23,181 research outputs found

    Spaceborne memory organization, phase 1 Final report

    Get PDF
    Application of associative memories to data processing for future space vehicle

    A Study of Linear Approximation Techniques for SAR Azimuth Processing

    Get PDF
    The application of the step transform subarray processing techniques to synthetic aperture radar (SAR) was studied. The subarray technique permits the application of efficient digital transform computational techniques such as the fast Fourier transform to be applied while offering an effective tool for range migration compensation. Range migration compensation is applied at the subarray level, and with the subarray size based on worst case range migration conditions, a minimum control system is achieved. A baseline processor was designed for a four-look SAR system covering approximately 4096 by 4096 SAR sample field every 2.5 seconds. Implementation of the baseline system was projected using advanced low power technologies. A 20 swath is implemented with approximately 1000 circuits having a power dissipation of from 70 to 195 watts. The baseline batch step transform processor is compared to a continuous strip processor, and variations of the baseline are developed for a wide range of SAR parameters

    Emulating long-term synaptic dynamics with memristive devices

    Get PDF
    The potential of memristive devices is often seeing in implementing neuromorphic architectures for achieving brain-like computation. However, the designing procedures do not allow for extended manipulation of the material, unlike CMOS technology, the properties of the memristive material should be harnessed in the context of such computation, under the view that biological synapses are memristors. Here we demonstrate that single solid-state TiO2 memristors can exhibit associative plasticity phenomena observed in biological cortical synapses, and are captured by a phenomenological plasticity model called triplet rule. This rule comprises of a spike-timing dependent plasticity regime and a classical hebbian associative regime, and is compatible with a large amount of electrophysiology data. Via a set of experiments with our artificial, memristive, synapses we show that, contrary to conventional uses of solid-state memory, the co-existence of field- and thermally-driven switching mechanisms that could render bipolar and/or unipolar programming modes is a salient feature for capturing long-term potentiation and depression synaptic dynamics. We further demonstrate that the non-linear accumulating nature of memristors promotes long-term potentiating or depressing memory transitions

    A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision

    Get PDF
    A bio-inspired model for an analog programmable array processor (APAP), based on studies on the vertebrate retina, has permitted the realization of complex programmable spatio-temporal dynamics in VLSI. This model mimics the way in which images are processed in the visual pathway, what renders a feasible alternative for the implementation of early vision tasks in standard technologies. A prototype chip has been designed and fabricated in 0.5 μm CMOS. It renders a computing power per silicon area and power consumption that is amongst the highest reported for a single chip. The details of the bio-inspired network model, the analog building block design challenges and trade-offs and some functional tests results are presented in this paper.Office of Naval Research (USA) N-000140210884European Commission IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    Second-order neural core for bioinspired focal-plane dynamic image processing in CMOS

    Get PDF
    Based on studies of the mammalian retina, a bioinspired model for mixed-signal array processing has been implemented on silicon. This model mimics the way in which images are processed at the front-end of natural visual pathways, by means of programmable complex spatio-temporal dynamic. When embedded into a focal-plane processing chip, such a model allows for online parallel filtering of the captured image; the outcome of such processing can be used to develop control feedback actions to adapt the response of photoreceptors to local image features. Beyond simple resistive grid filtering, it is possible to program other spatio-temporal processing operators into the model core, such as nonlinear and anisotropic diffusion, among others. This paper presents analog and mixed-signal very large-scale integration building blocks to implement this model, and illustrates their operation through experimental results taken from a prototype chip fabricated in a 0.5-μm CMOS technology.European Union IST 2001 38097Ministerio de Ciencia y Tecnología TIC 2003 09817 C02 01Office of Naval Research (USA) N00014021088

    Enabling Fine-Grain Restricted Coset Coding Through Word-Level Compression for PCM

    Full text link
    Phase change memory (PCM) has recently emerged as a promising technology to meet the fast growing demand for large capacity memory in computer systems, replacing DRAM that is impeded by physical limitations. Multi-level cell (MLC) PCM offers high density with low per-byte fabrication cost. However, despite many advantages, such as scalability and low leakage, the energy for programming intermediate states is considerably larger than programing single-level cell PCM. In this paper, we study encoding techniques to reduce write energy for MLC PCM when the encoding granularity is lowered below the typical cache line size. We observe that encoding data blocks at small granularity to reduce write energy actually increases the write energy because of the auxiliary encoding bits. We mitigate this adverse effect by 1) designing suitable codeword mappings that use fewer auxiliary bits and 2) proposing a new Word-Level Compression (WLC) which compresses more than 91% of the memory lines and provides enough room to store the auxiliary data using a novel restricted coset encoding applied at small data block granularities. Experimental results show that the proposed encoding at 16-bit data granularity reduces the write energy by 39%, on average, versus the leading encoding approach for write energy reduction. Furthermore, it improves endurance by 20% and is more reliable than the leading approach. Hardware synthesis evaluation shows that the proposed encoding can be implemented on-chip with only a nominal area overhead.Comment: 12 page
    corecore