8 research outputs found

    Multi-Agent Systems Applications in Energy Optimization Problems: A State-of-the-Art Review

    Get PDF
    [EN] This article reviews the state-of-the-art developments in Multi-Agent Systems (MASs) and their application to energy optimization problems. This methodology and related tools have contributed to changes in various paradigms used in energy optimization. Behavior and interactions between agents are key elements that must be understood in order to model energy optimization solutions that are robust, scalable and context-aware. The concept of MAS is introduced in this paper and it is compared with traditional approaches in the development of energy optimization solutions. The different types of agent-based architectures are described, the role played by the environment is analysed and we look at how MAS recognizes the characteristics of the environment to adapt to it. Moreover, it is discussed how MAS can be used as tools that simulate the results of different actions aimed at reducing energy consumption. Then, we look at MAS as a tool that makes it easy to model and simulate certain behaviors. This modeling and simulation is easily extrapolated to the energy field, and can even evolve further within this field by using the Internet of Things (IoT) paradigm. Therefore, we can argue that MAS is a widespread approach in the field of energy optimization and that it is commonly used due to its capacity for the communication, coordination, cooperation of agents and the robustness that this methodology gives in assigning different tasks to agents. Finally, this article considers how MASs can be used for various purposes, from capturing sensor data to decision-making. We propose some research perspectives on the development of electrical optimization solutions through their development using MASs. In conclusion, we argue that researchers in the field of energy optimization should use multi-agent systems at those junctures where it is necessary to model energy efficiency solutions that involve a wide range of factors, as well as context independence that they can achieve through the addition of new agents or agent organizations, enabling the development of energy-efficient solutions for smart cities and intelligent buildings

    Multi-agent systems applications in energy optimization problems: a state-of-the-art review

    Get PDF
    This article reviews the state-of-the-art developments in Multi-Agent Systems (MASs) and their application to energy optimization problems. This methodology and related tools have contributed to changes in various paradigms used in energy optimization. Behavior and interactions between agents are key elements that must be understood in order to model energy optimization solutions that are robust, scalable and context-aware. The concept of MAS is introduced in this paper and it is compared with traditional approaches in the development of energy optimization solutions. The different types of agent-based architectures are described, the role played by the environment is analysed and we look at how MAS recognizes the characteristics of the environment to adapt to it. Moreover, it is discussed how MAS can be used as tools that simulate the results of different actions aimed at reducing energy consumption. Then, we look at MAS as a tool that makes it easy to model and simulate certain behaviors. This modeling and simulation is easily extrapolated to the energy field, and can even evolve further within this field by using the Internet of Things (IoT) paradigm. Therefore, we can argue that MAS is a widespread approach in the field of energy optimization and that it is commonly used due to its capacity for the communication, coordination, cooperation of agents and the robustness that this methodology gives in assigning different tasks to agents. Finally, this article considers how MASs can be used for various purposes, from capturing sensor data to decision-making. We propose some research perspectives on the development of electrical optimization solutions through their development using MASs. In conclusion, we argue that researchers in the field of energy optimization should use multi-agent systems at those junctures where it is necessary to model energy efficiency solutions that involve a wide range of factors, as well as context independence that they can achieve through the addition of new agents or agent organizations, enabling the development of energy-efficient solutions for smart cities and intelligent buildings

    Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    Get PDF
    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.This research was developed within the research project of the Centre for Industrial Technical Development (CDTI), called “Research and design of constructive solutions for the energy improvement of buildings”, reference IDI-20110240, co-financed by the Fund for European Regional Development (ERDF). This fund was requested by the company ECISA. Compañía General de Construcciones S.A., following a formal agreement with the University of Alicante (Reference: ECISA1-10Y)

    Coevolutionary algorithms for the optimization of strategies for red teaming applications

    Get PDF
    Red teaming (RT) is a process that assists an organization in finding vulnerabilities in a system whereby the organization itself takes on the role of an “attacker” to test the system. It is used in various domains including military operations. Traditionally, it is a manual process with some obvious weaknesses: it is expensive, time-consuming, and limited from the perspective of humans “thinking inside the box”. Automated RT is an approach that has the potential to overcome these weaknesses. In this approach both the red team (enemy forces) and blue team (friendly forces) are modelled as intelligent agents in a multi-agent system and the idea is to run many computer simulations, pitting the plan of the red team against the plan of blue team. This research project investigated techniques that can support automated red teaming by conducting a systematic study involving a genetic algorithm (GA), a basic coevolutionary algorithm and three variants of the coevolutionary algorithm. An initial pilot study involving the GA showed some limitations, as GAs only support the optimization of a single population at a time against a fixed strategy. However, in red teaming it is not sufficient to consider just one, or even a few, opponent‟s strategies as, in reality, each team needs to adjust their strategy to account for different strategies that competing teams may utilize at different points. Coevolutionary algorithms (CEAs) were identified as suitable algorithms which were capable of optimizing two teams simultaneously for red teaming. The subsequent investigation of CEAs examined their performance in addressing the characteristics of red teaming problems, such as intransitivity relationships and multimodality, before employing them to optimize two red teaming scenarios. A number of measures were used to evaluate the performance of CEAs and in terms of multimodality, this study introduced a novel n-peak problem and a new performance measure based on the Circular Earth Movers‟ Distance. Results from the investigations involving an intransitive number problem, multimodal problem and two red teaming scenarios showed that in terms of the performance measures used, there is not a single algorithm that consistently outperforms the others across the four test problems. Applications of CEAs on the red teaming scenarios showed that all four variants produced interesting evolved strategies at the end of the optimization process, as well as providing evidence of the potential of CEAs in their future application in red teaming. The developed techniques can potentially be used for red teaming in military operations or analysis for protection of critical infrastructure. The benefits include the modelling of more realistic interactions between the teams, the ability to anticipate and to counteract potentially new types of attacks as well as providing a cost effective solution
    corecore