machines have to do a
heavy process and others might be idle–. Function f , which determines the optimal partition
solution, will depend on λ and ρ parameters. This problem is NP-Complete [37].

4.2.4 Real Time Processing

We want to process each element as it arrives, without decreasing the incoming rate of the
stream or without blocking the entire system due to load issues. Therefore, only one pass
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has to be made over the stream. In addition, process made per element has to be fast, so it
cannot belong to O(n).

The fact that we develop a single-pass algorithm with such hard memory and network
usage restrictions, entails that our partition solution is approximate. We compute an ε-
approximation of λ, which means that our result, λ′, satisfies Equation 4.3.

λ′ ≤ ελ (4.3)

4.3 Architectural Approaches

Figure 4.1 depicts different distributed architectures for partitioning streamed graphs. The
simplest one is in Figure 4.1a. It has been used in [38,39]. It has only a single entry point, so
the number of incoming elements per time unit, σ, is bounded by the network capacity and
by processing time per tuple in the partitioners. If we analyse this solution, we can observe
that the partition algorithm, for each incoming tuple, stores its vertex in local memory.
This situation is not suitable for real time scenarios due to the fact that this architecture
has a O(n) memory bound, with n being the number of elements in the stream, in our case,
the number of vertices in a very large graph.

This amount of memory could be obtained in two ways, which are presented in Figures
4.1b and 4.1c. However, these solutions have some problems. The latency introduced by a
distributed memory is high and variable; the processing time per element is incremented,
so the amount of tuples processed per time unit is bounded. In other words, σ decreases.
We can try to solve this limitation with a local internal buffer in each partitioner, avoiding
delaying the partitioner for each new element. This solution may be unfeasible due to the
high variability of the degree of the vertices in the graph. Furthermore, we can consider the
additional traffic generated by querying the distributed memory. In the best situation, the
distributed memory would work as a single machine. Query size is 1 + m

n on average, and
there are two possibilities for the communication with distributed memory:

� Synchronous communication. The distributed memory answers with the number
of neighbours and free space in each partition. The size of the answer is 3k + 1 and
the network traffic per second is σ(mn + 3k+ 2). However, processing time per tuple in
each partitioner is significantly higher, so the number of partitioners has to increase.
A possible partial solution is storing the pending tuple in an internal buffer.

� Asynchronous communication. The distributed memory answers by sending the
entire tuple over the network. In this situation, the vertex with all of its neighbours
is sent twice, and local partitioner does not need to store the tuple in a buffer nor
wait for the answer from the distributed memory. The answer has to contain the same
information as before, so the answer size is 3k+ 1 + m

n . The network traffic generated

per second is 2σ(mn + 3k+1
2 ) elements.

In both cases we do not take into account the additional messages generated by the distrib-
uted memory to locate the needed information.
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Figure 4.1: Distributed architectures to partition streamed graphs: centralised architecture
(Subfigure a), distributed architecture with Distributed Memory (Subfigure b), distributed
architecture with ad-hoc Distributed Memory on partitions (Subfigure c) and our proposed
architecture (Subfigure d).

The second possibility is shown in Figure 4.1c. In this situation, we take advantage of
the partitions, so they can work as a distributed memory. Each partitioner has to query
every partition for each incoming element in order to determinate which one is the best.
This leads to the same situation as before. The number of messages per second is 2kσ and
the same analysis can be done to estimate the message size.

As we have seen in this overview, current architectures have some limitations when they
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have to scale to process large scale graphs. Their problem is the memory size, which is
bounded by the graph size. Solving this problem through traditional approaches increases
the processing time per element; thus, σ is decreased by a factor γ. This situation implies
that γ · s partitioner machines are needed instead of s, which may have a big impact in
economic terms.

Our proposed solution reduces the memory bound and the amount of additional traffic
generated, in order not to decrease the number of incoming items per time unit, σ.

4.4 Summary Graph

We propose the decentralised architecture represented in Figure 4.1d. We have uncoupled
the different processing stages in order to distribute them. There are several loaders which
continuously send elements to partitioners. The partition algorithm is executed in these
partitioners, and it has to be simple in computational terms. In addition, it has to choose
the partition based on partial information. To maintain a consistent distributed state, the
partitions update the local information of partitioners periodically.

We reduce the required memory by using the summary graph abstraction.

Definition 2. Summary Graph. Let be a graph G = (V,E) and a summary size l; we define
a summary graph G′ = (Ψ,Φ), where Ψ = {Π1...Πu}, Πi ⊂ V, Φ = {(Πr,Πq) ∈ Ψ, r, q =
1...u} with u = n

l .

Definition 3. Summary functions. Given a summary graph G′ = (Ψ,Φ), where u = |Ψ|,
we can define a pair of surjective functions, g and h, called summary functions, such as:

g : V → {1...u}
h : E → Φ

These functions meet the following conditions:

i ∀v ∈ V, ∃Πq ∈ Ψ | g(v) = q ⇔ v ∈ Πq, q = 1...u.

ii ∀vi, vj ∈ V, ∃Πr,Πq | g(vi) = Πq, g(vj) = Πr, i, j = 1..n, q, r = 1..u, and (vi, vj) ∈ E ⇔
h((vi, vj)) = (Πq,Πr)

As a result, given i, j = 1...n, q, r = 1..u ∀(Πr,Πs) ∈ Φ, ∃vi, vj ∈ V such us g(vi) =
Πr, g(vj) = Πq, h((vi, vj)) = (Πr,Πq)

In the summary graph model, l vertices are grouped in a single set –Πi–, which is
called summary. The larger the summary size l is, the less summaries there would be and,
consequently, the less memory would be used. The transformation between the graph G
and the summary graph G′ is made by the summary functions g and h. The function g
computes the summary which a vertex belongs to. As we propose a distributed framework
with streaming considerations, summaries have to be created without having knowledge
of the graph structure. Moreover, the functions g and h should not use any distributed
state since it may not be consistent in all partitioners –which are the instances in charge of
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Figure 4.2: Transformation between a graph (Subfigure a) and a summary graph (Subfigure
c). l = 2 and the summary function is the consecutive assignation.

computing g–. Figure 4.2 depicts an example of how a graph (Subfigure 7.3a) is transformed
into a summary graph (Subfigure 7.3c) with a summary size of two.

The memory size required to store the summary graph does not only depend on the
number of vertices n of the original graph. The memory is bounded by O(nl ), where l is
the number of vertices summarised in the same set. The memory reduction is done at the
expense of the accuracy of the algorithm executed over the summary graph. In streaming
scenarios, where the incoming graph might be too large, it might be the only available
solution.

4.4.1 Summary Functions

The g and h functions are light functions –their computational time belongs to O(1)–. The
information used to assign one vertex v to a set Πi has to be known a priori for each
partitioner. Hence, as we want fast partitioning of graphs with low memory usage, the
partition decision has to be made without taking into account prior items in the stream.
The summary function cannot depend on the arriving order. Additionally, we consider the
number of elements in a summary constant, that means that l = |Π1|= |Π2|= ... = |Π|Ψ||



4.4. Summary Graph 43

With these assumptions, the simplest summary function is based on the vertex identifier.
We propose the following summary functions:

� Hash function (Equation 4.4). Each vertex vi ∈ V goes to a summary set depend-
ing on its identifier. If the vertex identifier is a non-numerical value, it should be
transformed beforehand.

∀i, j ∈ {1, ..., n}, g(vi) = i mod l

h((vi, vj)) = (Πi mod l,Πj mod l)

|Ψ|= n

l (4.4)

� Consecutive assignation (Equation 4.5). If the node identifier is numerical, ver-
tices can be summarised sequentially. In some situations –in a BFS or DFS model–
this summary function makes more sense because, as items arrive following a specific
criteria, connected elements go to the same partition; so the summary function tries
to minimise the cutting edges generated by a random summary.

∀i, j ∈ {1, ..., n} g(vi) =

⌊
i

l

⌋
h((vi, vj)) =

(
Πb ilc,Πb jl c

)
|Ψ|= n

l (4.5)

� Property summary. If the vertex satisfies some kind of property, summarising
vertices with the same property value in the same set can be suitable. For instance, if
the vertices are labelled, vertices with the same label will belong to the same set.

4.4.2 Partition Problem with the Summary Graph Model

The summary graph model is a compact representation of a graph, which requires less
memory to be stored. If we have a certain graph algorithm which has a O(f(n)) bound for
a certain resource –e.g. memory or execution time–, the same algorithm executed over a
summary graph will have a O(f(n)/l) bound for that resource.

In the case of the streaming partition problem, we propose the decentralised architecture
represented in Figure 4.1d. The partition algorithm uses the summaries to calculate the best
partition, instead of using vertices. As g gives the same value regardless of the partitioner
which computes it, all vertices in a summary are assigned to the same partition. That is to
say that we are partitioning summaries –with l vertices– instead of individual vertices.

Algorithm 1 illustrates partition algorithm with the summary notion. We represent the
main memory with the M set, where M = {(q, j), q ∈ {1...u}, j ∈ {1...k}}. Note that we
assign a summary of vertices Πq to the partition Sj by using its index q.

When an element t of the unbound stream T arrives, we obtain its vertices. If we
assigned the summary which that vertex belongs to in previous steps, we would find that
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Algorithm 1 Vertex Partition Algorithm

Input: Unbound stream T

M = ∅
for all t ∈ T do

let v = get vertex v ∈ V from t
let q = g(v)
if ∃i ∈ {1..|Ψ|} | (q, i) ∈M where Si ∈ P then

Send t to partition node i
In partition node i, Si = Si ∪ {t}

else
i = BestPartition(t, P )
M = M ∪ {(q, i)}
Send t to partition node i
In partition node i, Si = Si ∪ {t}

end if
end for

summary in M . So, we have to send the vertex and its edges, t, to the already assigned Si
–Si = Si ∪ {t}–. If it is the first time a vertex of that summary arrives, we will compute
the optimal partition for that vertex with the BestPartition function, and we will add the
corresponding summary to M . Moreover, our computational model decouples the summary
function from the partition heuristic, which is a desirable property for a scalable system.

The analysis of BestPartition heuristic is out of the scope of the present chapter. In
Chapter 2 (Section 2.3), we have presented some of the most recent works in this field. In
the experimentation phase, we have selected Fennel [39] as partition heuristic with its best
parameters. As we compare ourselves with Fennel, the comparison with Metis is straight-
forward.

The use of the architecture presented on Figure 4.1d generated additional traffic to keep
consistent the distributed state in the s partitioners. This traffic is generated with a period
f , and it is needed to update the local information of each partitioner. Thus, per second,
s · k · f messages are generated. The total size of the messages is s · k · f( nlk + 1). The main
advantage is that incoming rate σ is not bounded by the network or by any parameter of
the model, so the network traffic only affects on the accuracy of the solution, just like the
used memory size.

4.4.3 Resource Analysis

4.4.3.1 Memory

A general partition algorithm executed over a graph has a O(n) memory bound, which
might not be suitable for a streaming scenario. The use of the summary graph instead of
the entire graph relaxes the memory bound to O(nl ), where l is the size of the summary.
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However, this memory relaxation is achieved at the expense of the quality of the partition λ.

Theorem 1. Given a graph, G = (V,E), a sample size, l, and a single-pass algorithm,
ALG, which produces λ cutting edge fraction with a O(f(n)) memory bound; there exists an

ε-approximation of cutting edge fraction λ′, with a O
(
f(n)
l

)
memory bound in each parallel

partitioner and ε = l−1+λ
lλ .

Proof. Memory reduction is achieved by sampling incoming vertices into sets, and the sets
are used as the input of the algorithm ALG. With a summary size of l, the memory bound
belongs to O(f(n)

l ).

In order to calculate the accuracy of the solution, we can consider that given an edge
e ∈ E, the probability of being a cutting edge (Definition 1) is λ under ALG. If we transform
the graph G into a summary graph G′, the probability of being a cutting edge is given by
Equation 4.6, where the law of total probability is applied, ParRND denotes that the edge
has been partitioned by a random partition algorithm RND, and ParALG means that it
has been partitioned by ALG.

λ′ = P (e ∈ Λ) =P (e ∈ Λ|ParRND)P (ParRND) +

+ P (e ∈ Λ|ParALG)P (ParALG) ≤

1
l − 1

l
+ λ

1

l
≤ l − 1 + λ

l
(4.6)

Using Equation 4.6, we can say that λ′ is an ε-approximation of λ if Equation 4.7 is satisfied.

λ′ ≤ ελ =⇒ l − 1 + λ

l
≤ ελ =⇒ ε ≥ l − 1 + λ

lλ
(4.7)

In Equation 4.6, we have set the probability of eij being a cutting edge when the RND
algorithm is used as 1, because that is the worst case and we want to calculate an upper
bound for ε. Equation 4.8 gives the theoretical probability assuming independence between
the variables, for a certain number of partitions k. We can see that as the number of
partitions increases, the probability gets closer to one.

P (eij ∈ Λ|ParRND) =1−
k∑
r=1

P (vi ∈ Sr) ∩ P (vj ∈ Sr) =

1− k 1

k

1

k
=
k − 1

k
(4.8)

However, for certain graphs, the empirical probability of the RND partitioner is greater
than the theoretical probability given by Equation 4.8. One reason of this behaviour is
that the independence assumption is not met due to the graph structure. Nevertheless, the
bound given by Equation 4.7 is still satisfied. An option to improve that bound is to use an
empirical value for the RND partitioner in Equation 4.6.
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4.4.3.2 Distributed Complexity

The fact that we are using a distributed state which might not be consistent in a certain
execution time, can cause that several partition decisions are not optimal. The frequency of
these non-optimal decision will depend on the update frequency f . If the update frequency
is increased, the probability of having an inconsistent distributed state will be reduced.
The relationship between the distributed complexity –the amount of messages sent by the
partitions and the partitioners– is given by the following theorem.

Theorem 2. Given a graph, G = (V,E), s distributed partitioners, a sample size, l, an up-
date frequency, f , and a single-pass algorithm, ALG, which produces λ cutting-edge fraction
with a O(f(n)) memory bound; there exists an ε-approximation of cutting edge fraction λ′,

with a O
(
f(n)
l

)
memory bound in each parallel partitioner and a O

(
nsk
σf

)
global distributed

complexity, where σ is the incoming elements per time unit and ε =
l−exp

(
−lσf(σf−1)

2n

)
(1−λ)

lλ .

Proof. The number of sent messages from partitions to partitioners depends on the update
period f and on the number of partitioners s; thus, in a f period, the system sends k · s
messages. If σ elements arrive in one time unit, the entire graph arrives in n/σ time units.
Then, in n/σ periods, kns

σf messages are sent, which gives the distributed complexity. The
memory bound has been discussed in the previous section.

Now let us calculate the accuracy of the solution. We consider that ALG will produce
less cutting edges than a random partition algorithm, RND –λ′ ≤ k−1

k –. Therefore, the
non-optimal decision is taken when a vertex vi whose g(vi) set has been assigned in the same
period f is assigned again by the random partition algorithm. The probability of getting
σ · f unique elements from n/l groups is given by Equation 4.9. The expression is given by
the birthday paradox and the upper bound is given by a Taylor expansion of the terms.

n
l − 1
n
l

×
n
l − 2
n
l

× ...×
n
l − (σf − 1)

n
l

≤ exp

(−lσf(σf − 1)

2n

)
(4.9)

Given an edge e ∈ E, the probability of being a cutting edge (Definition 1) by using
ALG is λ. If we transform the graph G into a summary graph G′, the probability of being
a cutting edge is given by Equation 4.10. For simplicity, we consider the probability of not
being a cutting edge as the probability of having unique elements in that period and the
probability of not being a cutting edge by using ALG algorithm –1− λ.

λ′ = P (e ∈ Λ) = 1− P (e 6∈ Λ) ≤ 1−
exp

(
−lσf(σf−1)

2n

)
(1− λ)

l
(4.10)

λ′ ≤ ελ =⇒ 1−
exp

(
−lσf(σf−1)

2n

)
(1− λ)

l
≤ ελ =⇒

ε ≥
l − exp

(
−lσf(σf−1)

2n

)
(1− λ)

lλ
(4.11)
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Dataset Vertices Edges

WS10000 10000 134944

WS100000 100000 3997464

BA10000 10000 134841

BA100000 100000 3548775

PL10000 10000 134766

PL100000 100000 4047486

amazon0312 400727 2349869

amazon0505 400727 2439437

amazon0601 400727 2443311

LiveJournal1 4843953 42845684

Wiki-talk 2388953 4656682

Table 4.1: List of used Datasets.

By using Equation 4.10, we can say that λ′ is an ε-approximation of λ if Equation 4.11 is
satisfied.

As we have said before, the number of sent messages per time unit is ks/f . If we consider
the distributed architectures of Figures 4.1b and 4.1c, the number of messages between the
memory and the partitioners per time unit is 2σ. Thus, the incoming arrival rate is bounded
by the network capacity, and for big values of σ the bound of our system is better.

4.5 Evaluation

4.5.1 Experimental Setup

We have implemented the model presented in the previous sections in a real environment
in order to test it. There are several open-source distributed Data Stream Management
Systems. The most important are Storm, S4 [97], and Data Stream over Spark [98].

We have chosen Storm [99], a Java based implementation, due to its flexibility to deploy
the distributed infrastructure over available machines. It allows users to make a query,
called topology in its terminology, as an operator combination in a Directed Acyclic Graph
(DAG) scheme. The DAG nodes represent the operators, and the arcs model how data flows
from an operator to another one.

Since we propose a complete graph processing framework, we need to test the influence
of the quality of the partition solution in the execution time of an analytic algorithm over
the graph. We execute a PageRank application implemented in a GraphLab cluster [100].
PageRank [101] is a typical graph application and it is very used in industrial environments,
so it is interesting to analyse the behaviour of the graph with different partition schemes.
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Figure 4.3: Fraction of cutting edges λ (Subfigure a) and Balance Factor ρ (Subfigure b)
of amazon0312 dataset versus summary size l with one single partitioner, 32 partitions
and different incoming orders –BFS and Random– and summarise functions –Hash and
consecutive.

The Storm cluster has eight workers and one master. We have one Virtual Machine for
each worker. Each VM has one real core and 2 GB of memory size. The CPU is an Intel
Xeon E5530 CPU with 2.40GHz.

4.5.2 Used Datasets

The datasets that we have used to test our system are in Table 4.1. PL, WS and BA datasets
are synthetic, created by the Networkx1 package. We have used these datasets because the
web network and social graphs can be modelled by a power law graph [102]. PL dataset is
a graph whose degree distribution follows a power law function. In an informal way, it is
a graph where the number of high degree nodes is small. The degree distribution function
is y = cx−α. WS is a Watts-Strogatzs graph model [103] and BA is a Barabasi-Albert
graph [104].

Real datasets that we have used are: amazon*, Wiki-Talk and LiveJournal1. The first
one represents co-purchasing information of Amazon. Vertices are Amazon products and
there is an edge from product i to j if i has been co-purchased with j. With this information
Amazon can make personal suggestions to consumers. The information was collected in
March 12 2003, May 05 2003 and June 01 2003. In Wiki-Talk dataset, each vertex represents
an user. An edge from i to j represents that the user i has edited at least one time the talk
page of user j. The information was recollected in January 2 2008. In LiveJournal1, each
link between vertices –users– represents friendship relations.

1https://networkx.github.io/

https://networkx.github.io/
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l λ ρ

2 0.8 1.23

5 0.81 1.1

10 0.83 1.12

100 0.85 1.19

1000 0.91 1.18

12532 0.96 1

Table 4.2: Fraction of cutting edges λ and Balance Factor ρ in amazon0312 dataset with
k = 32, s = 6.

4.5.3 Experimentation

In Subsection 4.2.3, we have presented λ and ρ values. We have used them as measures of
the quality of the obtained partition.

In our experiments, we have used Fennel [39] as the partition heuristic. This heuristic
tries to minimise λ and ρ factors by assigning a vertex v to the partition S which maximises:
Γ(v, S) − αγxγ−1, where, Γ(v, S) is the number of neighbours of the vertex v in partition
S, α = m ∗ kγ−1

nγ , γ = 1.5 and x is the number of vertices assigned to S. We have taken
these values as the best ones from their paper. However, since in our architecture we are
partitioning summaries instead of vertices, we consider Γ(g(v), S).

The aim of our experimentation is to measure the quality of obtained partitions, the
total memory reduction and the additional traffic added by our architecture for different
summary sizes and summary strategies. The last experiment shows the real impact of the
quality of the partition solution when analytics are executed over the partitioned graph.

4.5.3.1 Quality of Partition

In Figure 4.3, we observe how summary size l affects λ and ρ values. We have partitioned
amazon0312 dataset into 32 partitions. The experiment has been made with BFS incoming
order and with Random incoming order. We have implemented two summary functions,
Hash and consecutive assignation. The first measure, l = 1, is equivalent to Fennel partition
algorithm and the last one corresponds to the situation where there is only one summary
per partition, l = n

k . This situation is equivalent to a random partition strategy. With
two vertices per summary, the number of cutting edges increases compared to Fennel, but
it is better than Random partitioner. In our results, the kind of summary function used
affects the quality of the partition solution. In a BFS incoming order, the results are better
for a consecutive assignment function. This kind of order is naturally obtained in social
and web graphs because they are obtained by crawlers. The relationship among ρ and l, in
Figure 4.3b, is distorted by the Hash partition strategy –last value– and the Fennel results
–first value–. The random partition strategy always generates partitions with ρ = 1 and
the Fennel strategy reduces λ increasing ρ. For the rest of values, as the size of the group
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l λ ρ Memory used (MB)

1 0.5 1.01 245.99

2 0.56 1.01 135.63

10 0.68 1.01 27.60

605495 0.96 1 0

Table 4.3: Fraction of cutting edges λ, Balance Factor ρ and used memory for different
summary sizes l in LiveJournal1 with k = 8.

increases, ρ also increases, because we are distributing a few big groups.

As we have discussed previously, the number of partitioners s, affects the quality of
the partition, because they manage local information. In Table 4.2, we show the effect of
changing the number of partitioners to six. We have used a contiguous grouping strategy
and the BFS arrival order. Experimental results show that with a big summary size, the
performance is similar to the single loader. The reason is that the Balance Factor decreases
when the number of partitioned elements is small.

4.5.3.2 Used memory

We can see that the maximum used memory will depend on l, when l is high. In Table 4.3,
the results for the LiveJournal1 dataset are shown. In this case, we have partitioned into
eight partitions with a BFS order and a consecutive assignment function.

We have also measured the RAM required to store the summaries in partitioners. The
results are shown in Figure 4.4. As it is natural, when the number of elements per group
increases, the needed memory decreases. Note that with l = 1, the total memory used is
20,8 MB. Approximately, this is 0.052 kB per element, so we cannot process a web network
graph –50 billion vertices– with the Fennel algorithm.

4.5.3.3 Network traffic between Partitions and Partitioners

We have measured network traffic added by a distributed memory architecture and by our
model. We have calculated the quotient between the total network traffic and the stream
size. This metric is independent of the platform, in our case, Storm, and of the graph size.

We have simulated state of the art heuristics [38, 39] with a distributed memory. Our
simulation does not take into account the latency and the internal messages generated by
the memory. Its aim is to estimate the total network traffic. The simulated model is
the asynchronous communication model presented in Section 4.3, where partitioners are
continuously sending elements to the distributed memory and it answers with the entire
tuple. As we have said, in a distributed memory approach, the total traffic in partition
stage depends on the number of partitions k. As k is small enough, we have calculated the
average value. In Figure 4.5, it is represented by a dashed line and it is about twice the
streamed graph size. As we have analysed earlier, the reason is that we are sending each
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Figure 4.4: Required RAM memory to process amazon0312 dataset versus group size l.
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Figure 4.5: Additional network traffic in partition stage versus summary size l.

tuple twice with a bit more information.

In our architecture, the number of partitions and partitioners determines the total traffic
between them. In Figure 4.5, we can see the relationship between these variables. If we
had multicast communication, additional traffic would be divided by s. What is more, our
architecture does not bound incoming tuple rate, as we have discussed in analysis section.
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Figure 4.6: Execution time (Subfigure a) and network traffic between partitions (Subfigure
b) for a PageRank execution over LiveJournal1 dataset versus summary size l. Top line is
the limit established by Hash partition strategy.

4.5.3.4 PageRank Processing

The last experiment we have made is to execute an off-line algorithm over our partitions
to show the relationship between the quality of the partition and the execution time of
graph analytics. We have chosen GraphLab system [100]. GraphLab is a distributed graph
processing engine which provides several graph analytics algorithms. We have used the
LiveJournal1 dataset and the PageRank algorithm. We have compared our system to Hash
strategy and Fennel, which has entire knowledge of the graph. As figure 4.6 shows, network
traffic between partitions and total execution time increases as the partitioning quality
worsens with bigger groups. In the experiment, we have used contiguous grouping strategy
and six partitions. We see that for l = 10, the results are similar to the Hash partition
strategy. Besides, the best situation is achieved with l = 2. Approximately, decreasing the
used RAM to the half, as we can see in Table 4.3, only increases total execution time of
PageRank algorithm by 25%.

4.6 Discussion

We have shown the impact of the memory and the network traffic on a realistic scenario in
previous sections. Storm and its Java implementation use 0.052 kB for each vertex, so we
can calculate the total memory needs for bigger datasets. For the Yahoo! Dataset, with
1.4 billion vertices, we would need 74.39 GB and for the Pregel experiment, with 50 billion
vertices, we would need 2479.55 GB. Current cloud platforms offer nodes with a maximum
244 GB memory size –Amazon EC2– and 104 GB –Google Compute Engine–. Although
in the future these values may increase, the Yahoo! dataset is dated in 2002 and Pregel
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experiment in 2010, so the size of graphs has increased too.

We have seen that the CPU usage is not very high, because the computation time for the
light heuristics is in the order of a few microseconds per tuple. The input rate is bounded by
the processing time –we can approximately process 200.000 tuples per second, a total of 43.5
MBs–. If we introduce a distributed memory, with high latency, we increase significantly
the processing time per vertex. For example, with a 1 Gigabit Ethernet connection, we
can estimate a latency of 0.350 ms, so the number of vertices processed per second will be
approximately divided by seven. In economic terms, this situation entails multiplying the
number of partitioner machines by seven.

Moreover, we can observe that the machines offered by cloud providers have high memory
size and high CPU resources. This situation is not suitable for our processing. It would be
more adequate to have less expensive nodes, with high memory and low CPU resources. In
cloud infrastructures, network traffic between inner machines is cheaper than traffic with
external ones. If the distributed memory is outside the cloud, the total network traffic might
be high and it will be more expensive than accessing local memory.

With our work we approximate the partition problem to available cloud infrastructure.
We provide an architecture suitable to partition large streamed graphs which makes a more
efficient use of the available resources.

4.7 Conclusions

In our work, we have analysed distributed system architectures to partition streamed graphs.
The use of a distributed memory to obtain the neighbours of a node bounds the system by
the network capacity. Thus, the number of partitioners should increase. From this analysis,
we have proposed a scalable and decentralised architecture which allows partitioning large
scale streamed graphs efficiently. To reduce memory usage, we have made vertex summaries
of the graph to compose a subgraph which is partitioned by a one-pass generic algorithm.
The information consistency is maintained by updating local state in each partitioner. Fur-
thermore, we have decoupled the partition algorithm and the summarising function. Because
of the fact that we access local memory, instead of distributed, the processing time is lower,
so the number of processing machines needed is divided by seven. This situation has a
significant impact on economic cost.

In the experimental section, we have tested our system with synthetic and real datasets.
Moreover, we have compared our model to the best –Fennel algorithm– and worst –Random
paritioner– competitors. The first one has knowledge of the whole partitioned graph while
the second one does not have it at all. With our summary functions, not having a global
knowledge of the graph does not cause a significant loss in performance terms. In our exper-
iments we show that by decreasing the RAM memory needed to process the LiveJournal1
dataset to the half, only increases the processing time of PageRank algorithm by 25%. Fi-
nally, with our architecture, we propose a decentralised model which allows adjusting the
quality of the partition solution to the desired amount of resources.

The simulation of complex systems and graph processing in streaming environments are
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two examples of applications which demand a high amount of computational resources due
to their QoS requirements. As we have presented in the Introduction, these requirements
have to be fulfilled in the operational level. In the next chapters, we study how several of
these aspects can be addressed in a specific operational infrastructure –a Kubernetes private
cloud.



Chapter 5

Characterising Resource
management Performance in
Kubernetes

The knowledge of anything, since all things have
causes, is not acquired or complete unless it is

known by its causes.

Avicenna

In the previous chapters, we have considered applications or data as a white box, and we have
used properties of the model to improve the distribution of the application. In this chapter,
we will consider a general purpose cloud processing environment where applications arrive
to be executed as black boxes. We have called these kind of applications system-driven
applications –see Chapter 1–, due to mapping decisions –where functional instances are
deployed or executed– being taken by the system scheduler, and the information about the
application being quite limited. The applications which arrive to the system might represent
self-contained applications or pieces of applications obtained in previous processing steps as
proposed in Chapter 3 and in Chapter 4.

As the decision is influenced by the specific operational system, the scheduling algorithms
and decisions should not be aware of the operational platform. In the next chapters, we focus
on container management systems; thus, the operational instances are containers executed in
physical machines. This means that incoming applications are executed inside containers,
and containers model how the resources are shared in a physical machine. The aim of
this chapter is to analyse how a Kubernetes cluster behaves by using a formal model. The
model is fed with experimental data to abstract several deployment rules which can improve
the performance of incoming applications. In other words, instead of focusing on where
applications –or application components– are deployed, we focus on how the deployment
parameters can be optimised.

The chapter is structured as follows. We begin by introducing the container as a virtu-

55
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alisation technique in Section 5.1. Then, in Section 5.2, we present our model and its use
with real data. Section 5.3 presents our characterisation of the pod abstraction overhead,
discussing deployment results in Section 5.4.

5.1 Containers as Infrastructure as a Service

Cloud systems enable computational resources to be adjusted on-demand and in accordance
with changing application requirements. Applications can rent computational resources of
different types: virtual machines, containers, specialist hardware –e.g. GPU or FPGA–, or
bare-metal resources, each having their own characteristics and cost. An effective automated
control of cloud resource (de-)provisioning needs to consider [105]: i) resource utilisation; ii)
economic cost of provisioning and management; and iii) resource management actions that
can be automated.

Increasingly, many cloud providers support resource provisioning on a per second or
even millisecond basis, such as GCE1, or Amazon Lambda2 –referred to as “serverless
computing”–. A lambda function is provisioned through a container-based deployment,
whose execution is billed at 100ms intervals. Therefore, understanding performance as-
sociated with the deployment, termination and maintenance of a container that hosts that
function is significant, as it affects the ability of a provider to offer more fine grained charging
options for users with stream analytics/processing application requirements.

Provisioning and de-provisioning actions are subject to a number of factors [105], mainly:
i) the overheads associated with the action –e.g. launching a new VM can often take
minutes [106]–; ii) the actual processing time required can vary due to resource contention
–leading to uncertainty for the user.

There are several platforms which support a container-based deployment, for instance,
Docker Swarm, Marathon over Apache Mesos or Kubernetes [44], among others. In this
work, we have used Kubernetes because it offers a new abstraction layer in the deploy-
ment of containers –the pod concept, which is explained later– and the implications of this
new abstraction have not been addressed by literature. Additionally, Docker Swarm is an
extension of the Docker API, and it does not provide natively the support for certain non-
functional requirements, such us application scale. Finally, Kubernetes –or systems designed
over Kubernetes, such as Red Hat OpenShift– has become the industrial reference container
management system; not only as a solution for private clouds, but also as an alternative de-
ployed in public ones –for instance, Google Kubernetes Engine3, Azure Kubernetes Service4

and the Amazon Elastic Container Service for Kubernetes5.

Kubernetes can provide a Cloud-Native Application (CNA) [107], a distributed and hori-
zontally scalable system composed of services or microservices, with operational capabilities
such as resilience and elasticity support. Kubernetes enables deploying multiple pods across

1https://cloud.google.com/
2https://aws.amazon.com/lambda/
3https://cloud.google.com/kubernetes-engine/
4https://azure.microsoft.com/es-es/services/kubernetes-service/
5https://aws.amazon.com/es/eks/

https://cloud.google.com/
https://aws.amazon.com/lambda/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/es-es/services/kubernetes-service/
https://aws.amazon.com/es/eks/
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physical machines and scaling out of an application with a dynamically changing workload.
Each pod can allocate multiple containers, which can make use of services –e.g. file system
and I/O– associated with a pod. Any OCI compliant container runtime engine could be
used, but we chose Docker as it is the most popular engine for Kubernetes.

We research the performance of deploying, terminating and maintaining containers with
Kubernetes, identifying operational states that can be associated with a pod and container
in this system. This is achieved through Object Nets with Reference Semantic –a kind of
Petri Net (PN) [13]– based models. The models can be further annotated and configured
with deterministic time, probability distributions, or functions obtained from monitoring
data acquired from a Kubernetes deployment. It can also be used by an application de-
veloper/designer: i) to evaluate how pods and containers could impact their application
performance; ii) to support capacity planning for application scale-up/scale-down.

5.2 Kubernetes Overhead Analysis & Performance Models

The Kubernetes architecture (Figure C.2) incorporates the concept of a pod, an abstraction
that aggregates a set of containers with some shared resources at the same host machine.
It plays a key factor in the overall performance of Kubernetes. We make use of Reference
Nets to model pods and containers and to conduct a performance analysis. Object PNs
can be interpreted by Renew6 [108], a Java-based Reference Net interpreter and graphical
modelling tool.

5.2.1 Kubernetes Performance Model

The pod abstraction allows grouping coupled containers which share the access and the use
of certain physical resources –e.g. I/O file system, network–. The containers of a pod are
scheduled in the same machine, that is to say that the pod is the minimal shedulable unit.
Conceptually, Kubernetes supports two kinds of pods:

� Service Pods. They are run permanently, and can be seen as a background workload
in the cluster. Two key performance metrics are associated with them: i) availability
–influenced by faults and the time to restart a pod/container–; and ii) utilisation
of the service –which impacts on the response time to clients–. For example, high
utilisation leads to an increased response time. Several Kubernetes system services
–e.g. container network or DNS– and high level services –e.g. monitoring, logging
tools– are provided by Service Pods.

� Job/Batch Pods. They are containers that execute tasks and terminate on task comple-
tion. For a Job Pod, both deployment and total execution time –including restarting,
if necessary– are important metrics. The restart policy of these containers can be
onFailure or never.

6http://www.renew.de

http://www.renew.de
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Figure 5.1: Model of the life-cycle of pods in Kubernetes.

When a pod is launched in Kubernetes, it requests resources –RAM and CPU– to the
Kubernetes scheduler. If enough resources are available, the scheduler chooses the best node
for deployment. The requested CPU could be considered as a reservation in contingency
situations. For instance, when a container is idle –e.g. it is inside a service pod and the
service has low utilisation–, other containers can use the CPU. With this resource model, the
overall performance of the pod depends on its resource requests and on the overall workload.
We could define a CPU usage limit, but then some resources might remain unused.

We model a pod’s life-cycle in order to estimate the impact of different scenarios on
the deployment time and the performance of the applications running inside a pod. In
Kubernetes, a pod’s life-cycle depends on the state of the containers that are inside it. For
instance, a pod has to wait until all of its containers are created. With the Reference Nets
abstraction, we can provide an unambiguous hierarchical representation of the Kubernetes
manager system as the System Net and the pods with the containers as the Token Net.
The tokens inside our Token Net represent containers and the tokens inside our System
Net represent pods, as illustrated in Figures 5.1 and 5.2. The models were derived from
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Figure 5.2: Model of the life-cycle of containers inside a pod. r models the restart policy of
a container –Always = 0, OnFailure = 1, Never = 2.

the Kubernetes documentation7, specifically, from the Pod Lifecycle section 8 and from the
Resource Management section9. Details about places and transitions, needed to specify the
initial marking, are hidden to improve legibility. In addition, we assume that the scheduler
assigns a pod to a single node arbitrarily, as long as the machine has enough resources
available. If there are not enough resources in the cluster, the pod waits in Pending
Scheduling place. This behaviour could be refined by introducing more sophisticated
policies and a rejection place for pods. The Machines place10 represents the resources
managed by the scheduler. For each machine, there is a tuple token with the identification
of the node, the available RAM size and the number of available cores. Figure 5.1 shows
three machines ranging from 8GB to 32GB, with 1 to 4 cores. The resources assigned to a
pod are only released when the pod restart policy is Never or onFailure.

Once the pod has been assigned to a machine, Kubernetes starts creating the containers
while the pod waits in its Pending place. Both nets are synchronised through the inscription
runCont. In this way, when a container in a pod enters the Running place (Figure 5.2), the
number of pending containers in this pod is decremented in the Pending place (Figure 5.1).
When all containers are running in the pod, the transition with the guard pend==0 is
fired and the pod state changes to Running.

While the pod is in the Running state, it is waiting for its containers to terminate. If a
container fails, the pod enters the RunningFailed place where it waits for the termination
of all containers –with a potential restart action–. If there are no failures, the pod will be in

7https://kubernetes.io/docs
8https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
9https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

10It should be noted that the Machines place appears twice: one with a single circle –actual definition–
and with a double circle –a duplication to simplify the model–. Reference Nets support double circle notation
to simplify the model and to improve its legibility. If it were not used, several arcs would cross the model
with their corresponding arc labels

https://kubernetes.io/docs
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
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Transition Variable

T1 Time to create a container

T2 Execution time of a container

T3 Time until next failure in a container

T4,T5 Time to restart a container

T6, T7 Time to finish gracefully a container

Table 5.1: Timed transitions in the model.

the Running place or eventually it will reach the Success place when all containers have
finished.

Figure 5.2 illustrates the behaviour of a container. A token in that net represents a
container. A pod’s restart policy is included in the net. A created pod enters the Running
place, and may reach the Success or Failure place. The firing of the corresponding trans-
itions –T1, T2 and T3– is synchronised with the System Net. According to the restart
policy, the containers might return to the Running place or they might finish in Succes-
sExit or in FailedExit places. We include several timed transitions, as summarised in
Table 5.1. By default, the firing of T2 and T3 is arbitrary and non-deterministic; however,
with Renew, it is possible to simulate any probability distribution for them in order to
simulate a failure. Additionally, it is possible to assign different random distributions for
each timed transitions. In the next sections, we describe different experiments to obtain the
real value of these metrics. The termination time –T6 and T7– and the termination time
when a container is restarted –T4 and T5– do not depend on the success of the container,
so both transitions are modelled with the same distribution. When a container is restarted,
the total restarting time can be calculated as T4 + T1 –or T5 + T1.

5.2.2 Experiments to Feed the Performance Model

We conducted several experiments to estimate the value of transitions in Table 5.1 by
deploying Kubernetes on a cluster with eight physical machines, n = 8, each with 32GB of
RAM and 4 Intel i5-4690 (3.500GHz) cores. The results are shown in the next subsections.
The performance metrics of the high level model (Figure 5.1) are determined by the firing
sequences of transitions in the Token Net (Figure 5.2). For example, if there is a pod with
three containers, the T1 transition of this pod is fired three times. The pod is waiting this
time in the Pending place.

5.2.2.1 Benchmarking Starting Time

To estimate the value of transition T1, we launched a variable number of containers, whose
image was preloaded on all machines, and measured the total deployment time. Each
experiment was repeated 30 times, and we calculated the mean, the standard deviation, and
the confidence intervals with α = 0.05. In order to calculate the confidence interval, we
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assumed –by the Central Limit Theorem– that the underlying distribution of the sampled
mean follows a normal distribution.

In Figure 5.3, we show how different variables influence the deployment time. These
variables are:

� The number of machines available in the cluster, n. We observe that the scheduler
launches pods sequentially, without multi-threading (red line in Figure 5.3), showing
a linear total deployment time with the number of deployed containers.

� The number of containers C inside a pod, ρ factor. The ρ factor is calculated as
follows: ρ = #Pods

C . For instance, a ρ factor of 0.25 means that there are 4 containers
inside each pod. We can see that the time to deploy 10 pods with 4 containers in
a single machine is 25.89s, which is higher than the time to deploy 10 pods inside a
single container on a single machine –16.01s.

� Cluster and infrastructure constraints as the number of nodes or the network physical
devices used.

The total provisioning time, Tt, is calculated by using Equation 5.1, where Td is the time
to deploy pods and containers on physical machines and Tdown is the time to download the
needed container image to the involved machines.

Tt = Td + Tdown (5.1)

Our experiments show that Td has a linear behaviour. Therefore, Td depends on the
number of deployed containers C and on the number of deployed pods, #Pods (Equation
5.2). As the scheduler manages the pod as the minimal schedulable unit, the maximum
number of pods deployed in parallel in a cluster is given by min{#Pods, n}. Tc is a function
that returns the time to create a single container. This value depends on how the deployment
is structured –ρ and C parameters– and the number of machines in the cluster, n.

Td =
C Tc(ρ, n, C)

min{#Pods, n} (5.2)

In Figure 5.4, we show different values for Tc, obtained experimentally. We can see that
for large C values, and as ρ approaches 0, Tc becomes constant. Therefore, we can write:

lim
(ρ,n,C)→(0,∞,∞)

Tc(ρ, n, C) = tc

Under these assumptions, the Tc value could be considered as a constant –attached to
transition T1.

In order to characterise the impact of the image download time, we repeated the previous
experiments without pre-loading the image. The image is downloaded from a machine
located inside the cluster connected directly to the same switch. The results are shown in
Figure 5.5. The results of the homogeneous latency scenario are better than the ones of the
variable latency scenario –as ρ tends to zero, the latency impact on the results decreases–. We
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Figure 5.3: Total deployment time, Td, versus number of deployed containers, C. Each
graph shows: mean time and confidence interval for the mean for a variable number of
machines in the cluster, n. The results are grouped by the number of containers inside a
pod, 1

ρ .
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containers inside a pod, 1
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Homogeneous RTT Heterogeneous RTT

C Td Tt Td Tt

1 1.85 31.09 1.94 33.26

5 2.37 67.28 2.66 66.79

10 3.77 83.44 3.87 82.66

20 5.69 83.81 5.56 86.93

40 10.24 85.47 10.21 91.02

Table 5.2: Td and Tt values from a Kubernetes cluster with homogeneous RTT –0.25ms–
and from a Kubernetes cluster with heterogeneous RTT. ρ = 1 and n = 8. The container
image is 1.225 GB. The results are in seconds.

can see that as the number of machines increases, the total deployment time also increases,
because the image needs to be downloaded by all the machines in the cluster, which are
connected to the same server. When the number of deployed pods is greater than the number
of machines, the deployment time remains stable, so we can conclude that Kubernetes only
downloads the image once per machine.

Several variables related to the cluster architecture impact the deployment time, such
as parameters of the physical machines and the network topology. To assess the network
topology impact, we repeated the experiments in a cluster with heterogeneous latency. We
simulated that half of the machines are in a different network area, so that their Round Trip
Time (RTT) is about 100ms. The RTT for the rest of the machines is 0.25ms. Table 5.2
depicts the results for ρ = 1 and n = 8. The results for other values of ρ and n are quite
similar. We can see that the latency does not have a significant impact on Td –and neither
on Tc–. As in Tt is included the time to download the container image, this value is higher.
However, the size of the image mitigates the latency impact.

5.2.2.2 Benchmarking Termination Time

A pod is expected to be terminated sometime. If it is a service, and consequently it has
to be running all the time, the termination may be due to a failure and the pod has to be
restarted. This philosophy is also applied to containers, as we discussed previously in the
Container net model –transitions T4, T5, T6, T7–. We consider T3 to be dependent on
the application, and it represents the failure rate –or the time between failures–. When a
pod terminates, Kubernetes waits for a grace period –which, by default, is 30 seconds– until
it kills any associated container and data structures.

As far as we have tested, the only variable that affects termination time of a pod is
the number of containers in that pod. This occurs because when a pod finishes, all of
its containers have to be finished; however, in a normal scenario, pods finish –or restart–
asynchronously. Therefore, the overhead caused by terminating several pods on several
machines is negligible. As ρ tends zero, the mean time to stop a single container inside
a pod remains constant. The way in which these times are aggregated and synchronised
depends on the scenario, and the specific performance metrics can be derived from the
complete Petri Net model.
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Figure 5.5: Total provisioning time, Tt, versus number of deployed containers, C. Each
graph shows: mean time and confidence interval for the mean for a variable number of
machines in the cluster, n. The results are grouped by the number of containers inside a
pod, 1

ρ . The container image –1.225 GB– is not present in the machines.
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C ρ
T4 (T5) per

Container

T6 (T7) Graceful

termination

T6 (T7) per

Container

1 1 0.01 30 0

10 0.1 0.11 30.99 0.10

20 0.05 0.12 32.8 0.14

40 0.025 0.15 34.69 0.11

60 0.016 0.16 37.04 0.11

Table 5.3: T4 and T6 experimental results, in seconds.

In order to associate the corresponding metric for the transitions, we perform the ex-
periments shown in Table 5.3 in the same cluster, as in the previous section. We present
the results for T4 and T6, which correspond to a successful scenario. Without taking into
account the time to detect the failure, the behaviour of transitions T5 and T7 is similar.

� Transitions T4 and T5 : these transitions measure the time to stop a container when
it is going to be restarted. We have deployed pods with a variable number of con-
tainers to measure the time. The results are shown in column “T4 per Container”
in Table 5.3. When we decrease ρ, the mean time to terminate a container remains
constant. Additionally, the highest measured mean time is ∼ 0.3s and 80% of sampled
times are < 0.22s.

� Transitions T6 and T7 : these transitions model the normal behaviour of Kubernetes.
On successful completion, Kubernetes waits for the grace period and deletes all the
data structures associated with a container. We measured these variables in columns
“T6 Graceful termination” and “T6 per container” in Table 5.3. For these experi-
ments, we set the grace period to 30s –the default value–. We can observe that the
stopping time remains constant for more than 10 containers in a pod –column “T6 per
container”– and for low values is negligible. It is interesting to note that the time to
stop a container is higher when the container is going to be restarted. This overhead
is about 10ms.

5.3 Overhead Analysis of the Pod Abstraction

The pod abstraction allows several containers to be grouped together and share different
resources. However, the way in which resources are shared between containers in the same
pod and the impact on the performance of a container are not easy to determine. In this
section, we analyse this performance change based on how the deployment is structured –e.g.
the number of containers inside each pod– by using the total execution time as a metric.
We conducted several experiments to measure the overhead induced by the pod abstraction.
The aim is to measure how transition T2 is affected by the deployment configuration.

Let us consider the following scenarios:



5.3. Overhead Analysis of the Pod Abstraction 67

C µ1 σ1 µ2 σ2 µ1 − µ2 = 0?

1 123.47 0.43 123.38 0.39 Yes

4 473.65 0.96 475.15 0.62 No

8 946.90 0.72 946.63 0.69 Yes

12 1417.76 1.67 1420.40 1.35 No

20 2370.21 1.16 2374.36 3.89 Yes

Table 5.4: Pov-ray experiment. Comparison between the execution time (s) for Scenarios
1, µ1, and for Scenario 2, µ2, and hypothesis testing.

� Scenario 1 : A pod is deployed and all the containers are inside that pod, ρ = 1/c.

� Scenario 2 : Several pods are deployed and there is exactly one container inside each
one, ρ = 1.

The total number of containers deployed is given by C and all pods are deployed on the
same machine. The machine has 12 Intel Xeon E5-2620 (2.00GHz) cores and 32GB of RAM.
Each experiment, one for each scenario, was repeated 30 times, so that we can consider that
the probability distribution of both means follows a normal distribution –by the Central
Limit Theorem–. We present the mean execution time, µi, and the standard deviation, σi.
In order to compare both scenarios, we propose the following statistical hypothesis test:{

H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 6= 0

As we assume that both means follow a normal distribution and they have the same
variance, we can use the Student t test [109]. Since there are several resources shared between
containers, we can expect different behaviours for each one. In the following subsections,
we accomplished a hypothesis test for applications with high CPU usage –Pov-Ray 3.7–,
high I/O usage –IOzone benchmark– and high network usage –netperf.

5.3.1 CPU Intensive applications

We used the multi-threaded Pov-ray application as a benchmark to measure the overhead
of pods for CPU intensive use. Kubernetes inherits from Docker the CPU quota reservation.
This contingency mechanism allows a container to reserve a maximum CPU quota. However,
the quota is only used when there is contingency in the machine; otherwise, every available
CPU is used. The comparison between Scenarios 1 and 2 is presented in Table 5.4. We can
see that when the number of containers increases, the null hypothesis should be rejected.
Additionally, when H0 is rejected, Scenario 1 is faster than Scenario 2. The overhead caused
by having one container inside each pod is about 0.01%.
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C µ1 σ1 µ2 σ2 µ1 − µ2 = 0?

1 23.52 0.82 23.19 0.64 Yes

4 60.85 1.45 65.02 1.25 No

8 85.98 2.25 91.36 2.24 No

12 108.54 4.14 91.36 3.40 No

20 153.51 6.47 170.99 5.28 No

Table 5.5: IOzone experiment –iozone -a -i 0 -i 1 -g 4M –. Comparison between the execu-
tion time (s) for Scenario 1, µ1, and for Scenario 2, µ2, and hypothesis testing.

C µ1 σ1
∑ BWi

C
µ2 σ2

∑ BWi

C
H0?

1 1.88 0.06 1.88 1.90 0.04 1.90 Yes

4 8.61 0.21 2.15 8.82 0.05 2.20 Yes

8 15.53 0.12 1.94 16.26 0.20 2.03 No

12 14.99 0.21 1.25 16.42 0.38 1.37 No

20 15.10 0.19 0.75 18.32 0.91 0.91 No

Table 5.6: Hypothesis test for network bandwidth (GB) for C iperf Clients. Iperf server
& client are on the same machine.

5.3.2 I/O Intensive Applications

We used IOzone as a representative benchmark of an I/O application. Table 5.5 depicts
the results –in seconds– for the execution of the IOzone benchmark11. If we compare both
scenarios, we can conclude that there is enough statistical evidence to accept H0: as the
number of pods in a machine increases, the caused overhead is higher. The conclusion of
these experiments is that it is better to group all containers in the same pod.

5.3.3 Network Intensive Applications

The network infrastructure of a machine is shared by all the containers inside a pod. All the
containers in a pod share the port space and the pod has only one IP address. Sharing the
access to the network between several containers might cause an overhead on the container
performance. To measure that overhead, we deployed an iperf server inside a pod and
several clients with the previous scenario configuration. All tests measure the network
bandwidth for a 30 second interval of TCP traffic.

The first experiment schedules all the containers at the same machine. In a real scenario,
this situation might arise when the scheduler groups pods or containers together with high
network traffic among them. In Table 5.6, we show the average bandwidth per container
and the hypothesis test. When the number of containers inside the pod is above 4, there is

11The IOzone benchmark was executed as follows: iozone -a -i 0 -i 1 -g 4M
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C µ1 σ1
∑ BWi

C
µ2 σ2

∑ BWi

C
H0?

1 108.26 0.04 108.26 108.26 0.04 108.26 Yes

4 110.53 0.39 27.63 110.17 0.84 27.54 Yes

8 113.81 0.47 14.23 115.64 0.51 14.46 No

12 117.42 0.92 9.78 117.53 4.01 9.79 Yes

20 124.74 1.22 6.24 126.52 2.09 6.33 No

Table 5.7: Hypothesis test for network bandwidth (MB) for C iperf Clients. Iperf Clients
are on a different physical machine from the server one.

enough statistical evidence to reject H0. The best results are achieved when each pod has
an isolated container (Scenario 2).

We repeated the experiments with the iperf server placed on a machine and the clients
scheduled in another machine. Table 5.7 shows the results, which are similar to the pre-
vious ones. The bandwidth values from Scenario 2 are higher than those from Scenario 1.
From these experiments, we can conclude that deploying several pods with a few coupled
containers is better than a single pod with a large number of containers.

5.4 Discussion

We demonstrated that the deployment of an application on a specific infrastructure can
impact its overall performance. We used results from our experiments to derive rules that
try to improve it. Since in Kubernetes the minimal schedulable unit is the pod, then ρ is the
parameter which has the highest impact on performance. We assume that the Kubernetes
nodes are homogeneous and that all containers can be distributed across physical nodes,
improving the performance of the application –i.e. there is no coupling between containers,
and this is considered as a design restriction–. Figure 5.6 summarises the rules to choose
the best ρ from our experiments.

If an application is CPU or I/O intensive, it is better to group all containers together
–from experiments in Tables 5.4 and 5.5–. However, we want to distribute the pods among
as many machines as possible, which is done through the ρ parameter. If the number of
containers is greater than the number of machines, ρ should be equal to n

c (Rule no. 1)
–we have n pods with c

n containers at each pod–. This rule tries to minimise the impact of
Td –which decreases for low values of ρ–. If the number of containers to deploy is less than
the number of machines, then ρ = 1 (Rule no. 2.) –we deploy a pod with a container at
each machine.

The ρ choice is different if we consider an application that makes a high use of the
network. If it is a service pod and there are few failures in the scenario –equivalently, Td
is negligible– the best choice is to set ρ = 1. The reason is that, regardless of the machine
where a pod is scheduled, the effective bandwidth is higher when there is only one container
inside a pod (Tables 5.6 and 5.7). However, if Td is relevant, we can calculate the total time
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Figure 5.6: Flow diagram to choose the best ρ parameter. C is the number of containers to
deploy and n is the number of machines in the cluster.

Tt –deployment time Td plus execution time Te– as a function of ρ (Equation 5.3), where
α(ρ) is the overhead caused by the pod abstraction (Section 5.3) and it can be calculated
as µ1

µ2
, where µ2 corresponds to a scenario with 1

ρ containers per pod. In general, as µ2 is
expected to be greater than µ1, then α > 1. Additionally, α(1) = 1. Figure 5.7 depicts an
example of Tc(ρ), calculated when C →∞, obtained from Figure 5.4.

Tt(ρ) = Td(ρ) + α(ρ)Te =
c

n
Tc(ρ) + α(ρ)Te (5.3)

;

It is a complex task to minimise the function Tt(ρ). As a simplification, we can assume
that α(ρ) remains constant and when n tends to infinity, the mean time to create a container
also remains constant. In our experiments, for low values of ρ (Table 5.7), its value is
approximately 1.01. Assuming that the major improvement in the execution time is achieved
by executing tasks in parallel, we can compare the situation where ρ = 1 versus ρ = n

c . The
first one will be faster than the second one when Equation 5.4 is satisfied –Rule no. 2
should be applied. Otherwise, Rule no. 1 will be more suitable.

Tt(1) < Tt(n/c) =⇒ c

n
Tc(1) + Te <

c

n
Tc(n/c) + αTe =⇒

Tc(1)− Tc(n/c) <
n(α− 1)

c
Te (5.4)

These rules are based on the experiments in Section 5.3. Other container technologies
–such as Linux LXC or Core OS rocket– can be abstracted in a similar way. The use of a
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Figure 5.7: Function Tt(ρ) for different values of n. The number of deployed containers is
assumed to tend to infinity.

particular technology does not have an impact on our model, as many of these container
frameworks will also share similar life-cycle states. However, the performance values may
vary depending on the use of a particular container framework/technology. In Section 2.5,
we provide a comparison of the performance of different technologies. Additionally, there are
different container management systems such as Docker Swarm or Apache Mesos. Although
these other platforms do not have the pod abstraction, our models and results could be
relevant to them in scenarios where ρ = 1.

In our work, we have proposed a methodology to feed a formal model and to analyse the
overhead of the pod abstraction. This methodology should be applied to different configura-
tions in order to be generalised. For instance, all of our experiments were carried out within
a private cloud and Kubernetes was deployed over a bare-metal system. This configuration
allows us to avoid the additional overhead caused by the execution of Kubernetes inside
VMs. On the other hand, the Google Cloud Platform allows the possibility of running a
Kubernetes cluster; however, the containers are run over VMs, which may have an impact
on the performance and the hypothesis tests may change. Besides, the underlying service
architecture is different. For example, since the storage service is accessed over the cloud,
the I/O intensive application will have a different behaviour, and the overhead caused by
the pod abstraction may not be negligible.

5.5 Conclusions

An effective automated resource management in cloud computing requires to launch, termin-
ate and maintain computing instances quickly, with a minimum overhead. In this chapter,
we conduct a performance analysis over Kubernetes, achieved through a Petri Net-based
performance model. It allows us to analyse the deployment and termination overheads of
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containers in Kubernetes, as well as understanding the performance of different configura-
tions of a Kubernetes pod –e.g. the influence of the number of containers per pod–. We
conducted our analysis in a Kubernetes cluster of 8 machines. Our model can be exploited
as a basis to improve two activities: i) capacity planning and resource management; and ii)
application design, specifically how an application may be structured in terms of pods and
containers. From our experiments, we can see that a single container can be deployed in
a time interval that ranges from less than a second to up to 3 seconds, depending on the
circumstances –e.g. the number of pods per container, the number of containers deployed
simultaneously, the network latency, or the number of host machines–. In contrast, the
termination time is typically in the order of a tenth of a second. Moreover, we also provide
a set of rules that assist in allocating the number of containers per pod to provide the best
performance. These rules consider a number of characteristics of the application, such as
the CPU or network usage.



Chapter 6

Client-side Scheduling Based on
Application Characterisation on
Kubernetes

To wisdom belongs the intellectual apprehension
of things eternal; to knowledge, the rational

apprehension of things temporal.

Saint Augustine of Hippo

Continuing with the Kubernetes cluster example, in this chapter we analyse how the decision
of executing several containers in a machine might have an impact on the performance
of those containers. Applications are treated as a black box –the system does not know
anything about them–; however, we propose to bring near the client or user the scheduling
process. This means that we fill the gap between the functional and operational level –see
Chapter 1– with a client-side scheduling.

In practice, for our considered scenario, the client gives informal information to the sys-
tem to improve the deployment of his applications. The client-side scheduler uses this in-
formation to help the specific operational scheduler –in this case, the Kubernetes scheduler–.
The information managed by the scheduler is related to the operational level, for example,
if the application is CPU intensive or I/O intensive. How these informal criteria could be
refined is presented in the next chapter.

The chapter is structured as follows. First, in Section 6.1, we present the contention in
virtualised environments. Section 6.2 shows the effects of resource contention and Section 6.3
presents our proposed architecture to deal with interference, and shows how an application
characterisation can help the scheduler to improve overall performance. Finally, the chapter
ends with the conclusions and future work in Section 6.4.

73
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6.1 Contention as a Scheduling problem

With the rise of the cloud computing paradigm and the emergence of its technologies,
computational power can be adjusted on-demand to the processing needs of applications.
Developers can currently choose among a number of cloud computational resources such
as Virtual Machines (VMs), containers, or bare-metal resources, having each their own
characteristics. A VM can be seen as a piece of software that emulates a hardware computing
system and typically multiple VMs share the same hardware to be executed. Nevertheless,
VM utilisation can sometimes be difficult to achieve, e.g. when the applications to be run
do not consume all the resources of a VM .

Containers are rapidly replacing VMs as virtual encapsulation technology to share phys-
ical machines [57, 58, 62, 110]. The advantages over VMs are a much faster launching and
termination time overheads, and an improved utilisation of computing resources. Indeed,
the process management of container-based systems allows users to adjust resources in a fine
grained fashion, closely to the granularity of many applications enabling single containers
or groups of them to be deployed on-demand [111]. Finally, container-based platforms, such
as Kubernetes, also allow automating deploying and scaling of containerised applications,
simplifying the scaling of elastic applications.

As happened with VMs, containers also exhibit resource contention, which leads to
unexpected performance degradation. In general terms, resource contention arises when
the computing demand from the applications being executed exceeds the overall computing
power of the shared host machine. In particular, resource contention appears in containers,
when the demand of multiple containers in the same host machine exceeds the supply,
understood in terms of CPU, memory, disk or network. This phenomenon can happen
in spite of the isolation mechanisms integrated with container technologies, namely Linux
namespaces and Linux Control Groups, which isolate the view of the system and limit the
amount of computational resources, respectively. Therefore, the development of applications
on these platforms requires new research on scheduling and resource management algorithms
that reduce resource contention while maximising resource utilisation. Existing platforms
like Kubernetes already incorporate a reservation mechanism in order to reduce resource
contention. However, such mechanism is only for CPU and for the maximum amount of
memory, and can decrease resource utilisation.

In this chapter, we propose a client-side scheduling approach in Kubernetes that aims
at reducing the resource contention phenomenon in container technologies. Our approach
makes use of application characterisation in terms of the usage of resources, and extends
the Kubernetes scheduler so that it can take better allocation decisions on containers based
on such characterisation. Our application characterisation consists of dividing applications
in categories, namely high and low usage of a certain resource. We propose to delegate the
classification process of applications to the client or developer. Thus, he can give informal
characterisation to his application to improve the scheduling algorithm.

Then, we extend the Kubernetes scheduler behaviour, in essence, we try to avoid that
containers wrapping applications with high usage of a resource –e.g. CPU or disk– coincide
in the same host machine. Finally, we conducted experiments with real-world applications,
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Application Resource Notes

Pov-ray CPU Version 3.7 with default paralelism

Stream [115] Memory Bandwidth
-DSTREAM ARRAY SIZE=100000000

-DNTIMES=100

dd Disk I/O Bandwidth
dd if=/dev/zero of=/root/testfile

bs=1G count=1 oflag=direct > dev/null

Table 6.1: Applications used as a background workload with the resource which they use
intensively and with the chosen execution parameters.

such as WordCount and PageRank, in operational stream processing frameworks, such as
Thrill [112] and Flink [113], and compared the results with the standard Kubernetes sched-
uler.

6.2 Resource Contention on Kubernetes

When several containers are running on the same machine, they compete for the available
resources. As the container abstraction provides less isolation than virtual machines, sharing
physical resources might lead to a degradation in the performance of the applications running
inside the containers.

To avoid this situation, Kubernetes provides a resource reservation mechanism. That
mechanism has two main restrictions. The first one is that the reservation is only for CPU
and for the maximum amount of RAM . However, the resources that are shared in a machine
which might degrade the performance are not restricted to those. For instance, the network
bandwidth is shared among all containers in the same machine, and the network access is
shared for all containers inside a pod [114]. Other shared resource is the memory bandwidth.
The second issue is that a reservation mechanism can lead to unused resources in the cluster.
An application might reserve an entire core –CPU limit in Kubernetes terminology– but it
only uses the resource sporadically.

We executed several applications on the same machine to characterise how the perform-
ance degrades. The machine has two E6750 cores and 8GB of RAM. The chosen applications
are a map-reduce application, WordCount, and a webgraph application, PageRank [101],
expecting that PageRank makes a higher CPU usage than WordCount. Additionally, we ran
both applications inside two different frameworks for data stream processing: Flink [112]
and Thrill [113]. We chose both of them because they are implemented in different program-
ming languages –Flink is implemented in Java, whereas Thrill is implemented in C++–. We
ran each experiment ten times, and we plotted their mean values.

The first set of experiments consisted in running one application per experiment – Word-
Count inside Flink, WordCount inside Thrill, PageRank inside Flink and PageRank inside
Thrill– along with a background execution caused by another application that makes an
intensive usage of a certain resource. A ray tracing program, Pov-ray [125], the Stream



76 Chapter 6. Client-side Scheduling on Kubernetes

106 107 108 109
1

2

3

4

Number of Words

W
or
d
C
ou

n
t

Flink

106 107 108 109
1

2

3

4

Number of Words

Thrill

103 104 105 106
1

2

3

4

Number of Words

P
ag
eR

an
k

103 104 105 106
1

2

3

4

Number of Words

App ⊗ Pov-Ray App ⊗ DD App ⊗ Stream

P
er
fo
rm

an
ce

D
eg
ra
d
at
io
n
(

A
p
p

A
p
p
0
)

Figure 6.1: Performance degradation for several applications –WordCount inside Flink,
WordCount inside Thrill, PageRank inside Flink and PageRank inside Thrill– when executed
with a background workload.

benchmark [115], and a file transfer and conversion Unix command, dd1, are used as work-
load background applications. These three applications were executed in a continuous loop.
A summary of the parameters used, their version, as well as the resource they use intensively
is depicted in Table 6.1.

For the experiments, we ran WordCount and PageRank and varied the input size in
order to observe how their performance degrades over a long execution time. For PageRank
applications, we selected the Barabasi-Albert graph which was generated using the Net-
workX package2. As the reference time, we take the execution time of each application
in isolation, without the background application, App0. Given the execution time of that
application with a certain background workload, for instance Apppv, we calculate the per-

formance degradation as
Apppv
App0

. Results are shown in Figure 6.1. From this experiment, we
can see that:

� The implementation of Thrill is much more efficient than Flink in all cases. This means

1dd Linux user’s manual (2010)
2https://networkx.github.io/

https://networkx.github.io/
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that Thrill uses less resources than Flink, and when it is co-scheduled with applications
that use a certain resource with a high intensity, its performance is not degraded too
much. For instance, the performance loss when co-scheduled with Pov-ray is less than
two times for all experiments.

� There is a significant performance degradation –about four times– when we execute
WordCount for big input sizes –one thousand million words–, when it is co-scheduled
with dd. The explanation is that the input size is 6.76 GB, so there are a lot of page
faults in the execution and the application is continuously accessing the storage system
at the same time as dd.

� There is a significant performance anomaly when executing WordCount and Flink co-
scheduled with dd for small input sizes. This is due to the implementation of Flink
regarding I/O access and due to the computational time being negligible in comparison
with the overheads for accessing disk for small input sizes.

In the second set of experiments, we have measured the degradation caused in real scen-
arios. We execute on the same physical machine the following scenarios for each application
–WordCount and PageRank–: i) one instance of Flink/Thrill; two instances of Flink/Thrill
and four instances of Flink/Thrill; and ii) one instance of Flink and one instance of Thrill;
two instances of Flink and two instances of Thrill. Results are shown in Figure 6.2. We can
observe that in Flink, the degradation is similar when there is another Flink or Thrill ap-
plication. When there are four applications, the performance is highly degraded with Flink
applications in the WordCount example. The results are very similar in Thrill experiments.

Overall, we can see that the degradation is higher when two or more instances of the same
container are scheduled in the same machine. The reason for this behaviour is that both
applications use the same resources at the same time, so the contention is higher. However,
we can see that when two or four applications are co-scheduled together, the degradation is
below two. This means that, from the point of view of the cluster operator, it is more time-
efficient to co-schedule both applications together instead of executing them sequentially.
From the point of view of the client, a sequential execution of applications means that one
client is going to have a low degradation value –near 1– and other client has to wait for the
first application to finish. Equation 6.1 gives the condition to be met when the sequential
execution is better than the co-scheduling solution. The notation tApp1⊗App2 denotes the
execution time of application App1 when it is co-scheduled with application App2.

max{tApp1⊗App2 , tApp2⊗App1} ≤ TApp1 + TApp2 (6.1)

6.3 Client-side Scheduling

Pods are allocated into machines by the Kubernetes scheduler. Kubernetes provides a
label-based mechanism, which allows it to place the pods in machines which satisfy certain
conditions. For example, the application can request a machine with a solid disk. However,
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Figure 6.2: Performance degradation for several Apps –WordCount inside Flink, WordCount
inside Thrill, PageRank inside Flink and PageRank inside Thrill– when executed in different
configurations.

this mechanism entails that the client knows which kind of labels are provided by the cluster.
This mechanism is insufficient to deal with the problem presented in Section 6.2. In this
section, we introduce a methodology to characterise applications in an informal way. The
implemented client-side scheduler uses the characterisation as a guideline to allocate pods
inside machines.

6.3.1 Application Characterisation

In certain cases, applications can be classified depending on which resource they use more
intensively –CPU, I/O disk, network bandwidth, or memory bandwidth–. An application
which is writing in disk continuously has a different behaviour from another one which
makes an intensive use of CPU. For illustrative purposes, we only consider applications that
make an intensive use of CPU or an intensive use of I/O disk. In our previous experiments,
Pov-ray was the application which exemplifies a high CPU application and the dd command
exemplifies a high I/O disk utilisation. Real applications might have an intensive usage of
a resource, but with different degrees. For example, the bzip application, used to compress
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(a) CPU degradation versus I/O degradation.

App Input Size Id Category
FlinkWC 1 · 106 1 CPU ↑
FlinkWC 20 · 106 2 CPU ↑
FlinkWC 100 · 106 3 CPU ↑
FlinkWC 1000 · 106 4 disk ↑
ThrillWC 1 · 106 5 cpu ↓
ThrillWC 20 · 106 6 CPU ↑
ThrillWC 100 · 106 7 CPU ↑
ThrillWC 1000 · 106 8 disk ↑
FlinkPR 1000 9 disk ↑
FlinkPR 10000 10 disk ↑
FlinkPR 100000 11 CPU ↑
FlinkPR 334863 12 disk ↓
FlinkPR 1 · 106 13 CPU ↑
ThrillPR 1000 14 CPU ↓
ThrillPR 10000 15 CPU ↑
ThrillPR 100000 16 CPU ↓
ThrillPR 334863 17 CPU ↑
ThrillPR 1 · 106 18 CPU ↓

(b) Application characterisation.

Figure 6.3: Application characterisation based on the CPU and the I/O degradation. Num-
bers in Subfigure 6.3a are application identifiers in Table 6.3b.

large files, has an I/O intensive behaviour that is less than the usage made by the dd

example. This behaviour can be modelled by defining of several intensity usage grades. For
the sake of simplicity and as we want to propose a general methodology, we are going to
use here only two grades of resource usage, a high usage of the resource –with a ↑ notation–
and a low usage of the resource –with a ↓ notation–. Nevertheless, we acknowledge that
the number of grades is a determinant aspect for the scheduling performance that needs
to be addressed, and there is a variety of approaches in literature that can be exploited to
determine it better, such as classification and clustering data mining algorithms.

Therefore, in our approach, we have a total of four categories: high CPU usage (CPU ↑),
low CPU usage (CPU ↓), high I/O disk usage (disk ↑), and low I/O disk usage (disk ↓). The
characterisation of an application in one of these categories allows the scheduler to take bet-
ter allocation decisions. As the simplest method, the client or the developer should provide
the category which better fits his application. Although the categories are very intuitive,
alternative sophisticated methods can be developed to classify applications automatically.
In order to illustrate our methodology, in Figure 6.3, we show a possible characterisation.
We have plotted the I/O degradation –the number of times the application is slower when
it is scheduled in the same machine along with dd– versus the CPU degradation. The same
procedure has been done with Pov-ray. We used dd and Pov-ray as benchmarking ap-
plications, however, other applications which make a high usage of a single resource can be
used. The values were taken from the experiments shown in Figure 6.1. The red lines split
the four categories, and they were obtained with qualitative criteria. Then, we classified
each application taking as criteria the resource which caused more contention. The plotted
numbers are the identifier of the corresponding application, which are shown in Table 6.3b.
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Algorithm 2 Client-side scheduler

procedure Client-Side Scheduler(lapp,W )
S = GetClusterState()
minV alue :=∞
bestNode := 0
for N in S do

if |N |≤ min{|M |, ∀M ∈ S}) then

if minV alue >
∑|N |

j wj,app then

minV alue :=
∑|N |

j wj,app
bestNode := N

end if
end if

end for
Allocate(lapp, bestNode)

end procedure

App1\App2 CPU ↑ CPU ↓ disk ↑ disk ↓
CPU ↑ 5 4 2 1

CPU ↓ 4 3 1 0

disk ↑ 2 1 5 4

disk ↓ 1 0 4 3

Table 6.2: Weight matrix W for two resources and two usage grades.

6.3.2 Client-side Scheduling

We propose a scheduler which meets two criteria: i) balancing the number of applications
in each node; ii) minimising the degradation in a machine caused by resource competition.
Formally, let us define a node N as a multi-set of labels. Each label represents an application
that is running inside that node. In our example, we have four kind of labels –l0 corresponds
to CPU ↑; l1 corresponds to CPU ↓, and so on–. In a certain moment, the state of the
cluster S can be modelled as a set of nodes. Given a new application whose label is lapp,
the best node to allocate lapp is given by Equation 6.2, where wk,l is the weight of the k-th
row and l-th column of a weight matrix W .

|E|
argmin
i∈0

∑
j

wEi,j ,app (6.2)

Each wk,l models the penalty to schedule a new application labelled as l, if in that node
is running an application labelled as k. Ei,j is the j-th application label of i-th node in E
set. E is defined as E = {N ∈ S ∧ ∀M ∈ S, |N |≤ |M |}. The E set contains the nodes with
less applications. Algorithm 2 implements the previous formalisation.
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In order to obtain the weight matrix W , we provide the following rules: for each element
wk,l, we check if the labels are associated with the same resource. If that is the case, then
we set high values of penalty –3, 4, or 5 in our example–. Then, we check the grade of
usage. From the previous values, if both grades are high, we set the highest penalty value
–5–; if only one is high, then we associate the medium value –4–; and if both are low, then
the lowest penalty value is set –3–. If the labels are not associated with the same resource,
we repeat the same process to associate the low values –0, 1, or 2– if i and j correspond to
different resources. The resulting weight matrix W is depicted in Table 6.2.

6.3.3 Experiments

We made some experiments to compare our client-side scheduler with the default Kuber-
netes scheduler. The proposed scheduler was implemented in Python. The experiments
were conducted in a Kubernetes cluster with 8 machines –each machine has four i5-4690
cores and 8 GB of RAM–. One of the machines acts as a dedicated master node. In the
proposed scenario, we ran six applications three times –dd and Pov-ray with parameters
from Table 6.1; PageRank in Thrill and Flink with 1 million nodes and WordCount in Thrill
and Flink with 1,000 million words– with the default Kubernetes scheduler. The scenario
was executed ten times. As the Kubernetes scheduler has a non-deterministic behaviour,
we show three reference cases in Figure 6.4. Each bar represents the execution time of the
application, and its colour indicates the machine where the scheduler placed the application.
The vertical line shows the total time measured for the experiment –time to create the pods
+ execution time + time to delete the pods–. Case number 1 represents the worst case.
Kubernetes allocated WCFlink1 and WCFlink2 in the same machine, with an execution of
dd and PRFlink1. As a result, the execution time of WCFlink1 is more than 10 minutes,
due to the degradation caused by sharing the machine with WCFlink2. Case number 2 rep-
resents a balanced case, with an execution time of approximately 10 minutes. The scheduler
placed again WCFlink3 and WCFlink2 in the same machine, so there is a certain degradation
in the performance. The best case corresponds to Case 3. In this situation, Kubernetes
allocated WCFlink1, WCFlink2 and WCFlink3 in different machines and the result is better
–approximately 8 minutes–. From these experiments, we can conclude that, as Kubernetes
has a non-deterministic behaviour, the execution time of the applications has a high vari-
ance. If the scheduler splits the applications with an intensive CPU usage among different
machines, the results are better; however the decision is taken randomly. Additionally, we
can see in Case 2 that the default Scheduler does not try to balance the number of applic-
ations among the number of machines –the scheduler places four applications in node3 and
only one application in node5.

The results of the same experiment with our scheduler are shown in Figure 6.5. Its beha-
viour is deterministic, so under the same conditions, the scheduler allocates the applications
in the same machine –in the figure we only show two of the ten executions, due to the low
variance–. The overall execution time of the experiment is approximately eight minutes.
This value is 20% better than the mean time of the Kubernetes scheduler –approximately
10 minutes–, and it is significantly better –33%– than the worst case –approximately 12
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Figure 6.4: Execution time and machine allocation with the default Kubernetes scheduler.
The blue line shows the total measured time –execution time + time to create pods + time
to delete pods.

minutes–. The total time is similar to the best case of the default scheduler. Additionally,
the variance in the execution time is lower. The improvement is achieved by deploying the
applications with a high CPU utilisation –WCFlink1, WCFLink2 and WCFlink3– on different
machines.

In our last set of experiments, we executed the same batch of applications while using the
reservation mechanism available in Kubernetes. As WCFlink1, WCFlink2 and WCFlink3 have
the highest execution time, we reserved two cores for them. For the remaining applications,
we reserved only one core. The results are displayed in Figure 6.6. The red line compares
the total time to our scheduler denoted by the blue line. We can see that the total time is
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Figure 6.5: Execution time and machine allocation with the proposed scheduler. The blue
line shows the total measured time –execution time + time to create pods + time to delete
pods.

almost twice. The reason for this behaviour is that there are a lot of unused resources in
the machines. Additionally, the variance in the execution time is very high –for instance,
Pov-ray1 has an execution time of nearly 12 minutes and Pov-ray2 has an execution time
of nearly 16 minutes–. This can be explained due to the fact that there are other resources
that cause performance degradation which are not reserved.

6.4 Conclusions

Container virtualisation provides a quick and flexible mechanism to share computational
resources in machines while improving resource utilisation, as compared to other cloud
resources such as Virtual Machines. However, the low isolation between container-based
applications can lead to performance degradation in those applications. In our work, we have
shown that the default mechanisms to isolate resources between containers in Kubernetes
are not sufficient to lead with the performance degradation. Although CPU is the main
source of degradation, the competition for other resources –I/O disk, memory bandwidth
and network– should be included in the model. Moreover, our experiments show that the
CPU reservation mechanism can lead to unused resources in the cluster, and the execution
time of applications might have a high variance caused by degradation produced by other
sources distinct than the CPU.

As a solution to deal with the competition of resources between containers, we propose
a scheduling technique based on the characterisation of applications. Clients or developers
provide informal information about their applications –for instance, which resource the ap-
plication uses more intensively– and in turn, the scheduler uses that information to allocate
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Figure 6.6: Execution time and machine allocation with the Kubernetes CPU limit mech-
anism. WCFlink1, WCFlink2 and WCFlink3 are executed with two cores and the remaining
applications with one core. The blue line shows the total time obtained with the proposed
scheduler and the red line shows the total measured time –execution time + time to create
pods + time to delete pods.

the applications using the same resource in different machines. Bringing near the client the
scheduling process means that we can have more information about the black box instances.
In our experiments, we achieved about a 20 percent improvement in the execution time
of a simple scenario compared to the default Kubernetes non-deterministic scheduler. The
total execution time is about the half compared to a scenario were resources are reserved in
Kubernetes. Additionally, the behaviour of our scheduler is deterministic, so it can be used
for further analysis.

Finally, in the next chapter, we propose a methodology to characterise applications
by using profiling techniques. The upcoming model is a refinement of the characterisation
proposed in this chapter. It allows us to model changes in the resource usage patterns. Thus,
instead of using fixed categories which represent a certain hardware resource with a usage
pattern –e.g., high CPU or low I/O–, the new model allows the description of variations in
time for the use of that resource.



Chapter 7

Timed Indices to Characterise
Interference in Container
Environments

Knowledge of the fact differs from knowledge of
the reason for the fact.

Aristotle

In previous chapters, we have presented a hierarchical model to describe the usage of Kuber-
netes and an approach to deal with the interference between containers focused on the
scheduler. In this chapter, we present a methodology to describe containerised applications
by using four resource indices. Unlike machine-learning based models [80,81], these indices
are very tight to the resources, so they are easily interpretable and they allow a better
behavioural and resource analysis. Moreover, the indices represent how the resource usage
varies over time.

We propose using these indices to estimate the execution time of containers when they
are competing with other containers in the same physical machine, namely, they cause inter-
ference between them. Although our methodology is platform agnostic, this estimation can
be used directly in the Kubernetes model presented in Chapter 5 to make simulations and
estimations about an entire container management system. Additionally, the characterisa-
tion of applications with this technology can be used by the client-side scheduler presented
in Chapter 6 to refine how applications are characterised.

The chapter is structured as follows. We begin defining and explaining the resources that
might cause interference in applications (Section 7.1). Then, we present the CFA model in
Section 7.2. The methodology to define the interference indices and to characterise applic-
ations with them is presented in Section 7.3. In Section 7.4, we propose a multiple linear
regression model to estimate the interference and the performance degradation between ap-
plications running in the same machine. Section 7.5 shows the experiments conducted to test
our models. In Section 7.6, we discuss certain parameters and assumptions of our estimation
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model. Finally, the chapter ends with the conclusions and future work in Section 7.7.

7.1 Containers and Sources of Interference

The container virtualisation paradigm enables developers to share physical resources among
applications. Containers decouple the application and its dependencies from the operative
system and the environment where they are deployed. These characteristics allow containers
to be deployed faster than Virtual Machines. Moreover, they are suitable to package services
or applications with high non-functional requirements, specially, those related to elasticity
or fault tolerance.

The fact that several containers are running in the same physical –or virtual– machine
can cause degradation in their performance. The simplest scheme to model how containers
compete for a resource is when that resource is allocated by one container and it is not
released until the container has finished a certain task –it is a conservative resource–. This
scheme has been studied with Resource Allocation Systems (RAS) and Petri Nets [116]
in different domains. In this context, the degradation in the QoS metrics is caused by
the waiting time wasted while waiting for a resource to be available, or by the existence
of deadlocks. Moreover, the RAS paradigm represents high level resources, for example,
computing nodes used by a scheduler. However, the resources involved in the execution of
a container in a node are more complex. For instance, the allocation of the CPU resource
by a container is done for a small fraction of time. If there are not other containers to be
executed in that machine, the scheduler in the machine will continuously allocate the CPU
to that container.

The interference between containers is measured as the performance loss caused by the
execution of a container at the same time as another one in the same host. Thus, it is the
difference between the execution time when the container has available all the computational
resources that it needs and the execution time when there are other containers using that
resources at the same time. There are different ways to measure this metric. In Section 7.4,
we propose to measure it as the relative value between the time which an application takes
to reach certain points of its execution when it is co-scheduled with another application;
and the same time measured when it is alone.

To understand how interference between containers works, we have identified the poten-
tial Sources of Interference (SoIs). Each of them is related to a physical resource (Figure
7.1):

� CPU usage: in most container management systems, if there is no contention in the
use of the CPU, each container uses the CPU it needs; otherwise, there is a reservation
system to share the CPU proportionally.

� Cache Memory and Memory bandwidth: the cache hierarchy in a node is not
isolated between containers, so a container can be continuously failing when it accesses
cache because another container is making an aggressive use of cache.

� Network usage: the network access is shared between all containers in a node; in
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Figure 7.1: Sources of interference in a physical host.

addition, if there is no contention, a container can use the entire bandwidth.

� I/O file system access: like the network, the file system is shared between all con-
tainers; additionally, it could be a distributed file system and the network can be
related to it.

In our work, we focus on CPU and cache memory usage, because they a have a heavy
impact in the performance of containers and because cache memory is very difficult to
isolate in these environments. However, the analysis of the Network and the I/O behaviour is
straightforward following the proposed methodology. The main difference for these resources
is that other low level events should be measured and the analysis should take into account
that network usage requires to synchronise with another container.

The CPU of a container is easily isolated through a reservation mechanism. However,
our studies show that this technique leads to an increase in the execution time of the con-
tainer if it is not well-fitted [117]. Overall, this approximation avoids that unused resources
in the machine are used by another container. An ad hoc solution is to overbook the avail-
able resources, but we consider that the solution should be given on the design level, not
on the operational level. Moreover, other resources –namely cache memory and memory
bandwidth– are difficult to isolate in hosts.

7.2 Background

Confirmatory Factor Analysis (CFA) [118] is a set of statistical techniques which identify how
a set of observed –or measured– variables are affected by a set of factors –or latent variables–
which are not possible to measure. CFA is a subset of Structural Equation Modelling (SEM)
techniques [119]. In SEM, more sophisticated relationships between variables are allowed;
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for instance, they let the modeller build hierarchical models to construct composite indices.
We have chosen CFA because it allows the researcher to stablish an a priori hypothesis
and the statistical model confirms or rejects the hypothesised model; unlike in other Factor
analysis techniques, such as Exploratory Factor Analysis (EFA) [120]. In this regard, EFA
can be used to determine the factor structure which explains the maximum amount of the
variance of the variables. To extract meaningful factors, the solution should be rotated and
an arbitrary cut-off value has to be used to determine which variable loads onto each factor.
On the other hand, Principal Component Analysis (PCA) [121] only reduces the observed
variables into a set of fewer factors which are difficult to interpret.

7.2.1 Confirmatory Factor Analysis

Formally, given a set of p observed variables, X, and a set of m factors F , we expect
Equation 7.1 to be satisfied. µi is the intercept for xi –it is the expected value when all
factors are 0–, εi is the stochastic error and m < p.

xi = µi + λi1F1 + λi2F2 + ...+ λimFm + εi (7.1)

If all observed variables are affected by a single factor, we call the model a measurement
model. Namely, ∀i ∈ {0, p},∃k ∈ {0,m} | λik 6= 0 ∧ ∀j ∈ {0,m}, j 6= k, λi,j = 0.

We can express Equation 7.1 in matrix form, as it is done in Equation 7.2.

X =


x1

x2
...

xp

Λ =


λ11 0 · · · 0

λ21 0 · · · 0
...

...
. . .

...

0 0 · · · λp−1m

0 0 · · · λpm



F =


F1

F2
...

Fm

µ =


µ1

µ2
...

µp

 ε =


ε1

ε2
...

εp


X = ΛF + µ+ ε (7.2)

If we suppose that Σ = Cov(X − µ), and we denote the covariance over the factors by
Φ and the covariance over the error by Ψ, we can write Equation 7.2 in covariance form
(Equation 7.3).

Σ = Cov(X − µ) = Cov(ΛF + ε)

= ΛCov(F )Λt + Cov(ε)

= ΛΦΛt + Ψ (7.3)

In order to identify the model, we have to set the scale of the latent factors. Two methods
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can be used: i) setting the loading of the first observed variable for each factor to 1; or ii)
setting the factor variance to 1, namely, ∀i ∈ {1, ...,m}, σ(Fi) = 1.

There are different methods in literature to estimate the parameters of the model [122]
–Λ and Φ–: i) Maximum Likelihood (ML); ii) Robust ML (MLR); and iii) Weighted Least
Squares (WLS). These methods are available in the most used statistical frameworks – e.g.
R, STATA or MPLUS–. In this work we use the default method –Maximum Likelihood– in
the lavaan package [123] on R statistical software1.

7.2.2 Factor Scores

There are several methods to compute the value –or factor score– for the latent variables
[124]. In this work we are going to use the regression approach, also known as Thurstone or
Thompson scores.

Once the Λ and Φ values are estimated, we can compute the Factor scores as a regression
problem (Equation 7.4). B is the matrix with the coefficient values from the regression.

F = BX (7.4)

In the general formulation of CFA problem (Equation 7.1), we can include the n sampled
values for the p observed variables (Equations 7.5 and 7.6).


x11 − µ1 · · · x1n − µ1

x21 − µ2 · · · x2n − µ2
... · · · ...

xp1 − µp · · · xpn − µp

 =


λ11 0 · · · 0

λ21 0 · · · 0
...

...
. . .

...

0 0 · · · λp−1m

0 0 · · · λpm

×

f11 · · · f1n

f21 · · · f2n
... · · · ...

fm1 · · · fmn

 (7.5)

X̂p×n = Λp×mF̂m×n (7.6)

We can isolate F in Equation 7.6 to compute B as follows:

X̂ = ΛF̂ =⇒ F̂ = (ΛtΛ)−1ΛtX̂

As we want to minimise the error ε, from Equation 7.3, we get:

Σ̂ = ΛΦΛt =⇒ (ΛtΛ)−1Λt = ΦΛtΣ̂
−1

Combining the previous expressions, we get Equation 7.7, where Φ is the covariance
matrix among factors, Σ̂ is the covariance matrix among observed variables and X̂ is the

1https://www.r-project.org/

https://www.r-project.org/
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matrix with the observed values centred in 0. fij represents the factor score for Fj for the
ith observation.

F̂ = ΦΛtΣ̂
−1
X̂

B = ΦΛtΣ̂
−1

(7.7)

7.3 Developing Interference Indices

We want to build a set of indices which model the intensity in the usage of different resources
for an application over its execution time. How an application makes use of the physical
resources –cache, CPU, RAM, etc.– in a machine has a deep impact on the interference
caused by that application to others co-scheduled in the same machine. This property
is measured indirectly by the built indices. These indices can be useful to understand the
behaviour of applications and to reason about how they are going to interfere between them.
For instance, a high use of some resources when the application is alone will cause a high
interference when it is co-scheduled with another one.

To identify these indices, we proceeded as follows: i) we conduct several experiments to
measure the variability of different performance metrics and applications (Subsection 7.3.1);
ii) we extract several variables from the dataset which are highly correlated (Subsection
7.3.2); and iii) we carry out a CFA to summarise the previous variables into four indices
(Subsection 7.3.3). Figure 7.2 depicts the process to characterise any application with the
identified indices. This process is described in detail in the following subsections.

7.3.1 Building the Dataset

We executed different applications inside a container in a machine with 4GB of RAM and
4 Intel i5-4690 (3,500GHz) cores. The chosen applications belong to different scientific
domains. All of them can be seen as a job which may be executed several times with
different input parameters. These applications are:

� Pov-ray [125] is a ray tracing application which generates an image from a scene de-
scription. We used version 3.7. The application is multi-thread and it makes an intense
usage of the CPU. The input parameters used are given by the default benchmark.

� IOzone [126] is a file system benchmark utility. the benchmark is executed as follows:
iozone -a -i 0 -i 1 -g 4M. The parameters have been chosen to adjust the execution
time of the task and to perform random accesses to the memory.

� Stream [115, 127] is a benchmark to test the memory bandwidth of an architecture.
To adjust the execution time of the task, the parameters used are:

-DSTREAM ARRAY SIZE=100000000 -DNTIMES=100.
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Figure 7.2: Process to get the interference indices from an application.

� Metis [128] is a set of graph partitioning tools. We use the gpmetis tool with one
iteration and two partitions. The used benchmark is the LiveJournal1 dataset2, which
has 4847571 nodes and 68993773 vertices.

� Bzip2 and pbzip2. Bzip2 is an open-source file compression program and pbzip2 is
the parallel version. The experiment compresses the LiveJournal dataset 2. The size
of the dataset is approximately 1.1 GB.

� Montage is a widely used scientific workflow which consists of the integration of several
astronomical images into a single image mosaic. This task has high computational and
data requirements. We use the Montage toolkit3 with the provided pleiades example.
We considered the entire pleiades workflow as a single task.

� Blastn and Blastx benchmarks4 are related to the bioinformatic domain. They con-
sist of several queries –100 for blastn and 24 for blastx– to be searched in a library
or database to find biological sequences which resemble the original query.

We have chosen these applications because they have different patterns of resource usage
and, consequently, the variance of the variables in the dataset is obtained from real scen-
arios. Additionally, we are going to use three of them –Pov-ray, IOzone and Stream– as
benchmarking applications to estimate the interference between applications (Section 7.4).

2https://snap.stanford.edu/data/soc-LiveJournal1.html
3http://montage.ipac.caltech.edu/
4http://fiehnlab.ucdavis.edu/staff/kind/collector/benchmark/blast-benchmark

https://snap.stanford.edu/data/soc-LiveJournal1.html
http://montage.ipac.caltech.edu/
http://fiehnlab.ucdavis.edu/staff/kind/collector/benchmark/blast-benchmark
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We consider that these three applications use certain resources intensely; thus, the dataset
has values of situations with saturated resources.

The applications are containerised using Docker technology. We executed these contain-
ers with different configurations and we measured the variables in different points of their
life-cycle. The objective is to get a dataset which captures the variations of the metrics to
build meaningful indices. We assume that when the application is started, it has available all
required data or information. Therefore, the application does not need to communicate with
other applications to retrieve data or to send results. In other words, the only constraint to
the progress of the application is given by the physical resources in the machine.

The dataset consists of 515 observations of 11 variables which measure low level resource
usage of these applications executed inside a container. The metrics are measured with perf

tool [129], which is available in several Linux distributions. This tool makes usage of the
Performance counters of Linux to measure several hardware events. Given an application A
and a sampling period of time sA, we measure the number of occurrences –denoted by the
# notation– of the following events:

� Cycles (#Cycles). It is the number of processor cycles executed in sA seconds. It is
an indirect measure of the CPU usage in that period.

� Cache-references (#Cr) and Cache-misses –#Cm–. They indicate the total cache
accesses and misses from the memory hierarchy in sA seconds. They reflect the memory
usage intensity and the pattern in which it is accessed.

� LLC-loads (#LLCl) and LLC-load-misses (#LLClm). They indicate the number
of Last Level Cache (LLC) accesses and misses for loading data in sA.

� LLC-stores (#LLCs) and LLC-store-misses (#LLCsm). They indicate the Last
Level Cache accesses and misses for storing data in sA.

� Branch-instructions (#Br) and Branch-instructions (#Bm). They measure the
number of instructions which causes the execution of a different instruction sequence
and the number of them which cause a miss in the cache hierarchy.

� Page faults (#fault). It measures the amount of page faults when running the
application. A page fault is raised when the application tries to access a virtual
memory address which is not loaded in the physical memory. This event represents
the lowest level of the memory which needs to access the hard drive.

� Executed Instructions (#Inst). It counts the number of instructions executed in sA
seconds.

7.3.2 Variables from the Dataset

Instead of working with the absolute value of the events presented in the previous subsection,
we are going to use their relative values as follows:
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� Cache-references per instructions (v1), branch-instructions per instructions (v2), LLC-
loads per instructions (v3), and LLC-stores per instructions (v4). These variables are
obtained by dividing the amount of events by the number of instructions executed in
that period (Equation 7.8).

v1 =
#Cr
#Ins

, v2 =
#Br
#Ins

,

v3 =
#LLCl
#Ins

, v4 =
#LLCs
#Ins

(7.8)

� Cache-miss rate (v5), branch-misses rate (v6), LLC-load-miss rate (v7) and LLC-store-
miss rate (v8). These variables are obtained by dividing the amount of events by
the number of events of their corresponding non-miss event executed in that period
(Equation 7.9).

v5 =
#Cm
#Cr

, v6 =
#Bm
#Br

,

v7 =
#LLClm
#LLCl

, v8 =
#LLCsm
#LLCs

(7.9)

� Standardised faults (v9). We consider that it is not representative to reflect the number
of fault events per instructions executed. Instead, we standardise the value to avoid
scaling problems in further analysis (Equation 7.10). The mean and the standard
deviation are calculated from the entire dataset, which is supposed to reflect the
variability of the variable.

v9 =
#faults− E[#faults]

Var[#faults]
(7.10)

� CPU usage (v10). This variable indicates the intensity in CPU usage. Given the
number of cycles executed in sA seconds (#Cycles), the number of cores of the machine
(#Cores) and the CPU speed measured in megahertz (S), Equation 7.11 shows how
CPU usage is computed. The values belong to the [0, 1] interval.

v10 =
#Cycles

sA · S · 106 ·#Cores (7.11)

We have used the vi notation to simplify the index expressions in the following sections.

7.3.3 Interference Indices

The high correlation between the previous variables avoids using them as raw values to
describe an application and to do further analysis. We propose a theoretical model which
combines the variables with the following four factors:
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� I1. CPU usage index. This index models the CPU usage of an application, measured
as the number of cores used per time fraction.

I1 = v10 (7.12)

� I2. Memory page fault. This index models the amount of page faults in the system.
We have analysed them isolated because they have a deep impact on performance. It
is interesting to note that the observed values resemble an exponential distribution.
To improve the linearity of I2, we transform the variable by taking natural logarithms
(Equation 7.13).

I2 = Φ1(Î2), where

Î2 = ln(v9 + 1) (7.13)

� I3. Intensity of memory hierarchy usage index. This index represents the number
of accesses to the memory hierarchy. It is a combination of cache references –#Cr,
#LLCl– store references –#LLCs– and branch references –#Br– (Equation 7.14).

I3 = Φ2(Î3), where

Î3 =
i=4∑
i=1

bi(ln(vi)− µi) (7.14)

� I4. Aggressive intensity of memory hierarchy usage index. This index measures
the aggressiveness –in memory terms– of an application. It identifies applications that
may have an intense memory usage and a low failure rate –a low value of I4– from those
with a high failure rate. The first one will have a lower impact into the performance
of applications co-scheduled in the same machine.

I4 = Φ3(Î4), where

Î4 =

i=8∑
i=5

bi(ln(vi)− µi) (7.15)

To avoid linearity problems in further analysis, we have taken logarithms for Î2, Î3 and
Î4 because they can be analysed as ratios [130]. Due to the CFA formulation (Equation 7.1),
we have to centre the variable before multiplying by its load; consequently, we subtract its
mean value. It is important to note that Î2, Î3 and Î4 are values with a certain mean and
a certain standard deviation and they might follow a non-normal probability distribution –
theoretically, their values belong to the interval (−∞,∞)–. We can transform these indices
to other ones –I2 ,I3 and I4– trough their cumulative distribution function (cdf). The
transformation function ΦX is defined as shown in Equation 7.16.

ΦX(x) : x→ P (X ≤ x)

(−∞,∞)→ [0, 1] (7.16)



7.3. Developing Interference Indices 95

−2 0 2 4 6 8 10 12 14

0
0.
2

0.
4

0.
6

0.
8

1

x

P
(Î
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Figure 7.3: Φ2 (Subfigure (a)), Φ3 (Subfigure (b)) and Φ4 (Subfigure (c)) functions. Red
line is the cumulative distribution function (cdf) of a normal distribution with the same
mean and standard deviation.

We can build these functions –Φ2, Φ3 and Φ4– empirically by using their histogram, as
shown in Figure 7.3. We can see that the raw indices do not follow a normal distribution,
which is denoted by the red line in Figure 7.3.

To compute the weight of each variable for I3 and I4, we performed a CFA analysis as
explained in Section 7.2. We set the variance of the latent factors to 1 –σ(Î2) = σ(Î3) = 1–
and the covariance among factors to 0 –Cov(Î2, Î3) = 0–, so the resulting factors are forced
to be orthogonal.

The solution and further factor scores are calculated with the lavaan package [123] on
R. The parameter estimation method used is ML and we used the regression method to
compute the scores.
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The resulting Λ , Φ and µ matrices are:

Λ =



λ11 0

λ21 0

λ31 0

λ41 0

0 λ52

0 λ62

0 λ72

0 λ82


=



2.202 0

0.179 0

2.342 0

2.011 0

0 1.315

0 −0.259

0 1.241

0 1.483


Φ =

(
σ(F1) Cov(F2, F1)

Cov(F1, F2) σ(F2)

)
=

(
1 0

0 1

)

µ =



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8


=



−6.079

−2.049

−6.448

−8.734

−2.051

−3.796

−2.083

−1.857


Then, we computed the B matrix using Equation 7.19:

B =

(
1 −0.06 −0.48 −0.04 0 0 0 0

0 0 0 0 1.40 0.05 −0.46 −0.14

)
We can see that the values corresponding to v2, v4 and v6 are quite low. Hence, they

might be removed from the analysis. The reason for this behaviour is the high correlation
between variables and the fact that we are looking for factors that are not correlated. The
variance of v2 can be mostly explained by other variables. Some of the observed variables
–e.g. v3 and v4– measure events which might be included in other ones –e.g. v1–; so the
scores of the factor remove the common measured elements and the correlation. Due to
these situations and due to the data transformations taken, these coefficients should not be
interpreted as they decrease the interference caused by using a certain resource. Since in a
computational environment it is difficult to isolate these variables and to control them for a
given application, an analysis about the elasticity of the variables in the indices should not
be carried out.

7.3.4 Characterising Applications with Interference Indices

We want to model how the resource usage of an application changes over time. Resource
usage is described by the four indices presented in the previous section. Given a sampling
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time sA, to compute the value of I1, I2, I3 and I4 in that interval, we proceed as shown
in Figure 7.2: i) we execute the containerised application alone to get the raw events; ii)
we compute the ratios of the events; iii) we take logarithms in the Î2 and Î3 dependant
variables; iv) we compute the factor scores for Î3 and Î4 through Equation 7.19; and v) we
standardise and transform the variables to a [0, 1] range, using Equation 7.16. Steps 2 to 5
are repeated for each set of measured events with a period of sA seconds.

Figure 7.4 depicts the profile of Pov-ray, IOzone and Stream applications. These ap-
plications are used in the following sections as benchmarks to analyse the impact of applic-
ation co-scheduling because they make a high usage of a certain resource. This situation is
modelled by getting a high value on a certain index. For example, Pov-ray (Figure 7.4a)
continuously uses the entire computational capacity of the machine, therefore I1 is about one
for the entire execution. On the other hand, iozone (Figure 7.4b) makes random accesses
to the memory, hence why I4 is about one. Stream application (Figure 7.4c) is a benchmark
which tries to test the memory bandwidth, so the highest index is I3.

The behaviour of the remaining applications is shown in Figure 7.5. We can see that
pbzip2 (Figure 7.5d), the parallel implementation of bzip2, makes a high usage of all
resources in the system. When compared with the bzip2 profile (Figure 7.5c), the usage
of the extra CPU capacity leads to an increase on the faults in cache –I4 index– while I3

remains constant. Another interesting application is montage (Figure 7.5b), which consists
of several tasks executed in a pipeline scheme. This situation causes that the memory usage
indices –I3 and I4– feature some kind of patron in their distribution. Similarly, we can see
that blastn application (Figure 7.5e) shows high values for I2.

7.4 Interference Analytical Model

In this section, we propose a model to estimate the interference between containers and,
consequently, the total execution time under contingency situations. The interference is
caused by sharing physical resources which are not isolated at the container level. To
describe an application and how it uses the physical resources, we have proposed an index-
based representation in Section 7.3. We assume that, when two applications are scheduled
in the same machine to be executed, if both make a high usage of the same resource,
the degradation will be higher. Additionally, as the indices vary over execution time, the
interference will not be constant. If execution time is equal to sampling time, we will have
a single value for all indices an the interference will be modelled as a constant.

We propose a multi-linear regression model to estimate the interference between con-
tainers. Given an application A, we execute it with three benchmarking applications, which
make a high usage of a certain resource to get reference interference values. These values
will allow us to build the regression model to estimate the interference when application A
is co-scheduled with another application whose resource profiles are known.

The proposed methodology (Figure 7.6) has the following steps: i) getting the interfer-
ence profiles; ii) benchmarking the application; iii) defining the regression model; and iv)
estimating the interference. Each phase is explained in the following subsections.
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Figure 7.4: I1, I2, I3 and I4 values for benchmarking applications: (a) Pov-ray, (b) IOzone
and (c) Stream. The execution time (x-axis) is normalised.

7.4.1 Preliminaries

We propose to model applications as a set of n sampled values for each interference index
–I1, I2, I3 and I4–. Formally, an application A, is a tuple 〈sA,Y 〉, where:

� sa is a constant and it is called the sampling period of A.

� Y is a n× 4 matrix. We denote yij an element in Y . Each yij represents the sampled
value for the j-th interference index at time i · sA.

Given the previous definition, we can define the profile function fAi for each index as an
interpolation between the sampled points:

∀i ∈ [1, n],∀j ∈ [1, 4], fAj(i · sA) = yij
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Figure 7.5: I1, I2, I3 and I4 values for some applications: (a) metis, (b) montage, (c) bzip2,
(d) bzip2, (e) blastn and (f) blastx. The execution time (x-axis) is normalised.
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Figure 7.6: Methodology to estimate the execution time of application A when it is co-
scheduled with application B.

Without loss of generality, we are going to consider the linear interpolation function, which
is defined as the concatenation of linear interpolants between each pair of (xi, yi) (Equation
7.17). Figure 7.5 depicts several examples of profile functions for different applications.

fAj(x) = yij + (x− isA)
yi+1,j − yij

sA
(7.17)

Given two applications A and B, we say that they are co-scheduled if they are executed
in the same physical machine; therefore, they are going to share computational resources.
We denote the co-scheduling operator as ⊗. The result of co-scheduling two applications
can be interpreted as a compound application C. The profile function of C is a combination
of the profile functions of A and B.

However, we are not interested in how the profiles are combined or how the resource
profiles of a compound application C look like. Alternatively, we want to estimate the
execution time of C given the applications A and B. In our model, A represents an incoming
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application to the system, and B can model the entire resource utilisation of applications
executed in a certain machine. Application B might model an application as complex as
possible.

For notation purposes, we denote by TA the execution time of application A; and TA⊗B
the execution time of application A when it is co-scheduled with application B. If application
B is one of the three benchmarks, we denote TA⊗Bi = TABi , i ∈ [1, 3]. In general, TA⊗B 6=
TB⊗A.

7.4.2 Phase 1. Getting Interference Profiles

As we consider homogeneous clusters, when an application arrives in the system, it is ex-
ecuted alone in a machine to get the profile functions –one for each interference index–. The
profile functions are built with the methodology presented in Section 7.3. Figure 7.5 shows
several examples of how these profiles look like. Additionally, we get the total execution
time when the application is executed with all resources available, denoted by TA. The
sample period of the profiles is given by sA.

7.4.3 Phase 2. Benchmarking the Application

We execute the application on a machine where different benchmarks are running. First, we
execute application A with application B1 –Pov-ray– to obtain T1; then, it is co-scheduled
with application B2 –IOzone– and we get T2; finally, it is co-scheduled with B3 –Stream–
to get T3.

Additionally, we split the execution time of application A in dTA/sAe intervals. We meas-
ure the time that application A takes to execute the i-th interval when it is co-scheduled
with benchmark Bj . This time is denoted by τi,j , i ∈ [0, dTA/sae] , j ∈ [1, 3]. The interfer-
ence δi,j can be computed by Equation 7.18. The interval bounds are measured by using
the instruction observation of perf tool –#Inst variable–. Note that τdTA/sAe,i = TABi .

∀i ∈ [1, dTA/sAe] , j ∈ [1, 3], δi,j =
τi,j − τi−1,j

sA

∀j ∈ [1, 3], δ0,j =
τ0,j

sA
(7.18)

7.4.4 Phase 3. Defining the Regression Model

We can model the interference of an application A when it is co-scheduled with an application
B as a multi-linear function (Equation 7.19).

∆(fA1, ..., fA4, fB1, ..., fB4) =

y = β0 +
4∑
i=1

(βifAi + βi+4fBi) (7.19)

Where fA1,fA2,fA3 and fA4 are values from the profile functions of A (Equation 7.17)
and fB1,fB2,fB3 and fB4 are values from the profile functions of B at the same time.



102 Chapter 7. Timed Indices to Characterise Interference in Container Environments

With the interference reference values –δij in the previous step– and the profile functions
of A, B1, B2 and B3, we can estimate the parameters of the model. To improve the accuracy
of the model, we propose to build a model per application. To accomplish this, we have to
execute the application at the same time as each benchmark before building the model.

As the four indices range belongs to [0, 1] and the interference value is positive, we
can include the following restriction to the regression problem: βi > 0,∀i ∈ [0, 9]. To
estimate the regression model under these assumptions we use the Non-Negative Least
Squares (NNLS) approach [131]. We used the nnls package for R. The usage of NNLS
algorithm leads to non-normal distributed residuals, so the classical interpretation of them
should be avoided [132].

7.4.5 Phase 4. Estimating the Interference

Once the interference is modelled as a linear function, we can estimate the interference of
application A when co-scheduled with any other application B whose resource utilisation
functions are known.

The execution time of application A has been split in dTA/sAe intervals in the second
phase. At the instant i ·sA –the upper bound of the interval i– the interference is denoted by
δi, and we use the hat notation for the estimation δ̂i. Without loss of generality, the values
inside the interval are calculated by using a linear interpolation function. Through Equation
7.19, we can compute the interference for each interval by using the profile function. Given
a model ∆ –or equivalently the β coefficients in the regression model–, the interference for
the interval i can be estimated with Equation 7.20.

δ̂i = ∆(fA1(i · sA), ..., fA4(i · sA), fB1(i · sA), ..., fB4(i · sA)) =

= β0 + β1fA1(i · sA) + ...+ β4fA4(i · sA)+

+ β5fB1(i · sA) + ...+ β8fB4(i · sA) (7.20)

As the indices are functions which depend on the execution time of the application,
namely their domain is [0, TA]; we can rewrite Equation 7.20 as seen in Equation 7.21. To
simplify the process, we compute the values of the function at the upper bound of each
interval.

∆(t) = β0 + β1fA1(t) + ...+ β4fA4(t)+

+ β5fB1(t) + ...+ β8fB4(t) (7.21)

The execution time of application A co-scheduled with application B can be computed as
the integral of function ∆(t) (Equation 7.22). If the values used to compute the integral are
the estimated ones, we obtain the estimated execution time, and if the values correspond to
the measured one, we obtain the real execution time. In Equation 7.22, we have considered
that the interference is constant in each i interval due to sampling reasons. Note that if we
do not take any intermediary sample point –TA = sA–, we consider the interference as a
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constant and the overall estimation error might be higher.

TA⊗B =

∫ TA

0
∆(t)dt ≈

n∑
i=1

δ̂isA (7.22)

We can use this estimation to develop a scheduler for a container management system.
When an application arrives, the scheduler builds its functions and it chooses the best
machine to deploy the application. When new applications arrive, the scheduler knows the
profile of the application scheduled in each machine and it can estimate the machine which
leads to the lowest interference and, consequently, to the smallest execution time.

7.5 Experimental Evaluation

In this section we present the experiments carried out to test our methodology. First, we
present the results for the benchmarking phase and then, the results for the interference
estimation.

7.5.1 Benchmarking Phase

Figure 7.7 depicts the interference of different applications when they are co-scheduled with
each of the three benchmarking applications. The x-axis shows the execution time of the
application normalised to one and the y-axis represents the interference as computed in
Equation 7.18. The y-axis scale for bzip2, blastn and blastx is different in order to see
the interference oscillations properly. We can see that Metis has a similar behaviour as
bzip2 because both of them are applications which make a high usage of the CPU with a
single thread. In both cases the highest interference is achieved when they are co-scheduled
with stream, which makes an aggressive usage of cache memory.

On the other hand, pbzip2 is highly affected by Pov-ray, because both applications
are sharing the entire CPU resources, and by Stream. Montage application (Figure 7.7b)
depicts several well-differentiated phases. Each of them corresponds to a task of the montage
workflow. Blastn and blastx applications are quite tolerant or resilient to the benchmark
application interference. Their degradation is about 1.1 for the former and about 1.2 for
the latter at most.

Table 7.1 shows the overall degradation for the six applications. It can be interpreted as
the mean value of the interference shown in Figure 7.7. As expected, parallel applications
–such as pbzip2– suffer a higher degradation when they are co-scheduled with B1 than
single-core applications. The interference caused on the latter by this benchmark is about
5%-7%.

7.5.2 Exploiting the Model

We have measured the interference suffered by applications when they are co-scheduled with
other ones. Results are shown in Figure 7.8. The red line in the results is the estimated
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is Stream.
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App. TA(s) TAB1
(s) TAB1

/TA TAB2
(s) TAB2

/TA
metis 86.01 114.37 1.33 114.22 1.33

montage 374.08 397.63 1.06 421.73 1.13

bzip2 64.52 69.05 1.07 66.77 1.03

pbzip2 20.0 37.94 1.9 20.26 1.01

blastn 155.25 171.26 1.1 157.98 1.02

blastx 180.0 190.02 1.06 184.33 1.02

App. TA(s) TAB3
(s) TAB3

/TA
metis 86.01 193.67 2.25

montage 374.08 401.41 1.07

bzip2 64.52 78.75 1.22

pbzip2 20.0 36.16 1.81

blastn 155.25 170.71 1.1

blastx 180.0 217.55 1.21

Table 7.1: Overall interference for applications co-scheduled with the benchmarks.

value with our methodology. Table 7.2 depicts the Mean Error (ME), the Mean Squared
Error (MSE) and the accuracy of estimations (Acc). The first ones have been calculated
using Equations 7.23 and 7.24. Although the regression methodology tries to minimise the
absolute error, it could be interesting to report the Mean Relative Error (MRE) to analyse
the accuracy (Acc) of the model (Equation 7.25).

ME =
1

n

n∑
i=1

(δi − δ̂i)
(7.23)

MSE =
1

n

n∑
i=1

(δi − δ̂i)2

(7.24)

Acc = 1−MRE = 1− 1

n

n∑
i=1

|δi − δ̂i|
δi (7.25)

Once we have estimated the interference for each interval, we compute the execution time
(Equation 7.22). Table 7.3 shows the values. As the estimated execution time is computed
as the sum of all the estimated interference, the residual error ε in the estimation depends
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on the ME and the sampling parameters, namely, the number of sampling points n and the
sampling period sA. The expression is given by Equation 7.26.

ε = TA − T̂A =

n∑
i=1

δisA −
n∑
i=1

δ̂isA =

=

n∑
i=1

(δisA − δ̂isA) = nsA

n∑
i=1

(δi − δ̂i) =

= n2 · sA ·ME (7.26)
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metis montage bzip2 pbzip2 blastn blastx Total

metis

ME - -0.14 -0.21 -0.14 -0.34 -0.29 -0.22

MSE - 0.1 0.25 0.16 0.22 0.18 0.18

Acc - 0.8 0.71 0.79 0.65 0.69 0.73

montage

ME -0.05 - -0.05 -0.11 0.0 -0.0 -0.04

MSE 0.01 - 0.01 0.02 0.02 0.01 0.01

Acc 0.94 - 0.94 0.88 0.95 0.97 0.94

bzip2

ME -0.08 0.0 - -0.09 -0.03 -0.05 -0.05

MSE 0.01 0.0 - 0.01 0.0 0.0 0.0

Acc 0.92 0.98 - 0.92 0.97 0.95 0.95

pbzip2

ME -0.14 -0.15 -0.08 -0.05 -0.09 -0.1

MSE 0.02 0.03 0.01 - 0.0 0.01 0.01

Acc 0.9 0.87 0.94 - 0.96 0.93 0.92

blastn

ME -0.04 -0.04 -0.05 -0.04 -0.05 -0.04

MSE 0.0 0.0 0.0 0.01 - 0.0 0.0

Acc 0.95 0.96 0.95 0.94 - 0.95 0.95

blastx

ME -0.09 0.0 -0.07 -0.08 -0.04 -0.06

MSE 0.01 0.0 0.01 0.01 0.0 - 0.01

Acc 0.91 0.98 0.92 0.91 0.96 - 0.94

Total

ME -0.08 -0.07 -0.09 -0.09 -0.09 -0.1 -0.09

MSE 0.01 0.03 0.06 0.04 0.05 0.04 0.04

Acc 0.92 0.92 0.89 0.89 0.9 0.9 0.9

Table 7.2: Mean Error (ME), Mean Squared Error (MSE) and accuracy (Acc) values for
the experiment of Figure 7.8.

7.6 Refining the Model

In this section, we analyse how the methodology can be refined attending to the experimental
results. Firstly, we evaluate the impact of the sampling time in the accuracy of the estimated
execution time. Secondly, we remove the benchmarking phase and we evaluate a single model
for all arriving applications. Finally, we discuss how our methodology can be exploited by
the scheduler of a container management system.

7.6.1 Sampling Time

In our model, we consider that the performance losses are not constant during the execution
time of an application. The accuracy of these values depends on the sampling time and the
interpolation function. In the experimental section, we have considered a sampling period
of five seconds for all applications, namely sA = 5 for all A.
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Metis Montage bzip2 pbzip2 blastn blastx

metis
Mea. - 115.36 121.13 116.49 114.30 114.96

Est. - 128.94 138.95 127.46 144.44 140.84

montage
Mea. 379.72 - 376.66 383.55 392.83 385.16

Est. 399.71 - 396.07 427.39 391.83 386.90

bzip2
Mea. 67.79 68.27 - 68.73 66.08 66.31

Est. 73.59 67.94 - 74.65 68.48 69.97

pbzip2
Mea. 26.70 21.85 27.12 - 25.91 25.60

Est. 30.13 25.49 29.10 - 27.15 27.74

blastn
Mea. 158.62 159.55 157.62 161.54 - 158.04

Est. 165.71 166.35 165.72 167.62 - 166.45

blastx
Mea. 188.16 190.94 186.69 188.60 186.33 -

Est. 206.02 190.19 200.94 203.92 194.44 -

Table 7.3: Measured and Estimated execution times in seconds –Mea. and Est. rows– for
the experiment of Figure 7.8.

If we consider the experiment of metis and Montage (metis⊗Montage), we can compute
the accuracy of the estimated execution time given a certain sample period. For the sake of
simplicity, we assumed that the sampling period is constant in all phases of the methodology;
however, we can use a certain sampling period to compute the profiles –Scenario 1 in Table
7.4– and a different value to compute the overall interference and execution time – Scenario
2 in Table 7.4–. We can observe that the accuracy of the estimation increases as the value of
sampling period decreases in Scenario 1. The reason for this behaviour is straightforward.
As we increase the number of intervals, the size of those intervals decreases, so the error
estimation decreases too. For Scenario 2, the behaviour is quite similar. We reduced the
number of points to interpolate the interference profile of the applications and, consequently,
the estimation is less fine grained.

The experimental results lead us to conclude that the sampling period should be adjusted
depending on the granularity needed on the estimations and on the expected accuracy.
Namely, if we have a scheduler that tries to fill the gaps of low expected interference values
on the execution of long applications with smaller applications, the granularity can determine
the size of these gaps and the sampling period.

7.6.2 Single Model

In our methodology, we build a model per incoming application to make the estimations.
This model leads us to wait for the execution time of the application when it is co-scheduled
with the three benchmarks. This is easily parallelisable, and the waiting time of the bench-
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n sA Measured Scenario 1 Scenario 2

17 5 115.36 128.94 128.94

9 10 115.36 132.182 154.53

5 20 115.36 133.86 158.52

3 40 115.36 143.9 154.6

1 85 115.36 159.94 135.34

Table 7.4: Measured and Estimated execution times in seconds when Metis is co-scheduled
with Montage for different sampling periods (sA) in Phase 4 for Scenario 1 –sA in Phases 1
and 3 is 5 seconds– and Scenario 2 –sA is the same for all phases.

marking phase, Tbench is given by Equation 7.27.

Tbench = maxi=3
i=1 {TBi} (7.27)

This time can be negligible if we consider scenarios where a lot of similar applications arrive
to the system to be processed, as it happens in a lambda-function processing architecture.
However, we can analyse what happens when we build a single model by using the values of
all experiments and when we use that model to make estimations about the execution time.

For example, we can consider a single model which includes the interference values
of metis, bzip2, pbzip2 and blastn applications when they are co-scheduled with the
benchmarking applications. We excluded Montage and blastx applications to analyse the
accuracy of the model when an application which is not included arrives. Results are shown
in Table 7.5. Note that the accuracy value (Acc) is the mean value of the accuracy of all
estimations for that experiment (Equation 7.25), not the accuracy of the total estimated
time. The overall accuracy is about 0.78. This value includes the estimation of co-scheduling
all applications with Montage and blastx, and the Montage⊗ blastx experiment in which
both applications are not in the model.

These results show that the proposed single model captures the variance of the variables
quite fine and it can be used as an upper bound of the real value. Additionally, it seems that
applications that are not included in the model do not have a worse behaviour than those
which are included. These results can lead us to conclude that the benchmarking phase
improves the overall accuracy of the model at the expense of waiting for the benchmarking
phase to finish. Thus, the single model can be used if an estimation of the upper bound is
needed and/or its accuracy is high enough.

7.6.3 Discussion

In the previous sections, we have focused on estimating the effects of the interference between
containers. We have defined the co-scheduling operator ⊗ and we have calculated the
execution time. These values are quite useful for the scheduling to determine which is
the optimal host to deploy the container. Several scheduling techniques –e.g. the usage of
priority queues– can be used to improve the performance of executed applications. However,
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Metis Montage bzip2 pbzip2 blastn blastx Total

metis

Mea. - 115.36 121.13 116.49 114.3 114.96 -

Est. - 117.92 121.0 144.3 125.21 122.63 -

Acc - 0.8 0.74 0.59 0.73 0.74 0.72

montage

Mea. 379.72 - 376.66 383.55 392.83 385.16 -

Est. 480.4 - 427.67 532.15 430.97 436.09 -

Acc 0.74 - 0.87 0.62 0.87 0.85 0.79

bzip2

Mea. 67.79 68.27 - 68.73 66.08 66. -

Est. 87.74 76.34 - 95.18 79.39 79.48 -

Acc 0.73 0.89 - 0.64 0.81 0.82 0.78

pbizp2
Mea. 26.7 21.85 27.12 - 25.91 25.6 -

Est. 34.18 32.47 31.24 - 31.94 32.3 -

Acc 0.78 0.61 0.88 - 0.81 0.79 0.77

blastn
Mea. 158.62 159.55 157.62 161.53 - 158.04 -

Est. 200.16 177.91 179.18 219.39 - 184.61 -

Acc 0.75 0.88 0.86 0.64 - 0.84 0.79

blastx
Mea. 188.16 190.95 186.69 188.6 186.34 - -

Est. 226.28 195.45 199.71 249.01 212.26 - -

Acc 0.81 0.95 0.93 0.68 0.87 - 0.85

Total Acc 0.76 0.83 0.86 0.63 0.82 0.81 0.78

Table 7.5: Measured and Estimated execution times in seconds –Mea. and Est. rows–
and Accuracy (Acc) with a single model which includes metis, bzip2, pbzip2 and blastn

applications.

with our methodology, the scheduler can also determine when is the best time to launch the
application.

We can define the co-scheduling operator with a delay ⊗k. A ⊗k B denotes that ap-
plication A is co-scheduled with application B; however, A is delayed until B reaches the k
interval. This approach can be useful to execute short applications when the long execution
applications are in a low resource usage period. The scheduler can choose the machine and
the delay which are optimal to minimise the interference caused on the applications in the
cluster.

Additionally, the interference profiles can be useful to analyse the behaviour of applic-
ations. For example, they can be used to give penalties –or rewards– to those applications
which interfere more –or less– with the remaining containers. Although some resources are
difficult to isolate, our model can analyse the impact of setting up limits for those resources
that can be isolated –for example, CPU, I/O disk or network usage–. In this regard, several
container management systems such as Kubernetes allow setting bounds for the CPU used
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by a container.

7.7 Conclusions

Containers competing for resources inside a physical machine cause degradation in the per-
formance of their executions. This degradation is caused by low level resources –e.g. cache
hierarchy and disk access– which are difficult to measure and to analyse. The statistical
CFA model allows us to build a set of indices which characterise how applications use the
low level resources of a machine to analyse the interference caused between them. To apply
the CFA model, we have built a dataset from real experiments to capture the variability of
low-level events in certain situations. The proposed indices abstract the hardware events
into comprehensible resources –CPU, memory access, memory aggressive access and memory
page faults– and are expressed as a time series. Thus, we can analyse how they interfere over
the entire execution of the application, instead of considering them as a constant attached
to applications. In our work, we propose to use these indices to estimate the container in-
terference; however, the indices have been designed as general purpose indices, and they can
be used to help the scheduler to prioritise applications which cause more/less interference,
to set interference bounds in machines, among other applications.

The proposed estimation model is based on a multiple linear regression model. It estim-
ates how much an application is going to be degraded for being executed at the same time as
another one, considering that both applications are deployed inside containers. This model
allows the scheduler to estimate execution times to make better allocation decisions in a
container cluster. In this regard, this methodology is a refinement of the characterisation
proposed in the client-side scheduler presented in Chapter 6. The original methodology
proposes to build a regression model for each incoming application, assuming that we have
scenarios where a lot of similar instances of the same application are going to be deployed
at the same time. The experiments suggest that a single model for all applications can be
interpreted as an upper bound. However, as its accuracy is quite good –about 0.78–, it can
be used alone for certain situations.





Chapter 8

Conclusions and Future Work

Having well polished the whole bow, he added a
golden tip.

Homer, The Illiad

Classical approaches to the deployment of applications in distributed systems try to fill
the conceptual gap between the functional and the operational level with the use of generic
scheduling algorithms. These general-purpose mechanisms guarantee the transparency of the
distributed paradigms –like the cloud– but, in general, they do not optimise the distributed
resource management, as we have shown in Chapter 6. It is easy to see that a reduction of
the resource efficiency –e.g. the number of unused resources increases– leads to an increase
in the economic cost of those platforms.

Applications deployed in such environments can be seen as a white box or a black box by
the system. The first ones might refer to applications that encapsulate complex systems and
their distribution can be driven either by the model or by the data. The second ones refer to
applications deployed in a system where the system has no additional information about the
application model or implementation. The deployment of these applications is driven by the
system, and to guarantee certain QoS parameters or cost bounds, we propose bringing the
scheduling decisions near the users. In this regard, clients or application developers can use
operational information to take decisions about the allocation of their applications. These
decisions can be taken in accordance with the operational scheduler criteria.

In this PhD thesis, we have analysed each kind of application, using relevant use cases.
First, we analyse an application which is heavily conditioned by the model, that is the
distributed simulation of a High Level Petri Net. Then, we analyse streamed graph ana-
lytics from the point of view of the resource efficiency. The proposed model, based on the
novel concept of summary graphs, reduces the number of processing instances by a seven
factor. Finally, we analyse the operational level as a research subject by itself. In this
regard, we propose several strategies to analyse black box applications with several inform-
ation provided by the user. The operational infrastructure considered is based on container
management systems, which in the last years has focused the attention of the research
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community due to their flexibility and lightweight deployment when compared with other
infrastructure isolation abstractions, like VMs.

Furthermore, our experiments show that the reservation mechanism provided by those
systems –in our work we have analysed Kubernetes– offers an inefficient resource manage-
ment mechanism. Additionally, the new abstractions given by those platforms –for example,
the concept of a pod managed by Kubernetes– increase the amount of deploying parameters.
Consequently, platforms should provide several mechanisms or guides to help the client to
deploy efficiently their applications. Thus, we bring near the client not only the scheduling
or the allocation decision of their application, but also some operational information to help
characterise its applications. Of course, this characterisation can be automated, as proposed
in the last chapter of the thesis. Finally, we propose a characterisation of applications based
on their resource usage profiles, which are described by timed indices created using the
statistical CFA model.

8.1 Future work

In our work, we have analysed those QoS and cost parameters related to the performance
mainly. We propose to analyse fault tolerance issues in the different domains. For example,
for the streamed graph scenario, we can analyse how the inclusion of failures in the model
has an impact on the performance metrics or in the total cost. In this regard, it could
be interesting to introduce in the summary graph abstraction several mechanisms to deal
with fault tolerance, such as the replication of summaries. We propose to take into account
the dichotomy between the fault-tolerance requirements and the resource efficiency. Addi-
tionally, in our work we analyse the summary graph model for the partition problem. It is
interesting to extend this approach by: i) using the summary graph model for other relevant
graph domains; and ii) using the summary graph model to partition large scale systems as
the one proposed in Chapter 3. That means that the set of LPs is summarised –only for
partition purposes– into a smaller set of LPs.

Additionally, future work will involve the development of a platform as a service to
support the modelling and distributed simulation of large complex systems. Involved tasks
include: the full implementation of the elaboration process; the adaptation of current PN
structural analysis tools for large TPNs; the refinement of objective functions to define
balanced partitions attending to different criteria –size, lookahead values, etc.–; and the use
of graph processing frameworks.

In the last chapters of the PhD thesis, we have considered an specific operational infra-
structure, a container-based cluster. The model proposed in 5 uses several concepts from
a specific software, Kubernetes. However, the transitions and places in the model can be
refined to include specific policies of other container clusters. In this regard, we propose
to build a model which analyses the deployment of applications in a container cluster as a
whole system to make simulations. The aim of these simulations is helping to undertake
decisions about the size or amount of resources of the cluster. Moreover, this kind of model
can help to analyse different allocation policies.

On the other hand, we propose to apply the concept of the client-side scheduler to model-
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driven and data-driven applications. For instance, in the field of Discrete Event Simulation,
the scheduler can use structural information about the specific simulation application to
help the operational scheduling. Additionally, this concept can be extended to support more
sophisticated distributed systems, such as edge computing paradigm or federation between
clouds. Moreover, we propose to use our interference indices to develop better container
isolation mechanisms which can reduce the cost of the infrastructure. These indices can
also be used in other domains or directly as a scheduling mechanism. In this regard, they
can be used as a criteria to distribute jobs or applications in cloud environments and in
more specific abstractions, as osmotic computing, edge computing or fog computing.

Finally, in the last chapters, we have used reference applications to exemplify and conduct
the experiments related with the operational level. As we have discussed, these applications
are quite relevant in their respective domain, and they model a certain resource usage
pattern. As future work, we propose to use more complex applications –as the simulation
of Distributed Event Systems or graph analytics analysed in Chapters 3 and 4–, instead
of isolated and self-contained applications. They might be useful to analyse more complex
properties of the model such as the relationship between the different pieces of the model.





Appendix A

Notation

A.1 Notation for Chapter 4

Notation Description

T
The entire Stream.

Ordered sequence of t1, ..tn items.

G A Graph G, with V vertex set and E edge set.

vi Ith vertex in V set.

ei Ith edge in E set.

deg(v)
Degree of he vertex v.

Number of adjacency edges of v.

n Number of vertices, namely, |V |.
m Number of edges, namely, |E|.
k Number of partitions.

s Number of partitioners.

Ψ Set of summarised vertices.

Πi I-th summary of vertices in Ψ. Pii ⊂ V .

Φ Set of edges between summary vertices set Ψ.

l
Number of vertices in a summarised vertex.

l = |Π1|= |Π2|= ... = |Π|Ψ||

P
Partition solution.

Set of partitions {S1, ..., Sk}.
Si State of the i-th partition.

Γ(v, Si) Number of neighbours of v in partition Si.

σ
Input rate.

Number of incoming elements per time unit.
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Notation Description

Λ Set of cutting edges.

λ Fraction of cutting edges.

ρ Normalised maximum load.

Table A.1: Used Notation in Chapter 4.

A.2 Notation for Chapter 6

Notation Description

#Pods Number of pods in a deployment.

C Number of containers in a deployment.

n Number of machines in the cluster.

ρ Inverse of the number of containers in a pod.

Tt Total provisioning time.

Td Deployment time.

Tdown Time to download the container image.

Tc Time to deploy a container.

Te Total execution time.

µ1 Mean value for Scenario 1.

µ2 Mean value for Scenario 2.

α Ratio between µ1 and µ2.

Table A.2: Used Notation in Chapter 6.

A.3 Notation for Chapter 7

Notation Description

A, C Applications.

p Number of factors.

m Number of observed variables.

X Matrix with the observations.

Λ Matrix with the factor loads.

Φ Covariance matrix of the factors.

Σ Covariance matrix of the observations.

µ Matrix with the intercepts.

B Matrix with the factor scores.
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Notation Description

ε Error matrix.

sA Sampling period of application A.

vi I-th variable from the dataset.

Ii I-th adjusted interference index.

Îi I-th raw interference index.

ΦX Transformation function for variable X.

yij J-th sampled value for the i-th index.

fAi Profile function for the i-th index for application A.

Bi I-th Benchmark.

⊗ Co-scheduling operator.

A⊗k B
Application A is co-scheduled with application B

delayed k time units.

A⊗B = A⊗1 B.

TA Execution time of application A.

n Number of sampled points for a given application.

TABi

Execution time of application A

when it is co-scheduled with benchmark Bi.

TABi = TA⊗Bi .

τi,j
Time to reach the i time interval

when a given application is co-scheduled with benchmark Bj .

δi,j
Measured interference at the i time interval

when a given application is co-scheduled with benchmark Bj .

∆ Regression model for a given application.

βi I-th β coefficient in the regression model.

δ̂i
Estimated interference at the i time interval,

given two co-scheduled applications.

Table A.3: Used Notation in Chapter 7.





Appendix B

Petri Nets and Object Nets

A Petri Net [13] is one of several formal models for the description and analysis of distributed,
parallel or concurrent computing systems. It can be seen as a bipartite graph, where nodes
can be of two types, either places or transitions; and arcs connect a transition to a place
or viceversa. A place is often represented by a circle, whereas a transition by a rectangle.
Besides, places can contain a –discrete– number of tokens –a token is typically represented
as []–. In order to model a system, all of these constituents can represent the dynamics
of a system in a number of different ways. For instance, a transition can model a system
action, and a place can represent a state, arcs can represent that each transition has a
certain number of input and output places, modelling pre-conditions and postconditions of
the system action. Tokens move from one pre-condition state to a post-condition state,
when the involved transition is fired. In this way, it can be used to capture the evolution of
system semantics.

In this thesis, we are making use of a particular type of Petri Nets called Object Nets [17]
with reference semantic –sometimes these Petri Nets are called Reference Nets–. Reference
Nets belong to the class of High-Level Petri Nets (HLPN) [108]. A HLPN is a Petri net
whose tokens represent data structures or even objects. The pre-conditions of a HLPN
can be labelled by expressions that identify states defined by the value of tokens. Besides,
post-conditions can be labelled by expressions that define state changes by the modification
of token values. In this way, HLPNs provide a more concise representation than ordinary
Petri Nets. In essence, Object Nets extend High-Level Petri Nets with some characteristics
that support the construction of hierarchical models, by allowing a token to be a net itself,
creating hierarchies of nets. The nets forming part of such hierarchies can communicate by
means of synchronous channels. Synchronous channels can be seen as a sophisticated way
of message passing communication, but with a richer semantics based on the unification
mechanism. A synchronous channel engages two transitions –typically from different nets–
that, by means of the channel, fire –synchronize– simultaneously. The channel can also
accommodate variables and it has two main roles:

� The uplink or callee role, at the subordinated instance net, which servers requests.

� The downlink or caller role, at the parent net, which makes use of the channel to both
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Figure B.1: A Reference Net model that represents a Service Consumer and a Resource

Provider. References to Resources Net instances are managed by the consumer to provide
data and collect results, and providers to manage resources.

synchronize and call the subordinate instance.

Channel communication and hierarchies provide the way to describe finely grained com-
plex behaviours in the form of nested Petri Nets. The usefulness of net instances lies in
the fact that they can represent behaviours that can be moved to different execution envir-
onments. The inscription language of Reference Nets have also been extended to include
tuples, which can be used for representing a group of related values or variables in a single
token. A net instance can be influenced by the net that holds it, called System Net, and
such influence is accomplished by means of the synchronous channels mechanism.

The execution of a HLPN specification requires to find bindings, i.e. mapping of variables
used in are expressions to specific values.

Object Nets with reference semantic can be interpreted by Renew 1 [108], a Java-based
interpreter and graphical modelling tool. The way Renew binds variables to values is by
unification, the same mechanism used by logic programming languages such as Prolog. In
HLPNs, when a transition fires, then its expression is evaluated and tokens are moved ac-
cording to the result. Furthermore, Reference Nets incorporate some characteristics from
object-oriented languages: Reference Nets support the creation of net instances dynamic-
ally, and transitions also support the inclusion of inscriptions, including Java inscriptions.
Therefore, Reference Nets also support the creation of Java objects, and Java method in-
vocations inside a net. They also incorporate the assignment operator “=”, and it can be

1http://www.renew.de

http://www.renew.de
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used to define –assign– the value of variables.

Reference Nets can hold two kinds of tokens: Valued tokens and tokens which correspond
to a reference to a PN instance. By default, an arc will transport a black token, denoted
by []. In case an inscription is added to an arc, that inscription will be evaluated and the
result will determine which kind of token is moved.

In order to illustrate the main concepts of Reference Nets, Figure B.1 depicts a Reference
Net model that represents a Resource Consumer and a Resource Provider with allocating
capacity of two resources. Services are required with a QoS and data to be processed when
Consumer invokes the match channel. Communication happens when unification of variables
is possible. In the state represented in the figure, the transition labelled with the downlink
this:match(request, Qos, inputData) channel in the Consumer can synchronise with
transitions labelled with uplinks :match(service, QoS,Res) in the Resource Provider.
Figure B.1 shows one allocated resource providing service, and one available resource. There
are two possible bindings with data1 and data2, but there is only one available resource,
and therefore transitions with downlink and uplink will be synchronously fired with one of
the two possible bindings.





Appendix C

Kubernetes Background

Kubernetes is an open-source platform that abstracts and automates the deployment of
containerised applications across a number of distributed computational nodes. Kubernetes
manages these nodes and provide to applications a set of abstractions to support several non-
functional requirement, such as elasticity and fault tolerance. In this appendix, we analyse
the container approach used by Kubernetes, and then, we explain briefly its architecture
and its scheduling principles.

C.1 Container Approach

VMs have been one of the first and most important cloud computational resources. A VM is
a piece of software that emulates a hardware computing system and typically multiple VMs
share the same hardware to be executed. The emulation is accomplished by a hypervisor.
Hypervisors are responsible for dividing the hardware of the host physical machine, so that
it can be used by the OS inside each VM. Therefore, applications that run inside a VM
can accomplish calls to their own OS inside the VM, and then their virtual kernel executes
instructions on the physical CPU of the host machine by means of the hypervisor.

One of the most important benefits of using VMs is the full isolation they achieve:
VMs on the same host physical machine share the same hardware, but they are completely
isolated. Nevertheless, VM utilization can sometimes be difficult to achieve, e.g. when the
applications to be run do not consume all the resources of a VM. Developers can therefore
can try to map multiple applications onto the same VM. In this case, applications would not
be isolated. Containers, on the other hand, represent a way to solve that isolation problem
by improving utilization. A container can be seen as a set of processes where an application
is executed in isolation. Multiple containers typically coexist on the same host machine, and
each container in it uses the resources that the application on it consumes. Nevertheless, the
degree of isolation achieved by VMs is still higher than the one achieved by containers, but
containers have much less overhead. The reason for it is that all containers deployed in the
same host machine share the same OS kernel, and therefore virtualization is not required.
Furthermore, while a VM needs to boot up first before an application can be executed on it,
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Figure C.1: Kubernetes architecture.

a container is a group of processes whose execution can be initiated almost immediately. The
isolation of containers is obtained by two Linux mechanisms: Linux namespaces and Linux
Control Groups, which isolate the view of the system and limit the amount of computational
resources, respectively.

Although container technologies were developed many years ago, they became popular
with the emergence of Docker. Docker containers became popular due to the fact that (i)
they also help deploy library dependencies with the application and (ii) the high portability
of containers on different platforms. A Docker container is a Docker image in execution.
A Docker image contains an application and all the libraries required for its execution. In
turn, Docker images are stored at the Docker registry, which also facilitates the availability
of such images.

C.2 Kubernetes Architecture

Kubernetes is a system that allows developers to deploy and manage containerized applica-
tions. It is based on a master-slave architecture, with a particular emphasis on supporting a



C.2. Kubernetes Architecture 127

cluster of machines where containers are executed. Applications are submitted to the master
and Kubernetes, in turn, deploys them automatically across the worker nodes in contain-
ers. The communication between Kubernetes master & slave nodes is realised through the
kubelet service. This service must be executed on each machine in the Kubernetes cluster.
The node which acts as master can also carry out the role of a slave during execution. The
basic component architecture of Kubernetes is shown in Figure C.1. As Kubernetes often
works with Docker containers, the docker daemon should be running on every machine in
the cluster. In addition, Kubernetes makes use of the etcd project to have a key-value dis-
tributed storage system, in order to coordinate resources and to share configuration data
of the cluster. The master node runs also an API server, implemented with a RESTful
interface, which gives an entry point to the cluster. The API service is used as a proxy to
expose the services which are executed inside the cluster to external applications/ users.

In order to run an application, it has to be wrapped on one or more container images,
then push (submit) these images to a container service registry, and then post a description of
the application in the form of an application descriptor to the API server. Then, Kubernetes
will automatically retrieve the container images when the application is launched. Instead
of deploying containers individually, Kubernetes deploys pods. A pod is an abstraction of
a set of containers tightly coupled with some shared resources (the network interface and
the storage system). Any OCI compliant container runtime engine could be used to execute
containers in pods. With this abstraction, Kubernetes adds persistence to the deployment
of single containers. It is important to note two aspects of a pod : (i) a pod is scheduled
to execute on one machine, with all containers inside the pod being deployed on the same
machine; (ii) a pod has a local IP address inside the cluster network, and all containers
inside the pod share the same port space. Therefore, each pod has a unique IP address in
a flat shared networking space that allows bidirectional IP communications with all other
pods and physical computers in the cluster. The main implication of this is that two services
which listen on the same port by default cannot be deployed inside a pod .

The Kubernetes scheduler allocates pods into nodes taking into account factors that
have a significant impact on the availability, performance and capacity – e.g. the cluster
topology, individual and collective resources, service quality requirements, hardware and
software restrictions, policies, etc. The scheduler uses request and limits to filter the nodes
that have enough resources to execute a pod , and from them, it chooses the best one. Pods
can be categorise in three Quality of Service (QoS) classes: Best effort(lowest priority),
Burstable, and Guaranteed (highest priority). The QoS classes is inferred from the request
and limits manifests. A Guaranteed pod has all containers with limits equal to requests; a
Best effort pod has not request or limit manifest for any container; and the rest of pods
are Burstable. Once a pod is deployed in a node, if pod request manifest < pod request
limits resource requested are guaranteed by the scheduler, but it is possible to use resources
beyond the request manifest if they are idle resources.

A pod can be replicated along several machines for scalability and fault tolerance pur-
poses. When a service or a set of services are deployed over several machines, we can consider:
(1) the functional level or application level involves exposing dependencies between the de-
ployed services. Different services need to be coordinated in order to provide a high level
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functionality. An example of this kind of relationship is the deployment of a stream pro-
cessing infrastructure (e.g. Apache Kafka, Storm, Zookeeper and HDFS for persistence) or
the GuestBook example provided by Kubernetes, composed of a PHP frontend and a Redis
master-slave system. (2) the operational level or deployment level involves mapping services
to physical machines, VMs, pods or containers. It is platform dependant and must involve
isolation between resources. Kubernetes primarily focuses on the operational/ deployment
level. A pod implements a service, and some coordination between different pods is achieved
through the key-value distributed store provided by etcd. Services running in others pods
can be discovered through a DNS. This approach imposes some restrictions to Kubernetes.
For instance, in the Guestbook example, Kubernetes’ scheduler cannot ensure that the three
pods are deployed rightly, because Kubernetes does not manage the application level.
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Glossary

ε-approximation Given a function, we say that it is an ε-approximation of another function
if the returned value for the first one is always bound by a constant ε multiplied by
the second function. 39, 45, 46

Balance Factor Given a partition solution of a graph, the Balance Factor ρ measures the
ratio between the number of edges of the partition with more edges and the number
of edges of a balanced partition. 50

BFS Breadth First Search. Breadth First Search is a search algorithm for tree and graph
structures which explores all neighbour nodes at the present depth before exploring
nodes at deeper levels. When referred to the arrival nodes of a streamed graph, it is
the sequence of nodes given by such algorithm. 38, 43, 48–50

CFA Confirmatory Factor Analysis. Confirmatory Factor Analysis is a set of techniques
which allows to identify how a set of observed variables are affected by a set of factors
to accept or reject an a priori hypothesis. 83, 85–88, 92, 93, 108, 112, see EFA &
SEM

client-side scheduler A client-side scheduler is an algorithm which implements a certain
scheduling policy to allow the client to use operational information in a distributed
system. It is deployed above the specific operational scheduler. 5, 71, 72, 79, 109, 112

CNA Cloud Native Application. A Cloud Native application is a service or an application
which has been designed and developed for a cloud platform. This means that these
applications are loosely-coupled and they support elasticity by design. 56

Complex System A Complex System is a system which can be described as many com-
ponents which interact with each other. Each of these components might describe in
turn a whole and meaningful system with its own subsystem or components. These
systems are also called System of Systems (SoS). 1, 2, 4, 19, 20, 23, 111, 112

conservative resource In a system, a conservative resource is a resource that can be
allocated and released by processes without being consumed. Thus, the total amount
of these resources is an invariant in the system. 19, 24, 84

141
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cutting edge Given a set of partition solution of a graph, a cutting edge is a edge whose
vertices belong to different partitions. 45, 46

DAG Directed Acyclic Graph. A Directed Acyclic Graph is a directed graph (edges have
a direction associated) which have no cycles. 47

Data Stream A Data Stream is a flux of data which arrives to the system as a sequence
of items. The stream is unbounded in size and it is not feasible to access data with in
a random manner. 3, 4, 35, 37, 38

DES Discrete Event System. A Discrete Event System is a dynamic system which is
described using discrete estates and the transition between them is modelled by trans-
itions triggered by events. 19, 21, 22, 32

DFS Depth First Search. Depth First Search is a search algorithm for tree and graph struc-
tures which explores first all nodes at deeper level depth before exploring neighbour
nodes. When referred to the arrival nodes of a streamed graph, it is the sequence of
nodes given by such algorithm. 38, 43

EFA Exploratory Factor Analysis. Exploratory Factor Analysis are a set of statistical
techniques to discover the underlying factor structure of a set of variables. Unlike
CFA, EFA assumes that any variable may be associated with any factor. 86, see CFA

EV Electric Vehicle. An Electric Vehicle, is a vehicle which uses one or more electric motors
or traction motors for propulsion. xv, 2, 5, 19, 23–28

IoT Internet of Things. The Internet of Things is the network of physical devices, home
appliances and, in general, items embedded with electronics, sensors or actuators which
enables them to exchange data and information. 2, 20

LP Logical Process. A Logical Process is an abstraction which encapsulates the minimal
simulation unit for a distributed or parallel simulator. 12, 13, 22, 31, 32, 112

non-conservative resource In a system, a non-conservative resource is a resource which
can be allocated and released by processes. However, when a process releases it, the
resource is consumed and cannot be used by other processes. 19

Object Net In the Nets-within-nets paradigm, a Object Net – also named Token Net – is
a Petri Net which acts as a token of a System Net. Object nets might be synchronised
through transitions with other Object Nets which are in the same place of the System
Net or with the System Net. 24, 25, 58, 60, see System Net & Object Nets with
Reference Semantic
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Object Nets with Reference Semantic In the Nets-within-nets paradigm, an Object
Net with Reference Semantic means that different instances of an Object Net in the
System Net reference to the same Object Net. Object Nets with Value Semantic refers
to the inverse behaviour. 6, 22, 23, 28, 57, see System Net & Object Net

PageRank PageRank algorithm is an algorithm to measure the importance of nodes in a
graph. The importance of a node depends on the number of incoming edges. PageRank
algorithm is used by Google Search Engine to rank websites. xv, 48, 51, 52, 73–76, 79

PCA Principal Component Analysis. The Principal Component Analysis is a statistical
procedure to reduce a set correlated variables into a set of linearly uncorrelated vari-
ables called principal components. 86

PN Petri Net. A Petri Net is a formal model to describe the behaviour of distributed
systems. It is a bipartite graph, in which nodes represent transitions (i.e. events) and
places (i.e. conditions or states). The edges represent which places are preconditions
and/or postconditions for which transitions. 5, 21–25, 28, 30, 32, 35, 57, 112

Pod A pod is an abstraction introduced by the Software Kubernetes. It represent several
coupled containers that are scheduled to the same machine. xv, 56–70, 75, 76, 79–81,
112, 125, 126

QoS Quality of Service. Quality of Service is the description of the non-functional require-
ments of an application or a service related to performance metrics. 1–5, 54, 84, 111,
112, 125

RAS Resource Allocation System. A Resource Allocation System is a system where the
competition for shared resources between concurrent processes has a relevant role. 84

RTT Round-trip Time. The Round-trip Time is the time that a message –or a signal –
takes to be sent plut the time to receive the acknowledgement of that message to be
received. 62, 65

SEM Structural Equation Modelling. Structural Equation Modelling are a set of mathem-
atical models to analyse or describe constructs of data. It includes multiple techniques,
such as CFA, Path analysis, latent growth models, among others. 85, see CFA

SLA Service-level Agreement. Service Level Agreement is the commitment between a ser-
vice provider and the client which regulates certain QoS – i.e. quality, quantity or
availability of the service. 1, 3

SoI Source of Interference. A Source of Interference is a computational resource which is
shared between process/containers/VMs inside a physical machine. The competition
for that resource make that those instances interference between them leading to
a performance degradation. Examples of Sources of Interference are the CPU, the
memory hierarchy, the I/O filesystem and the network. 18, 84
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SPN Stochastic Petri Nets. A Stochastic Petri Nets is a kind of Petri Net where the
transitions fire after a probabilistic delay determined by a random variable. 11, 21,
see TPN & PN

System Net In the Nets-within-nets paradigm, the System Net is a Petri Net whose tokens
might be Objects Nets – also called Token Nets. The System Net describe the inter-
action mechanisms between the Object Net and the system. 24, 25, 29, 58, 60, see
Object Net & Object Nets with Reference Semantic

TPN Timed Petri Nets. A Timed Petri Net is a kind of Petri Net which attach a temporal
duration to each transitions. Tokens are distributed among places and among firing
transitions – when a transition is fired, tokens are not put into the output places until
the time attached to the transition has happened. 11, 21, 22, 31–33, 112, see SPN &
PN

VM Virtual Machine. A Virtual Machine is an isolation mechanism which allows to share
resources between different tenants hosted in the same physical machine. A VM
emulates a full Operative System. 2, 9, 15–17, 31, 32, 48, 56, 69, 70, 72, 81, 84, 112,
123, 126
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