1,638 research outputs found

    Evolutionary Multiobjective Feature Selection for Sentiment Analysis

    Get PDF
    AuthorSentiment analysis is one of the prominent research areas in data mining and knowledge discovery, which has proven to be an effective technique for monitoring public opinion. The big data era with a high volume of data generated by a variety of sources has provided enhanced opportunities for utilizing sentiment analysis in various domains. In order to take best advantage of the high volume of data for accurate sentiment analysis, it is essential to clean the data before the analysis, as irrelevant or redundant data will hinder extracting valuable information. In this paper, we propose a hybrid feature selection algorithm to improve the performance of sentiment analysis tasks. Our proposed sentiment analysis approach builds a binary classification model based on two feature selection techniques: an entropy-based metric and an evolutionary algorithm. We have performed comprehensive experiments in two different domains using a benchmark dataset, Stanford Sentiment Treebank, and a real-world dataset we have created based on World Health Organization (WHO) public speeches regarding COVID-19. The proposed feature selection model is shown to achieve significant performance improvements in both datasets, increasing classification accuracy for all utilized machine learning and text representation technique combinations. Moreover, it achieves over 70% reduction in feature size, which provides efficiency in computation time and space

    Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics

    Get PDF
    In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis

    Knowledge management overview of feature selection problem in high-dimensional financial data: Cooperative co-evolution and Map Reduce perspectives

    Get PDF
    The term big data characterizes the massive amounts of data generation by the advanced technologies in different domains using 4Vs volume, velocity, variety, and veracity-to indicate the amount of data that can only be processed via computationally intensive analysis, the speed of their creation, the different types of data, and their accuracy. High-dimensional financial data, such as time-series and space-Time data, contain a large number of features (variables) while having a small number of samples, which are used to measure various real-Time business situations for financial organizations. Such datasets are normally noisy, and complex correlations may exist between their features, and many domains, including financial, lack the al analytic tools to mine the data for knowledge discovery because of the high-dimensionality. Feature selection is an optimization problem to find a minimal subset of relevant features that maximizes the classification accuracy and reduces the computations. Traditional statistical-based feature selection approaches are not adequate to deal with the curse of dimensionality associated with big data. Cooperative co-evolution, a meta-heuristic algorithm and a divide-And-conquer approach, decomposes high-dimensional problems into smaller sub-problems. Further, MapReduce, a programming model, offers a ready-To-use distributed, scalable, and fault-Tolerant infrastructure for parallelizing the developed algorithm. This article presents a knowledge management overview of evolutionary feature selection approaches, state-of-The-Art cooperative co-evolution and MapReduce-based feature selection techniques, and future research directions

    An improved bees algorithm local search mechanism for numerical dataset

    Get PDF
    Bees Algorithm (BA), a heuristic optimization procedure, represents one of the fundamental search techniques is based on the food foraging activities of bees. This algorithm performs a kind of exploitative neighbourhoods search combined with random explorative search. However, the main issue of BA is that it requires long computational time as well as numerous computational processes to obtain a good solution, especially in more complicated issues. This approach does not guarantee any optimum solutions for the problem mainly because of lack of accuracy. To solve this issue, the local search in the BA is investigated by Simple swap, 2-Opt and 3-Opt were proposed as Massudi methods for Bees Algorithm Feature Selection (BAFS). In this study, the proposed extension methods is 4-Opt as search neighbourhood is presented. This proposal was implemented and comprehensively compares and analyse their performances with respect to accuracy and time. Furthermore, in this study the feature selection algorithm is implemented and tested using most popular dataset from Machine Learning Repository (UCI). The obtained results from experimental work confirmed that the proposed extension of the search neighbourhood including 4-Opt approach has provided better accuracy with suitable time than the Massudi methods
    • …
    corecore