245 research outputs found

    CAREER: motion capture from movies: video-based tracking and modeling of human motion

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Synthetic biology routes to bio-artificial intelligence

    Get PDF
    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI)

    Boosted Feature Generation for Classification Problems Involving High Numbers of Inputs and Classes

    Get PDF
    Classification problems involving high numbers of inputs and classes play an important role in the field of machine learning. Image classification, in particular, is a very active field of research with numerous applications. In addition to their high number, inputs of image classification problems often show significant correlation. Also, in proportion to the number of inputs, the number of available training samples is usually low. Therefore techniques combining low susceptibility to overfitting with good classification performance have to be found. Since for many tasks data has to be processed in real time, computational efficiency is crucial as well. Boosting is a machine learning technique, which is used successfully in a number of application areas, in particular in the field of machine vision. Due to it's modular design and flexibility, Boosting can be adapted to new problems easily. In addition, techniques for optimizing classifiers produced by Boosting with respect to computational efficiency exist. Boosting builds linear ensembles of base classifiers in a stage-wise fashion. Sample-weights reflect whether training samples are hard-to-classify or not. Therefore Boosting is able to adapt to the given classification problem over the course of training. The present work deals with the design of techniques for adapting Boosting to problems involving high numbers of inputs and classes. In the first part, application of Boosting to multi-class problems is analyzed. After giving an overview of existing approaches, a new formulation for base-classifiers solving multi-class problems by splitting them into pair-wise binary subproblems is presented. Experimental evaluation shows the good performance and computational efficiency of the proposed technique compared to state-of-the-art techniques. In the second part of the work, techniques that use Boosting for feature generation are presented. These techniques use the distribution of sample weights, produced by Boosting, to learn features that are adapted to the problems solved in each Boosting stage. By using smoothing-spline base classifiers, gradient descent schemes can be incorporated to find features that minimize the cost function of the current base classifier. Experimental evaluation shows, that Boosting with linear projective features significantly outperforms state-of-the-art approaches like e.g. SVM and Random Forests. In order to be applicable to image classification problems, the presented feature generation scheme is extended to produce shift-invariant features. The utilized features are inspired by the features used in Convolutional Neural Networks and perform a combination of convolution and subsampling. Experimental evaluation for classification of handwritten digits and car side-views shows that the proposed system is competitive to the best published results. The presented scheme has the advantages of being very simple and involving a low number of design parameters only

    Integrating ensemble species distribution modeling and statistical phylogeography to inform projections of climate change impacts on species distributions

    Get PDF
    Species distribution models (SDMs) are commonly used to forecast climate change impacts on species and ecosystems. These models, however, are subject to important assumptions and limitations. By integrating two independent but complementary methods, ensemble SDMs and statistical phylogeography, I was able to address key assumptions and create robust assessments of climate change impacts on species\u27 distributions while improving the conservation value of these projections. This approach was demonstrated using Rhodiola integrifolia, an alpine-arctic plant distributed at high elevations and latitudes throughout the North American cordillera. SDMs for R. integrifolia were fit to current and past climates using eight model algorithms, two threshold methods, and between one and three climate data sets (downscaled from general circulation models, GCMs). This ensemble of projections was combined using consensus methods to create a map of stable climate (refugial habitat) since the Last Interglacial (124,000 years before present). Four biogeographic hypotheses were developed based on the configuration of refugial habitat and were tested using a statistical phylogeographic approach. Statistical phylogeography evaluates the probability of alternative models of population history given uncertainty about past population parameters, such as effective population sizes and the timing of divergence events. The multiple-refugia hypothesis was supported by both methods, validating the assumption of niche conservatism in R. integrifolia, and justifying the projection of SDMs onto future climates. SDMs were projected onto two greenhouse gas scenarios (A1B and A2) for 2085 using climate data downscaled from five GCMs. Ensemble and consensus methods were used to illustrate variability across these GCMs. Projections at 2085 showed substantial losses of climatically suitable habitat for R. integrifolia across its range. Southern populations had the greatest losses, though the biogeographic scale of modeling may overpredict extinction risks in areas of topographic complexity. Finally, past and future SDM projections were assessed for novel values of climate variables; projections in areas of novel climate were flagged as having higher uncertainty. Integrating molecular approaches with spatial analyses of species distributions under global change has great potential to improve conservation decision-making. Molecular tools can support and improve current methods for understanding species vulnerability to climate change, and provide additional data upon which to base conservation decisions, such as prioritizing the conservation of areas of high genetic diversity in order to build evolutionary resiliency within populations

    Discovery in Physics

    Get PDF
    Volume 2 covers knowledge discovery in particle and astroparticle physics. Instruments gather petabytes of data and machine learning is used to process the vast amounts of data and to detect relevant examples efficiently. The physical knowledge is encoded in simulations used to train the machine learning models. The interpretation of the learned models serves to expand the physical knowledge resulting in a cycle of theory enhancement

    Towards Personalized Medicine Using Systems Biology And Machine Learning

    Get PDF
    The rate of acquiring biological data has greatly surpassed our ability to interpret it. At the same time, we have started to understand that evolution of many diseases such as cancer, are the results of the interplay between the disease itself and the immune system of the host. It is now well accepted that cancer is not a single disease, but a “complex collection of distinct genetic diseases united by common hallmarks”. Understanding the differences between such disease subtypes is key not only in providing adequate treatments for known subtypes but also identifying new ones. These unforeseen disease subtypes are one of the main reasons high-profile clinical trials fail. To identify such cases, we proposed a classification technique, based on Support Vector Machines, that is able to automatically identify samples that are dissimilar from the classes used for training. We assessed the performance of this approach both with artificial data and data from the UCI machine learning repository. Moreover, we showed in a leukemia experiment that our method is able to identify 65% of the MLL patients when it was trained only on AML vs. ALL. In addition, to augment our ability to understand the disease mechanism in each subgroup, we proposed a systems biology approach able to consider all measured gene expressing changes, thus eliminating the possibility that small but important gene changes (e.g. transcription factors) are omitted from the analysis. We showed that this approach provides consistent results that do not depend on the choice of an arbitrary threshold for the differential regulation. We also showed in a multiple sclerosis study that this approach is able to obtain consistent results across multiple experiments performed by different groups on different technologies, that could not be achieved based solely using differential expression. The cut-off free impact analysis was released as part of the ROntoTools Bioconductor package

    Mechanism of activation and the rewired network: New drug design concepts

    Get PDF
    Precision oncology benefits from effective early phase drug discovery decisions. Recently, drugging inactive protein conformations has shown impressive successes, raising the cardinal questions of which targets can profit and what are the principles of the active/inactive protein pharmacology. Cancer driver mutations have been established to mimic the protein activation mechanism. We suggest that the decision whether to target an inactive (or active) conformation should largely rest on the protein mechanism of activation. We next discuss the recent identification of double (multiple) same-allele driver mutations and their impact on cell proliferation and suggest that like single driver mutations, double drivers also mimic the mechanism of activation. We further suggest that the structural perturbations of double (multiple) in cis mutations may reveal new surfaces/pockets for drug design. Finally, we underscore the preeminent role of the cellular network which is deregulated in cancer. Our structure-based review and outlook updates the traditional Mechanism of Action, informs decisions, and calls attention to the intrinsic activation mechanism of the target protein and the rewired tumor-specific network, ushering innovative considerations in precision medicine

    Face Emotion Recognition Based on Machine Learning: A Review

    Get PDF
    Computers can now detect, understand, and evaluate emotions thanks to recent developments in machine learning and information fusion. Researchers across various sectors are increasingly intrigued by emotion identification, utilizing facial expressions, words, body language, and posture as means of discerning an individual's emotions. Nevertheless, the effectiveness of the first three methods may be limited, as individuals can consciously or unconsciously suppress their true feelings. This article explores various feature extraction techniques, encompassing the development of machine learning classifiers like k-nearest neighbour, naive Bayesian, support vector machine, and random forest, in accordance with the established standard for emotion recognition. The paper has three primary objectives: firstly, to offer a comprehensive overview of effective computing by outlining essential theoretical concepts; secondly, to describe in detail the state-of-the-art in emotion recognition at the moment; and thirdly, to highlight important findings and conclusions from the literature, with an emphasis on important obstacles and possible future paths, especially in the creation of state-of-the-art machine learning algorithms for the identification of emotions

    Large Language Models Can Be Easily Distracted by Irrelevant Context

    Full text link
    Large language models have achieved impressive performance on various natural language processing tasks. However, so far they have been evaluated primarily on benchmarks where all information in the input context is relevant for solving the task. In this work, we investigate the distractibility of large language models, i.e., how the model problem-solving accuracy can be influenced by irrelevant context. In particular, we introduce Grade-School Math with Irrelevant Context (GSM-IC), an arithmetic reasoning dataset with irrelevant information in the problem description. We use this benchmark to measure the distractibility of cutting-edge prompting techniques for large language models, and find that the model performance is dramatically decreased when irrelevant information is included. We also identify several approaches for mitigating this deficiency, such as decoding with self-consistency and adding to the prompt an instruction that tells the language model to ignore the irrelevant information
    • …
    corecore