5,367 research outputs found

    Multimodal Observation and Interpretation of Subjects Engaged in Problem Solving

    Get PDF
    In this paper we present the first results of a pilot experiment in the capture and interpretation of multimodal signals of human experts engaged in solving challenging chess problems. Our goal is to investigate the extent to which observations of eye-gaze, posture, emotion and other physiological signals can be used to model the cognitive state of subjects, and to explore the integration of multiple sensor modalities to improve the reliability of detection of human displays of awareness and emotion. We observed chess players engaged in problems of increasing difficulty while recording their behavior. Such recordings can be used to estimate a participant's awareness of the current situation and to predict ability to respond effectively to challenging situations. Results show that a multimodal approach is more accurate than a unimodal one. By combining body posture, visual attention and emotion, the multimodal approach can reach up to 93% of accuracy when determining player's chess expertise while unimodal approach reaches 86%. Finally this experiment validates the use of our equipment as a general and reproducible tool for the study of participants engaged in screen-based interaction and/or problem solving

    Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction

    Get PDF
    The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of interest; therefore their eyes are not always visible. Consequently both gaze and VFOA estimation cannot be based on eye detection and tracking. We propose a method that exploits the correlation between eye gaze and head movements. Both VFOA and gaze are modeled as latent variables in a Bayesian switching state-space model. The proposed formulation leads to a tractable learning procedure and to an efficient algorithm that simultaneously tracks gaze and visual focus. The method is tested and benchmarked using two publicly available datasets that contain typical multi-party human-robot and human-human interactions.Comment: 15 pages, 8 figures, 6 table

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Multimodal Polynomial Fusion for Detecting Driver Distraction

    Full text link
    Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.Comment: INTERSPEECH 201
    • …
    corecore